KR101194241B1 - 열교환용 유체 순환형 히트펌프 시스템 - Google Patents

열교환용 유체 순환형 히트펌프 시스템 Download PDF

Info

Publication number
KR101194241B1
KR101194241B1 KR1020110025679A KR20110025679A KR101194241B1 KR 101194241 B1 KR101194241 B1 KR 101194241B1 KR 1020110025679 A KR1020110025679 A KR 1020110025679A KR 20110025679 A KR20110025679 A KR 20110025679A KR 101194241 B1 KR101194241 B1 KR 101194241B1
Authority
KR
South Korea
Prior art keywords
refrigerant pipe
heat exchanger
heat
heat exchange
valve
Prior art date
Application number
KR1020110025679A
Other languages
English (en)
Other versions
KR20120108116A (ko
Inventor
이동건
김홍석
Original Assignee
주식회사 수성엔지니어링
주식회사 티알엑서지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 수성엔지니어링, 주식회사 티알엑서지 filed Critical 주식회사 수성엔지니어링
Priority to KR1020110025679A priority Critical patent/KR101194241B1/ko
Publication of KR20120108116A publication Critical patent/KR20120108116A/ko
Application granted granted Critical
Publication of KR101194241B1 publication Critical patent/KR101194241B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

본 발명은 제1열교환부 및 제2열교환부 중의 어느 하나가 수조에 잠기며, 다른 하나가 열교환기의 일부로 마련되며, 그 사이에 열교환용 유체의 순환에 의하여 제1열교환부 및 제2열교환부가 서로 열교환하도록 한 히트 펌프 시스템에 관한 것으로, 본 발명은, 수조의 크기를 줄일 수 있어 히트 펌프 시스템을 더욱더 컴팩트하게 설치할 수 있으며, 아울러 본 발명은 수조의 크기를 줄이면서도 열교환부에 착상이 발생하는 것을 쉽게 방지할 수 있어, 보다 저렴한 시공비로 히트펌프 시스템이 시공될 수 있다.

Description

열교환용 유체 순환형 히트펌프 시스템{HEAT PUMP SYSTEM}
본 발명은 지하철 구조물, 건축물, 비닐하우스 등의 냉난방을 수행할 수 있는 히트펌프 시스템에 관한 것이다.
일반적으로 사용되는 에너지원으로서 석탄, 석유, 천연가스 등과 같은 화석 연료를 이용하거나, 또는 핵연료를 이용하는 경우가 대부분이다. 그러나, 화석 연료는 연소과정에서 발생하는 각종 공해물질로 인하여 환경을 오염시키고, 핵연료는 수질오염 및 방사능과 같은 유해물질을 발생시키는 단점과 함께 이들 에너지원은 매장량의 한계가 있다.
따라서, 근래에는 이를 대신할 수 있는 대체 에너지 개발이 활발하게 진행되고 있다. 이러한 대체에너지 중에서도 풍력, 태양열, 지열 등과 같은 자연에너지에 관한 연구가 오래 전부터 진행되어 실질적으로 이를 이용한 냉난방장치가 설치되어 사용되고 있는데, 이들 자연에너지는 환경오염과 기후변화에 거의 영향을 미치지 않으면서 무한한 에너지를 얻을 수 있는 장점이 있는 반면, 에너지 밀도가 대단히 낮은 결점으로 인하여 그 밀도를 높여 이용가능한 형태로 변환하는 것이 자연에너지 기술개발의 핵심관건이라 할 수 있다.
이러한 자연에너지 기술 중의 하나로 각광받고 있는 것이 지열을 열원으로 이용하여 냉난방을 행하는 히트펌프 시스템이 알려져 있다. 지열을 이용한 히트펌프 시스템은 온도가 10~20℃의 지중의 열을 회수하거나 지중으로 열을 배출할 수 있도록 열교환기를 설치하여 히트펌프의 열원으로 사용하는 기술이다.
일반적으로 히트펌프의 열원으로는 에어컨과 같이 대기중에서 열을 얻거나 배출하는 공기열원방식, 냉각탑을 통해 열을 배출하는 수열원방식 등이 사용된다. 지열원을 이용하면 공기열원과 비교할 때 에너지 효율이 매우 높아지는 장점이 있다.
특히 사계절의 변화가 뚜렷한 지역의 연중 대기온도는 -20~40℃까지 큰 폭으로 변화하는데 반해, 지중온도는 지하 5m 이하의 경우 연중 10~20℃로 거의 일정하게 유지된다.
따라서, 여름철에 냉방을 하는 경우 공기열원의 온도는 30℃이상으로 냉방열을 배출하기 위해 많은 전력이 소모되는 반면, 지열원은 10~20℃로 원활하게 열을 배출하므로 높은 효율을 나타낸다. 반대로 겨울철에 난방을 하는 경우 공기열원은 최하 -20℃의 온도로 난방에 필요한 열을 공급하기 어려운 반면 지중열원은 10~20℃로 높아 안정적으로 난방열을 히트펌프에 공급할 수 있다.
이와 같은 지열을 이용한 히트펌프 시스템은 모든 냉난방기술 중에서 에너지효율이 가장 높은 것으로 알려져 있다. 따라서 에너지 자원이 부족하고 에너지 비용이 높은 상황에서 반드시 필요한 기술이라 할 수 있다.
종래의 지열원을 이용한 히트펌프 시스템은 실내를 냉방 또는 난방하기 위하여 실외측 열교환기를 대기열이 아닌 지열원과 냉매 사이에 열교환이 이루어지도록 구성된다.
도 1은 종래기술에 의한 지열을 이용한 히트펌프 냉난방장치의 계통 구성도이다. 상기 도 1에 도시된 종래의 일반적인 지열원 히트펌프 냉난방장치는, 저온저압의 냉매가스를 압축하여 고온고압으로 변환하는 압축기(21)와, 실내측에 설치되고 냉매에 의해 실내를 냉방 또는 난방하도록 구성되는 실내 열교환기(23)와, 실외측에 설치되고 냉매의 열을 지중에서 얻은 열로 교환하도록 구성되는 실외 열교환기(25)와, 실내 열교환기(23)와 실외 열교환기(25) 사이에 설치되어 응축된 냉매를 저압으로 교축하는 팽창밸브(24)와, 냉매의 순환경로를 변경하는 4방밸브(22)와, 상기 각 구성들을 제어하여 냉방운전 또는 난방운전을 하도록 하는 제어부(10) 를 포함하여 구성된다.
이때, 상기 실외 열교환기(25)는 지중에 매설된 지중열교환관(40)과 배관연결되어 수냉매의 순환경로를 형성하며, 순환펌프(41)에 의해 순환되는 수냉매에 의해 냉매와 열교환시킬 수 있는 것이다. 즉, 상기 실외 열교환기(25)에 의해 냉매와 열교환된 수냉매는 상기 지중열교환관(40)으로 이송되어 지중의 열에 의해 열교환되어 다시 상기 실외 열교환기(25)로 이송되는 것이다. 최근에 상기 지중열교환관(40)은 해수 또는 호수로부터 열교환이 이루어지게 구성되기도 하며, 지하수를 직접 순환시키게 구성되기도 한다.
먼저, 냉방운전시에 냉매의 순환경로를 살펴보면, 4방밸브(22)를 상기 도 1에 파선으로 도시된 경로로 제어하여 압축기(21)에 의해 압축된 냉매가스를 실외 열교환기(25)로 이송시킨다. 그리고, 압축된 냉매가스는 실외 열교환기(25)에서 지열로 열교환시켜 응축시키고, 응축된 냉매를 팽창밸브(24)로 팽창(교축)시켜 저온의 냉매로 변환한 후에 실내 열교환기(23)로 이송시킨다. 그러면, 실내 열교환기(23)는 저온의 냉매를 증발시켜 증발과정에서 실내를 냉방할 수 있는 것이며, 이때 냉방과정에서 얻게 되는 실내의 열에 의해 중온의 냉매가스로 변환되어 4방밸브를 경유하여 압축기(21)로 이송되는 것이다.
다음으로, 난방운전시에 냉매의 순환경로는, 4방밸브(22)가 상기 도 1에 실선으로 도시된 경로로 제어되어, 냉방운전시의 순환경로와 역순으로 이루어지므로, 냉매는 압축기(21), 실내 열교환기(23), 팽창밸브(24) 및 실외열교환기(25)의 순서로 순환된다. 이때에는, 실내 열교환기(23)가 응축기의 역할을 하여 응축과정에서의 열로 실내를 난방하고, 실외 열교환기(25)가 증발기의 역할을 하여 증발과정에서 지열로부터 열을 흡수할 수 있는 것이다.
또한, 상기 도 1의 종래기술을 살펴보면, 압축기(21)에 의해 압축된 고온고압의 냉매가스가 난방 열교환기(30)를 거쳐 4방밸브(22)로 이송되게 구성됨을 알 수 있다. 즉, 상기 난방 열교환기(30)는 난방 또는 급수 용도로 사용되는 축열조에 연설되어 고온고압의 냉매가스로부터 얻는 열로써 축열조에 열을 축적시킨다.
이와 같이 구성되는 종래기술에 의한 지열을 이용한 히트펌프 냉난방장치는 대기열이 아닌 지중열로써 실외 열교환기(25)에서 냉매를 열교환시키므로, 히트펌프 시스템을 가동하는 데에 필요한 전력을 대기열을 사용할 때보다는 절약할 수 있으며, 난방은 물론이고 냉방도 하나의 히트펌프 시스템으로 할 수 있다는 장점을 갖는다.
상기에서 실외 열교환기(25)와 지중열교환관(40)은 통합하여 지중 열교환부라 칭할 수 있을 것이며, 실내 열교환기(23)는 부하측 열교환부라 칭할 수 있다.
이와 같이 히트펌프 장치는 지중 열교환부와 부하측 열교환부를 포함하여 이루어지는 것이 일반적이다.
상기와 같은 종래의 기술은 지중열교환관(40)을 지중에 매설하는 것이 일반적이며, 매설 방식의 지중열교환관은 지중과의 열교환 접촉면적이 작아 효율적으로 지열을 이용할 수 없다.
한편 본 발명자에 의하여 국내 특허등록 제10-0999400호 "지열을 이용한 히트펌프 시스템" 및 국내 특허등록 제10-0998260호 "지열을 이용한 히트펌프 시스템"이 제안된 바 있다.
상기 특허기술들의 경우 증발 내지 응축 기능을 수행하는 제1열교환부가 물이 저장된 수조에 그 전체가 잠기거나 부분적으로 잠기도록 하며, 아울러 제2열교환부 또한 수조에 잠기도록 한다.
아울러 제1열교환부가 응축 기능을 수행할 때 제2열교환부는 2차 증발을 유도하며, 또한 제1열교환부가 증발 기능을 수행할 때 제2열교환부는 2차 응축을 유도하게 된다.
이와 같이 제1열교환부와 제2열교환부는 열의 흡수 및 방출이 서로 다른 방향으로 일어나도록 함으로써 히트 펌프 시스템의 효율을 상승시키게 된다.
또한 본 발명자의 실험에 의하면 제2열교환부의 열교환량은 약 제1열교환부의 열교환량의 30~40% 정도이다.
한편 제1열교환부는 겨울철의 경우 난방 모드에서 증발 기능을 수행하게 되며, 이 경우 수조에 저장된 물은 냉각된다.
수조에 저장된 물이 냉각될 경우 수조의 열용량이 충분히 크거나 지열을 신속하게 공급받지 않을 경우 코일 형태의 열교환부의 표면에서 물이 동결되어 코일 형태의 열교환부의 표면에 착상되는 현상이 발생할 수 있다.
통상의 열교환기의 경우 열교환 코일에서 발생하는 착상 문제로 인하여 열교환 효율이 저하된다는 점을 감안하여 별도의 제상 장치를 두는 것이 일반적이다.
그러나 수조에 담겨진 코일 형태의 열교환부에 별도의 제상 장치를 마련하는 것은 용이하지 않다.
또한 제1,2열교환부를 수조에 설치할 경우 수조의 크기는 제1,2열교환부를 설치할 수 있을 정도로 큰 부피를 차지하여야 한다.
본 발명자는 상기와 같은 본 발명자의 히트 펌프 시스템을 더욱더 컴팩트하게 설치할 수 있는 히트 펌프 시스템을 제공하고자 한다.
아울러 본 발명은 수조의 크기를 줄이면서도 열교환부에 착상이 발생하는 것을 쉽게 방지할 수 있어, 보다 저렴한 시공비로 히트펌프 시스템이 시공될 수 있는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여 본 발명은, 열교환용 유체가 저장되는 수조(310) ; 상기 수조(310)에 잠겨 상기 수조의 열교환용 유체와 열교환하는 제2열교환부(150) ; 제1열교환부(140) 및 상기 제1열교환부(140)와 열교환하기 위한 제3열교환부(321)가 마련된 열교환기(320) ; 상기 수조(310)의 열교환용 유체를 상기 제3열교환부(321)의 제1단부로 공급하여 상기 제3열교환부(321)의 제2단부로부터 열교환용 유체를 상기 수조(310)로 회수하기 위하여 마련되는 열교환용 유체 배관(330) ; 상기 열교환용 유체 배관(330)에 마련되는 열교환용 유체 순환 펌프(340) ; 냉매를 압축하는 압축기(130) ; 부하측에 마련되는 부하측열교환부(160) ; 액화된 냉매가 저장되는 수액기(170) ; 상기 제1열교환부(140)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제1냉매배관(210) ; 상기 제1냉매배관(210)에 마련되어 상기 제1열교환부(140)로부터 상기 수액기(170)로의 유동만을 허용하는 제1체크밸브(211) ; 상기 제1체크밸브(211)의 양단부에 마련된 배관을 서로 연결시키는 제2냉매배관(220) ; 상기 제2냉매배관(220)에 마련되는 제2개폐밸브(221) ; 상기 제2냉매배관(220)에 마련되는 제2팽창밸브(222) ; 상기 부하측열교환부(160)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제3냉매배관(230) ; 상기 제3냉매배관(230)에 마련되어 상기 부하측열교환부(160)로부터 상기 수액기(170)로의 유동만을 허용하는 제3체크밸브(231) ; 상기 제3냉매배관(230)에 마련되되 상기 부하측열교환부(160)와 상기 제3체크밸브(231) 사이에 마련되는 제3개폐밸브(232) ; 상기 제3체크밸브(231)의 양단부에 마련된 배관을 서로 연결시키는 제4냉매배관(240) ; 상기 제4냉매배관(240)에 마련되는 제4개폐밸브(241) ; 상기 제4냉매배관(240)에 마련되는 제4팽창밸브(242) ; 상기 제2열교환부(150)의 제1단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3체크밸브(231)와 상기 제3개폐밸브(232) 사이인 제5냉매배관(250) ; 상기 제5냉매배관(250)에 마련되는 제5개폐밸브(251) ; 상기 제2열교환부(150)의 제2단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3개폐밸브(232)와 상기 제2열교환부(150) 사이인 제6냉매배관(260) ; 상기 제6냉매배관(260)에 마련되는 제6개폐밸브(261) ; 상기 압축기(130)의 입구와 상기 제5냉매배관(250)을 서로 연결시키되, 상기 제5냉매배관(250)에 연결되는 부위는 상기 제5개폐밸브(251)와 상기 제2열교환부(150) 사이인 제7냉매배관(270) ; 상기 제7냉매배관(270)에 마련되는 제7개폐밸브(271) ; 상기 제7냉매배관(270)과 상기 제6냉매배관(260)을 서로 연결시키되, 상기 제7냉매배관(270)에 연결되는 부위는 상기 제7개폐밸브(271)와 상기 압축기(130) 사이이며, 상기 제6냉매배관(260)에 연결되는 부위는 상기 제6개폐밸브(261)와 상기 제2열교환부(150) 사이인 제8냉매배관(280) ; 상기 제8냉매배관(280)에 마련되는 제8-1개폐밸브(281) ; 상기 제8냉매배관(280)에 마련되는 제8-2개폐밸브(282) ; 냉방 모드에서 상기 압축기(130)의 출구와 상기 제1열교환부(140)의 제2단부를 서로 연결시키며, 아울러 상기 부하측열교환부(160)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키며, 난방 모드에서 상기 압축기(130)의 출구와 상기 부하측열교환부(160)의 제2단부를 서로 연결시키며, 아울러 상기 제1열교환부(140)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키는 4방밸브(180) ; 를 포함하여 이루어지는 것을 특징으로 한다.
본 발명의 다른 사상으로, 열교환용 유체가 저장되는 수조(310) ; 상기 수조(310)에 잠겨 상기 수조의 열교환용 유체와 열교환하는 제1열교환부(140) ; 제2열교환부(150) 및 상기 제2열교환부(150)와 열교환하기 위한 제3열교환부(321)가 마련된 열교환기(320) ; 상기 수조(310)의 열교환용 유체를 상기 제3열교환부(321)의 제1단부로 공급하여 상기 제3열교환부(321)의 제2단부로부터 열교환용 유체를 상기 수조(310)로 회수하기 위하여 마련되는 열교환용 유체 배관(330) ; 상기 열교환용 유체 배관(330)에 마련되는 열교환용 유체 순환 펌프(340) ; 냉매를 압축하는 압축기(130) ; 부하측에 마련되는 부하측열교환부(160) ; 액화된 냉매가 저장되는 수액기(170) ; 상기 제1열교환부(140)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제1냉매배관(210) ; 상기 제1냉매배관(210)에 마련되어 상기 제1열교환부(140)로부터 상기 수액기(170)로의 유동만을 허용하는 제1체크밸브(211) ; 상기 제1체크밸브(211)의 양단부에 마련된 배관을 서로 연결시키는 제2냉매배관(220) ; 상기 제2냉매배관(220)에 마련되는 제2개폐밸브(221) ; 상기 제2냉매배관(220)에 마련되는 제2팽창밸브(222) ; 상기 부하측열교환부(160)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제3냉매배관(230) ; 상기 제3냉매배관(230)에 마련되어 상기 부하측열교환부(160)로부터 상기 수액기(170)로의 유동만을 허용하는 제3체크밸브(231) ; 상기 제3냉매배관(230)에 마련되되 상기 부하측열교환부(160)와 상기 제3체크밸브(231) 사이에 마련되는 제3개폐밸브(232) ; 상기 제3체크밸브(231)의 양단부에 마련된 배관을 서로 연결시키는 제4냉매배관(240) ; 상기 제4냉매배관(240)에 마련되는 제4개폐밸브(241) ; 상기 제4냉매배관(240)에 마련되는 제4팽창밸브(242) ; 상기 제2열교환부(150)의 제1단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3체크밸브(231)와 상기 제3개폐밸브(232) 사이인 제5냉매배관(250) ; 상기 제5냉매배관(250)에 마련되는 제5개폐밸브(251) ; 상기 제2열교환부(150)의 제2단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3개폐밸브(232)와 상기 제2열교환부(150) 사이인 제6냉매배관(260) ; 상기 제6냉매배관(260)에 마련되는 제6개폐밸브(261) ; 상기 압축기(130)의 입구와 상기 제5냉매배관(250)을 서로 연결시키되, 상기 제5냉매배관(250)에 연결되는 부위는 상기 제5개폐밸브(251)와 상기 제2열교환부(150) 사이인 제7냉매배관(270) ; 상기 제7냉매배관(270)에 마련되는 제7개폐밸브(271) ; 상기 제7냉매배관(270)과 상기 제6냉매배관(260)을 서로 연결시키되, 상기 제7냉매배관(270)에 연결되는 부위는 상기 제7개폐밸브(271)와 상기 압축기(130) 사이이며, 상기 제6냉매배관(260)에 연결되는 부위는 상기 제6개폐밸브(261)와 상기 제2열교환부(150) 사이인 제8냉매배관(280) ; 상기 제8냉매배관(280)에 마련되는 제8-1개폐밸브(281) ; 상기 제8냉매배관(280)에 마련되는 제8-2개폐밸브(282) ; 냉방 모드에서 상기 압축기(130)의 출구와 상기 제1열교환부(140)의 제2단부를 서로 연결시키며, 아울러 상기 부하측열교환부(160)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키며, 난방 모드에서 상기 압축기(130)의 출구와 상기 부하측열교환부(160)의 제2단부를 서로 연결시키며, 아울러 상기 제1열교환부(140)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키는 4방밸브(180) ; 를 포함하여 이루어지는 것을 특징으로 한다.
상기에 있어서, 상기 수조는 외부로부터 열이 공급되거나 외부로 열이 방출되어 항온성을 가지는 것이 바람직하다.
상기에 있어서, 상기 열교환용 유체는 물보다 낮은 동결점을 가지는 것이 바람직하다.
상기와 같이 본 발명은 제1열교환부 및 제2열교환부 중의 어느 하나가 수조에 잠기며, 다른 하나가 열교환기의 일부로 마련되며, 그 사이에 열교환용 유체의 순환에 의하여 제1열교환부 및 제2열교환부가 서로 열교환하도록 구성한 히트 펌프 시스템에 관한 것으로, 본 발명은 수조의 크기를 줄일 수 있어 히트 펌프 시스템을 더욱더 컴팩트하게 설치할 수 있으며, 아울러 본 발명은 수조의 크기를 줄이면서도 열교환부에 착상이 발생하는 것을 쉽게 방지할 수 있어, 보다 저렴한 시공비로 히트펌프 시스템이 시공될 수 있다.
도 1은 종래 기술에 의한 지열을 이용한 히트펌프 시스템의 계통 구성도,
도 2는 본 발명에 의한 일실시예가 적용된 히트펌프 시스템의 계통도,
도 3은 도 2의 여름철 작동도,
도 4는 도 2의 겨울철 작동도,
도 5는 도 2의 변형예,
도 6은 도 2의 다른 변형예.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명에 의한 바람직한 실시예인 히트펌프 시스템의 계통도이며, 도 3은 도 2의 여름철 작동도이며, 도 4는 도 2의 겨울철 작동도이다.
본 실시예의 주요 구성을 도 2를 참조하여 먼저 설명한 후 그 작동을 도 3 및 도 4을 참조하여 설명한다.
먼저 본 실시예의 주요 기기들을 설명한다.
수조(310)에 물이 저장되어 있으며, 수조(310)는 외부로부터 열이 공급되거나 열이 방출되어 항온성을 가지게 된다.
상기 및 이하, 청구항 등에서 항온성이란 항상 동일한 온도를 유지한다는 것을 의미하는 것이 아니라, 일정한 범위의 온도를 유지하려는 경향을 가진다는 것을 의미한다.
수조(310)가 항온성을 가질 수 있는 가장 쉬운 예는 수조(310)가 지하 일정 깊이에 형성되는 것이다. 이 경우 지열에 의하여 수조(310)는 항온성을 가질 수 있다.
다른 방식으로는 수조(310)에서 일정량의 물을 배출하며 아울러 배출된 양만큼 물을 다시 채워줄 수 있다. 이러한 사례로서 건물의 옥상에 설치되는 물탱크, 건물의 지하 등에 설치되는 집수조가 있다. 이 경우 일정한 열원으로서의 물이 보급되고 배출되는 형태이다.
또다른 방식으로는 수조(310)에 일정한 온도를 가진 유체가 지나가면서 그 유체와 물이 열교환하도록 하는 방식이 예상될 수 있다. 즉, 건물 내부에 상수도를 공급하는 상수도관을 수조(310) 내부에 배치하는 것으로 이러한 효과를 달성할 수 있다.
수조(310)에는 열교환용 유체가 저장되어 있다.
열교환용 유체는 액체 상태로서 제1열교환부 내지 제2열교환부와 열교환하는 액체이며, 바람직하기로는 물보다 낮은 동결점을 가지는 것이 바람직하다. 대표적인 예로서 물보다 낮은 동결점을 가지는 액체로서 브라인(brine)이 언급될 수 있다. 통상 브라인은 낮은 동결점으로 인하여 냉매로서도 이용되고 있다.
그러나 물보다 충분히 낮은 동결점을 가지는 액체라면 무엇이든지 본 발명의 열교환용 유체로서 이용될 수 있다.
한편, 수조(310)의 형태는 그 상부가 개방된 형태이거나 혹은 그 상부가 밀폐된 탱크 형태일 수 있다. 외부 공기와의 열교환을 차단한다는 면에서는 탱크 형태가 바람직하다.
아울러 수조(310)에 제2열교환부(150)가 마련된다. 제2열교환부(150)는 코일 형태의 열교환기로서 수조(310)에 잠겨 열교환용 유체를 매개하여 열을 흡수/방출할 수 있기 때문에 그 열전달 효율이 매우 우수하다.
열교환기(320)가 마련되며, 열교환기(320)는 제1열교환부(140) 및 제1열교환부(140)와 열교환하기 위한 제3열교환부(321)가 마련되어 있다.
즉 열교환기(320)는 두 종류의 유체가 지나면서 서로 열교환하게 되는 열교환기이며, 본 실시예의 경우 판형 열교환기를 이용하는 것으로 한다.
상기 열교환기(320)의 제3열교환부(321)는 열교환용 유체 배관(330)에 의하여 수조(310)와 연결된다.
즉, 열교환용 유체 배관(330)은 수조(310)의 열교환용 유체를 제3열교환부(321)의 제1단부로 공급하며 아울러 제3열교환부(321)의 제2단부로부터 열교환용 유체를 수조(310)로 회수하기 위하여 배치된다.
또한 열교환용 유체 배관(330)에는 열교환용 유체의 순환을 위하여 열교환용 유체 순환 펌프(340)가 마련된다.
상기와 같이 열교환용 유체 순환 펌프(340)와 열교환용 유체 배관(330)에 의하여 수조(310)에 저장된 열교환용 유체는 열교환기(320)의 제3열교환부(321)를 순환하게 되며, 아울러 제3열교환부(321)는 열교환기(320)의 제1열교환부(140)와 열교환하게 된다.
압축기(130)는 기체 상태의 냉매를 압축하게 된다.
부하측에 부하측열교환부(160)가 마련된다. 통상 실내열교환기가 부하측열교환부일 수 있다. 부하측열교환부(160)에 의하여 해당 건축물의 냉난방이 수행된다. 그러나 부하측열교환부(160)는 판형 열교환기의 형태로 마련될 수도 있다.
액화된 냉매가 저장되는 수액기(170)가 마련된다.
아울러 4방밸브(180)가 마련된다.
제1열교환부(140)의 제1단부와 수액기(170)를 서로 연결시키는 제1냉매배관(210)이 마련된다.
제1냉매배관(210)에는 제1열교환부(140)로부터 상기 수액기(170)로의 유동만을 허용하는 제1체크밸브(211)가 마련된다.
제1체크밸브(211)의 양단부에 마련된 배관을 서로 연결시키는 제2냉매배관(220)이 마련된다.
제2냉매배관(220)에는 제2개폐밸브(221) 및 제2팽창밸브(222)가 마련된다.
부하측열교환부(160)의 제1단부와 수액기(170)를 서로 연결시키는 제3냉매배관(230)이 마련된다.
제3냉매배관(230)에는 부하측열교환부(160)로부터 수액기(170)로의 유동만을 허용하는 제3체크밸브(231)가 마련된다.
아울러 제3냉매배관(230)에는 부하측열교환부(160)와 제3체크밸브(231) 사이에 제3개폐밸브(232)가 마련된다.
제3체크밸브(232)의 양단부에 마련된 배관을 서로 연결시키는 제4냉매배관(240)이 마련된다.
상기 제4냉매배관(240)에 제4개폐밸브(241) 및 제4팽창밸브(242)가 마련된다.
제2열교환부(150)의 제1단부와 상기 제3냉매배관(230)을 서로 연결시키는 제5냉매배관(250)이 마련된다.
제5냉매배관(250)이 제3냉매배관(230)에 연결되는 부위는, 제3체크밸브(231)와 상기 제3개폐밸브(232) 사이이다.
제5냉매배관(250)에 제5개폐밸브(251)가 마련된다.
제2열교환부(150)의 제2단부와 제3냉매배관(230)을 서로 연결시키는 제6냉매배관(260)이 마련된다.
제6냉매배관(260)이 제3냉매배관(230)에 연결되는 부위는, 제3개폐밸브(232)와 제2열교환부(150) 사이이다.
제6냉매배관(260)에 제6개폐밸브(261)가 마련된다.
압축기(130)의 입구와 제5냉매배관(250)을 서로 연결시키는 제7냉매배관(270)이 마련된다.
제7냉매배관(270)이 제5냉매배관(250)에 연결되는 부위는, 제5개폐밸브(251)와 제2열교환부(150)사이이다.
제7냉매배관(270)에 제7개폐밸브(271)가 마련된다.
제7냉매배관(270)과 제6냉매배관(260)을 서로 연결시키는 제8냉매배관(280)이 마련된다.
제8냉매배관(280)이 제7냉매배관(270)에 연결되는 부위는, 제7개폐밸브(271)와 압축기(130) 사이이다.
또한 제8냉매배관(28)이 제6냉매배관(260)에 연결되는 부위는, 제6개폐밸브(261)와 제2열교환부(150) 사이이다.
제8냉매배관(280)에는 제8-1개폐밸브(281)와 제8-2개폐밸브(282)가 마련된다.
이와 같은 냉매배관들에 대하여 4방밸브(180)는 제어부의 제어에 의하여 냉방 모드(여름철)와 난방 모드(겨울철)에 따라 서로 다른 냉매배관을 연통시키게 된다.
즉, 4방밸브(180)는 냉방 모드에서 압축기(130)의 출구와 제1열교환부(140)의 제2단부를 서로 연결시키며, 아울러 부하측열교환부(160)의 제2단부와 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키게 된다.
또한 4방밸브(180)는 난방 모드에서 압축기(130)의 출구와 부하측열교환부(160)의 제2단부를 서로 연결시키며, 아울러 제1열교환부(140)의 제2단부와 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키게 된다.
상기와 같은 본 히트펌프 시스템의 동작을 설명한다.
여름철에 본 히트펌프 시스템은 냉방을 수행하게 된다(도 3 참조). 즉 부하측열교환부(160)는 실내에 냉열을 공급하게 된다.
이때 본 히트펌프 시스템의 냉매의 변화는 압축 -> 응축 -> 팽창 -> 제1증발 -> 제2증발 -> 압축의 순환 시스템을 이루게 된다.
압축기(130)에서 압축된 고온 고압의 냉매 가스는 4방밸브(180)를 지나 제1열교환부(140)의 제2단부로 유입되어 제1열교환부(140)에서 응축된다.
이때 제1열교환부(140)는 비교적 낮은 온도를 유지하기 때문에 응축온도가 낮게 유지될 수 있으며, 따라서 성적계수(C.O.P = 냉동효과 / 압축일)가 매우 높아 매우 경제적인 운전이 가능하게 된다.
제1열교환부(140)에서 응축된 냉매는 제1냉매배관(210)을 지나 수액기(170)에 저장된다.
수액기(170)에 저장된 냉매는 제4냉매배관(240)을 지나면서 제4팽창밸브(242)에 의하여 팽창된 후 제3냉매배관(230)을 지나 부하측열교환부(160)에서 1차로 증발된다.
부하측열교환부(160)를 지난 냉매는 4방밸브(180)를 거쳐 제8냉매배관(280) 및 제6냉매배관(260)을 통하여 제2열교환부(150)의 제2단부로 유입된다.
냉매는 제2열교환부(150)에서 2차로 증발된다.
이때 제2열교환부(150)는 압축기(130)로 유입되는 냉매에 액상의 냉매가 존재하지 않도록 완전히 증발시키는 역할을 하게 되며, 이에 의하여 수조(310)의 열교환용 유체의 온도가 낮아지게 되며, 결과적으로 열교환기(320)의 제3열교환부(321)를 지나는 열교환용 유체와 열교환하는 제1열교환부(140)에서 응축되는 냉매의 응축온도를 낮출 수 있어 전체적인 시스템의 효율을 상승시키게 된다.
제2열교환부(150)를 지난 냉매는 제7냉매배관(270)을 통하여 압축기(130)로 유입되며, 이후 과정은 앞서 설명한 싸이클을 반복하게 된다.
겨울철에 본 히트펌프 시스템은 난방을 수행하게 된다(도 4 참조). 즉 부하측열교환부(160)는 실내에 온열을 공급하게 된다.
이때 본 히트펌프 시스템의 냉매의 변화는 압축 -> 제1응축 -> 제2응축 -> 팽창 -> 증발 -> 압축의 순환 시스템을 이루게 된다.
압축기(130)에서 압축된 고온 고압의 냉매 가스는 4방밸브(180)를 지나 부하측열교환부(160)의 제2단부로 유입되어 부하측열교환부(160)에서 먼저 응축된다.
즉, 부하측열교환부(160)는 응축기로서 기능하면서 실내에 온열을 공급하게 된다.
부하측열교환부(160)를 지난 냉매는 제6냉매배관(260)을 거쳐 제2열교환부(150)의 제2단부를 통하여 제2열교환부(150)로 유입된다.
이때 제2열교환부(150)는 부하측열교환부(160)에서 응축되지 않은 잔여 냉매를 완전히 응축시키게 된다.
제2열교환부(150)를 지난 냉매는 제5냉매배관(250) 및 제3냉매배관(230)을 거쳐 수액기(170)에 저장된다.
수액기(170)의 냉매는 제2냉매배관(220)의 제2팽창밸브(222)에서 팽창된 후 제1냉매배관(210)을 통하여 제1열교환부(140)로 유입된다.
제1열교환부(140)로 유입된 냉매는 증발하면서 제3열교환부(321)를 지나는 열교환용 유체로부터 열을 흡수하게 되며, 이후 4방밸브(180) 및 제8냉매배관(280), 제7냉매배관(270)을 거쳐 압축기(130)로 유입된다.
이때 열교환용 유체는 그 동결점이 매우 낮기 때문에 제1열교환부(140)에 착상이 발생하지 않으므로 그 열전달 효율의 저하를 방지할 수 있다.
이후에는 상기와 같은 싸이클이 반복된다.
상기와 같이 제1열교환부(140)와 제2열교환부(150)는, 수조(310)에 저장된 열교환용 유체를 매개로(구체적으로는 열교환용 유체 순환 펌프(340)와, 열교환용 유체 배관(330)과, 열교환기(320)의 제3열교환부(321)를 통하여) 서로 열교환하게 되며, 아울러 수조(310)에 저장된 열교환용 유체는 외부로부터 공급되거나 외부로 방출되는 열원에 의하여 항온성을 가지게 된다.
또한 본 시스템의 경우 수조(310)의 크기는 제2열교환부(150)가 잠길 수 있을 정도의 크기면 충분하므로 전체적인 시스템의 크기가 매우 컴팩트하게 된다.
도 5는 도 2의 변형례이다.
본 실시예에서는 수조(310)에 제1열교환부(140)가 잠긴다.
아울러 열교환기(320)에는 제2열교환부(150) 및 제2열교환부(150)와 열교환하기 위한 제3열교환부(321)가 마련되어 있다.
제3열교환부(321)는 앞서와 마찬가지로 수조(310)와 열교환용 유체 배관(330)에 의하여 연결되며, 열교환용 유체 순환 펌프(340)는 열교환용 유체 배관(330)을 매개하여 열교환용 유체가 제3열교환부(321)와 수조(310)를 순환하도록 한다.
이와 같은 변형례는 수조(310)의 크기가 제1열교환부(140)에 의존하게 되므로 비교적 수조(310)의 크기가 대형화된다. 그러나 종래의 기술에 비하여는 수조(310)의 크기를 소형화시킬 수 있다.
도 6은 도 2의 다른 변형례이다.
본 실시예의 경우 부하측열교환부(160)가 부하측 열교환기(350)의 일부를 구성하게 된다.
즉 부하측 열교환기(350)는 부하측열교환부(160)와, 부하측열교환부(160)와 열교환하는 제4열교환부(351)를 구비하고 있다.
제4열교환부(351)는 비닐하우스 등의 부하(360), 중간 탱크(370), 순환펌프(380)와 연결되어 있다.
즉 부하측 열교환기(350)는 도 2와 같이 직접적으로 부하에 열을 공급/회수하는 것이 아니라 간접적으로(즉 중간 탱크(370), 순환펌프(380) 등을 매개하여) 부하에 열을 공급/회수하게 된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
310 : 수조
130 : 압축기 140 : 제1열교환부
150 : 제2열교환부 160 : 부하측열교환부
170 : 수액기 180 : 4방밸브

Claims (4)

  1. 열교환용 유체가 저장되는 수조(310) ;
    상기 수조(310)에 잠겨 상기 수조의 열교환용 유체와 열교환하는 제2열교환부(150) ;
    제1열교환부(140) 및 상기 제1열교환부(140)와 열교환하기 위한 제3열교환부(321)가 마련된 열교환기(320) ;
    상기 수조(310)의 열교환용 유체를 상기 제3열교환부(321)의 제1단부로 공급하여 상기 제3열교환부(321)의 제2단부로부터 열교환용 유체를 상기 수조(310)로 회수하기 위하여 마련되는 열교환용 유체 배관(330) ;
    상기 열교환용 유체 배관(330)에 마련되는 열교환용 유체 순환 펌프(340) ;
    냉매를 압축하는 압축기(130) ;
    부하측에 마련되는 부하측열교환부(160) ;
    액화된 냉매가 저장되는 수액기(170) ;
    상기 제1열교환부(140)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제1냉매배관(210) ;
    상기 제1냉매배관(210)에 마련되어 상기 제1열교환부(140)로부터 상기 수액기(170)로의 유동만을 허용하는 제1체크밸브(211) ;
    상기 제1체크밸브(211)의 양단부에 마련된 배관을 서로 연결시키는 제2냉매배관(220) ;
    상기 제2냉매배관(220)에 마련되는 제2개폐밸브(221) ;
    상기 제2냉매배관(220)에 마련되는 제2팽창밸브(222) ;
    상기 부하측열교환부(160)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제3냉매배관(230) ;
    상기 제3냉매배관(230)에 마련되어 상기 부하측열교환부(160)로부터 상기 수액기(170)로의 유동만을 허용하는 제3체크밸브(231) ;
    상기 제3냉매배관(230)에 마련되되 상기 부하측열교환부(160)와 상기 제3체크밸브(231) 사이에 마련되는 제3개폐밸브(232) ;
    상기 제3체크밸브(231)의 양단부에 마련된 배관을 서로 연결시키는 제4냉매배관(240) ;
    상기 제4냉매배관(240)에 마련되는 제4개폐밸브(241) ;
    상기 제4냉매배관(240)에 마련되는 제4팽창밸브(242) ;
    상기 제2열교환부(150)의 제1단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3체크밸브(231)와 상기 제3개폐밸브(232) 사이인 제5냉매배관(250) ;
    상기 제5냉매배관(250)에 마련되는 제5개폐밸브(251) ;
    상기 제2열교환부(150)의 제2단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3개폐밸브(232)와 상기 제2열교환부(150) 사이인 제6냉매배관(260) ;
    상기 제6냉매배관(260)에 마련되는 제6개폐밸브(261) ;
    상기 압축기(130)의 입구와 상기 제5냉매배관(250)을 서로 연결시키되, 상기 제5냉매배관(250)에 연결되는 부위는 상기 제5개폐밸브(251)와 상기 제2열교환부(150) 사이인 제7냉매배관(270) ;
    상기 제7냉매배관(270)에 마련되는 제7개폐밸브(271) ;
    상기 제7냉매배관(270)과 상기 제6냉매배관(260)을 서로 연결시키되, 상기 제7냉매배관(270)에 연결되는 부위는 상기 제7개폐밸브(271)와 상기 압축기(130) 사이이며, 상기 제6냉매배관(260)에 연결되는 부위는 상기 제6개폐밸브(261)와 상기 제2열교환부(150) 사이인 제8냉매배관(280) ;
    상기 제8냉매배관(280)에 마련되는 제8-1개폐밸브(281) ;
    상기 제8냉매배관(280)에 마련되는 제8-2개폐밸브(282) ;
    냉방 모드에서 상기 압축기(130)의 출구와 상기 제1열교환부(140)의 제2단부를 서로 연결시키며, 아울러 상기 부하측열교환부(160)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키며, 난방 모드에서 상기 압축기(130)의 출구와 상기 부하측열교환부(160)의 제2단부를 서로 연결시키며, 아울러 상기 제1열교환부(140)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키는 4방밸브(180) ;
    를 포함하여 이루어지는 것을 특징으로 하는 열교환용 유체 순환형 히트펌프 시스템.
  2. 열교환용 유체가 저장되는 수조(310) ;
    상기 수조(310)에 잠겨 상기 수조의 열교환용 유체와 열교환하는 제1열교환부(140) ;
    제2열교환부(150) 및 상기 제2열교환부(150)와 열교환하기 위한 제3열교환부(321)가 마련된 열교환기(320) ;
    상기 수조(310)의 열교환용 유체를 상기 제3열교환부(321)의 제1단부로 공급하여 상기 제3열교환부(321)의 제2단부로부터 열교환용 유체를 상기 수조(310)로 회수하기 위하여 마련되는 열교환용 유체 배관(330) ;
    상기 열교환용 유체 배관(330)에 마련되는 열교환용 유체 순환 펌프(340) ;
    냉매를 압축하는 압축기(130) ;
    부하측에 마련되는 부하측열교환부(160) ;
    액화된 냉매가 저장되는 수액기(170) ;
    상기 제1열교환부(140)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제1냉매배관(210) ;
    상기 제1냉매배관(210)에 마련되어 상기 제1열교환부(140)로부터 상기 수액기(170)로의 유동만을 허용하는 제1체크밸브(211) ;
    상기 제1체크밸브(211)의 양단부에 마련된 배관을 서로 연결시키는 제2냉매배관(220) ;
    상기 제2냉매배관(220)에 마련되는 제2개폐밸브(221) ;
    상기 제2냉매배관(220)에 마련되는 제2팽창밸브(222) ;
    상기 부하측열교환부(160)의 제1단부와 상기 수액기(170)를 서로 연결시키는 제3냉매배관(230) ;
    상기 제3냉매배관(230)에 마련되어 상기 부하측열교환부(160)로부터 상기 수액기(170)로의 유동만을 허용하는 제3체크밸브(231) ;
    상기 제3냉매배관(230)에 마련되되 상기 부하측열교환부(160)와 상기 제3체크밸브(231) 사이에 마련되는 제3개폐밸브(232) ;
    상기 제3체크밸브(231)의 양단부에 마련된 배관을 서로 연결시키는 제4냉매배관(240) ;
    상기 제4냉매배관(240)에 마련되는 제4개폐밸브(241) ;
    상기 제4냉매배관(240)에 마련되는 제4팽창밸브(242) ;
    상기 제2열교환부(150)의 제1단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3체크밸브(231)와 상기 제3개폐밸브(232) 사이인 제5냉매배관(250) ;
    상기 제5냉매배관(250)에 마련되는 제5개폐밸브(251) ;
    상기 제2열교환부(150)의 제2단부와 상기 제3냉매배관(230)을 서로 연결시키되, 상기 제3냉매배관(230)에 연결되는 부위는 상기 제3개폐밸브(232)와 상기 제2열교환부(150) 사이인 제6냉매배관(260) ;
    상기 제6냉매배관(260)에 마련되는 제6개폐밸브(261) ;
    상기 압축기(130)의 입구와 상기 제5냉매배관(250)을 서로 연결시키되, 상기 제5냉매배관(250)에 연결되는 부위는 상기 제5개폐밸브(251)와 상기 제2열교환부(150) 사이인 제7냉매배관(270) ;
    상기 제7냉매배관(270)에 마련되는 제7개폐밸브(271) ;
    상기 제7냉매배관(270)과 상기 제6냉매배관(260)을 서로 연결시키되, 상기 제7냉매배관(270)에 연결되는 부위는 상기 제7개폐밸브(271)와 상기 압축기(130) 사이이며, 상기 제6냉매배관(260)에 연결되는 부위는 상기 제6개폐밸브(261)와 상기 제2열교환부(150) 사이인 제8냉매배관(280) ;
    상기 제8냉매배관(280)에 마련되는 제8-1개폐밸브(281) ;
    상기 제8냉매배관(280)에 마련되는 제8-2개폐밸브(282) ;
    냉방 모드에서 상기 압축기(130)의 출구와 상기 제1열교환부(140)의 제2단부를 서로 연결시키며, 아울러 상기 부하측열교환부(160)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키며, 난방 모드에서 상기 압축기(130)의 출구와 상기 부하측열교환부(160)의 제2단부를 서로 연결시키며, 아울러 상기 제1열교환부(140)의 제2단부와 상기 제8-1개폐밸브(281)와 제8-2개폐밸브(282) 사이의 제8냉매배관(280)을 서로 연결시키는 4방밸브(180) ;
    를 포함하여 이루어지는 것을 특징으로 하는 열교환용 유체 순환형 히트펌프 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 수조는 외부로부터 열이 공급되거나 외부로 열이 방출되어 항온성을 가지는 것을 특징으로 하는 열교환용 유체 순환형 히트펌프 시스템.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 열교환용 유체는 물보다 낮은 동결점을 가지는 것을 특징으로 하는 열교환용 유체 순환형 히트펌프 시스템.
KR1020110025679A 2011-03-23 2011-03-23 열교환용 유체 순환형 히트펌프 시스템 KR101194241B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110025679A KR101194241B1 (ko) 2011-03-23 2011-03-23 열교환용 유체 순환형 히트펌프 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110025679A KR101194241B1 (ko) 2011-03-23 2011-03-23 열교환용 유체 순환형 히트펌프 시스템

Publications (2)

Publication Number Publication Date
KR20120108116A KR20120108116A (ko) 2012-10-05
KR101194241B1 true KR101194241B1 (ko) 2012-10-31

Family

ID=47279763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110025679A KR101194241B1 (ko) 2011-03-23 2011-03-23 열교환용 유체 순환형 히트펌프 시스템

Country Status (1)

Country Link
KR (1) KR101194241B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999400B1 (ko) 2010-09-14 2010-12-09 이동건 지열을 이용한 히트펌프 시스템

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999400B1 (ko) 2010-09-14 2010-12-09 이동건 지열을 이용한 히트펌프 시스템

Also Published As

Publication number Publication date
KR20120108116A (ko) 2012-10-05

Similar Documents

Publication Publication Date Title
KR100999400B1 (ko) 지열을 이용한 히트펌프 시스템
Pardiñas et al. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps
US7617697B2 (en) In-ground geothermal heat pump system
KR100619444B1 (ko) 태양열 시스템을 이용한 하이브리드형 수축열식 냉난방시스템
CN102278836B (zh) 一种分置式水/地能冷暖生活热水一体中央空调机组
KR100556267B1 (ko) 지열과 공기열을 이용한 하이브리드 히트펌프 시스템
Bisengimana et al. The frosting and soil imbalance performance issues of building heat pumps: An overview
KR101096615B1 (ko) 하이브리드형 히트펌프 시스템
KR101642843B1 (ko) 삼중 하이브리드 히트펌프 냉난방 시스템
KR100530259B1 (ko) 축열식 지열히트펌프유닛
KR101186883B1 (ko) 집수조를 이용한 지하철 역사의 냉난방 시스템
JP5503167B2 (ja) 空気調和システム
KR101150659B1 (ko) 해양심층수를 이용한 아이스링크 냉각 및 공조 시스템
KR101241816B1 (ko) 발전기가 구비된 수열교환방식 냉난방장치
KR101053825B1 (ko) 히트펌프 시스템
KR101190260B1 (ko) 지열을 이용한 하이브리드 냉난방 시스템
KR101166858B1 (ko) 지열원 냉난방 히트펌프용 냉난방 및 급탕 시스템
CN102221251B (zh) 一种分置降压式水/地能冷暖生活热水一体中央空调机组
KR100998260B1 (ko) 지열을 이용한 히트펌프 시스템
KR101194241B1 (ko) 열교환용 유체 순환형 히트펌프 시스템
KR101301981B1 (ko) 건축 시설물의 지열에너지 냉난방 시스템
KR101547875B1 (ko) 이중 저수지를 이용한 냉난방 시스템
KR101236375B1 (ko) 지열을 이용한 히트펌프 시스템
CN207936515U (zh) 一种室内温度调节和生活热水节能系统
JP6161735B2 (ja) 外気温度感応式冷暖房装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 7