KR101195273B1 - 입체 가열장치 - Google Patents

입체 가열장치 Download PDF

Info

Publication number
KR101195273B1
KR101195273B1 KR1020090063076A KR20090063076A KR101195273B1 KR 101195273 B1 KR101195273 B1 KR 101195273B1 KR 1020090063076 A KR1020090063076 A KR 1020090063076A KR 20090063076 A KR20090063076 A KR 20090063076A KR 101195273 B1 KR101195273 B1 KR 101195273B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
dimensional
carbon
electrode
carbon nanotubes
Prior art date
Application number
KR1020090063076A
Other languages
English (en)
Other versions
KR20100007799A (ko
Inventor
딩 왕
카이 류우
천 펑
카이리 쟝
창홍 류우
서우싼 판
Original Assignee
혼하이 프리시젼 인더스트리 컴퍼니 리미티드
칭화 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008100684621A external-priority patent/CN101626642B/zh
Priority claimed from CN200810068461.7A external-priority patent/CN101626641B/zh
Priority claimed from CN200810142610XA external-priority patent/CN101636011B/zh
Priority claimed from CN200810142522A external-priority patent/CN101636009B/zh
Priority claimed from CN200810142528A external-priority patent/CN101636010A/zh
Application filed by 혼하이 프리시젼 인더스트리 컴퍼니 리미티드, 칭화 유니버시티 filed Critical 혼하이 프리시젼 인더스트리 컴퍼니 리미티드
Publication of KR20100007799A publication Critical patent/KR20100007799A/ko
Application granted granted Critical
Publication of KR101195273B1 publication Critical patent/KR101195273B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)

Abstract

본 발명은, 가열소자 및 간격을 두고 설치되면서 상기 가열소자에 각각 전기접속되는 적어도 2개의 전극을 구비하고, 상기 가열소자가 중공의 3차원 구조를 이루는 한편 복수개의 탄소 나노튜브를 포함하는 탄소 나노튜브구조체를 구비하는 입체 가열장치를 제공한다.

Description

입체 가열장치{THREE-DIMENSIONAL HEAT SOURCE}
본 발명은 입체 가열장치에 관한 것으로, 특히 탄소 나노튜브에 의한 입체 가열장치에 관한 것이다.
가열장치는, 생산, 생활 및 과학연구 등의 영역에서 매우 중요한 역할을 한다. 입체 가열장치는 상용(常用) 가열장치의 하나로서 입체구조를 갖는다는 특징점이 있다. 따라서, 피가열체를 상기 입체 가열장치의 내부에 설치하여 전면적으로 가열을 진행할 수 있다. 입체 가열장치가 피가열체의 각 부위에 대해 동시에 가열을 진행 할 수 있기때문에, 상기 입체 가열장치는 피가열체에 대한 가열면이 넓고, 균일한 가열을 진행 할 수 있으며, 가열 효율이 높은 이점있다. 입체 가열장치는 이미 공업, 과학연구 및 일상 생활 등 분야에서 널리 사용되고 있다. 예컨대, 공장에서의 도관체, 실험실에서의 가열설비 또는 주방에서의 전기오븐(Electric Oven) 등이다.
입체 가열장치는 일반적으로 가열소자를 구비한다. 상기 가열소자는 니 켈(Ni)합금 와이어, 동(Cu) 와이어, 몰리브덴(Mo) 와이어 또는 텅스텐(W) 와이어와 같은 금속 와이어를 가지런히 펼쳐 설치하거나, 또는 감는 방식으로 설치될 수 있다.
그러나, 상기와 같은 금속 와이어에 의해 형성된 가열소자는 다음과 같은 결점이 있다.
첫째로, 금속 와이어의 표면이 용이하게 산화되는 것에 의해 금속 와이어의 국부의 저항치가 증가되어 전류에 의해 용이하게 파손되기 때문에, 사용수명이 짧다.
둘째로, 금속 와이어는 회색체 복사(gray body radiation)를 하기 때문에, 열복사 효율이 낮고, 열복사의 전파거리가 짧으며, 열복사가 균일하지 않다.
셋째로, 금속 와이어의 밀도가 크고, 중량이 무거워서 사용에 불편하다.
상기한 금속 와이어에 의한 가열소자에 존재하는 문제를 극복하기 위하여, 가열소자의 재료로서, 우수한 흑체복사 및 비교적 작은 체적을 가지는 탄소섬유의 연구에 열중하였다. 탄소섬유에 의한 가열소자에 있어서, 이러한 탄소섬유는 탄소섬유 종이형식으로 존재한다. 상기 탄소섬유 종이는 종이 기재와 상기 종이 기재 중에 규칙없이 분포된 피치계 탄소섬유(Pitch-Based Carbon Fiber)를 포함한다. 상기 종이 기재는 탄소섬유와 수지 등의 혼합물을 포함한다.
그러나, 상기 탄소섬유 종이를 가열소자로 사용하는 가열장치는 다음과 같은 결점이 있다.
첫째로, 상기 탄소섬유 종이 중의 피치계 탄소섬유가 규칙없이 분포되기 때 문에, 상기 탄소섬유 종이의 강도가 작고, 유연성이 좋지 못해 파열되기 쉬워, 사용수명이 짧은 결점이 있다.
둘째로, 상기 탄소섬유 종이의 전기-열 변환 효율이 비교적 낮으며, 따라서 상기 탄소섬유 종이는 에너지 절약 및 환경 보호에 적용되지 않는다.
본 발명은 상기한 점을 감안하여 발명된 것으로, 전기-열 변환 효율이 우수하고, 사용수명이 긴 입체 가열장치를 제공함에 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 입체 가열장치는, 가열소자 및 간격을 두고 설치되면서 상기 가열소자에 각각 전기접속되는 적어도 2개의 전극을 구비하고, 상기 가열소자가 중공의 3차원 구조를 이루는 한편 상기 가열소자가 복수개의 탄소 나노튜브를 포함하는 탄소 나노튜브구조체를 구비한다.
또한, 본 발명에 따른 입체 가열장치는, 가열소자 및 간격을 두고 설치되면서 상기 가열소자에 각각 전기접속되는 적어도 2개의 전극을 구비하고, 상기 입체 가열장치는 중공의 입체 지지체를 더 구비하며, 상기 가열소자는 상기 중공의 입체 지지체의 표면에 설치되고, 상기 가열소자가 탄소 나노튜브구조체를 구비한다.
본 발명에 따른 입체 가열장치는 다음과 같은 이점이 있다.
첫째로, 탄소 나노튜브가 우수한 강도 및 인성을 가지므로 탄소 나노튜브 구조체도 우수한 강도 및 인성을 가짐으로써 용이하게 파열되지 않는다. 따라서, 본 발명에 따른 상기 탄소 나노튜브구조체를 채용한 입체 가열장치의 사용수명이 길어 지게 된다.
둘째로, 탄소 나노튜브가 탄소 나노튜브구조체에 균일하게 분포되고, 상기 탄소 나노튜브구조체가 균일한 두께 및 저항치를 가지므로 균일한 열량을 발생시키고, 탄소 나노튜브의 전기-열 변환 효율이 높기 때문에, 상기 탄소 나노튜브구조체를 채용한 입체 가열장치는 승온 속도가 빠르고, 열적 히스테리시스(thermal hysteresis)가 작으며, 열교환 속도가 빠른 특성을 갖는다.
이하, 예시도면을 참조하면서 본 발명에 따른 입체 가열장치 및 그 제조방법에 대해 상세히 설명한다.
도 1은 본 발명의 제1실시예에 따른 입체 가열장치(100)의 사시도이고, 도 2는 도 1의 II-II선에 따른 입체 가열장치(100)의 단면도이다.
도 1 및 도 2에 도시된 바와 같이, 상기 입체 가열장치(100)는 중공의 입체 지지체(102)와, 상기 중공의 입체 지지체(102)의 표면에 설치되는 가열소자(104) 및, 상기 가열소자(104)에 각각 전기접속되는 제1전극(110) 및 제2전극(112)을 구비한다. 상기 입체 가열장치(110)에는 상기 제1전극(110) 및 제2전극(112)을 통해 전원(도시되지 않았음)으로부터의 전류가 흘러 든다.
상기 중공의 입체 지지체(102)는 상기 가열소자(104)를 지지하여 상기 가열소자(104)로 하여금 입체구조의 공간을 가지도록 한다. 따라서, 상기 가열소자(104)가 여러 방향으로 상기 공간 내부를 가열할 수 있으므로 상기 가열소 자(104)의 가열효율을 향상시킬 수 있다. 상기 중공의 입체 지지체(102)의 재료는 경질(硬質) 재료 또는 유연성 재료를 사용할 수 있다. 상기 경질 재료로서는 세라믹, 유리 또는 석영 등 중의 적어도 한 가지일 수 있고, 유연성 재료로서는 플라스틱, 수지, 고무 또는 유연성 섬유 등 중의 적어도 한 가지일 수 있다. 상기 중공의 입체 지지체(102)를 유연성 재료로 제조하는 경우에는, 상기 입체 가열장치(100)를 사용할 때 수요에 따라 임의로 굴곡시킬 수 있다. 본 실시예에 있어서, 상기 중공의 입체 지지체(102)를 경질 재료로 구성한다. 상기 중공의 입체 지지체(102)는 공심(空心)구조를 가지며, 그 공심구조는 양단이 완전 개방된 구조 또는 일단이 개방되고 타단이 밀폐된 반개방-반밀폐 구조일 수 있다. 즉, 상기 중공의 입체 지지체(102)는 절단면이 원형, 호(弧)형, 구(矩)형과 같은 튜브형태, 둥근(球)형태, 장방체 또는 입방체 형태일 수 있다. 예컨대, 중공의 입체 지지체(102)로서는 공장에서의 유체(流體) 도관체, 전기오븐의 하우징 또는 컵 등일 수 있다. 본 실시예에 있어서, 상기 중공의 입체 지지체(102)는 중공의 세라믹 튜브이고, 그 절단면은 원형이다.
상기 가열소자(104)는 상기 중공의 입체 지지체(102)의 내부 표면 또는 외부 표면에 설치될 수 있다. 본 실시예에 있어서, 상기 가열소자(104)는 상기 중공의 입체 지지체(102)의 외부 표면에 설치되어 있다. 상기 가열소자(104)는 탄소 나노튜브구조체를 포함하고, 상기 탄소 나노튜브구조체는 점착제를 통해 상기 중공의 입체 지지체(102)의 외부 표면에 설치된다. 상기 점착제로서는 실리콘겔을 사용한다. 상기 탄소 나노튜브구조체는 기계적 연결방식(예컨대, 나사에 의한 연결방식) 에 의해 상기 중공의 입체 지지체(102)의 표면에 설치될 수도 있다. 상기 탄소 나노튜브구조체의 길이, 폭 및 두께에 대해서는 한정하지 않는다. 상기 가열소자(104)가 자아지지(自我支持) 능력을 가지는 것에 의해 자신적으로 둘러 입체구조를 형성한는 경우, 상기 중공의 입체 지지체(102)를 생략하여도 좋다.
상기 탄소 나노튜브구조체는 자아지지 능력을 갖는 자아지지구조체이다. 자아지지구조체란, 탄소 나노튜브구조체가 여타 지지체를 필요로 하지 않고도 자신의 특정한 모양을 유지할 수 있는 구조체를 말한다. 상기 자아지지 능력을 갖는 탄소 나노튜브구조체는 복수개의 탄소 나노튜브를 포함한다. 상기 복수개의 탄소 나노튜브는 반 데르 발스의 힘에 의해 서로 흡인되어 상기 탄소 나노튜브구조체로 하여금 특정한 모양을 가지도록 한다. 상기 탄소 나노튜브구조체 중의 탄소 나노튜브는 단일벽 탄소 나노튜브, 이중벽 탄소 나노튜브 또는 다중벽 탄소 나노튜브 중의 적어도 한 가지를 포함한다. 상기 단일벽 탄소 나노튜브의 직경은 0.5nm~50nm이고, 이중벽 탄소 나노튜브의 직경은 1.0nm~50nm이며, 다중벽 탄소 나노튜브의 직경은 1.5nm~50nm이다. 상기 탄소 나노튜브구조체는 층상(層狀)구조체 또는 선상(線狀)구조체일 수 있다. 상기 탄소 나노튜브구조체가 자아지지 능력을 가지고 있기 때문에, 상기 탄소 나노튜브구조체는 여타의 지지체가 지지하지 않는 경우에도 여전히 층상구조 또는 선상구조를 유지할 수 있다. 상기 탄소 나노튜브구조체에 있어서의 탄소 나노튜브들 사이에 다량의 틈새가 존재하므로 상기 탄소 나노튜브구조체로 하여금 다량의 미세공(micro pore)을 가지도록 한다. 상기 미세공의 직경 은 10㎛ 보다 작다. 상기 탄소 나노튜브구조체의 단위면적 열용량은 2×10-4 J/cm2?K 보다 작거나 같지만, 그 단위면적 열용량을 1.7×10-6 J/cm2?K 보다 작거나 같게 하는 것이 바람직하다. 상기 탄소 나노튜브구조체에 있어서의 탄소 나노튜브들이 우수한 인성을 가지므로 상기 탄소 나노튜브구조체도 우수한 인성을 가진다. 이로 인해, 상기 탄소 나노튜브구조체를 어떠한 모양으로 접어도 파열되지 않는다.
상기 중공의 입체 지지체(102)의 표면에 1층의 층상 탄소 나노튜브구조체 또는 적어도 한가닥의 탄소 나노튜브 선상구조체와 같은 탄소 나노튜브구조체를 설치하여 가열소자(104)를 형성한다.
상기 층상 탄소 나노튜브구조체는 이차원 구조체이다. 상기 층상 탄소 나노튜브구조체를 상기 중공의 입체 지지체(102)의 외부 표면을 휘감거나 감싸는 형식으로 상기 중공의 입체 지지체(102)의 외부 표면에 설치하거나, 또는 점착제 또는 기계적 방식에 의해 상기 중공의 입체 지지체(102)의 내부 표면에 설치할 수 있다. 상기 층상 탄소 나노튜브구조체는 적어도 1층의 탄소 나노튜브막 또는 적어도 1층의 탄소 나노튜브막과 적어도 한가닥의 탄소 나노튜브 선상구조체의 복합구조체를 포함할 수 있다.
상기 탄소 나노튜브구조체는 적어도 한가닥의 탄소 나노튜브 선상구조체를 포함한다. 도 3에 도시된 바와 같이, 상기 탄소 나노튜브구조체는 단일의 탄소 나노튜브 선상구조체만 포함하는 경우, 상기 탄소 나노튜브 선상구조체는 상기 중공의 입체 지지체(102)의 외부 표면을 휘감는 형식으로 상기 중공의 입체 지지 체(102)의 외부 표면에 설치되거나, 또는 점착제 또는 기계적 방식에 의해 상기 중공의 입체 지지체(102)의 내부 표면에 설치될 수 있다. 도 1을 함께 참조하면, 제1전극(110) 및 제2전극(112)은 각각 상기 단일의 탄소 나노튜브 선상구조체의 양단에 전기접속되어 있다. 상기 제1전극(110) 및 상기 제2전극(112)은 환상(環狀)구조 또는 C자 모양의 갈고리구조를 가진다. 본 실시예에 있어서, 상기 제1전극(110)과 상기 제2전극은 서로 평행으로 설치되어 있다. 도 4에 도시된 바와 같이, 상기 탄소 나노튜브구조체가 복수 가닥의 탄소 나노튜브 선상구조체를 포함하는 경우, 상기 복수 가닥의 탄소 나노튜브 선상구조체는 서로 교차 설치 또는 편직(編織) 설치되어 하나의 망상(網狀)구조체를 이루고, 상기 탄소 나노튜브 망상구조체로 상기 중공의 입체 지지체(102)의 표면을 휘감거나 감싸 상기 중공의 입체 지지체(102)의 표면에 가열소자(104)를 형성한다.
상기 탄소 나노튜브구조체는 적어도 하나의 탄소 나노튜브막, 적어도 하나의 탄소 나노튜브 선상구조체 또는 그들의 복합구조체를 포함한다. 상기 탄소 나노튜브막은 탄소 나노튜브 드로잉(Drawing)막, 탄소 나노튜브 면모구조(Wadding)막 또는 탄소 나노튜브 프레스막을 포함할 수 있다. 상기 탄소 나노튜브 선상구조체는 적어도 한 가닥의 탄소 나노튜브선, 복수 가닥의 탄소 나노튜브선이 평행배열되어 조성된 묶음형태의 구조체 또는 복수 가닥의 탄소 나노튜브선이 비틀려서 조성된 비틀림형태 구조체를 포함할 수 있다.
상기 탄소 나노튜브막은 균일하게 분포된 복수개의 탄소 나노튜브를 포함하고, 상기 복수개의 탄소 나노튜브는 반 데르 발스의 힘에 의해 긴밀히 결합된다. 상기 탄소 나노튜브막 중의 탄소 나노튜브들은 무질서하게 또는 질서정연하게 배열되어 있다. 여기서 말하는 무질서란, 탄소 나노튜브들의 배열이 규칙이 없는 것을 의미하고, 질서정연이란, 다수의 탄소 나노튜브들의 배열방향이 적어도 일정한 규칙을 갖는 것을 의미한다. 구체적으로 말하면, 상기 탄소 나노튜브막이 무질서하게 배열된 복수개의 탄소 나노튜브를 포함하는 경우에는, 탄소 나노튜브들이 서로 뒤엉킨 상태로 배열되거나 등방적(isotropic)으로 배열된다. 상기 탄소 나노튜브막이 질서정연하게 배열된 복수개의 탄소 나노튜브를 포함하는 경우에는, 탄소 나노튜브들은 기본적으로 동일한 방향 또는 여러 방향을 따라 우선방위(preferred orientation)로 배열된다. 본 실시예에 있어서, 상기 탄소 나노튜브구조체는 중첩 설치된 복수층의 탄소 나노튜브막을 포함하고, 그 두께는 0.5nm~1mm이다. 또한, 탄소 나노튜브구조체의 열 응답속도는 탄소 나노튜브구조체의 두께에 관련된다. 면적이 같은 경우, 탄소 나노튜브구조체의 두께가 두꺼울수록 탄소 나노튜브구조체의 열 응답속도가 느리고, 탄소 나노튜브구조체의 두께가 얇을수록 탄소 나노튜브구조체의 열 응답속도가 빠르다.
상기 탄소 나노튜브 드로잉막은 탄소 나노튜브 어레이에서 직접 당겨 얻은 탄소 나노튜브막이다. 상기 탄소 나노튜브구조체는 적어도 1층의 탄소 나노튜브 드로잉막을 포함한다. 각 탄소 나노튜브 드로잉막은 동일한 방향을 따라 우선방위로 배열되고 상기 탄소 나노튜브 드로잉막의 표면에 평행으로 배열된 복수개의 탄소 나노튜브를 포함한다. 상기 복수개의 탄소 나노튜브의 끝단과 끝단은 반 데르 발스의 힘에 의해 서로 연결되어 있다.
도 5 및 도 6을 참조하면, 각 탄소 나노튜브 드로잉막은 연속적으로 연결되고 일정한 방향으로 배열[정향배열(定向配列)이라고도 함]된 복수개의 탄소 나노튜브 단편(143)을 포함한다. 상기 복수개의 탄소 나노튜브 단편(143)의 끝단과 끝단은 반 데르 발스의 힘에 의해 서로 연결된다. 각 탄소 나노튜브 단편(143)은 서로 평행된 복수개의 탄소 나노튜브(145)를 포함한다. 상기 서로 평행된 복수개의 탄소 나노튜브(145)는 반 데르 발스의 힘에 의해 긴밀히 연접된다. 상기 탄소 나노튜브 단편(143)은 임의의 폭, 두께, 균일성 및, 모양을 갖는다. 상기 탄소 나노튜브 드로잉막에 있어서, 두께는 0.5nm~100㎛이고, 폭은 탄소 나노튜브 드로잉막을 당겨 얻는 탄소 나노튜브 어레이의 사이즈에 관련되며, 길이에 대해서는 한정하지 않는다.
상기 탄소 나노튜브 드로잉막의 구체적인 구조 및 제조방법은 2007년 2월 9일에 출원되고, 2008년 8월 13일에 공개된 중국 공개특허 제CN101239712A호(판 서우싼 등에 의해 발명)를 참조할 수 있다.
상기 탄소 나노튜브구조체가 탄소 나노튜브 드로잉막에 의해 구성되고, 두께가 비교적 작을 경우(예컨대, 두께가 10㎛ 보다 작을 경우), 탄소 나노튜브구조체는 우수한 투명도를 갖는다. 이 경우의 탄소 나노튜브구조체는, 투광율이 96%에 달할 수 있어 투명한 가열장치의 제조에 사용할 수 있다.
상기 탄소 나노튜브구조체가 중첩 설치된 2층 이상의 탄소 나노튜브 드로잉막을 포함하는 경우, 서로 인접한 2층의 탄소 나노튜브 드로잉막에 있어서의 탄소 나노튜브들의 배열방향은 일정한 각(α)을 이룬다. 상기 각(α)의 범위는 0도 보 다 크거나 같고 90도 보다 작거나 같으며, 즉 0도≤α≤90도이다. 상기 복수개의 탄소 나노튜브 드로잉막 사이 또는 하나의 탄소 나노튜브 드로잉막에 있어서의 서로 인접한 탄소 나노튜브들 사이에 틈새가 존재한다. 이에 의해, 탄소 나노튜브구조체에는 복수개의 미세공이 형성되며, 그 직경은 10㎛ 보다 작다.
본 발명에 따른 탄소 나노튜브구조체가 동일한 방향을 따라 중첩 설치된 복수 층의 탄소 나노튜브 드로잉막을 포함할 수 있으므로, 상기 탄소 나노튜브구조체에 있어서의 탄소 나노튜브들은 동일한 방향을 따라 우선방위로 배열된다.
상기 탄소 나노튜브구조체는 적어도 1층의 탄소 나노튜브 면모구조막을 포함한다. 상기 탄소 나노튜브 면모구조막은 서로 뒤엉키고 균일하게 분포된 복수개의 탄소 나노튜브를 포함한다. 상기 탄소 나노튜브들의 길이는 10㎛ 보다 커서 탄소 나노튜브들이 서로 뒤엉키게 된다. 그 길이를 200㎛~900㎛로 하는 것이 바람직하다. 상기 탄소 나노튜브 면모구조막에 있어서의 탄소 나노튜브들은 분포가 균일하며 무질서하게 배열되어 상기 탄소 나노튜브 면모구조막으로 하여금 등방성을 가지게 한다. 상기 탄소 나노튜브들은 반 데르 발스의 힘에 의해 서로 흡인되고 뒤엉켜 망상(網狀)구조를 이루기 때문에 상기 탄소 나노튜브 면모구조막에 다량의 미세공이 형성된다. 상기 미세공의 직경은 10㎛ 보다 작다. 상기 탄소 나노튜브 면모구조막의 길이 및 폭에 대해서는 한정하지 않는다. 도 7에 도시된 바와 같이, 상기 탄소 나노튜브 면모구조막에 있어서의 탄소 나노튜브들이 서로 뒤엉키기 때문에, 상기 탄소 나노튜브 면모구조막은 우수한 인성을 가지며 어떠한 모양으로 접어도 파열되지 않는다. 상기 탄소 나노튜브 면모구조막의 면적 및 두께에 대해서는 한정하지 않고, 두께의 범위는 1㎛~1mm이며, 그 두께를 100㎛로 하는 것이 바람직하다.
상기 탄소 나노튜브 면모구조막의 구체적인 구조 및 제조방법은 2007년 4월 13일에 출원되고, 2008년 10월 15일에 공개된 중국 공개특허 제CN101284662A호(판 서우싼 등에 의해 발명)를 참조할 수 있다.
상기 탄소 나노튜브구조체는 적어도 1층의 탄소 나노튜브 프레스막을 포함한다. 상기 탄소 나노튜브 프레스막은 균일하게 분포된 복수개의 탄소 나노튜브를 포함한다. 상기 탄소 나노튜브들은 동일한 방향 또는 여러 방향을 따라 우선방위로 배열된다. 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브들은 등방적으로 배열될 수도 있다. 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브들은 부분적으로 서로 겹치고, 반 데르 발스의 힘에 의해 서로 흡인되어 긴밀히 연결된다. 이에 따라, 상기 탄소 나노튜브 프레스막은 우수한 유연성을 갖는 바, 어떠한 형상으로 접어도 파열되지 않고, 자아지지 능력을 갖는다. 상기 탄소 나노튜브 프레스막은 탄소 나노튜브 어레이에 대해 프레스하여 얻는다. 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브들은 상기 탄소 나노튜브 어레이가 성장하는 성장기판의 표면과 일정한 각(β)을 이룬다. 이 각(β)의 범위는 0도 보다 크거나 같고 15도 보다 작거나 같으며, 즉 0도≤β≤15도이다. 상기 각(β)은 탄소 나노튜브 어레이에 인가하는 압력에 관련된다. 예컨대, 압력이 클수록 상기 각(β)은 작아진다. 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브들은 상기 탄소 나노튜브 어레이가 성장하는 성장기판의 표면에 평행으로 배열되는 것이 바람직하다. 상기 탄소 나노튜브 어레이에 대한 프레스방식이 다름에 따라 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브들의 배열형식이 다르다. 구체적으로 말하면, 동일한 방향을 따라 프레스하는 것에 의해 상기 탄소 나노튜브들은 동일한 방향을 따라 우선방위로 배열(도 8을 참고)되고, 여러 방향을 따라 프레스하는 것에 의해 상기 탄소 나노튜브들은 여러 방향을 따라 우선방위로 배열(도 9를 참고)되며, 상기 탄소 나노튜브가 성장하는 성장기판에 수직하는 방향을 따라 프레스하는 것에 의해 상기 탄소 나노튜브들은 등방적으로 배열된다. 상기 탄소 나노튜브 프레스막에 있어서의 탄소 나노튜브의 길이는 50㎛ 보다 크다.
상기 탄소 나노튜브 프레스막의 면적 및 두께에 대해서는 한정하지 않으며, 실제 수요에 따라 선택될 수 있다. 상기 탄소 나노튜브 프레스막에 있어서, 면적은 상기 탄소 나노튜브 어레이의 사이즈와 거의 같고, 두께는 탄소 나노튜브 어레이의 높이 및 프레스 압력에 관련되며, 그 범위는 1㎛~1mm이다. 다시 말하면, 상기 탄소 나노튜브 어레이의 높이가 높고 인가압력이 작을수록 탄소 나노튜브 프레스막의 두께가 두껍고, 상기 탄소 나노튜브 어레이의 높이가 낮고 인가 압력이 클수록 탄소 나노튜브 프레스막의 두께가 얇다. 상기 탄소 나노튜브 프레스막에 있어서의 서로 인접하는 탄소 나노튜브들 사이에 일정한 틈새가 존재하여 탄소 나노튜브 프레스막에 다량의 미세공이 형성된다. 상기 미세공의 직경은 10㎛ 보다 작다.
상기 탄소 나노튜브 프레스막의 구체적인 구조 및 제조방법은 2007년 6월 1일에 출원되고, 2008년 12월 3일에 공개된 중국 공개특허 제CN101314464A호(판 서 우싼 등에 의해 발명)를 참조할 수 있다.
상기 탄소 나노튜브구조체로서 탄소 나노튜브 선상구조체를 사용하는 경우, 상기 탄소 나노튜브구조체는 적어도 한가닥의 긴 탄소 나노튜브 선상구조체를 포함한다. 상기 탄소 나노튜브 선상구조체가 복수 가닥의 긴 탄소 나노튜브선을 포함하는 경우, 상기 탄소 나노튜브 선상구조체는 서로 평행 설치된 복수 가닥의 긴 탄소 나노튜브선에 의해 형성되거나, 또는 서로 비틀린 형태로 설치된 복수 가닥의 긴 탄소 나노튜브선에 의해 형성된다.
상기 탄소 나노튜브선은 탄소 나노튜브들이 서로 비틀리지 않은 묶음형태 탄소 나노튜브선 또는 탄소 나노튜브들이 서로 비틀린 비틀림형태 탄소 나노튜브선일 수 있다.
상기 묶음형태 탄소 나노튜브선은 유기용제로 상기 탄소 나노튜브 드로잉막을 처리하여 얻는다. 도 10에 도시된 바와 같이, 상기 묶음형태 탄소 나노튜브은 끝단과 끝단이 서로 연결되고 선의 축방향을 따라 평행으로 배열된 복수개의 탄소 나노튜브를 포함한다. 상기 묶음형태 탄소 나노튜브선이, 끝단과 끝단이 반 데르 발스의 힘에 의해 서로 연결된 복수개의 탄소 나노튜브 단편을 포함하는 것이 바람직하다. 각 탄소 나노튜브 단편은 서로 평행되며 반 데르 발스의 힘에 의해 긴밀히 연접된 복수개의 탄소 나노튜브를 포함한다. 상기 탄소 나노튜브 단편은 임의의 길이, 두께, 균일성 및 모양을 가질 수 있다. 상기 묶음형태 탄소 나노튜브선의 길이에 대해 한정하지 않으며, 그 직경을 0.5nm~100㎛로 한다.
상기 비틀림형태 탄소 나노튜브선은 탄소 나노튜브 드로잉막의 양단을 기계 적 힘으로 각각 반대방향으로 비틀어서 얻을 수 있다. 도 11에 도시된 바와 같이, 상기 비틀림형태 탄소 나노튜브선은 그 선의 축방향을 따라 나선형태로 배열된 복수개의 탄소 나노튜브를 포함한다. 상기 비틀림형태 탄소 나노튜브선은, 끝단과 끝단이 반 데르 발스의 힘에 의해 서로 연결된 복수개의 탄소 나노튜브 단편을 포함하는 것이 바람직하다. 각 탄소 나노튜브 단편은 서로 평행되며 반 데르 발스의 힘에 의해 긴밀히 연접된 복수개의 탄소 나노튜브를 포함한다. 상기 탄소 나노튜브 단편은 임의의 길이, 두께, 균일성 및 모양을 가질 수 있다. 상기 비틀림형태 탄소 나노튜브선의 길이에 대해서는 한정하지 않으며, 그 직경을 0.5nm~100㎛로 한다.
상기 탄소 나노튜브선의 구체적인 구조 및 제조방법은 2002년 9월 16일에 출원되고, 2008년 8월 20일에 등록된 중국 등록특허 제CN100411979C호(판 서우싼 등에 의해 발명) 및, 2005년 12월 16일에 출원되고, 2007년 6월 20일에 공개된 중국 공개특허 제CN1982209A호(판 서우싼 등에 의해 발명)를 참조할 수 있다.
상기 비틀림형태 탄소 나노튜브선을 휘발성 유기용제로 더 처리할 수 있다. 휘발성 유기용제의 표면장력(Surface Tension)의 작용 하에, 유기용제 처리 후의 상기 비틀림형태 탄소 나노튜브선 중의 서로 평행인 복수개의 탄소나노튜브가 반 데르 발스의 힘에 의해 더욱 긴밀히 연접된다. 따라서, 상기 비틀림형태 탄소 나노튜브선의 직경 및 비표면적이 작아지고, 밀도 및 강도가 향상된다.
상기 탄소 나노튜브선은 탄소 나노튜브 드로잉막에 대해 유기용제 처리 또는 기계적 힘에 의한 처리에 의해 얻어지고 상기 탄소 나노튜브 드로잉막이 자아지지 능력을 가지기 때문에, 상기 탄소 나노튜브선도 자아지지 능력을 갖는다. 따라서 탄소 나노튜브 선상구조체도 자아지지 능력을 가진다. 또한, 탄소 나노튜브선에 있어서의 탄소 나노튜브들 사이에 일정한 틈새가 존재하므로, 상기 탄소 나노튜브선은 다량의 미세공을 가지며, 그 미세공의 직경은 10㎛ 보다 작다.
상기 탄소 나노튜브구조체는 동일한 방향을 따라 중첩 설치된 복수개의 탄소 나노튜브 드로잉막을 포함할 수 있기에, 상기 탄소 나노튜브구조체에 있어서의 탄소 나노튜브들은 동일한 배향을 따라 배열될 수 있다.
상기 제1전극(110) 및 상기 제2전극(112)은 도전성 재료에 의해 구성되며, 그의 형상에 대해 한정하지 않는다. 즉, 상기 제1전극(110) 및 상기 제2전극(112)은 도전성 박막, 금속편 또는 금속 도입선일 수 있다. 상기 제1전극(110) 및 상기 제2전극(112)로서 도전성 박막을 채용하는 것이 바람직하고, 상기 제1전극(110) 및 상기 제2전극(112)을 소형의 입체 가열장치(100)에 사용하는 경우, 상기 도전성 박막의 두께를 0.5nm~100㎛로 한다. 상기 도전성 박막의 재료는 금속, 합금, 인듐 주석 산화물(ITO), 안티몬 주석 산화물(ATO), 도전성 은페이스트(Conductive Silver Paste), 도전성 폴리머 등일 수 있다. 상기 금속 또는 합금 재료는, 알루미늄(Al), 동(Cu), 텅스텐(W), 몰리브덴(Mo), 금(Au), 티탄(Ti), 네오디뮴(Nd), 팔라듐(Pd), 세슘(Cs) 또는 이들의 임의의 조합의 합금이다. 상기 제1전극(110) 및 상기 제2전극(112) 중의 적어도 하나의 전극은, 적어도 1층의 탄소 나노튜브 드로잉막 또는 적어도 한가닥의 탄소 나노튜브 선상구조체를 포함할 수 있다. 상기 제1전극(110) 및 상기 제2전극(112) 중의 적어도 하나의 전극이, 적어도 1층의 탄소 나노튜브 드로잉막 또는 적어도 한가닥의 탄소 나노튜브 선상구조체를 포함하는 경우, 상기 가열소자(104)가 탄소 나노튜브구조체를 포함하기 때문에, 상기 제1전극(110) 또는/및 상기 제2전극(112)은 상기 가열소자(104)와 양호하게 전기접속될 수 있다. 본 실시예에 있어서, 상기 제1전극(110) 및 상기 제2전극(112)의 재료는 금속 팔라듐박막이고, 그 두께는 5nm이다. 상기 금속 팔라듐과 탄소 나노튜브는 비교적 우수한 젖음(wetting)효과를 가지기에, 상기 제1전극(110) 및 상기 제2전극(112)과 상기 가열소자(104)의 양호한 전기접속에 유리하여 오믹 접합(ohmic contact)의 저항치를 감소시킨다.
상기 제1전극(110) 및 상기 제2전극(112)과 상기 가열소자(104)는 전기접속된다. 상기 제1전극(110)과 상기 제2전극(112)을 간격을 두고 설치하여 그들의 사이에 일정한 저항치가 존재한다. 상기 가열소자(104)를 입체 가열장치(100)에 사용하는 경우, 상기 가열소자(104)에 전압을 인가하여 열을 방출할 때, 상기 일정한 저항은 상기 제1전극(110)과 상기 제2전극(112)이 단락되는 것을 방지할 수 있다. 상기 탄소 나노튜브구조체에 있어서의 탄소 나노튜브가 질서정연하게 배열된 경우, 상기 탄소 나노튜브들은 상기 제1전극(110)으로부터 상기 제2전극으로 뻗는 방향을 따라 배열된다. 상기 제1전극(110) 및 상기 제2전극(112)은 도전성 점착제(도시되지 않았음)를 통해 상기 가열소자(104)의 표면에 설치될 수 있다. 상기 도전성 점착제를 사용하는 것은 상기 제1전극(110) 및 상기 제2전극(112)을 상기 가열소자(104)에 전기접속시키는 한편 상기 가열소자(104) 표면에 더욱 견고하게 고정시키기 위해서이다. 상기 도전성 점착제로서 도전성 은페이스트를 사용한다.
또한, 상기 제1전극(110) 및 제2전극(112)의 구조 및 재료에 대해서는 특히 한정하지 않는다. 상기 제1전극(110) 및 제2전극(112)을 설치하는 목적은 상기 가열소자(104)에 있어서의 탄소 나노튜브구조체에 전류를 흐르게 하기 위해서이다. 때문에, 상기 제1전극(110) 및 제2전극(112)이 도전할 수 있고 상기 가열소자(104)에 있어서의 탄소 나노튜브구조체에 전기접속되면 모두 본 발명이 보호하려는 범주에 속한다. 상기 제1전극(110) 및 제2전극(112)과 상기 가열소자(104)의 전기접속만 확보할 수만 있다면, 상기 제1전극(110) 및 제2전극(112)의 구체적인 설치 위치에 대해서는 한정하지 않는다. 상기 입체 가열장치(100)에 있어서의 전극의 수량에 대해 제한하지는 않는다. 즉, 상기 입체 가열장치(100)에 있어서, 복수개의 전극이 상기 가열소자(104)에 전기접속될 수 있다. 이 때, 다른 전극을 제어하는 것을 통해 상기 가열소자(104)는 각 피가열구역에 대해 선택적으로 가열할 수 있다. 상기 복수개의 전극에 있어서의 임의의 2개의 전극은 각각 외부회로(도시되지 않았음)에 전기접속되어 상기 2개의 전극 사이에 전기접속되어 있는 가열소자(104)로 하여금 작업하게 한다. 상기 복수개의 전극 중의 임의의 인접하는 2개의 전극을 외접도선(도시되지 않았음)을 통해 각각 외부전원(도시되지 않았음)에 접속시켜 교체로 설치된 전극에 극성(양극 또는 음극)이 동일한 전원이 접속되는 것이 바람직하다.
상기 입체 가열장치(100)는 열 반사층(108)을 추가로 구비할 수 있다. 상기 열 반사층(108)은 상기 가열소자(104)가 방출하는 열량을 반사시켜, 상기 중공의 입체 지지체(102)의 내부 공간을 효과적으로 가열한다. 이에 따라, 상기 가열소 자(104)가 상기 중공의 입체 지지체(102)의 내부 표면에 설치되는 경우, 상기 열 반사층(108)은 상기 중공의 입체 지지체(102)와 상기 가열소자(104) 사이에 설치되거나, 또는 상기 중공의 입체 지지체(102)의 외부 표면에 설치될 수 있다. 상기 가열소자(104)가 상기 중공의 입체 지지체(102)의 외부 표면에 설치되는 경우, 상기 열 반사층(108)은 상기 가열소자(104)의 외부 표면에 설치된다. 즉, 상기 가열소자(104)는 상기 중공의 입체 지지체(102)와 상기 열 반사층(108) 사이에 설치된다. 본 실시예에 있어서, 상기 가열소자(104)를 상기 중공의 입체 지지체(102)의 외부 표면에 설치하고, 상기 열 반사층(108)을 상기 가열소자(104)의 외부 표면에 설치한다. 상기 열 반사층(108)의 재료는 금속산화물, 금속염 또는 세라믹과 같은 흰색의 절연재료이다. 상기 열 반사층(108)은 스퍼터링 또는 도포의 방법에 의해 상기 중공의 입체 지지체(102)의 표면에 설치된다. 상기 열 반사층(108)의 두께는 100㎛~0.5mm이다. 본 실시예에 있어서, 상기 열 반사층(108)의 재료는 산화 알루미늄(Al2O3) 재료이고, 그 두께는 100㎛이다. 또한, 상기 열 반사층(108)을 생략하여도 좋다. 입체 가열장치(100)가 열 반사층을 구비하지 않는 경우, 상기 입체 가열장치(100)는 내부 뿐만아니라 외부에 대해서도 가열을 실시할 수 있다.
상기 입체 가열장치(100)는 절연보호층(도시되지 않았음)을 추가로 구비할 수 있다. 상기 절연보호층은 상기 입체 가열장치(100)를 사용할 경우, 외계와 전기접촉되는 것을 방지하는 한편 외계의 잡스러운 물질이 상기 가열소자(104) 중의 탄소 나노튜브구조체에 부착되는 것을 방지한다. 또한, 상기 가열소자(104)가 외 계와 접촉하지 않는 경우, 상기 절연보호층을 생략하여도 좋다. 상기 절연보호층의 재료로서 고무, 수지 등과 같은 절연성 재료를 사용한다. 상기 절연보호층의 두께에 대해서는 한정하지 않으며, 실제 수요에 따라 설정할 수 있다. 상기 절연보호층의 두께를 0.5mm~2mm로 하는 것이 바람직하다. 상기 절연보호층은 도포 또는 스퍼터링 형식으로 상기 가열소자(104)의 표면에 형성된다. 본 실시예에 있어서, 상기 가열소자(104)가 상기 중공의 입체 지지체(102)와 상기 열 반사층(108) 사이에 설치되기 때문에, 절연보호층을 설치할 필요가 없다.
본 발명에 따른 입체 가열장치(100)로 피가열체를 가열하는 절차는 다음과 같다. 우선, 피가열체를 제공한다. 다음으로, 상기 피가열체를 상기 입체 가열장치(100)의 내부공간에 설치한다. 다음으로, 상기 입체 가열장치(100)에 도선을 통해 전압을 인가한 후, 그 전압의 크기를 10~20볼트 내에서 조절하면, 상기 입체 가열장치(100)는 파장이 비교적 긴 전자기파를 복사한다. 이때, 측온장치로 상기 입체 가열장치(100)에 대해 측정한 결과, 상기 입체 가열장치(100)의 가열소자(104)의 표면의 온도는 50℃~500℃에 달한다. 이에 따라, 탄소 나노튜브구조체가 우수한 전기-열 변환효율을 가지고 있다는 것을 알 수 있다. 상기 입체 가열장치(100)의 가열소자(104)의 표면의 열량은 열 복사의 형식으로 피가열체에 전달되기 때문에, 피가열체에 대해 균일한 가열을 실시할 수 있다. 흑체구조를 가지는 물체에 있어서, 그 물체는 200℃~450℃의 온도 범위에서는 육안으로 볼 수 없는 열복사(적외선)를 진행하는데, 이때의 열복사가 가장 안정적이고, 효율이 가장 높으며, 발생되는 열복사의 열에너지가 가장 크다.
상기 입체 가열장치(100)를 사용할 때, 상기 입체 가열장치(100)를 피가열체의 표면에 직접 접촉시키거나, 또는 피가열체와 일정한 간격을 두고 설치하여 피가열체에 대해 열 복사로 가열을 진행할 수 있다. 상기 입체 가열장치(100)는 공장에 있어서의 도관, 실험실에 있어서의 가열설비 또는 주방에 있어서의 전기오븐 등의 영역에 널리 사용된다.
도 16은 본 발명에 따른 입체 가열장치(100)의 제조방법의 흐름도이다. 그 구체적인 단계(단계 1~단계 3)는 다음과 같다.
단계 1
다량의 틈새가 존재하는 탄소 나노튜브구조체를 제공한다.
상기 탄소 나노튜브구조체는 탄소 나노튜브 드로잉막, 탄소 나노튜브 프레스막, 탄소 나노튜브 면모구조막 또는 탄소 나노튜브 선상구조체 등 중의 한가지 또는 몇가지를 포함한다.
탄소 나노튜브구조체가 다름에 따라 상기 탄소 나노튜브구조체의 제조방법은 드로잉법, 프레스법 및 면모화법을 포함한다. 이하, 상기한 몇 가지 탄소 나노튜브구조체의 제조방법(A~D)에 대해 각각 설명한다.
제조방법 A
탄소 나노튜브 드로잉막을 채용한 탄소 나노튜브구조체의 제조방법(1~2)
1. 우선, 탄소 나노튜브 어레이를 성장기재에 성장시킨다. 상기 어레이는 초정렬 어레이(Superaligned Array) 탄소 나노튜브 어레이인 것이 바람직하다.
상기 초정렬 어레이 탄소 나노튜브 어레이는 화학 기상 증착법 (Chemical Vapor Deposition, CVD)에 의해 형성된다. 그 공정[(a)~(d)]은 다음과 같다.
(a) 평탄한 성장기재를 제공한다. 상기 성장기재로서 P타입 또는 N타입 실리콘 웨이퍼(Silicon Wafer), 또는 표면에 산화층이 형성된 실리콘 웨이퍼를 사용할 수 있다. 본 실시예에 있어서는, 성장기재로서 4인치의 실리콘 웨이퍼를 사용한다.
(b) 상기 성장기재의 표면에 균일한 촉진제(Catalyst)층을 형성한다. 상기 촉진제층의 재료로서, 철(Fe), 코발트(Co), 니켈(Ni) 또는 상기 금속의 임의의 조합의 합금 중의 한 가지를 사용할 수 있다.
(c) 상기 촉진제층이 형성되어 있는 성장기재에 대하여, 700~900℃의 공기 중에서 약 30~90분동안 어닐(Anneal: 풀림)처리를 진행한다.
(d) 상기 어닐처리를 한 성장기재를 보호기체가 있는 반응로에 넣고, 500~740℃까지 가열한다. 다음에, 탄소소스(Carbon Source) 가스를 반응로에 주입한 후 약 5~30분 동안 반응시켜, 상기한 성장기재에 탄소 나노튜브를 성장시켜 초정렬 어레이 탄소 나노튜브 어레이를 얻는다. 상기 탄소 나노튜브 어레이는 서로 평행하고 상기 성장기재에 수직으로 성장한 복수개의 탄소 나노튜브로 형성된 순수한 탄소 나노튜브 어레이이다. 즉, 상기한 성장조건의 제어에 의해, 성장한 탄소 나노튜브 어레이 중에 다른 물질(무정형탄소 또는 촉진제의 금속과립)이 거의 존재하지 않는다.
본 발명에 따른 탄소 나노튜브 어레이는, 단일벽 탄소 나노튜브 어레이, 이중벽 탄소 나노튜브 어레이 또는 다중벽 탄소 나노튜브 어레이 중의 한 가지 또는 몇 가지이다. 상기 탄소 나노튜브의 직경은 1nm~50nm이고 길이는 50nm~5mm이다. 상기 탄소 나노튜브의 길이를 100㎛~900㎛로 하는 것이 바람직하다.
상기한 탄소소스가스로서는 화학적 성질이 비교적 활발한 에틸렌(C2H4), 메탄(CH4), 아세틸렌(C2H2) 등을 사용할 수 있고, 상기한 보호기체로서는 질소(N) 또는 비활성 기체를 사용할 수 있다. 본 실시예에 있어서는, 탄소소스가스로서 아세틸렌을 사용하고 보호기체로서 아르곤(Ar)가스를 사용한다.
상기한 탄소 나노튜브 어레이의 성장방법은, 상기 화학기상증착법에 한정되지 않고, 흑연전극 아크증착법(Arc Deposition), 레이저 증착법(Laser Evaporation) 등을 이용할 수 있다.
2. 다음에, 드로잉 공구로 상기한 탄소 나노튜브 어레이에서 적어도 하나의 탄소 나노튜브 드로잉막을 취출(取出)한다.
상기 탄소 나노튜브 드로잉막의 구체적인 제조방법[(a)~(b)]은 다음과 같다.
(a) 상기한 초정렬 어레이 탄소 나노튜브 어레이에서 부분적 탄소 나노튜브를 선택한다. 본 실시예에 있어서, 일정한 폭을 갖는 접착용 테이프를 상기 탄소 나노튜브 어레이에 접촉하여 일정한 폭의 복수개의 탄소 나노튜브를 선택한다.
(b) 상기 초정렬 어레이 탄소 나노튜브 어레이의 성장방향에 거의 수직으로 되는 방향을 따라 일정한 속도로 상기 선택한 복수개의 탄소 나노튜브를 드로잉하여 연속적인 탄소 나노튜브 드로잉막을 얻는다.
상기한 드로잉과정에서, 당기는 힘의 작용 하에 상기 복수개의 탄소 나노튜브는 당기는 힘의 방향을 따라 상기한 성장기재에서 점진적으로 탈리(脫離)된다. 이 때, 탈리된 탄소 나노튜브들의 끝단은 각각 반 데르 발스의 힘에 의해 여타 탄소 나노튜브들의 끝단에 연결되어 균일하고 일정한 폭을 갖는 연속적인 탄소 나노튜브 드로잉막을 형성한다. 상기 탄소 나노튜브 드로잉막의 폭은 상기 초정렬 어레이 탄소 나노튜브 어레이의 사이즈에 관련되고, 상기 탄소 나노튜브 드로잉막의 두께는 상기 초정렬 어레이 탄소 나노튜브 어레이의 높이에 관련된다. 상기 탄소 나노튜브 드로잉막의 폭의 범위는 0.5nm~10cm이고, 그 두께의 범위는 0.5nm~100㎛이다.
제조방법 B
탄소 나노튜브 면모구조막을 채용한 탄소 나노튜브구조체의 제조방법(1~2)
1. 우선, 탄소 나노튜브 원료를 제공한다.
상기 탄소 나노튜브 원료는 화학 기상 증착법, 흑연전극 아크증착법, 레이저 증착법 등에 의해 제조되는 탄소 나노튜브일 수 있다.
본 실시예에 있어서, 탄소 나노튜브 원료로서는 탄소 나노튜브 어레이가 정향배열되어 있는 기재로부터 나이프(Knife) 또는 여타 도구로 긁어내 얻은 탄소 나노튜브인 것이다. 상기 탄소 나노튜브 원료 중의 탄소 나노튜브의 길이가 100㎛ 보다 큰 것이 바람직하다.
2. 다음에, 상기 탄소 나노튜브 원료를 1종 용제 중에 넣고 면모화처리를 실시하여 면모상 탄소 나노튜브를 얻는다. 그 후, 상기 면모상 탄소 나노튜브를 상 기 용제로부터 분리하고, 정형처리(모양내기)를 실시하여 탄소 나노튜브 면모구조막을 형성한다.
본 실시예에 있어서, 상기 용제로서는 물 또는 휘발성 유기용제를 사용한다. 면모화처리로는 초음파 분산처리 또는 고강도 교반처리 등이 있다. 초음파 분산처리를 약 10분~30분 동안 진행하는 것이 바람직하다. 상기 탄소 나노튜브가 매우 큰 비표면적(Specific Surface Area)을 가지기 때문에, 상기 서로 뒤엉킨 탄소 나노튜브들 사이에 비교적 큰 반 데르 발스의 힘이 존재한다. 상기 면모화처리에 있어서, 상기 탄소 나노튜브 원료 중의 탄소 나노튜브들이 용제 중에서 완전히 분산되지 않고 반 데르 발스의 힘에 의해 흡인되고 뒤엉켜서 망상구조를 이룬다.
상기 면모상 탄소 나노튜브의 분리에 있어서, 상기 면모상 탄소 나노튜브가 들어 있는 용제를 여과용 깔대기에 부은 후, 일정한 시간을 정치(靜置)하고 건조시켜 상기 면모상 탄소 나노튜브를 상기 용제로부터 분리한다.
상기 정형처리에 있어서, 상기 면모상 탄소 나노튜브를 용기 내에 재치시키고, 원하는 형상에 근거하여 상기 면모상 탄소 나노튜브를 고루 펼쳐 놓으며, 상기 고루 펼쳐진 면모상 탄소 나노튜브에 일정한 압력을 가한 후, 상기 면모상 탄소 나노튜브 중에 잔류되어 있는 용제를 건조시켜 탄소 나노튜브 면모구조막을 얻는다. 상기한 건조에는, 가열에 의한 건조 또는 용제의 자연적 휘발에 의한 건조가 포함된다.
본 발명에 따른 탄소 나노튜브 면모구조막의 두께 및 면밀도(面密度)는, 면모상 탄소 나노튜브의 펼쳐진 면적에 의해 결정된다. 즉, 면모상 탄소 나노튜브의 펼쳐진 면적이 클수록 상기 탄소 나노튜브 면모구조막의 두께 및 면밀도는 작아진다.
또한, 상기 면모상 탄소 나노튜브에 대한 분리처리와 정형처리는 직접 감압여과(흡인여과)에 의해 실현될 수 있다. 구체적인 절차는 다음과 같다.
(a) 우선, 미세공 여과막 및 감압여과용 깔대기를 제공한다.
(b) 다음에, 상기 면모상 탄소 나노튜브가 들어 있는 용제를 상기 미세공 여과막을 통해 상기 감압여과용 깔대기 내에 부어 넣는다.
(c) 최후로, 감압하고 건조하여 면모구조막을 얻는다.
상기 미세공 여과막은 한쪽 면이 매끈하고 공경(孔徑)이 0.22㎛인 여과막이다. 상기한 감압여과에 있어서, 감압여과 자신이 비교적 큰 대기압을 제공한다. 여과 중에 있어서, 상기 비교적 큰 대기압이 면모상 탄소 나노튜브에 작용하기 때문에, 탄소 나노튜브의 분포가 균일한 탄소 나노튜브 면모구조막을 직접 얻을수 있다. 또한, 상기 미세공 여과막의 한쪽 면이 매끈하기 때문에, 상기 탄소 나노튜브 면모구조막이 상기 미세공 여과막으로부터 용이하게 분리될 수 있다.
상기 탄소 나노튜브 면모구조막이 일정한 두께를 가지기 때문에 직접 탄소 나노튜브구조체로 사용할 수 있고, 그 두께는 상기 면모상 탄소 나노튜브의 펼쳐진 면적 및 감압여과에 있어서의 압력에 의해 결정된다. 또한, 상기 탄소 나노튜브 면모구조막을 탄소 나노튜브구조체로 사용하는 경우, 상기 탄소 나노튜브구조체는 중첩설치된 적어도 2층의 탄소 나노튜브 면모구조막을 포함하거나, 또는 무간격으로 가지런히 배설된 적어도 2장의 탄소 나노튜브 면모구조막을 포함할 수 있다.
제조방법 C
탄소 나노튜브 프레스막을 채용한 탄소 나노튜브구조체의 제조방법(1~2)
1. 우선, 탄소 나노튜브 어레이가 성장하는 성장기재를 제공한다. 상기 어레이는 탄소 나노튜브가 정향배열된 탄소 나노튜브 어레이이다.
상기 탄소 나노튜브 어레이가 초정렬 어레이 탄소 나노튜브 어레이인 것이 바람직하다. 그 탄소 나노튜브 어레이의 제조방법은 상기한 제조방법과 같다.
2. 다음에, 프레스장치로 상기 탄소 나노튜브 어레이를 프레스하여 탄소 나노튜브 프레스막을 제조한다.
상기 탄소 나노튜브 프레스막의 구체적인 제조공정은 다음과 같다.
프레스장치로 상기 탄소 나노튜브 어레이에 일정한 압력을 가한다. 상기 압력을 가하는 과정에 있어서, 상기 탄소 나노튜브 어레이는 그 압력의 작용 하에 상기 성장기재로부터 분리되어 복수개의 탄소 나노튜브로 구성된 자아지지 능력을 가지는 탄소 나노튜브 프레스막을 형성한다. 상기 복수개의 탄소 나노튜브는 상기 탄소 나노튜브 프레스막의 표면에 기본적으로 평행으로 된다.
상기 프레스장치로서는 표면이 매끈한 압력헤드(Pressure Head)를 사용할 수 있다. 상기 탄소 나노튜브 프레스막 중의 탄소 나노튜브의 배열방식은 상기 압력헤드의 형상과 상기 압력헤드의 프레스방향에 의해 결정된다. 구체적으로 말하면, 평면 압력헤드를 사용하여 탄소 나노튜브어레이가 성장되어 있는 성장기재에 수직한 방향으로 프레스하면, 복수개의 탄소 나노튜브가 등방적으로 배열되어 있는 탄소 나노튜브 프레스막을 얻을 수 있다.
또, 롤러 압력헤드를 사용하여 어떤 고정된 방향을 따라 프레스하면, 복수개의 탄소 나노튜브가 그 고정된 방향을 따라 정향배열되어 있는 탄소 나노튜브 프레스막을 얻을 수 있다.
또, 롤러 압력헤드를 사용하여 다른 방향을 따라 프레스하면, 복수개의 탄소 나노튜브가 그 다른 방향을 따라 정향배열되어 있는 탄소 나노튜브 프레스막을 얻을 수 있다.
탄소 나노튜브 어레이에 대해 상기한 다른 방식으로 프레스하면, 탄소 나노튜브들이 압력의 작용 하에 기울어지고 또 서로 인접하는 탄소 나노튜브들이 반 데르 발스의 힘의 흡인에 의해 서로 연결되며 자아지지 능력을 가지는 탄소 나노튜브 프레스막을 얻을 수 있다.
본 기술분야에서 통상의 지식을 가진 자라면, 탄소 나노튜브 어레이의 기우는 정도(경사각)가 프레스하는 압력에 의해 결정된다는 것을 알 수 있다. 예컨대, 압력이 클수록 경사각이 크다. 상기 탄소 나노튜브 프레스막의 두께는 탄소 나노튜브 어레이의 높이 및 프레스하는 압력에 의해 결정된다는 것을 알수 있다. 예컨대, 탄소 나노튜브 어레이의 높이가 크고 프레스하는 압력이 작을수록 탄소 나노튜브 프레스막의 두께는 두꺼워지고, 탄소 나노튜브 어레이의 높이가 작고 프레스하는 압력이 클수록 탄소 나노튜브 프레스막의 두께는 얇아진다. 또, 탄소 나노튜브 프레스막의 폭은 상기 성장기재의 사이즈에 의해 결정되며, 길이는 실제 수요에 따라 결정할 수 있다는 것도 알 수 있다.
탄소 나노튜브 프레스막이 일정한 두께를 가지기 때문에 상기 탄소 나노튜브 프레스막을 직접 탄소나노튜브구조로서 사용할 수 있다. 상기 탄소 나노튜브 프레스막의 두께는 탄소 나노튜브 어레이의 높이 및 프레스하는 압력에 의해 결정된다. 또한, 상기 탄소 나노튜브 프레스막을 탄소 나노튜브구조체로 사용하는 경우, 상기 탄소 나노튜브구조체는 중첩 설치된 적어도 2층의 탄소 나노튜브 프레스막을 포함하거나, 또는 무간격으로 가지런히 배설된 적어도 2장의 탄소 나노튜브 프레스막을 포함할 수 있다.
제조방법 D
탄소 나노튜브 선상구조체를 채용한 탄소 나노튜브구조체의 제조방법(1~3)
1. 우선, 적어도 하나의 탄소 나노튜브 드로잉막을 제공한다.
상기 탄소 나노튜브 드로잉막의 형성방법은 상기한 제조방법 A에 있어서의 탄소 나노튜브 드로잉막의 형성방법과 같다.
2. 다음에, 상기 탄소 나노튜브 드로잉막을 처리하여 적어도 하나의 탄소 나노튜브 선상구조체를 형성한다.
상기 탄소 나노튜브 드로잉막에 대한 처리에 있어서, 상기 탄소 나노튜브 드로잉막을 유기용제로 처리하여 묶음형태 탄소 나노튜브선을 얻거나, 또는 상기 탄소 나노튜브 드로잉막을 기계적 외력으로 비틀어서 비틀림형태 탄소 나노튜브선을 얻을 수 있다.
기계적 외력으로 상기 탄소 나노튜브 드로잉막을 처리하는 방법에 있어서, 상기 탄소 나노튜브 드로잉막의 양단을 각각 반대되는 방향을 향하여 비틀어 비틀림형태 탄소 나노튜브선을 얻는다. 상기 비틀림형태 탄소 나노튜브선을 휘발성 유 기용제로 더 처리할 수 있다. 휘발성 유기용제의 표면장력(Surface Tension)에 의해, 유기용제 처리 후의 상기 비틀림형태 탄소 나노튜브선 중의 인접한 복수개의 탄소나노튜브가 반 데르 발스의 힘에 의해 더욱 긴밀히 연결된다. 따라서, 상기 비틀림형태 탄소 나노튜브선의 직경 및 비표면적이 작아지고, 밀도 및 강도가 향상된다.
3. 다음에, 상기 탄소 나노튜브선을 이용하여 적어도 하나의 탄소 나노튜브 선상구조체를 제조한다.
상기 묶음형태 탄소 나노튜브선 또는 상기 비틀림형태 탄소 나노튜브선은 자아지지 능력을 가지고 있기 때문에 직접 탄소 나노튜브 선상구조체로 사용될 수 있다. 또한, 복수개의 탄소 나노튜브선을 평행으로 긴밀히 설치하여 묶음형태의 탄소 나노튜브 선상구조체를 얻거나, 상기 묶음형태의 탄소 나노튜브 선상구조체를 기계적 외력으로 비틀어 비틀림형태의 탄소 나노튜브 선상구조를 얻을 수 있다. 또한, 복수개의 탄소 나노튜브선 또는 복수개의 탄소 나노튜브 선상구조체를 서로 평행설치 또는 교차설치하거나, 편직하여 망상(網狀)의 탄소 나노튜브구조체를 얻을 수 있다.
단계 2
중공의 입체 지지체(102)를 제공하여 상기 중공의 입체 지지체(102)의 표면에 탄소 나노튜브구조체를 설치한다.
상기 중공의 입체 지지체(102)는 상기 탄소 나노튜브구조체를 지지하고, 그 재료는 세라믹, 유리 또는 석영 등과 같은 경질재료, 또는 플라스틱 또는 섬유 등 과 같은 유연성 재료이다. 본 실시예에 있어서, 상기 중공의 입체 지지체(102)는 세라믹 튜브이다.
상기 탄소 나노튜브구조체를 상기 중공의 입체 지지체(102)의 표면에 설치하는 방법에 있어서, 상기 탄소 나노튜브구조체를 직접 중공의 입체 지지체(102)의 외부 표면을 휘감거나 감싸거나, 또는 점착제 또는 기계적 고정방식을 통해 상기 중공의 입체 지지체(102)의 내부 표면 또는 외부 표면에 고정설치할 수 있다.
본 실시예에 있어서, 상기 탄소 나노튜브구조체는 100층의 탄소 나노튜브 드로잉막이 중첩 및 교차 설치되어 형성되며, 서로 인접된 2층의 탄소 나노튜브 드로잉막 중의 탄소 나노튜브들의 교차각이 90도인 것이 바람직하다. 100층의 탄소 나노튜브 드로잉막의 두께는 300㎛이다. 상기 탄소 나노튜브구조체 자신의 점착성을 이용하여 상기 탄소 나노튜브구조체는 상기 중공의 입체 지지체(102)의 표면을 감싸는 형식으로 상기 중공의 입체 지지체(102)의 표면에 설치된다.
단계 3
상기 제1전극(110) 및 제2전극(112)을 간격이 있게 설치하는 한편 상기 탄소 나노튜브구조체에 전기접속시킨다.
상기 제1전극(110) 및 제2전극(112)의 설치방식은 상기 탄소 나노튜브구조체에 관련된다. 상기 탄소 나노튜브구조체 중의 일부분의 탄소 나노튜브가 제1 전극(110)으로부터 제2전극(112)으로 뻗는 것을 확보하여야 한다.
상기 제1전극(110) 및 제2전극(112)은 상기 탄소 나노튜브구조체의 동일한 표면 또는 다른 표면에 설치되며, 상기 탄소 나노튜브구조체의 표면을 둘러 설치된 다. 상기 제1전극(110) 및 제2전극(112)은 일정한 간격으로 떨어지게 설치되므로, 상기 제1전극(110) 및 제2전극(112) 사이의 탄소 나노튜브구조체를 사용한 가열소자(104)에 일정한 저항치가 존재한다. 상기 가열소자(104)에 전압을 인가하여 열을 방출할 경우, 상기 일정한 저항은 상기 제1전극(110) 및 제2전극(112)이 단락되는 것을 방지할 수 있다. 상기 탄소 나노튜브구조체는 자신이 우수한 점착성과 도전성을 가지고 있기 때문에, 상기 제1전극(110) 및 제2전극(112)과 상기 탄소 나노튜브구조체의 전기접속은 매우 좋다.
상기 제1전극(110) 및 제2전극(112)은 도전성 박막, 금속편 또는 금속 도입선일 수 있다. 상기 도전성 박막의 재료는 금속, 합금, 인듐 주석 산화물(ITO), 안티몬 주석 산화물(ATO), 도전성 은페이스트(Conductive Silver Paste), 도전성 폴리머 등일 수 있다. 상기 도전성 박막은 물리 기상 증착법, 화학 기상 증착법 또는 여타 형식에 의해 상기 탄소 나노튜브구조체의 표면에 형성될 수 있다. 상기 금속편 또는 금속 도입선의 재료로서는 동(Cu) 또는 알루미늄(Al)일 수 있다. 상기 금속편 또는 금속 도입선은 도전성 점착제에 의해 상기 탄소 나노튜브구조체의 표면에 고정 설치될 수 있다. 본 실시예에 있어서, 제1전극(110) 및 제2전극(112)로서는, 스퍼터링 방법에 의해 각각 상기 탄소 나노튜브구조체의 표면에 침적된 2개의 팔라듐박막이다. 상기 2개의 팔라듐박막은 도전성 도입선에 전기접속되어 있다.
상기 제1전극(110) 및 제2전극(112)은 금속성의 탄소 나노튜브구조체로 구성될 수도 있다. 상기 금속성의 탄소 나노튜브구조체는 정향배열되고 균일하게 배열 되어 있는 복수개의 금속성 탄소 나노튜브를 포함한다. 구체적으로 말하면, 상기 탄소 나노튜브구조체는 적어도 하나의 탄소 나노튜브 드로잉막 또는 적어도 하나의 탄소 나노튜브선을 포함한다. 2개의 탄소 나노튜브 드로잉막을 각각 상기 중공의 입체 지지체(102)의 길이방향의 양단에 설치하여 제1전극(110) 및 제2전극(112)로 하는 것이 바람직하다.
본 실시예에 있어서, 우선, 상기 탄소 나노튜브구조체의 표면에 제1전극(110) 및 제2전극(112)을 평행 및 간격을 두고 설하는 한편 상기 탄소 나노튜브구조체에 전기접속시킨다. 다음에, 상기 제1전극(110) 및 제2전극(112)이 설치되어 있는 탄소 나노튜브구조체를 상기 중공의 입체 지지체(102)의 표면에 설치하고, 2개의 도전성 도입선을 통해 상기 제1전극(110) 및 제2전극(112)을 외부회로에 각각 전기접속시킨다.
상기 입체 가열장치(100)가 열 반사층(108)을 추가로 구비하고, 상기 열 반사층(108)이 상기 가열소자(104)의 외주에 설치되는 경우, 상기 입체 가열장치(100)의 제조방법은, 탄소 나노튜브구조체를 형성한 후, 상기 탄소 나노튜브구조체의 외부 표면에 열 반사층(108)을 형성하는 절차를 추가로 구비한다. 상기 열 반사층(108)은 도포 또는 증착 등 방식에 의해 형성될 수 있다. 상기 열 반사층(108)의 재료가 금속염 또는 금속산화물인 경우, 상기 금속염 또는 금속산화물의 과립을 용제 내에 분산시켜 혼합물을 얻고, 상기 혼합물을 상기 중공의 입체 지지체(102)의 표면에 도포하거나 인쇄하여 열 반사층(108)을 형성한다. 상기 용제로서는 상기 금속염 또는 금속산화물과 화학반응이 일어나지 않는 용제이다. 또한, 상기 열 반사층(108)은 전기도금, 화학도금, 스퍼터링 도금, 진공도금, 화학기상증착 또는 물리기상증착 등과 같은 방법에 의해 형성될 수도 있다. 본 실시예에 있어서, 물리기상증착방법으로 세라믹 기판의 표면에 산화 알루미늄(Al2O3)층을 침적하여 열 반사층(108)로 한다.
상기 열 반사층(108)의 재료는 금속산화물, 금속염 또는 세라믹과 같은 흰색의 절연재료이다. 상기 열 반사층(108)의 두께는 100㎛~0.5mm이다. 본 실시예에 있어서, 상기 열 반사층(108)의 재료는 산화 알루미늄(Al2O3) 재료이고, 그 두께는 100㎛이다. 또한, 상기 열 반사층(108)의 설치 위치에 대해서는 한정하지 않으며, 그 설치 위치는 상기 가열장치(100)의 실제 가열방향에 따라 설정된다.
도 12는 본 발명의 제2실시예에 따른 입체 가열장치(200)의 사시도이고, 도 13은 도 12의 XIII-XIII선에 따른 입체 가열장치(200)의 단면도이며, 도 14는 도 12의 XIV-XIV선에 따른 입체 가열장치(200)의 단면도이다.
상기 입체 가열장치(200)는, 가열소자(204), 열 반사층(208), 제1전극(210) 및 제2전극(212)를 구비한다. 상기 가열소자(204)는 중공의 3차원 구조를 이루고 있다. 상기 제1전극(210) 및 제2전극(212)은 각각 상기 가열소자(204)에 전기접속되어 외부 전원으로부터의 전류를 상기 가열소자(204)에 흐르게 한다. 상기 가열소자(204)는 접어서 형성된 입방체모양의 중공의 3차원 구조이다. 상기 제1전극(210) 및 제2전극(212)은 각각 입방체모양의 중공의 3차원 구조인 가열소자(204)의 서로 대향하는 각부(角部)에 설치되어 상기 가열소자(204)에 전류를 제공하는 동시에, 상기 가열소자(204)를 지지하는 작용도 한다. 상기 제1전극(210) 및 제2전극(212)은 막대기모양이며, 대체로 평행으로 설치된다. 상기 열 반사층(208)는 상기 가열소자(204)의 외부 표면에 설치된다.
상기 입체 가열장치(200)는 복수개의 전극을 구비할 수 있다. 상기 복수개의 전극은 간격을 두고 평행으로 설치되고, 상기 가열소자(204)를 상기 복수개의 전극의 외주에 설치아여 상기 복수개의 전극을 지지체로 하는 중공의 입체구조를 형성할 수 있다. 또한. 상기 복수개의 전극을 중공의 입체 지지체로 볼 수도 있다. 본 실시예에 있어서의 입체 가열장치(200)은 제1실시예에 있어서의 입체 가열장치(100)와 비슷하다. 그 다른 점은, 본 실시예에 있어서의 입체 가열장치(200)는 전극을 중공의 입체 지지체로 하여 상기 가열소자(204)를 지지하는 것이다.
도 15는 본 발명의 제3실시예에 따른 입체 가열장치(300)의 사시도이며, 도 16은 도 15의 XVI-XVI선에 따른 입체 가열장치(300)의 단면도이다.
상기 입체 가열장치(300)은 중공의 입체 지지체(302), 가열소자(304), 제1전극(310) 및 제2전극(312)를 구비한다. 상기 가열소자(304)는 상기 중공의 입체 지지체(302)의 외부 표면에 설치된다. 상기 제1전극(310) 및 제2전극(312)은 상기 가열소자(304)의 외부 표면에 간격을 두고 설치되는 한편 각각 상기 가열소자(304)에 전기접속되어 외부 전원으로부터의 전류를 상기 가열소자(304)에 흐르게 한다. 상기 중공의 입체 지지체(302)는 반구상(半球狀)의 중공의 입체 지지체이고, 상기 가열소자(304)는 상기 중공의 입체 지지체의 외부 표면을 감싸 반구상 또는 반타원상의 구조를 이룬다. 상기 제1전극(310)은 점(點)전극이고 상기 중공의 입체 지지 체(302)의 하부에 설치되며, 상기 제2전극(312)은 환상(環狀)의 전극이고 상기 중공의 입체 지지체(302)의 상부를 둘러 설치된다.
상기 입체 가열장치(300)는 열 반사층(308)을 추가로 구비할 수 있다. 상기 열 반사층(308)은 상기 가열소자(304)의 외주에 설치된다. 본 실시예에 있어서, 상기 열 반사층(308)은 상기 제1전극(310) 및 상기 제2전극(312)을 피복하여 상기 가열소자(304)의 외부 표면에 설치된다. 본 실시예에 있어서의 입체 가열장치(300)은 제1실시예에 있어서의 입체 가열장치(100)와 비슷하다. 그 다른 점은, 본 실시예에 있어서의 입체 가열장치(300)이 반구상 또는 반타원상의 구조인 것이다.
이상, 본 발명을 바람직한 실시예를 사용하여 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허 청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
도 1은 본 발명의 제1실시예에 따른 입체 가열장치의 사시도이다.
도 2는 도 1의 II-II선에 따른 입체 가열장치의 단면도이다.
도 3은 본 발명의 제1실시예에 따른 입체 가열장치에 있어서의 중공의 입체 지지체의 표면에 단일의 선상 탄소 나노튜브구조체를 설치한 표시도이다.
도 4는 본 발명의 제1실시예에 따른 입체 가열장치에 있어서의 중공의 입체 지지체의 표면에 복수개의 선상 탄소 나노튜브구조체를 설치한 표시도이다.
도 5는 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 탄소 나노튜브 드로잉막의 전자현미경 사진이다.
도 6은 도 8의 탄소 나노튜브 드로잉막에 있어서의 탄소 나노튜브 단편의 구조도이다.
도 7은 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 탄소 나노튜브 면모구조막의 전자현미경 사진이다.
도 8은 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 탄소 나노튜브가 동일한 방향을 따라 우선방위로 배열된 탄소 나노튜브 프레스막의 전자현미경 사진이다.
도 9는 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 탄소 나노튜브가 여러 방향을 따라 우선방위로 배열된 탄소 나노튜브 프레스막의 전자현미경 사진이다.
도 10은 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 묶음형태 탄 소 나노튜브선의 전자현미경 사진이다.
도 11은 본 발명의 제1실시예에 따른 입체 가열장치에 사용되는 비틀림형태 탄소 나노튜브선의 전자현미경 사진이다.
도 12는 본 발명의 제2실시예에 따른 입체 가열장치의 사시도이다.
도 13은 도 12의 XIII-XIII선에 따른 입체 가열장치의 단면도이다.
도 14는 도 12의 XIV-XIV선에 따른 입체 가열장치의 단면도이다.
도 15는 본 발명의 제3실시예에 따른 입체 가열장치의 사시도이다.
도 16은 도 15의 XVI-XVI선에 따른 입체 가열장치의 단면도이다.
도면부호 설명
100 --- 입체 가열장치 102 --- 중공의 입체 지지체
104 --- 가열소자 108 --- 열 반사층
110 --- 제1전극 112 --- 제2전극
143 --- 탄소 나노튜브 단편 145 --- 탄소 나노튜브

Claims (15)

  1. 가열소자 및 간격을 두고 설치되면서 상기 가열소자에 각각 전기접속되는 적어도 2개의 전극을 구비하는 입체 가열장치에 있어서,
    상기 가열소자가 중공의 3차원 구조를 이루는 한편 복수개의 탄소 나노튜브만으로 구성된 탄소 나노튜브구조체이고, 상기 탄소 나노튜브구조체가 자아지지 능력을 갖는 자아지지구조체인 것을 특징으로 하는 입체 가열장치.
  2. 제1항에 있어서, 상기 탄소 나노튜브구조체에 있어서의 복수개의 탄소 나노튜브는 반 데르 발스의 힘에 의해 서로 연결되어 자아지지구조를 이루는 것을 특징으로 하는 입체 가열장치.
  3. 제1항에 있어서, 상기 탄소 나노튜브구조체는 적어도 한층의 탄소 나노튜브막, 적어도 한가닥의 탄소 나노튜브 선상구조체 또는 탄소 나노튜브막과 탄소 나노튜브 선상구조체에 의한 복합구조체를 포함하는 것을 특징으로 하는 입체 가열장치.
  4. 제3항에 있어서, 상기 탄소 나노튜브막은 서로 평행되고, 상기 탄소 나노튜 브막의 표면에 평행되는 복수개의 탄소 나노튜브를 포함하는 것을 특징으로 하는 입체 가열장치.
  5. 제4항에 있어서, 상기 탄소 나노튜브막은 끝단과 끝단이 반 데르 발스의 힘에 의해 연결되고, 동일한 방향을 따라 우선방위로 배열되며, 반 데르 발스의 힘에 의해 서로 연결된 복수개의 탄소 나노튜브를 포함하는 것을 특징으로 하는 입체 가열장치.
  6. 제5항에 있어서, 상기 탄소 나노튜브의 축방향은 하나의 전극으로부터 다른 하나의 전극을 향해 연신되는 것을 특징으로 하는 입체 가열장치.
  7. 제3항에 있어서, 상기 탄소 나노튜브구조체는 중첩 설치된 복수개의 탄소 나노튜브막을 포함하는 것을 특징으로 하는 입체 가열장치.
  8. 제3항에 있어서, 상기 탄소 나노튜브막은 반 데르 발스의 힘에 의해 결합되고 서로 뒤엉킨 복수개의 탄소 나노튜브를 포함하는 것을 특징으로 하는 입체 가열 장치.
  9. 제3항에 있어서, 상기 탄소 나노튜브구조막은 부분적으로 중첩되고, 동일한 방향 또는 여러 방향을 따라 우선방위로 배열되는 복수개의 탄소 나노튜브를 포함하는 것을 특징으로 하는 입체 가열장치.
  10. 제3항에 있어서, 상기 탄소 나노튜브 선상구조체는 적어도 한가닥의 탄소 나노튜브선을 포함하고,
    상기 탄소 나노튜브선은 끝단과 끝단이 서로 연결되고, 상기 탄소 나노튜브선의 축방향을 따라 평행으로 배열되거나, 상기 탄소나노튜브선의 축방향을 따라 나선형태로 배열된 복수개의 탄소 나노튜브를 포함하는 것을 특징으로 하는 입체 가열장치.
  11. 제10항에 있어서, 상기 탄소 나노튜브 선상구조체는 서로 평행되도록 설치되어 묶음형태로 되거나 서로 비틀린 형태로 설치되어 비틀림형태로 되는 복수개의 탄소 나노튜브선을 포함하는 것을 특징으로 하는 입체 가열장치.
  12. 제3항에 있어서, 탄소 나노튜브구조체는 서로 평행설치거나 교차설치되거나, 편직되어 망상구조를 형성하는 복수개의 탄소 나노튜브 선상구조체를 포함하는 것을 특징으로 하는 입체 가열장치.
  13. 제1항에 있어서, 상기 가열소자의 단위면적 열용량이 2×10-4 J/cm2?K 보다 작거나 같은 것을 특징으로 하는 입체 가열장치.
  14. 제1항에 있어서, 상기 입체 가열장치는 상기 가열소자의 일측에 설치되는 열 반사층을 더 구비하는 것을 특징으로 하는 입체 가열장치.
  15. 삭제
KR1020090063076A 2008-07-11 2009-07-10 입체 가열장치 KR101195273B1 (ko)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN200810068461.7 2008-07-11
CN2008100684621A CN101626642B (zh) 2008-07-11 2008-07-11 空心热源
CN200810068461.7A CN101626641B (zh) 2008-07-11 2008-07-11 空心热源
CN200810068462.1 2008-07-11
CN200810142616.7 2008-07-25
CN200810142610.X 2008-07-25
CN200810142616 2008-07-25
CN200810142617.1 2008-07-25
CN200810142617 2008-07-25
CN200810142610XA CN101636011B (zh) 2008-07-25 2008-07-25 空心热源
CN200810142522A CN101636009B (zh) 2008-07-25 2008-07-25 空心热源的制备方法
CN200810142528A CN101636010A (zh) 2008-07-25 2008-07-25 空心热源
CN200810142522.X 2008-07-25
CN200810142528.7 2008-07-25

Publications (2)

Publication Number Publication Date
KR20100007799A KR20100007799A (ko) 2010-01-22
KR101195273B1 true KR101195273B1 (ko) 2012-10-26

Family

ID=41353611

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090063076A KR101195273B1 (ko) 2008-07-11 2009-07-10 입체 가열장치

Country Status (2)

Country Link
EP (1) EP2157831A3 (ko)
KR (1) KR101195273B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136603B1 (en) * 2008-06-18 2015-08-05 Tsing Hua University Heater and method for making the same
KR101813637B1 (ko) 2011-05-19 2018-01-02 에스프린팅솔루션 주식회사 발열 복합체를 포함하는 가열장치와 정착장치
NL2009890C2 (en) * 2012-11-27 2014-06-02 Biesbrouck Louis Infrared radiation device, method of manufacturing and use of the infrared radiation device.
US11071174B2 (en) * 2015-10-23 2021-07-20 Nanocomp Technologies, Inc. Directed infrared radiator article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200370290Y1 (ko) 2004-09-23 2004-12-13 동서산업 주식회사 조립식 반신욕 사우나
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519835B1 (en) * 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
CN100411979C (zh) 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
US8926933B2 (en) 2004-11-09 2015-01-06 The Board Of Regents Of The University Of Texas System Fabrication of twisted and non-twisted nanofiber yarns
GB0427650D0 (en) * 2004-12-17 2005-01-19 Heat Trace Ltd Electrical device
ES2386584T3 (es) * 2007-09-28 2012-08-23 Funate Innovation Technology Co. Ltd. Fuente térmica plana
EP2136603B1 (en) * 2008-06-18 2015-08-05 Tsing Hua University Heater and method for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200370290Y1 (ko) 2004-09-23 2004-12-13 동서산업 주식회사 조립식 반신욕 사우나
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체

Also Published As

Publication number Publication date
KR20100007799A (ko) 2010-01-22
EP2157831A2 (en) 2010-02-24
EP2157831A3 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5319629B2 (ja) 壁掛けの電気ストーブ
KR20090033138A (ko) 면가열원
US20090321419A1 (en) Carbon nanotube heater
JP2009302057A (ja) 面熱源及びその製造方法
KR20090131652A (ko) 선형 가열장치 및 그 제조방법
JP5638639B2 (ja) 線熱源
KR101195273B1 (ko) 입체 가열장치
JP5390273B2 (ja) 線熱源
JP5281036B2 (ja) 面熱源
JP5390280B2 (ja) 線熱源
JP5048731B2 (ja) 中空熱源
JP2010254566A (ja) 中空熱源の製造方法
JP5319598B2 (ja) 中空熱源
JP5638207B2 (ja) 線熱源
JP5281035B2 (ja) 面熱源
JP5059809B2 (ja) 中空熱源の製造方法
JP5059808B2 (ja) 中空熱源
JP5048722B2 (ja) 中空熱源
JP4791566B2 (ja) 線熱源
JP5175246B2 (ja) 線熱源
TWI382782B (zh) 空心熱源的製備方法
JP5048730B2 (ja) 中空熱源
TWI513357B (zh) 立體熱源
JP5778113B2 (ja) 中空熱源
JP4669059B2 (ja) 中空熱源

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151014

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190919

Year of fee payment: 8