KR101193607B1 - 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법 - Google Patents

정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법 Download PDF

Info

Publication number
KR101193607B1
KR101193607B1 KR1020110015268A KR20110015268A KR101193607B1 KR 101193607 B1 KR101193607 B1 KR 101193607B1 KR 1020110015268 A KR1020110015268 A KR 1020110015268A KR 20110015268 A KR20110015268 A KR 20110015268A KR 101193607 B1 KR101193607 B1 KR 101193607B1
Authority
KR
South Korea
Prior art keywords
touch
transparent electrode
biomolecule
panel
touch panel
Prior art date
Application number
KR1020110015268A
Other languages
English (en)
Other versions
KR20120095754A (ko
Inventor
박현규
원병연
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020110015268A priority Critical patent/KR101193607B1/ko
Priority to US14/000,403 priority patent/US9274658B2/en
Priority to PCT/KR2012/000220 priority patent/WO2012115349A2/ko
Publication of KR20120095754A publication Critical patent/KR20120095754A/ko
Application granted granted Critical
Publication of KR101193607B1 publication Critical patent/KR101193607B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Human Computer Interaction (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Position Input By Displaying (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 전도체의 접촉을 입력신호로 받아들여 디스플레이 화면에 출력하는 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것으로, 보다 구체적으로, 터치패널에 전기전도성이 있는 생체분자를 적용하고, 생체분자 농도에 따라 발생하는 터치패널 표면의 정전용량의 변화를 감지하여 목적 생체분자를 검출하는 방법에 관한 것이다.
본 발명에 따른 생체분자의 검출방법은 대량 생산이 가능하여 가격이 저렴한 정전용량 방식의 터치스크린을 이용함으로써, 부피가 크고 가격이 비싼 흡광 또는 형광 기반의 전용 분석장치, 전기영동법과 같이 숙련된 실험 기술 또는 긴 분석 시간을 필요로 하여 전문 인력과 시설을 갖춘 실험실에서만 수행할 수 있었던 종래 방법과 비교하여, 가격이 저렴하고 분석시간이 짧으며, 정전용량 방식의 터치스크린을 탑재한 스마트폰 및 태블릿 PC 등의 개인 단말기기에서 간편하게 생체분자를 검출할 수 있다.

Description

정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법{Method for Detecting Biomolecule Using Electrostatic Capacitive Touchscreen}
본 발명은 전도체의 접촉을 입력신호로 받아들여 디스플레이 화면에 출력하는 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것으로, 보다 구체적으로, 터치패널에 전기전도성이 있는 생체분자를 적용하고, 생체분자 농도에 따라 발생하는 터치패널 표면의 정전용량의 변화를 감지하여 목적 생체분자를 검출하는 방법에 관한 것이다.
터치스크린은 키보드나 마우스와 같은 입력장치를 사용하지 않고, 화면(스크린)에 나타난 문자나 특정위치에 사람의 손 또는 물체가 닿으면 그 위치를 파악하여 특정한 기능을 처리하도록 한 것을 말한다.
터치스크린은 기본적으로 터치패널, 터치 컨트롤러, 드라이버 SW 등으로 구성된다. 터치패널은 접촉입력의 유무를 판단하고 입력좌표를 검출하고 터치 컨트롤러로 신호를 전송하는 기능을 담당하고, 컨트롤러는 터치패널에서 전송된 신호를 디지털 신호로 변환하고 디스플레이상의 좌표로 출력하는 기능을 하며, 드라이버 SW는 컨트롤러에서 들어오는 디지털 신호를 받아 터치패널이 각 운영 시스템에 맞게 구현하도록 하는 프로그램이다.
터치스크린은 터치패널의 구현방식에 따라 저항막(Resistive) 방식, 정전용량(Capacitive) 방식, SAW(Surface Accoustic Wave; 초음파) 방식, IR(Infrared; 적외선) 방식 등으로 구분된다.
저항막 방식은 투명전극이 코팅되어 있는 두 장의 기판을 합착시킨 구조로써 손가락이나 펜으로 압력을 가해 상부와 하부의 전극 층이 접촉되면 전기적 신호가 발생되어 위치를 인지하는 방식으로, 가격이 싸고 정확도가 높으며 소형화에 유리하고, 정전용량 방식은 사람의 몸에서 발생하는 정전기를 감지해 구동하는 방식으로서 내구성이 강하고 반응시간이 짧으며 투과성이 우수하다.
SAW 방식은 방출된 초음파가 장애물로 만나 파동의 크기(Amplitude)가 줄어든 것을 감지하는 방식으로, 빛 투과율이 좋고, 정확성 및 선명도가 우수하며, IR방식의 터치패널은 발광(Light emitting)소자와 수광(Light detecting)소자가 마주하도록 배치되어 터치에 의해 차단된 좌표를 인식하게 되며, ITO 필름 등이 필요 없어 Glass 1장으로도 구현이 가능해 투과율이 가장 우수하다 (권지인 et al ., 정보통신책 , 20, 2008).
특히, 정전용량 방식의 터치스크린은 최근 스마트폰 또는 태블릿 PC 등 다양한 소형 단말기기에 널리 사용되고 있는 입력장치이다 (도 1). 구체적으로, 터치 컨트롤러에서 터치패널 네 귀퉁이에 일정 전압을 인가하여 터치패널 표면에 정전용량 층을 형성시키고, 이 패널을 전도체(인체, 주로 손가락) 등으로 접촉하여 접촉 부위에서 정전용량을 변화시킨 다음, 터치 컨트롤러가 이 변화를 감지하고 접촉 위치를 계산하여 외부 디스플레이 장치에 출력하는 원리이다.
한편, 현재 각종 질환과 관련된 생체분자를 분석하기 위한 체외 진단 분야는 각종 질병의 조기 진단을 비롯하여 건강 상태 또는 질병의 진전 상황 등을 살피기 위한 분야로서, 체외 진단 분야는 질병 집단의 선별과 질병 예방, 진단과 치료의 모니터링, 개인 건강 상태 검사, 유전자 검사 그리고 비의료 분야로서 수의학, 환경관리, 식품 관리 등에 매우 적극적으로 이용되고 있다. 최근 변종 인플루엔자 바이러스, 구제역 등의 고전염성 질병이 창궐하여 국가적 위기 상황이 발생하고 있으며, 삶의 질 향상에 대한 요구 또한 높아지고 있어, 치료 모니터링이나 정기적 건강 상태 검사에 대한 수요 및 그 중요성이 부각되고 있는 실정이다. 이에 따라 각종 질병 관련 생체분자의 분석 기술은 경제적?기술적으로 매우 중요하며 산업적으로 큰 파급효과를 가지기 때문에 세계적으로 활발히 연구되고 있다.
현재 체외 진단 분야에서는 실시간 중합효소연쇄반응(real-time PCR), 효소결합면역흡착검사(ELISA, enzyme-linked immonosorbent assay) 등의 방법이 가장 많이 사용되고 있는데, 이와 같은 분석 방법은 부피가 크고 가격이 비싼 분석 장비를 필요로 하거나 숙련된 전문기술 또는 긴 분석 시간을 필요로 한다. 따라서 현재 대부분의 체외 진단은 반드시 전문적인 시설과 인력을 갖춘 대학/종합 병원 또는 전문 진단 기관에의 의뢰를 통해서만 가능한 실정이며, 시료의 채취부터 결과 통보까지 많은 시간과 비용이 소비된다. 이러한 한계를 극복하기 위해서, 지역 소규모 병원 및 보건소, 또는 가정에서도 활용가능한 현장 진단 시스템(POCT, point-of-care testing)이 구현되어야 하며, 이를 위해, 간편하게 체외 분자 분석이 가능한 저렴하고 소형의 분석 장치의 개발이 필요하다.
이에, 본 발명자들은 전문 분석 장치 및 전문 기술을 필요로 하는 기존의 체외 진단 장치를 대신하여 가정에서도 간편하게 체외 분자 분석이 가능한 생체분자의 검출방법을 개발하고자 예의 노력한 결과, 농도에 따라 전기전도도가 달라지는 생체분자를 정전용량 방식의 터치스크린에 접촉시켜 농도변화에 따라 변화하는 터치패널의 정전용량을 직/간접적으로 측정할 경우, 해당 생체분자의 검출 및 정량이 가능한 것을 확인하고 본 발명을 완성하게 되었다.
본 발명의 목적은 저렴하고 간편한 터치스크린 방식을 이용한 생체분자의 검출방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 기준시료 및 검출하고자 하는 하나 이상의 생체분자를 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치 컨트롤러를 이용하여 하나의 접촉신호 위치를 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 제공한다.
본 발명은 또한, (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 생체분자를 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 제공한다.
본 발명은 또한, (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 정제막을 포함하고 전도성을 띄지 않는 분석용 프레임을 적층시키는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계; (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계; (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
(e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 제공한다.
본 발명은 또한, (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 하나 이상의 생체분자들을 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나 이상의 접촉신호 위치 및 접촉신호 위치들에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 제공한다.
본 발명은 또한, (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 하나 이상의 목적 생체분자들과 각각 결합하는 프로브들을 고정화시키는 단계; (b) 상기 프로브들이 고정된 터치패널 위에 시료 주입구 및 반응 챔버를 포함하고, 전도성을 띄지 않는 분석용 프레임을 적층시킨 다음, 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계; (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계; (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 상기 프로브들과 주입된 생체분자의 결합에 의해 변화되는 정전용량을 측정하여 목적 생체분자를 검출하는 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 제공한다.
본 발명은 또한, 생체분자를 함유하는 시료가 점적되는 정전용량 방식의 터치스크린; 및 터치용 전도체가 접촉되는 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 포함하는 것을 특징으로 하는 생체분자 검출용 장치를 제공한다.
본 발명에 따른 생체분자의 검출방법은 대량 생산이 가능하여 가격이 저렴한 정전용량 방식의 터치스크린을 이용함으로써, 부피가 크고 가격이 비싼 흡광 또는 형광 기반의 전용 분석장치, 전기영동법과 같이 숙련된 실험 기술 또는 긴 분석 시간을 필요로 하여 전문 인력과 시설을 갖춘 실험실에서만 수행할 수 있었던 종래 방법과 비교하여, 가격이 저렴하고 분석시간이 짧으며, 정전용량 방식의 터치스크린을 탑재한 스마트폰 및 태블릿 PC 등의 개인 단말기기에서 간편하게 생체분자를 검출할 수 있다.
도 1은 종래 일반적인 터치스크린 시스템에서, 터치패널에 직접 손가락을 접촉하여 터치패널의 정전용량 변화에 의한 신호 입력 원리를 나타낸 것이다.
도 2는 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법을 모식도로 나타낸 것이다.
도 3은 핵산 용액의 농도 변화에 따른 전기전도도 변화를 그래프로 나타낸 것이다.
도 4는 생체분자 접촉에 의한 터치패널의 정전용량 변화에 의해 신호 입력 되는 원리 및 터치패널의 실제 사진을 나타낸 것이다.
도 5는 단일 접촉 정전용량 터치스크린 시스템을 이용하여 두 종류의 핵산 시료 A 및 B의 다양한 농도에 따라 인식되는 위치 및 기준시료(50 ng/μl)의 위치로부터 인식된 위치까지의 거리(L) 및 각도(θ)를 각각 나타낸 것이다.
도 6는 두 종류의 핵산 시료 A 및 B의 농도에 따라 각각의 L값 및 θ값의 방정식 및 두 핵산 시료 농도와 L값 및 두 핵산 시료 농도와 θ값과 관계를 각각 그래프로 나타낸 것이다.
도 7은 PCR로 증폭된 Chlamydia trachomatis 핵산 용액의 농도를 종래 흡광도 기반의 핵산 분석방법을 이용하여 측정한 값을 x축, L값 및 θ값의 관계를 이용하는 단일 접촉 정전용량 터치스크린 시스템을 이용하여 측정한 값을 y축으로 하여 그래프로 나타낸 것이다.
도 8은 터치패널의 정전용량 변화량을 직접 출력해주는 아날로그 신호 출력 소자가 추가된 접촉신호 위치 및 정전용량 변화량을 출력할 수 있는 터치 컨트롤러의 모식도를 나타낸 것이다.
도 9는 특정 생체분자를 분리할 수 있는 정제막이 포함된 단일 접촉(single-touch) 정전용량 터치스크린 시스템을 나타낸 것이다.
도 10은 다중 접촉 정전용량 터치스크린 및 아날로그 신호 출력 소자가 추가된 터치 컨트롤러가 장착된 단말기기를 이용하여 여러 개의 생체분자의 농도를 동시에 측정할 수 있는 시스템을 나타낸 것이다.
도 11은 미지의 생체분자의 검출을 위해 생체분자와 특이적으로 반응하는 서로 다른 종류의 프로브 물질을 패널에 고정화한 다중 접촉 정전용량 터치스크린 시스템을 나타낸 것이다.
본 발명은 일 관점에서, (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 기준시료 및 검출하고자 하는 하나 이상의 생체분자를 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치 컨트롤러를 이용하여 하나의 접촉신호 위치를 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것이다.
본 발명에 있어서, 상기 기준시료는 농도를 알고 있는 전해질 용액인 것을 특징으로 할 수 있으며, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 (d) 단계는 터치 컨트롤러를 이용하여 측정된 터치패널 위에 접촉신호 위치와 터치패널 위에 적용된 기준시료의 위치 사이의 거리(L) 및 각도(θ)를 측정한 다음, 상기 측정된 거리(L) 및 각도(θ)값을 검출하고자 하는 생체분자를 함유한 기준시료를 이용하여 작성된 방정식에 대입하여 생체분자의 농도를 계산하는 것을 특징으로 할 수 있다.
정전용량 방식의 터치스크린은 전기전도성이 있는 물질을 매개로 하여 접촉을 하여도 터치패널 표면의 정전용량이 변하여 입력신호로 인식하게 되며, 이 정전용량의 변화는 해당 물질의 전기전도도에 비례한다. 따라서, 정전용량 방식의 터치스크린은 전도체의 접촉을 인식하기 때문에 전해질 용액을 통한 접촉 또한 인식할 수 있다.
한편, 전해질의 전기전도도는 용액에 용해되어 있는 이온의 농도에 따라 다른데, 생체분자는 용액에 녹아 있는 상태에서 전해질로 작용하기 때문에 생체분자의 농도에 따라 전기전도도 또한 달라진다.
따라서, 터치패널 표면을 손가락으로 직접 접촉하지 않고, 생체분자를 터치패널 위에 떨어뜨리고 그 방울 끝을 손가락으로 접촉해도 접촉 신호가 발생하게 된다 (도 2).
단일 접촉(single-touch) 정전용량 방식의 터치스크린의 경우, 두 지점을 동시에 손가락으로 접촉했을 때 각각의 접촉을 인식하지 못하고, 그 가운데 지점을 접촉신호로 인식한다. 이는, 두 손가락의 전기전도도가 같기 때문인데, 서로 농도가 다른 전해질을 통하여 같은 방식으로 두 지점을 접촉하게 되면 두 지점의 가운데 위치에서부터 전기전도도가 더 높은 쪽으로 접촉 위치를 인식하게 되고, 그 농도 차이에 따라 인식하는 위치 또한 변한다.
본 발명의 일 실시예에서는, 생체분자 농도에 따른 전기전도도의 변화를 측정하여, 생체분자의 농도가 증가할수록 전기전도도가 증가하는 것을 확인하였다 (도 3).
따라서, 이미 농도를 알고 있는 용액을 기준 시료로 사용하고 정해진 위치에 미지의 생체분자를 가하여 기준 시료와 동시에 접촉시키면, 두 지점 사이에서 접촉신호가 발생하게 된다. 따라서, 터치 컨트롤러를 이용하여 두 지점 사이의 접촉신호 위치를 측정하여 생체분자의 농도를 측정할 수 있다. 또한, 미지 시료가 두 개일 경우에도 정해진 위치에 기준 시료와 두 개의 미지 시료를 가하여 동시에 접촉시켜 발생하는 접촉신호 위치를 측정하여 두 개의 미지 시료의 동시 측정이 가능하다.
생체분자 접촉에 의한 터치패널의 정전용량 변화에 의해 신호 입력되는 원리 및 실제 터치패널의 사진을 도 4에 나타내었다.
본 발명의 일 실시예에서는, 단일 접촉 정전용량 터치스크린을 이용하여 두 개의 미지 시료 농도의 동시 측정이 가능함을 확인하기 위하여, 단일 접촉 정전용량 터치스크린의 터치패널 위에 10~100 ng/μl의 다양한 농도를 가지는 핵산 용액 A 및 B를 지정된 위치에 1 μl씩 각각 가하고 또 다른 지정된 위치에 기준 핵산 용액(50 ng/μl)을 가한 다음, 그 위에 투명전극이 코팅된 보조패널을 투명전극이 시료와 접촉하도록 덮고, 투명전극에 연결된 도선을 손가락으로 접촉하여 세 지점을 동시에 접촉시켜, 세 지점 사이의 한 점의 접촉 위치를 확인하였다 (도 5). 그리고, 두 종류 핵산 용액의 농도에 따라 접촉신호로 인식된 위치에 대하여 기준 시료 위치로부터의 거리(L)와 각도(θ)를 각각 측정하고, 이를 이용하여 하기 수학식에 나타난 바와 같이, 두 핵산 용액 농도에 따른 L값의 방정식 및 θ값의 방정식을 각각 얻었으며, 두 핵산 용액 농도와 L값의 관계를 나타내는 그래프 및 두 핵산 용액 농도와 θ값의 관계를 나타내는 그래프를 각각 얻었다 (도 6).
본 발명의 실시예에서는, 정전용량 터치스크린으로 터치패널 및 터치 컨트롤러를 포함하고 있는 단일 접촉 정전용량 터치스크린(ESCAP7000, eGALAX)을 사용하였으나, 이에 한정되지 않고, 정전용량 방식의 터치스크린이라면 어느 것이든 이용가능하다.
Figure 112011012453607-pat00001
Figure 112011012453607-pat00002
상기 수학식에서 [A]는 핵산 용액 A의 농도를 나타내며, 상기 [B]는 핵산 용액 B의 농도를 나타낸다.
따라서, 기준 시료와 두 개의 미지시료를 가하여 동시에 접촉시켜 발생하는 접촉신호 위치를 측정하고, 터치패널 위에 적용된 기준시료(50 ng/μl)의 위치와 상기 측정된 접촉신호 위치 사이의 거리(L) 및 각도(θ)를 측정한 다음, 이를 상기 수학식 1 및 수학식 2에 대입하여 계산함으로써, 두 개의 미지 생체분자의 농도를 동시에 측정할 수 있다.
본 발명의 일 실시예에서는, PCR 증폭된 Chlamydia trachomatis 핵산 용액의 농도를 상기 방법을 이용하여 측정한 결과값과 종래 흡광도 기반의 핵산 분석 방법을 이용하여 측정한 결과값을 비교한 결과, 터치스크린을 이용한 방법은 흡광도 기반의 핵산 분석 방법을 이용한 결과와 유사한 결과를 나타내는 것을 확인하였다 (도 7).
본 발명은 다른 관점에서, (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 생체분자를 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것이다.
본 발명에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 할 수 있다.
종래 정전용량 방식의 터치스크린은 정전용량의 변화를 접촉신호로 인식하기 위해 컨트롤러에서 일정량의 정전용량 변화를 기준으로 두어 그 이상의 변화를 유효 입력신호, 그 이하를 노이즈 등으로 판단하여 접촉 ON/OFF의 디지털 신호만 출력한다. 그러나, 터치패널 표면에서 변화하는 정전용량은 접촉에 이용된 생체분자의 농도에 따라 다르기 때문에 상기 컨트롤러에 정전용량 변화 값을 출력할 수 있는 아날로그 신호 출력 소자를 추가하여 터치패널의 정전용량의 변화량을 직접 출력할 경우, 생체분자의 농도를 측정할 수 있다. 정전용량 변화 값을 출력할 수 있는 아날로그 신호 출력 소자가 추가된 터치 컨트롤러의 모식도는 도 8에 나타내었다.
본 발명은 또 다른 관점에서, (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 정제막을 포함하고 전도성을 띄지 않는 분석용 프레임을 적층시키는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계; (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계; (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것이다.
무기질 등과 같은 기타 잔여물이 포함되어 있는 생체분자를 검출하는 경우, 검출 결과는 기타 잔여물의 영향을 많이 받기 때문에 검출하고자 하는 생체분자는 필수적으로 정제 과정이 필요하다. 따라서, 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 생체분자와 기타 잔여물을 분리할 수 있는 정제막을 포함하고, 전도성을 띄지 않는 분석용 프레임을 이용함으로써, 번거로운 정제과정 없이 시료를 주입하는 것만으로도 생체분자의 검출이 가능하다 (도 9).
본 발명에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 하나 이상의 생체분자들을 적용하는 단계; (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계; (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나 이상의 접촉신호 위치 및 접촉신호 위치들에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것이다.
다중 접촉(multi-touch) 터치스크린은 터치패널의 여러 지점을 접촉했을 때 단일 접촉 방식과 달리 각각의 지점을 접촉신호로 인식할 수 있어 최근 스마트폰 및 태블릿 PC 등에서 가장 많이 이용되는 터치스크린 방식이며, 단일 접촉 정전용량 터치스크린과 마찬가지로 일정량 이상의 정전용량 변화를 접촉신호로 인식하여 디지털 신호만 출력하기 때문에, 정전용량 변화를 직접 출력할 수 있는 아날로그 신호 출력 소자를 컨트롤러에 추가할 경우, 여러 생체분자의 농도를 동시에 측정할 수 있다. 아날로그 신호 출력 소자가 추가된 터치 컨트롤러가 장착되어 있는 다중 접촉 정전용량 터치스크린 기반의 단말기기를 이용한 여러 생체분자의 농도를 동시에 측정하는 시스템을 도 10에 나타내었다.
도 10에 나타난 바와 같이, 정전용량 터치스크린 기반의 단말기기를 이용하여 생체분자를 검출하는 경우, 단말기기 위에 직접 시료를 가하는 대신 단말기기 위에 전도성 부착 필름을 붙인 다음, 시료를 적용함으로써, 단말기기를 오염시키지 않고 편리하게 생체분자를 검출할 수 있다.
본 발명에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 하나 이상의 목적 생체분자들과 각각 결합하는 프로브들을 고정화시키는 단계; (b) 상기 프로브들이 고정된 터치패널 위에 시료 주입구 및 반응 챔버를 포함하고, 전도성을 띄지 않는 분석용 프레임을 적층시킨 다음, 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계; (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계; (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및 (e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 상기 프로브들과 주입된 생체분자의 결합에 의해 변화되는 정전용량을 측정하여 목적 생체분자를 검출하는 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법에 관한 것이다.
핵산의 전기전도도는 단일 가닥으로 존재하는 경우보다 혼성화하여 이중 가닥으로 존재할 경우, 전기전도도가 더 높아진다. 따라서, 다중 접촉 정전용량 방식의 터치스크린의 터치패널에 목적 생체분자들과 특이적으로 결합반응을 하는 프로브들을 일정 패턴으로 고정화시키고, 상기 터치패널 위에 고정된 프로브들과 검출하고자 하는 생체분자들을 반응시켜 혼성화시키면, 목적 생체분자와 결합한 프로브들이 위치한 지점은 전기전도도가 높아지고 정전용량이 변하여 접촉신호로 인식하게 된다. 이렇게 접촉신호 위치로 인식된 위치의 프로브를 확인함으로써, 목적 생체분자를 검출할 수 있다 (도 11).
본 발명에 있어서, 상기 생체분자는 핵산, 단백질 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, 생체분자를 함유하는 시료가 점적되는 정전용량 방식의 터치스크린; 및 터치용 전도체가 접촉되는 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 포함하는 것을 특징으로 하는 생체분자 검출용 장치에 관한 것이다.
본 발명에 있어서, 상기 정전용량 방식의 터치스크린은 터치패널 및 터치 컨트롤러를 포함하는 것을 특징으로 할 수 있으며, 상기 터치 컨트롤러는 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 정전용량 방식의 터치스크린은 단일 접촉 정전용량 방식의 터치스크린 및 다중 접촉 정전용량 방식의 터치스크린으로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 생체분자 검출용 장치는 전도성을 띄지 않는 분석용 프레임을 추가로 포함하는 것을 특징으로 할 수 있으며, 상기 분석용 프레임은 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 정제막을 포함하거나, 시료 주입구, 반응 챔버(reaction chamber)를 포함하는 것을 특징으로 할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
생체분자 농도에 따른 전기전도도의 변화
정전용량 방식의 터치스크린은 전도체의 접촉을 인식하기 때문에 전해질 용액을 통한 접촉 또한 인식할 수 있다. 즉, 터치패널 표면을 손가락으로 직접 접촉하는 대신에 전해질 용액 방울을 터치패널 위에 떨어뜨리고 그 방울 끝을 손가락으로 접촉해도 접촉신호가 발생하게 된다. 이는, 터치패널 표면의 정전용량이 전해질의 전기전도도에 의해 변화하기 때문이며, 전해질의 전기전도도는 용액에 용해되어 있는 이온의 농도에 따라 다르다. 생체분자는 용액에 녹아 있는 상태에서 전해질로 작용하기 때문에 생체분자의 농도에 따라 전기전도도는 달라진다.
생체분자 농도에 따라 전기전도도가 변하는 것을 확인하기 위해, PCR 증폭된 Chlamydia trachomatis 핵산을 25 ~ 375 ng/μl의 다양한 농도로 제조하고, 각 농도에 따른 핵산 용액의 저항값을 RMS 멀티미터(FLUKE 177)를 이용하여 측정하여 각 핵산 용액의 전기전도도를 계산하였다.
그 결과, 도 3에 나타난 바와 같이, 핵산 용액의 농도가 증가할수록 전기전도도가 증가하는 것을 확인하였다.
따라서, 생체분자 용액에 의한 접촉을 통해 발생하는 정전용량의 변화를 직/간접적으로 측정하면 용액 중의 생체분자 농도를 측정할 수 있다.
단일 접촉 정전용량 터치스크린을 이용한 생체분자의 검출
단일 접촉 터치스크린은 두 지점을 동시에 손가락으로 접촉했을 때 각각의 접촉을 인식하지 못하고, 그 가운데 지점을 접촉신호로 인식한다. 이는, 두 손가락의 전기전도도가 같기 때문인데, 서로 농도가 다른 전해질을 통하여 같은 방식으로 두 지점을 접촉하게 되면 두 지점의 가운데 위치에서부터 전기전도도가 더 높은 쪽으로 접촉 위치를 인식하게 되고, 그 농도 차이에 따라 인식하는 위치 또한 변하기 때문에 이미 농도를 알고 있는 용액을 기준 용액으로 사용하고 정해진 위치에 미지의 생체분자 용액을 가하여 기준 용액과 동시에 접촉하면, 두 지점 사이에서 접촉신호가 발생하게 되고, 그 위치와 기준 용액의 농도로부터 미지 시료의 생체분자 농도를 측정할 수 있다.
또한, 미지 시료가 두 개일 경우, 정해진 위치에 기준 용액과 두 개의 미지 시료를 가하여 동시에 접촉하여 발생하는 접촉신호 위치에 대하여 기준 위치에서부터의 거리와 각도를 측정하여 두 미지 시료의 생체분자 농도를 추정하여 두 개의 미지 시료의 동시 측정이 가능하다.
정전용량 터치스크린을 이용하여 두 개의 미지 시료 농도의 동시 측정이 가능함을 확인하기 위하여, 터치패널 및 터치 컨트롤러를 포함하고 있는 단일 접촉 정전용량 터치스크린(ESCAP7000, eGALAX) 및 보조패널로 인듐-틴-옥사이드 (ITO)가 코팅된 슬라이드글라스((주)아스타)를 준비하였다.
두 개의 미지시료로는 Chlamydia trachomatis 유전자를 PCR 증폭한 후 정제 키트를 이용하여 정제하여 10~100 ng/μl의 다양한 농도를 가지는 핵산 용액 A 및 B를 각각 제조하였다.
상기 준비된 터치스크린의 터치패널 위의 고정된 두 지점에 10~100 ng/μl의 다양한 농도를 가지는 두 핵산 용액 A 및 B를 1 μl씩 각각 가하고 또 다른 고정된 위치에 PCR 증폭/정제 후 흡광도를 측정하여 농도를 50 ng/μl로 맞춘 기준 핵산 용액을 가한 다음, 그 위에 투명전극이 코팅된 보조패널을 투명전극이 시료와 접촉하도록 덮고, 투명전극에 연결된 도선을 손가락으로 접촉하여 시료가 가해진 터치패널 위의 세 지점을 동시에 접촉시켰다. 그리고, 터치패널에 연결된 터치 컨트롤러를 이용하여 세 지점 사이에 한 점의 접촉신호 위치를 확인하였다. 그 다음, 두 종류 핵산 용액의 농도에 따라 접촉 위치로 인식된 지점에 대하여 기준 용액 위치로부터의 거리(L)와 각도(θ)를 각각 측정하였다.
그 결과, 도 5에 나타난 바와 같이, 두 종류 핵산 용액의 농도에 따라 기준 용액 위치로부터의 거리(L) 및 각도(θ)를 각 지점의 PC 모니터 상의 x,y 좌표 (pixel)로부터 계산하였으며, 이를 이용하여 두 핵산 용액 농도에 따른 L값 및 θ값의 방정식 및 두 핵산 용액 농도와 L값의 관계를 나타내는 그래프 및 두 핵산 용액 농도와 θ값의 관계를 나타내는 그래프를 통계프로그램인 minitab과 연산프로그램인 matlab을 이용하여 각각 얻었다 (도 6).
또한, nanodrop ND-1000 spectrophotometer를 이용하여 260nm에서 PCR 증폭된 Chlamydia trachomatis 핵산 용액의 흡광도를 측정하여 PCR 증폭된 Chlamydia trachomatis 핵산 용액의 농도를 측정한 다음, 상기 터치스크린을 이용하여 측정한 결과값과 비교하였다.
그 결과, 도 7에 나타난 바와 같이, 터치스크린을 이용한 방법은 종래 흡광도 기반의 핵산 분석 방법을 이용한 결과와 유사한 결과를 나타내는 것을 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
1. 손가락
2. 접촉에 의한 터치패널 표면의 정전용량 변화
3. 터치패널
4. 투명 보조패널
5. 투명전극 코팅층
6. 전극에 연결된 도선
7. 검출 시료(생체분자)
8. 전도성의 터치스크린 부착 필름
9. 시료 주입구
10. 시료 접촉 위치
11. 정제막
12. 기준시료 접촉 위치
13. 단말기기의 터치스크린
14. 케이블
15. 터치 컨트롤러
16. 아날로그 신호 출력 소자
17. 터치스크린 기반의 핵산 검출 장치(단말기기 등)
18. 반응 챔버(reaction chamber)
19. 목적 생체분자와 특이적으로 결합하는 프로브
20. 분석용 프레임

Claims (40)

  1. 다음 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법:
    (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 기준시료 및 검출하고자 하는 하나 이상의 생체분자를 적용하는 단계;
    (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계;
    (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
    (d) 터치 컨트롤러를 이용하여 하나의 접촉신호 위치를 측정하여 생체분자의 농도를 검출하는 단계.
  2. 제1항에 있어서, 상기 기준시료는 농도를 알고 있는 전해질 용액인 것을 특징으로 하는 생체분자의 검출방법.
  3. 제1항에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  4. 청구항 4은(는) 설정등록료 납부시 포기되었습니다.
    제1항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  5. 제1항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  6. 제1항에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  7. 제1항에 있어서, 상기 (d) 단계는 터치 컨트롤러를 이용하여 측정된 터치패널 위에 접촉신호 위치와 터치패널 위에 적용된 기준시료의 위치 사이의 거리(L) 및 각도(θ)를 측정한 다음, 상기 측정된 거리(L) 및 각도(θ)값을 검출하고자 하는 생체분자를 함유한 기준시료를 이용하여 작성된 방정식에 대입하여 생체분자의 농도를 계산하는 것을 특징으로 하는 생체분자의 검출방법.
  8. 다음 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법:
    (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 생체분자를 적용하는 단계;
    (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계;
    (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
    (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계.
  9. 제8항에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  10. 청구항 10은(는) 설정등록료 납부시 포기되었습니다.
    제8항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  11. 제8항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  12. 청구항 12은(는) 설정등록료 납부시 포기되었습니다.
    제8항에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  13. 청구항 13은(는) 설정등록료 납부시 포기되었습니다.
    제8항에 있어서, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 하는 생체분자의 검출방법.
  14. 다음 단계를 포함하는 단일 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법:
    (a) 단일 접촉 정전용량 방식의 터치스크린의 터치패널 위에 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 정제막을 포함하고 전도성을 띄지 않는 분석용 프레임을 적층시키는 단계;
    (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계;
    (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계;
    (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
    (e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나의 접촉신호 위치 및 접촉신호 위치에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계.
  15. 제14항에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  16. 청구항 16은(는) 설정등록료 납부시 포기되었습니다.
    제14항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  17. 제14항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  18. 청구항 18은(는) 설정등록료 납부시 포기되었습니다.
    제14항에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  19. 청구항 19은(는) 설정등록료 납부시 포기되었습니다.
    제14항에 있어서, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 하는 생체분자의 검출방법.
  20. 다음 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법:
    (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 검출하고자 하는 하나 이상의 생체분자들을 적용하는 단계;
    (b) 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 (a)의 터치패널 위에 적층시키되, 투명전극이 코팅된 면이 상기 터치패널과 접촉하도록 적층시키는 단계;
    (c) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
    (d) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 하나 이상의 접촉신호 위치 및 접촉신호 위치들에 대한 정전용량의 변화량을 측정하여 생체분자의 농도를 검출하는 단계.
  21. 제20항에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  22. 청구항 22은(는) 설정등록료 납부시 포기되었습니다.
    제20항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  23. 제20항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  24. 청구항 24은(는) 설정등록료 납부시 포기되었습니다.
    제20항에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  25. 청구항 25은(는) 설정등록료 납부시 포기되었습니다.
    제20항에 있어서, 상기 정전용량의 변화량은 생체분자의 농도에 비례하는 것을 특징으로 하는 생체분자의 검출방법.
  26. 다음 단계를 포함하는 다중 접촉 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법:
    (a) 다중 접촉 정전용량 방식의 터치스크린의 터치패널 위에 하나 이상의 목적 생체분자들과 각각 결합하는 프로브들을 고정화시키는 단계;
    (b) 상기 프로브들이 고정된 터치패널 위에 시료 주입구 및 반응 챔버를 포함하고, 전도성을 띄지 않는 분석용 프레임을 적층시킨 다음, 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 상기 분석용 프레임 위에 적층시키되, 투명전극이 코팅된 면이 상기 분석용 프레임과 접촉하도록 적층시키는 단계;
    (c) 상기 시료 주입구에 검출하고자 하는 생체분자를 주입하는 단계;
    (d) 상기 투명전극과 연결된 도선 또는 터치패널과 접촉된 반대 면의 투명전극에 터치용 전도체를 접촉하여 터치패널 표면의 정전용량이 변하도록 하는 단계; 및
    (e) 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 터치 컨트롤러로 상기 프로브들과 주입된 생체분자의 결합에 의해 변화되는 정전용량을 측정하여 목적 생체분자를 검출하는 단계.
  27. 제26항에 있어서, 상기 생체분자는 핵산, 단백질 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  28. 청구항 28은(는) 설정등록료 납부시 포기되었습니다.
    제26항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  29. 제26항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  30. 청구항 30은(는) 설정등록료 납부시 포기되었습니다.
    제26항에 있어서, 상기 터치용 전도체는 손가락, 정전용량 방식에 적용 가능한 스타일러스 펜, 및 정전용량 방식에 적용 가능한 터치 장갑으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자의 검출방법.
  31. 생체분자를 함유하는 시료가 점적되는 정전용량 방식의 터치스크린; 및 터치용 전도체가 접촉되는 도선이 연결되어 있는 투명전극이 코팅된 보조패널 또는 양면이 투명전극으로 코팅된 보조패널을 포함하는 것을 특징으로 하는 생체분자 검출용 장치.
  32. 제31항에 있어서, 상기 정전용량 방식의 터치스크린은 터치패널 및 터치 컨트롤러를 포함하는 것을 특징으로 생체분자 검출용 장치,
  33. 제32항에 있어서, 상기 터치 컨트롤러는 터치패널의 정전용량 변화량을 측정하여 출력하는 아날로그 신호 출력 소자를 추가로 포함하는 것을 특징으로 하는 생체분자 검출용 장치.
  34. 제31항에 있어서, 상기 정전용량 방식의 터치스크린은 단일 접촉 정전용량 방식의 터치스크린 및 다중 접촉 정전용량 방식의 터치스크린으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자 검출용 장치.
  35. 제31항에 있어서, 상기 보조패널은 유리, 아크릴 및 플라스틱으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자 검출용 장치.
  36. 제31항에 있어서, 상기 투명전극은 인듐-틴-옥사이드(ITO), 징크-옥사이드 (ZnO), 인듐-징크-옥사이드(IZO), 갈륨-징크-옥사이드 (GZO), 알루미늄-징크-옥사이드 (AZO) 및 탄소나노튜브 (CNT, carbon nanotube) 또는 그래핀 (graphene)으로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자 검출용 장치.
  37. 제31항에 있어서, 상기 생체분자는 핵산, 단백질, 생체내 무기이온 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 생체분자 검출용 장치.
  38. 제31항에 있어서, 상기 생체분자 검출용 장치는 전도성을 띄지 않는 분석용 프레임을 추가로 포함하는 것을 특징으로 하는 생체분자 검출용 장치.
  39. 제38항에 있어서, 상기 분석용 프레임은 시료 주입구, 시료 이동 채널, 시료 접촉 위치 및 정제막을 포함하는 것을 특징으로 하는 생체분자 검출용 장치.
  40. 제38항에 있어서, 상기 분석용 프레임은 시료 주입구, 반응 챔버(reaction chamber)를 포함하는 것을 특징으로 하는 생체분자 검출용 장치.
















KR1020110015268A 2011-02-21 2011-02-21 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법 KR101193607B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110015268A KR101193607B1 (ko) 2011-02-21 2011-02-21 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법
US14/000,403 US9274658B2 (en) 2011-02-21 2012-01-10 Method for detecting biomolecules using a capacitive touch screen
PCT/KR2012/000220 WO2012115349A2 (ko) 2011-02-21 2012-01-10 정전영량 방식의 터치스크린을 이용한 생테분자의 검출방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110015268A KR101193607B1 (ko) 2011-02-21 2011-02-21 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법

Publications (2)

Publication Number Publication Date
KR20120095754A KR20120095754A (ko) 2012-08-29
KR101193607B1 true KR101193607B1 (ko) 2012-11-09

Family

ID=46721276

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110015268A KR101193607B1 (ko) 2011-02-21 2011-02-21 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법

Country Status (3)

Country Link
US (1) US9274658B2 (ko)
KR (1) KR101193607B1 (ko)
WO (1) WO2012115349A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895852A4 (en) * 2012-09-11 2016-05-25 Univ Cornell APPARATUS AND METHOD FOR MEASURING ON THE COLLECTION POINT OF A BIOMOLECULAR REACTION
KR102151469B1 (ko) * 2019-05-17 2020-09-03 신한대학교 산학협력단 의료진단용 세포검체 검사장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033512A (ja) 1996-07-26 1998-02-10 Hitachi Ltd 無侵襲生化学計測装置
JPH11183377A (ja) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd 光学式成分計
US20070149868A1 (en) * 2002-03-08 2007-06-28 Blank Thomas B Method and Apparatus for Photostimulation Enhanced Analyte Property Estimation
WO2009122314A1 (en) * 2008-03-31 2009-10-08 Nxp B.V. A sensor chip and a method of manufacturing the same
KR101462283B1 (ko) 2008-10-22 2014-11-14 삼성전자주식회사 심전도 측정 방법 및 장치
KR101116621B1 (ko) * 2009-06-29 2012-03-05 (주)아이티헬스 터치 패드를 이용하는 생체 신호 감지 시스템
US8334849B2 (en) * 2009-08-25 2012-12-18 Pixart Imaging Inc. Firmware methods and devices for a mutual capacitance touch sensing device

Also Published As

Publication number Publication date
WO2012115349A2 (ko) 2012-08-30
US20140022209A1 (en) 2014-01-23
US9274658B2 (en) 2016-03-01
WO2012115349A3 (ko) 2012-11-15
KR20120095754A (ko) 2012-08-29

Similar Documents

Publication Publication Date Title
Ainla et al. Open-source potentiostat for wireless electrochemical detection with smartphones
JP5442854B2 (ja) タッチ感知式デバイスおよび方法
US20090194416A1 (en) Potentiometric biosensor for detection of creatinine and forming method thereof
TW200928925A (en) Position sensitive panel, method and display
JP6369805B2 (ja) タッチセンサ装置及び電子機器並びにタッチジェスチャー検知プログラム
US10078400B2 (en) Touch sensor panel and method correcting palm input
EP2278443A2 (en) Multi-touch detection method for touch panel
US20140186820A1 (en) Micro-fluidic device for the analysis of a fluid sample
Mahmudiono et al. State-of-the-art of convenient and low-cost electrochemical sensor for food contamination detection: Technical and analytical overview
CN102135828A (zh) 信号量测的方法与装置
KR101193607B1 (ko) 정전용량 방식의 터치스크린을 이용한 생체분자의 검출방법
CN103592353B (zh) 基于蜿蜒线形沟道离子敏感场效应晶体管的生物传感器
Barbosa et al. Modelling and design of a capacitive touch sensor for urinary tract infection detection at the point-of-care
US20100172800A1 (en) Electrosensing antibody-probe detection and measurement sensor having conductivity promotion molecules
Fu et al. Application of Intelligent Medical Sensing Technology
Son et al. Conductive thread-based immunosensor for pandemic influenza A (H1N1) virus detection
CN114854829A (zh) 一种目标基因检测方法、装置及计算机
CN205786858U (zh) 触摸屏电阻检测装置
CN211454566U (zh) 应力感应组件及曲面屏
KR20160132627A (ko) 표면정전용량 방식의 터치스크린을 이용한 표적물질의 검출방법
Bacher et al. Electrical biosensors for virus detection
CN111534430B (zh) 一种核糖核酸检测面板与核糖核酸检测装置
US20190216359A1 (en) Impedance chip detection system for biological testing
US9207200B2 (en) Biosensor strip
US20210341467A1 (en) Portable devices and methods for detecting and identifying compounds in saliva

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161026

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 7