KR101179511B1 - 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법 - Google Patents

표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법 Download PDF

Info

Publication number
KR101179511B1
KR101179511B1 KR1020100054439A KR20100054439A KR101179511B1 KR 101179511 B1 KR101179511 B1 KR 101179511B1 KR 1020100054439 A KR1020100054439 A KR 1020100054439A KR 20100054439 A KR20100054439 A KR 20100054439A KR 101179511 B1 KR101179511 B1 KR 101179511B1
Authority
KR
South Korea
Prior art keywords
catalyst
carbon support
carbon
metal
support
Prior art date
Application number
KR1020100054439A
Other languages
English (en)
Other versions
KR20110134712A (ko
Inventor
박수진
박정민
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100054439A priority Critical patent/KR101179511B1/ko
Publication of KR20110134712A publication Critical patent/KR20110134712A/ko
Application granted granted Critical
Publication of KR101179511B1 publication Critical patent/KR101179511B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 카본블랙과 다중벽 탄소나노뷰브를 혼합 탄소지지체로 사용하고, 이의 표면을 산소플라즈마 처리하여 고가의 백금을 적게 사용하면서도 높은 담지율을 나타내며, 전기적 활성이 우수한 복합체 촉매에 관한 것이다.

Description

표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법{MODIFIED METAL CATALYST SUPPORTED ON MIXED CARBON SUPPORT, AND PREPARATION THEREOF}
본 발명은 카본블랙과 다중벽 탄소나노뷰브를 혼합 탄소지지체로 사용하고, 이의 표면을 산소플라즈마 처리하여 고가의 백금을 적게 사용하면서도 높은 담지율을 나타내며, 전기적 활성이 우수한 복합체 촉매에 관한 것이다.
연료전지는 연료와 산화제를 전극에 공급함으로써 화학에너지를 전기에너지로 변환하는 매우 효율적인 에너지변환 시스템으로 기존의 화석에너지에 비해 효율이 높고 공개소음 등 제반 문제가 거의 없는 꿈의 청정에너지로 주목 받고 있다. 그러나 에너지 변환장치로서의 연료전지는 현재 연료에 함유된 불순물에 따라 성능이 크게 영향을 받고, 제조가격이 높으며, 전극의 활성이 낮아서 전력 생산 밀도가 작이지는 문제 등이 대두 되고 있다.
연료전지의 가장 중요한 한계는 열악한 전극성능으로, 전해질에 대한 산소의 용해도가 낮아 산소환원 반응이 느린 것이 요인으로 작용하기 때문에 효율적인 연료 전지-산화 촉매의 필요성이 시급히 요구된다. 이러한 제약조건이 연료의 산화촉매의 많은 연구를 촉발시켰으며, 백금을 기반으로 하는 소재들만이 적합한 활성도와 필요한 안정성을 나타낸다고 보고되고 있다. 하지만 상기 금속이 자연에 희귀하게 존재함으로 인해, 결과적으로 이것의 높은 가격으로 인해 연료전지의 보급이 제한된다. 따라서 백금촉매의 전기화학적 촉매활성을 유지하면서 상기 금속의 도입량을 감소시킬 필요성이 대두되고 있다.
최근에는 백금기반의 촉매의 산소환원 반응을 증가시키고 촉매의 반응성을 높이기 위해 촉매의 입자지름을 수 nm의 크기로 미립화시켜 촉매의 반응표면적을 증가시키려는 연구가 활발히 이루어지고 있으며, 이에 따라 촉매가 효과적으로 균일한 분산을 이루기 위해 지지체의 개발도 급진전되고 있다. 불균일계의 촉매는 제조공정 중 열처리온도나 반응온도에 의해 불안정하며, 백금촉매가 고가이기 때문에 지지체에 촉매를 분산시켜 사용하는 것이 상용화된 방법이다. 일반적으로 연료전지의 촉매로 귀금속인 백금입자를 비표면적이 크고 전기전도성이 우수한 카본블랙 지지체에 담지하여 촉매전극으로 사용하고 있다. 하지만 카본블랙은 산화제에 취약한 단점과 기계적 강도가 낮기 때문에 플러깅(plugging) 현상이 유발되어 제조과정 중 불순물이 함유될 수 있다. 또한, 열화가 쉽고, 다공질 산화물로서 고온조건 반응에서 불안정하며, 농도 변화, 온도, 압력에 의해 쉽게 탈착현상이 발생하여 흡착용량과 흡착선택성이 낮게 되어 반응기에서 지지체의 구조가 부서지게 되었을 때 막힘현상이 발생될 수 있다는 문제점이 있다. 이에 따라 탄소지지체의 종류를 변화시켜 탄소재료의 기계적 물성과 비표면적 및 표면 특성을 조절하여 탄소지지체의 수용능력을 극대화시키고, 금속입자를 미립화 시키면서 분산율 및 담지율을 높여 귀금속촉매의 효율을 최대한 높이는 방법들에 대한 연구가 계속 진행되어야 할 것이다.
이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여, 직접메탄올 연료전지용 (Direct Methanol Fuel Cells, DMFCs) 금속-카본블랙 촉매를 효율적으로 담지시키는 방법으로, 비표면적이 우수한 카본블랙과 전기적, 기계적 물성이 우수한 다중벽 탄소나노튜브(multi-walled carbon nanotubes, MWNTs)를 사용하여 이종 탄소지지체를 도입하고, 산소 플라즈마 처리를 통하여 상기 탄소지지체의 표면을 개질하여 고가의 백금을 적게 사용하면서 담지율을 향상시키는 방법을 발견함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명은 산소 플라즈마 처리에 의하여 표면 개질된 이종 탄소지지체에 금속촉매를 균일 분산시켜 촉매의 전기적 활성을 향상시킨 금속복합체 촉매를 제공하는 것을 그 목적으로 한다.
상기 목적에 따라 본 발명에서는, 탄소지지체에 금속을 담지시킨 백금기반의 촉매에 있어서, 탄소지지체가 카본블랙과 다중벽 탄소나노튜브(MWNTs)의 혼합물임을 특징으로 하는, 이종 탄소지지체에 금속입자가 담지된 금속복합체 촉매를 제공한다.
또한 본 발명에서는 경우에 따라 상기 탄소지지체의 혼합물에, 경우에 따라 산소 플라즈마 처리하고, 액상 조건하에서 금속을 담지한 후, 얻은 고체분말을 여과건조하는 이종 탄소지지체에 백금이 담지된 촉매의 제조방법을 제공한다.
또한 본 발명에서는 상기 이종 탄소지지체에 금속이 담지된 촉매를 포함하는 연료전지를 제공한다.
본 발명의 이종 탄소지지체에 담지된 금속을 포함하는 복합체 촉매에 따르면, 탄소지지체를 카본블랙과 다중벽 탄소나노튜브를 혼합하여 비표면적 및 탄소지지체의 물성을 향상시키고, 더 나아가 산소플라즈마로 처리하여 금속 담지를 위한 탄소 지지체의 표면 특성을 최적화하였다. 혼합 탄소지지체의 혼합비에 따라 촉매입자의 크기와 촉매금속의 담지율을 제어할 수 있었고, 연료전지의 전극재료로 응용할 수 있는 백금의 전기적 촉매활성을 기존의 촉매보다 향상시킬 수 있다.
도 1은 비교예 1과 실시예 1 ~ 8의 조건으로부터 제조된 탄소지지체의 XPS(X-ray Photoelectron Spectroscopy) 분석결과를 나타낸 것이다.
도 2은 비교예 1과 실시예 1 ~ 8의 조건으로부터 제조된 금속 복합체 촉매의 입자크기를 나타낸 것이다.
도 3는 비교예 1과 실시예 1 ~ 8의 조건으로부터 제조된 금속 복합체 촉매의 표면을 나타낸 것이다.
도 4은 비교예 1과 실시예 1 ~ 8의 조건으로부터 제조된 금속 복합체 촉매의 메탄올에 대한 전기화학적 활성을 순환전압전류법에 의해 측정하여 메탄올 산화 피크로 나타낸 것이다.
이하 본 발명을 상세히 설명하면 다음과 같다.
본 발명에 따른 이종 탄소지지체에 담지된 백금기반의 촉매는 카본블랙과 다중벽 탄소나노튜브의 혼합물을 촉매의 지지체로 사용함을 특징으로 한다.
본 발명에 있어서, 상기 혼합비는 바람직하게는 카본블랙과 다중벽 탄소나노튜브의 혼합비는 100 : 10 내지 50 중량비 이고, 더욱 바람직하게는, 100 : 20 내지 40 중량비 범위이다. 혼합비가 100 : 50 초과이면 금속입자가 고르게 담지 되지 않으며, 상호간의 응집으로 입자크기가 증가하여 촉매의 반응표면적이 감소하기 때문이다.
본 발명에 따른 이종 탄소지지체는 산소 플라즈마 처리에 의하여 표면에 산소함유 관능기가 도입된 것을 사용할 수 있으며, 탄소지지체의 탄화수소가 산소와 반응하여 -OH, -COOH, -C-O-, C=O, -O-C-O- 등의 산소함유 관능기가 탄소지지체의 표면에 도입되어 금속촉매의 담지효율을 증가시킬 수 있다.
본 발명에서 사용된 금속은 연료전지의 수소의 산화 또는 산소의 환원이 가능한, 당 분야에 잘 알려진 통상적인 금속 또는 상기 금속 함유 합금이 제한없이 사용 가능하며, 특히 귀금속류, 예컨대 백금 (Pt) 또는 백금 함유 합금형태가 바람직하다. 백금과 합금을 이룰 수 있는 금속으로는 Ru, Ni, Sn, Mo, Co, Fe, Rh, Mn, Ir, Pd 및 이들의 조합으로 이루어진 합금을 그 예로서 들 수 있다. 또한 상기 촉매에서 금속은 평균 1 ~ 10 nm, 바람직하게는 2 ~ 7 nm 범위의 미세입자로 탄소지지체에 균일하게 담지되어 금속의 담지량을 최대화할 수 있으며, 금속 촉매의 담지율은 60 ~ 95% 에 있게 된다.
본 발명에서 이종 탄소지지체에 담지된 금속복합체는, 바람직하게는 카본블랙과 다중벽 탄소나노튜브의 불순물을 제거하여 정제하고, 카본블랙과 다중벽 탄소나노튜브를 중량비로 100 : 10 내지 50으로 혼합한 다음, 통상의 방법으로 상기 혼합 탄소지지체에 금속을 담지하고, 생성 고체분말을 여과 및 건조함으로써 제조할 수 있다. 탄소지지체에 금속을 담지시키는 공정은 당업계에 공지된 금속 전구체를 이용한 방법으로 수행할 수 있다 (문헌[X. Wang, I.M. Hsing, P.L. Yue, Journal of Power Sources, 96, p282(2001)]참조).
본 발명에서는 액상 조건하의 탄소지지체를, 바람직하게는 상기 탄소지지체를 공전과 자전 동시에 고속회전하여 교반시키는 유성회전 혼합탈포장비를 사용하여 용액에 잘 분산되도록 한 후, 금속을 담지시키는 것이 좋다. 염기성 물질로 pH를 맞추기 전에 포름알데히드로 처리하여 촉매의 환원조건을 최적화 하였다.
이때, 표면처리가 가능한 상압플라즈마 장치를 이용하여, 100 ~ 500 W의 전압을 인가 하에 기본가스로서 고순도(99.9%)의 헬륨 및 반응 가스로서 고순도(99.9%)의 산소를 넣어 주어 산소플라즈마를 발생시킴으로써, 탄소지지체의 표면에 산소플라즈마 처리를 할 수 있다.
상기 상압플라즈마 장치에는 10 내지 14 Mhz의 RF 주파수가 바람직하나, 본연구에서는 최적 플라즈마 형성을 위해 13.56 Mhz의 주파수를 사용하였다. 하지만 이 주파수로만 플라즈마 처리가 된다고 한정될 수 없다. 플라즈마 공급원인 반응가스와 탄소지지체와의 거리는 1 내지 60 mm, 플라즈마 처리는 1 내지 10 mm/sec 의 속도로서 상온에서 1 내지 20분 동안 1 내지 10회 수행하는 것이 바람직하다.
상기와 같이 제조된 본원 발명의 촉매는 미세입자로 탄소지지체에 균일하게 담지되어 금속의 담지량을 최대화 할 수 있으며, 이를 연료전지에 이용하는 경우 최소한의 촉매양으로 최대의 촉매효율을 나타내는 효과를 얻을 수 있다.
이하, 하기 실시예에 의하여 본 발명을 좀 더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예
하기 실시예 및 비교예에서는, 이종 탄소지지체의 혼합에 있어서, 카본블랙과 다중벽 탄소나노튜브(MWNTs) 중량비를 변화시켜가며 각각을 혼합하여 탄소지지체를 준비한 후, 상기 탄소지지체의 최적의 조성에 산소플라즈마의 인가전압의 변화를 주어 표면을 개질하였다.
본 발명의 실시예에서 사용된 카본블랙은 한국카본블랙 (Korea Carbon Black Co.)에서 구입한 것으로 평균 직경이 24 nm이고, 비표면적은 112 m2/g인 것이며, MWNTs는 나노미래사(Nano mirae Co.)에서 구입한 것으로 평균 직경이 20nm이고, 길이는 50μm이며, 비표면적은 약 210 m2/g정도이다.
비교예 1 : 단일 탄소지지체 사용 촉매
카본블랙을 질산 용액에 담궈 산세 처리하여 탄소지지체의 무기물과 유기물 등의 불순물을 제거한 후, 여러 번 세척 및 건조하여 단일 탄소지지체를 준비하였다.
상기 단일 탄소지지체 300 mg을 20 ml의 완전히 탈이온화된 물에 함침시키고, 유성회전 혼합탈포장비를 이용하여 1000 rpm의 속도로 고속회전하여 분산시킨후, 초음파분산을 통하여 다시 한번 분산하였다. 탄소 100 중량부에 대해 20 중량비의 백금을 담지하기 위해서 60 mg의 백금전구체인 헥사클로로백금산(H2PtCl6)을 녹인 용액을 상기 탄소분산 용액에 서서히 도입하여 1시간 동안 교반하였다. 단일 탄소지지체와 금속을 녹인 용액에 증류수에 녹인 포름알데히드를 넣어 처리한 후 3시간 동안 교반하였다. 혼합 용액에 pH 조절을 위해서 2 M 수산화나트륨 용액 50 ml 를 첨가한 후, 80℃에서 1 시간 가열하였고, 모든 제조공정은 아르곤 가스분위기에서 수행하였다. 고체 분말을 여과하고, 증류수로 세척한 후, 70℃에서 24 시간 건조하였다.
실시예 1 : 이종 탄소지지체(카본블랙 : MWNTs = 100 : 10) 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 10 으로 혼합한 이종 탄소지지체를 준비하고, 질산용액에 담궈 산세처리하여 탄소지지체의 무기물과 유기물 등의 불순물을 제거한 후, 여러 번 세척한 다음 플라즈마 표면처리전까지 실온에서 진공 건조하여 보관하였다.
상기 이종 탄소지지체 300 mg을 20 ml의 완전히 탈이온화 된 물에 함침시키고, 유성회전 혼합탈포장비를 이용하여 1000 rpm의 속도로 고속 회전하여 분산시킨후, 초음파분산을 통하여 다시 한번 분산하였다. 탄소 100 중량부에 대해 20 중량비의 백금을 담지하기 위해서 60 mg의 백금 전구체인 헥사클로로백금산(H2PtCl6)을 녹인 용액을 상기 탄소분산 용액에 서서히 도입하여 1시간 동안 교반하였다. 이종 탄소지지체와 금속을 녹인 용액에 증류수에 녹인 포름알데히드를 넣어 처리한 후 3시간 동안 교반하였다. 혼합용액에 pH 조절을 위해서 2 M 수산화나트륨 용액 50 ml 를 첨가한 후, 80℃에서 1 시간 가열하였고, 모든 제조공정은 아르곤 가스분위기에서 수행하였다. 고체분말을 여과하고, 증류수로 세척한 후, 70℃에서 24 시간 건조하였다.
실시예 2 : 이종 탄소지지체(카본블랙 : MWNTs = 100 : 20) 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 20 으로 혼합한 이종 탄소지지체를 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 3 : 이종 탄소지지체(카본블랙 : MWNTs = 100 : 30) 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 30 으로 혼합한 이종 탄소지지체를 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 4 : 이종 탄소지지체(카본블랙 : MWNTs = 100 : 40) 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 40 으로 혼합한 이종 탄소지지체를 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 5 : 이종 탄소지지체(카본블랙 : MWNTs = 100 : 50) 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 50 으로 혼합한 이종 탄소지지체를 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 6 : 산소 플라즈마 처리(인가전압 : 100W)한 이종 탄소지지체 사용 촉매
카본블랙과 MWNTs의 함량 비율을 100 : 30 으로 혼합한 이종 탄소지지체를 준비하고, 질산용액에 담궈 산세처리하여 탄소지지체의 무기물과 유기물 등의 불순물을 제거한 후, 여러 번 세척한 다음 실온에서 진공 건조하여 보관하였다.
상기 보관된 이종 탄소지지체를 1 g을 다이(die)에 놓고, 상압플라즈마 장치((주)플라즈마트)에 장착하였다. 헬륨 (99.9%) 및 산소(99.9%)를 각각 5 ℓ/min 및 50 ㎖/min 으로 사용하고, 주파수를 12 Mhz, 플라즈마 공급원과 탄소지지체 사이의 거리는 30 mm 및 플라즈마 처리속도는 5 mm/sec 로 고정한 다음, 플라즈마 인가전압을 100 W 로 하여, 상기 탄소지지체를 상온에서 1회 플라즈마 처리하였다.
실시예 7 : 산소 플라즈마 처리(인가전압 : 200W)한 이종 탄소지지체 사용 촉매
산소플라즈마의 인가전압을 200 W 으로 하는 것을 제외하고는 실시예 6과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 8 : 산소 플라즈마 처리(인가전압 : 300W)한 이종 탄소지지체 사용 촉매
산소플라즈마의 인가전압을 300 W 으로 하는 것을 제외하고는 실시예 6과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
실시예 9 : 산소 플라즈마 처리(인가전압 : 400W)한 이종 탄소지지체 사용 촉매
산소플라즈마의 인가전압을 400 W 으로 하는 것을 제외하고는 실시예 6과 동일한 조건으로 백금촉매 담지를 수행하여 촉매를 수득하였다.
시험예
상기 실시예 및 비교예에 따라 제조된 촉매의 표면특성, 담지 금속입자크기, 담지량, 및 전기적 특성을 시험하였으며, 그 결과는 하기 표 1 및 도 1 내지 4에 나타내었다.
산소플라즈마 처리된 탄소지지체 표면의 화학적 조성은 XPS (ESCA LAB MKII: VG Scientific Co.) 및 원소분석기 (CE Instrument, EA1112)이용하여 분석하였다.
탄소지지체의 혼합비에 따른 금속복합체 촉매의 담지 입자크기는 XRD (Rigaku사, 모델명: D/MAX 2200V/PC)로 측정하여 Scherrer 식 (문헌 [K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, p31, John Wiley & Sons, New York, (1998)] 참조)를 사용하여 계산하였고, 촉매가 담지된 탄소지지체의 표면 및 촉매 입자크기를 투과전자현미경 (Jeol사, 모델명: A JEM 2100F)을 이용하여 분석하였으며, 담지량은 유도결합플라즈마 질량분석기 (Perkin Elmer사, 모델명: ELAN 6100)를 사용하여 측정하였다.
또한 제조된 촉매의 전기활성은 순환전압전류법 (cyclic voltammetry)에 의해서 전압-전류 곡선으로서 전기화학측정기 (CHI사, 모델명: CHI 660C)로 측정하였다. 구체적으로는 제조한 촉매분말을 Nafion??과 함께 잘 분산 시킨 후 글래시 카본전극 (glassy carbon electrode)에 부착시켜 건조시키켜 작업전극을 준비하였고, 상대전극은 백금 호일을 사용하였으며, 기준전극으로 Ag/AgCl을 사용하여 200 mV에서 1100 mV의 범위에서 0.5 M H2SO4 와 1.0 M CH3OH 혼합용액에서는 메탄올에 대한 전기적 활성을 측정하였다.
상기 도 1에서 알 수 있는 바와 같이, 결합에너지 285 eV 부근에서는 C1s의 피크가 나타났으며 530 eV 부근에서는 O1s의 전형적인 피크가 나타나 산소-함유 관능기가 탄소지지체에 도입되었음을 확인할 수 있었다.
또한 하기 표 1 및 도 2 ~ 3에서 알 수 있는 바와 같이, 본 발명에 따라 제조된 금속복합체 촉매는 MWNTs의 함량이 30 중량부 조건으로 제조하였을 때가 가장 효율적이고 10 내지 50 중량부 범위에서 보다 높은 금속입자 담지량을 나타내는 것을 확인하였다. MWNTs의 함량이 50 중량부 초과일 때에는 백금금속의 담지량이 감소함으로 인하여 귀금속촉매의 손실이 크게 나타났다. 또한 상압 플라즈마로 처리하여 산소 관능기를 도입한 후, 백금을 담지시킨 경우에 보다 효율적으로 백금입자가 담지됨을 확인할 수 있었고, 300 W로 표면을 개질한 경우에 백금입자의 크기 및 함량이 가장 우수함을 알 수 있었다.
도 4는 비교예 1의 단일 탄소지지체와 실시예 1 ~ 9의 이종 탄소지지체에 담지된 금속촉매의 전기화학적 활성의 메탄올에 대한 산화 및 환원에 대한 측정 결과를 나타낸 것으로, 역시 카본블랙과 MWNTs의 최적혼합비인 100 : 30에서 산소 플라즈마를 300 W로 처리한 실시예 8에서 전류밀도 값이 가장 높게 나타나 전기적 활성이 가장 우수함을 확인할 수 있었다.
산소 함유량a
(%)
산소 함유량b
(%)
담지 평균 입자크기c (nm) 담지 평균 입자크기d (nm) 담지율
(%)
비교예 1 3.62 4.04 7.81 7.56 55.9
실시예 1 3.74 4.02 5.91 5.78 61.4
실시예 2 3.61 4.06 4.42 4.53 71.5
실시예 3 3.93 4.10 3.97 3.81 88.6
실시예 5 3.88 4.52 3.80 3.79 82.4
실시예 6 7.26 7.81 3.72 3.68 89.8
실시예 7 9.81 9.63 3.54 3.36 91.6
실시예 8 12.54 12.16 3.32 3.62 94.1
실시예 9 13.06 13.21 3.48 3.51 92.6
a: XPS 분석기로 측정
b: 원소분석기로 측정
c: XRD 분석기로 측정
d: TEM 분석기로 측정

Claims (12)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 카본블랙과 다중벽 탄소나노튜브의 이종 탄소 지지체를 산소 플라즈마 처리한 다음 액상 조건하에서 금속을 담지한 후, 얻은 고체분말을 여과 건조하는 것을 특징으로 하는 이종 탄소지지체에 담지된 금속복합체 촉매의 제조방법.
  9. 제 8 항에 있어서, 상기 이종 탄소 지지체는 카본블랙과 다중벽 탄소나노튜브가 100 : 10 내지 50 중량비 범위로 혼합되는 것을 특징으로 하는 이종 탄소지지체에 담지된 금속복합체 촉매의 제조방법.
  10. 삭제
  11. 제 8 항에 있어서, 상기 산소 플라즈마 처리는 100 ~ 500W 의 전압을 인가하여 이루어지는 것을 특징으로 하는 이종 탄소지지체에 담지된 금속복합체 촉매의 제조방법.
  12. 삭제
KR1020100054439A 2010-06-09 2010-06-09 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법 KR101179511B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100054439A KR101179511B1 (ko) 2010-06-09 2010-06-09 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100054439A KR101179511B1 (ko) 2010-06-09 2010-06-09 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20110134712A KR20110134712A (ko) 2011-12-15
KR101179511B1 true KR101179511B1 (ko) 2012-09-07

Family

ID=45501904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100054439A KR101179511B1 (ko) 2010-06-09 2010-06-09 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101179511B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014543A2 (en) * 2012-04-30 2014-01-23 The Regents Of The University Of California Highly active and durable fuel cell electro-catalyst with hybrid support
KR102572121B1 (ko) * 2020-02-07 2023-08-30 한국과학기술원 줄히팅 공정을 이용한 결정성을 가지는 세라믹 나노입자가 결착된 1차원 탄소나노섬유 멤브레인 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문;ELECTROCHEMISTRY V.75 NO.9 , PP.705 - 708 , 2007*

Also Published As

Publication number Publication date
KR20110134712A (ko) 2011-12-15

Similar Documents

Publication Publication Date Title
Ipadeola et al. Bimetallic Pd/SnO 2 nanoparticles on metal organic framework (MOF)-derived carbon as electrocatalysts for ethanol oxidation
Peng et al. NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/NC for oxygen reduction reaction and Zn-air battery
KR101287891B1 (ko) 연료전지용 촉매의 제조방법
CN111883792B (zh) 一种过渡金属锰、氮掺杂炭氧还原电催化剂及其制备方法和应用
Kakati et al. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell
CN111244484B (zh) 一种亚纳米铂基有序合金的制备方法
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
CN108615898A (zh) 一种直接甲醇燃料电池Fe-S-N共掺杂石墨烯载Pt催化剂及其制备方法
Chisaka et al. Carbon catalyst codoped with boron and nitrogen for oxygen reduction reaction in acid media
Liang et al. The significant promotion of g-C3N4 on Pt/CNS catalyst for the electrocatalytic oxidation of methanol
Zhang et al. Nitrogen doped carbon coated Mo modified TiO2 nanowires (NC@ MTNWs-FI) with functionalized interfacial as advanced PtRu catalyst support for methanol electrooxidation
CN109546166B (zh) 一种Pt/金属碳化物/碳纳米材料催化剂及其制备方法
JP2014093255A (ja) 燃料電池用複合触媒の製造方法、及び燃料電池用複合触媒
Kim et al. Preparation and electrocatalytic activities of platinum nanoclusters deposited on modified multi-walled carbon nanotubes supports
Liang et al. Composition-adjustable PtCoCu alloy nanoparticles for promoting methanol oxidation reaction
KR101179511B1 (ko) 표면개질된 이종 탄소지지체를 이용한 금속 복합체 촉매 및 이의 제조방법
CN110600752B (zh) 一种H2气相热还原制备碳载Pt合金催化剂的方法
CN115570143B (zh) 一种低铂高熵合金纳米颗粒及其制备方法与应用
CN114892197B (zh) 一种电催化合成h2o2用催化剂及其制备方法和应用
Sun et al. Hierarchical core-shell structure of ZIF-8 derived porous carbon supported PdZn nanoalloys within mesoporous silica shells as efficient methanol oxidation electrocatalysts
Zhao et al. Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions
Zhang et al. Effect of N-doped carbon quantum dots/multiwall-carbon nanotube composite support on Pt catalytic performance for methanol electrooxidation
Yang et al. PdCu nanoalloys deposited on porous carbon as a highly efficient catalyst for ethanol oxidation
CN114284513A (zh) 一种氮掺杂石墨单炔负载贵金属纳米颗粒电催化剂的制备方法
Park et al. Effect of O2 plasma treatments of carbon supports on Pt-Ru electrocatalysts

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 6