KR101168966B1 - 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물 - Google Patents

분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물 Download PDF

Info

Publication number
KR101168966B1
KR101168966B1 KR1020120042113A KR20120042113A KR101168966B1 KR 101168966 B1 KR101168966 B1 KR 101168966B1 KR 1020120042113 A KR1020120042113 A KR 1020120042113A KR 20120042113 A KR20120042113 A KR 20120042113A KR 101168966 B1 KR101168966 B1 KR 101168966B1
Authority
KR
South Korea
Prior art keywords
weight
concrete
resin
latex
strength
Prior art date
Application number
KR1020120042113A
Other languages
English (en)
Inventor
차동화
강승희
김재원
한상일
김영석
Original Assignee
(주)상봉이엔씨
김영석
안종갑
강승희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)상봉이엔씨, 김영석, 안종갑, 강승희 filed Critical (주)상봉이엔씨
Priority to KR1020120042113A priority Critical patent/KR101168966B1/ko
Application granted granted Critical
Publication of KR101168966B1 publication Critical patent/KR101168966B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2623Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/365Gypsum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/34Natural resins, e.g. rosin

Abstract

본 발명은 초속경 시멘트계 결합재 15~20중량%, 잔골재 40~45중량%, 굵은골재 30~35중량%, 물 5~10중량% 및 액상 라텍스 1~3중량%를 포함하여 구성되는 분말수지 및 폴리파이버를 사용한 초속경 라텍스개질 콘크리트 조성물로서 손상된 콘크리트 교면 및 콘크리트 포장의 공용성을 확보하고 콘크리트에 염화물이나 수분의 침투를 방지하여 콘크리트가 열화되는 것을 방지하는 것은 물론, 동결융해 저항성 및 수축저감에 따른 균열 억제효과, 장기강도, 부착강도가 향상되는 효과를 가지며, 라텍스 사용량을 절감하여 재료비 및 공사비용을 절감할 수 있는 효과를 갖는다.

Description

분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물{Ultra rapid harding Latex modified concrete composition used poly fiber and polymer powder}
본 발명은 초속경 콘크리트 조성물에 관한 것으로, 보다 상세하게는 콘크리트 분말수지 및 폴리파이버(중합섬유)를 사용한 초속경 콘크리트 라텍스 개질 콘크리트 조성물에 관한 것이다.
일반적으로 콘크리트 교면 및 콘크리트 포장은 차량에 의해 발생되는 교통하중 및 기후변화에 의한 환경하중 등의 작용으로 여러 형태의 열화 및 파손이 발생한다. 이러한 노후된 콘크리트 교면 및 콘크리트 포장은 보수 및 보강이 필수적이다. 공용 중인 도로의 교통차단을 전제로 하는 보수공사는 도로정체와 더불어 이용자의 많은 불편을 야기하므로, 주로 교통량이 적은 야간이나 새벽 시간에 시공이 이루어지고 있으며, 특히 공사개시 후 3~5 시간 내에 교통을 개방해야 하기 때문에 초속경 콘크리트가 사용된다.
그러나 초속경 콘크리트는 강도발현이 빠른 장점이 있지만, 초속경 시멘트의 구성광물 특성상 내수성, 내동해성, 장기내구성 등이 취약해 보수 후에도 다시 재보수를 해야 하는 경우가 자주 발생하는 문제점이 있다.
이에 따라 최근에는 콘크리트의 내구성을 보완하기 위해 수성 폴리머의 일종인 SBR 라텍스, 아크릴수지 등을 사용한 폴리머 초속경 콘크리트가 보수재료로서 활발히 이용되고 있다.
이러한 폴리머를 이용한 콘크리트는 동결융해와 스켈링(scaling)에 대한 저항성이 우수하고 방수성과 부착성이 높아 초속경 시멘트와 물, 골재만을 사용할 때의 단점을 크게 보완하고 도로 보수공사의 품질을 높이는데 크게 기여하였다.
그러나 초속경 라텍스 개질 콘크리트는 점도가 매우 높은 라텍스의 특성 때문에 콘크리트를 타설 후, 콘크리트의 표면을 매끄럽게 하는 마무리 작업을 할 때 콘크리트가 작업도구에 부착되는 문제가 발생되고 있을 뿐만 아니라, 현장에서의 라텍스 관리에 따른 절차가 복잡하며, 국제유가의 폭등으로 인한 라텍스 생산비용이 급등하여 재료비 및 공사비 상승이 발생하였다.
따라서 앞으로 급증할 노후될 콘크리트 물량을 생각할 때 우리나라도 노후 콘크리트 교면 및 콘크리트 포장의 근본적인 보수재료개발이 시급한 상황이다.
출원번호 제10-2009-0118799호(발명의 명칭: 폴리머개질 초속경 콘크리트 조성물 및 이를 이용한 교면 포장공법; 2010년 5월 18일 공고)
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서 칼슘설포알루미네이트(CSA; Calcium SulfoAluminate) 함량이 50~80%인 CSA계 클링커(Clinker)를 분쇄한 분말, 석고분말, 분말수지와 폴리파이버(polyfiber)를 포함하여 구성되는 초속경 시멘트 결합재와 액상 라텍스를 동시에 사용하여 초속경 콘크리트 보수재의 강도, 균열저항성능, 부착강도를 개선하는 효과와 동시에 고가의 라텍스 사용량을 절감시켜 콘크리트의 생산비와 품질편차를 줄일 수 있는 분말수지 및 폴리파이버를 보강한 초속경 라텍스 개질 콘크리트 조성물을 제공하는 것을 목적으로 한다.
본 발명은 초속경 시멘트계 결합재 15~20중량%, 잔골재 40~45중량%, 굵은골재 30~35중량%, 물 5~10중량% 및 액상 라텍스 1~3중량%를 포함하여 구성되는 분말수지 및 폴리파이버를 보강한 초속경 라텍스 개질 콘크리트 조성물을 제공한다.
이하, 본 발명을 상세히 설명한다.
상기 초속경 시멘트계 결합재는 칼슘설포알루미네이트(CSA; Calcium SulfoAluminate) 함량이 50~80%인 CSA계 클링커(Clinker)를 분쇄한 분말 70~90중량%, 석고분말 5~25중량%, 분말수지 0.1~5중량%, 폴리파이버(Polyfiber) 0.01~2.0중량%로 구성되는 것이 바람직하다.
상기 CSA계 클링커를 분쇄한 분말은 70중량% 미만의 경우에는 초기강도 발현이 저하되는 문제가 있고, 90중량% 초과의 경우에는 과도하게 빠른 응결속도로 인한 작업시간 확보에 문제가 있어 초속경 시멘트계 결합재 100중량%에 대하여 70~90중량%인 것이 바람직하다.
상기 석고분말은 5중량% 미만의 경우에는 응결 지연효과가 적어 작업시간 확보에 문제가 있고, 25중량% 초과의 경우에는 과도한 응결 지연효과에 의한 응결시간 및 초기강도가 저하되는 문제가 있어 초속경 시멘트계 결합재 100중량%에 대하여 5~25 중량%인 것이 바람직하다.
상기 분말수지는 비닐아세테이트(Vinyl acetate)계, 메탈크릴산메틸 아크릴산프틸(Methyl methacrylate-butyl acrylate)계, 스티렌 부틸아크릴레이트(styrene butyl acrylate)계 등을 사용하는 것이 바람직하다. 더욱 바람직하기로는 비닐아세테이트계가 바람직하다.
상기 분말수지는 탄력성이 우수하며 경시안정성과 내후성이 강하고 점성이 높아 접착력이 높은 폴리머 고형분으로서, 액상수지 100중량%에 대하여 비닐 아세테이트 단량체(VAM :Vinyl acetate monomer) 35~40중량%, 폴리비닐알코올 (PVA : Polyvinyl alcohol) 0.5~2중량%, 2-페녹시에탄올(2-Phenoxyethanol; Ethylene Glycol Monophenyl Ether) 1~5중량% 및 물 55~60중량%를 주성분으로 혼합하여 제조된 액상수지를 고형화 시킨 것을 사용하는 것이 바람직하다.
상기 분말수지는 0.1중량% 미만의 경우에는 부착강도 및 염소이온침투 저항성능이 저하되는 문제가 있고 5중량% 초과의 경우에는 강도발현이 저하되는 문제가 있어 초속경 시멘트계 결합재 100중량%에 대하여 0.1~5중량%인 것이 바람직하다.
상기 폴리파이버(Polyfiber)는 폴리비닐 알콜(Polyvinyl alcohol)을 사용하는데 섬유자체에 히드록시기(OH-)를 가지고 있어 내산성, 내알칼리성, 분산성이 우수하며, 섬유의 거친 표면으로 인하여 시멘트와 부착성능이 우수하며 섬유차제의 높은 인장력과 뛰어난 탄성계수, 낮은 신장율, 높은 내후성을 가진다. 또한 단위 체적당 차지하는 섬유수가 많아 섬유의 가교작용을 통하여 시멘트 복합체의 인장강도, 휨 인성 증대 및 균열저항성 향상, 충격 및 파손, 피로 반복하중을 저항할 수 있는 높여주는 등 콘크리트의 역학적 성질을 개선시키는데 매우 효과적이다.
상기 폴리파이버(Polyfiber)는 0.01중량% 미만의 경우에는 휨강도, 인장강도 및 균열저항성능이 저하되는 문제가 있고 2.0중량% 초과의 경우에는 강도저하와 콘크리트 혼합 시 섬유가 뭉치는 문제가 있어 초속경 시멘트계 결합재 100중량%에 대하여 0.01~2.0중량%인 것이 바람직하다.
상기 초속경 시멘트계 결합재는 본 발명의 콘크리트 총 조성물에 대하여 15~20중량%로 사용하는 것이 바람직하다. 15중량% 미만의 경우에는 강도와 부착력 저하 및 염화물침투 저항성, 동결융해 저항성 등이 저하되며, 20중량% 초과의 경우에는 작업성 및 균열저항성이 저하된다.
상기 잔골재는 본 발명의 콘크리트 총 조성물에 대하여 40~45중량%로 사용하는 것이 바람직하다. 40중량% 미만의 경우에는 콘크리트의 강도 성능 및 표면마감성이 저하되는 문제가 발생되며, 45중량% 초과의 경우에는 재료분리 및 강도성능이 저하되는 문제가 발생된다.
상기 굵은골재는 본 발명의 콘크리트 총 조성물에 대하여 30~35중량%로 사용하는 것이 바람직하다. 30중량% 미만의 경우에는 강도성능 및 작업성이 저하되고, 단위수량이 증가되는 문제가 발생되며, 35중량% 초과의 경우에는 거친 콘크리트가 제조되어 표면마감성이 저하되는 문제가 발생된다.
상기 물은 5중량% 미만의 경우 작업성 및 마감성능이 저하되고, 10중량% 초과의 경우 재료분리 및 블리딩의 위험과 강도성능이 저하되는 문제가 있어 본 발명의 콘크리트 총 조성물에 대하여 5~10중량%로 사용하는 것이 바람직하다.
상기 액상 라텍스는 라텍스 고형분 45~50중량%에 물 55~50중량%이며, 라텍스 고형분은 스티렌(Styrene) 60~70중량%, 부타디엔(Butadiene) 30~40중량%로 이루어진 SB(Styrene-Butadiene) 라텍스를 사용하는 것이 바람직하다.
상기 액상 라텍스는 본 발명의 콘크리트 총 조성물에 대하여 1~3중량%로 사용하는 것이 바람직하며, 1중량% 미만의 경우 방수성능 및 부착력이 감소되고, 3중량% 초과의 경우 콘크리트 마감성능저하 및 재료분리 위험이 있다.
본 발명에 의한 분말수지, 폴리파이버와 액상 라텍스가 혼입된 초속경 라텍스 개질 콘크리트 조성물을 제공함으로써, 콘크리트 교면 및 콘크리트 포장의 파손부분을 보수하여 공용성을 제공하고 염화물이나 수분의 침투를 방지하여 콘크리트가 열화되는 것을 방지하는 것은 물론, 동결융해 저항성 및 수축저감에 따른 균열 억제효과, 장기강도, 부착강도가 향상되는 효과를 갖는다.
또한, 고가인 라텍스의 사용량을 대폭 줄임으로 인해 원가 절감의 효과와 현장에서의 라텍스 관리절차를 줄임으로써 콘크리트의 품질편차를 줄일 수 있다.
도 1은 폴리비닐알콜 섬유의 사진이다.
도 2는 분말수지와 폴리파이버(Polyfiber) 혼합된 결합재 사진이다.
도 3은 배합사례별 길이변화율을 측정한 결과를 나타낸 그래프이다.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예는 본 발명의 범위를 한정하는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당업자에 의한 통상적인 변화가 가능하다.
<실시예 1>
비닐아세테이트 분말수지를 사용한 콘크리트의 강도 측정
본 발명의 비닐아세테이트 분말수지의 특성은 하기의 표 1에 나타내었다.
본 발명의 비닐아세테이트 분말수지(VA 수지), 메탈크릴산메틸 아크릴산프틸 분말수지(MMA 수지), 스티렌 부틸아크릴레이트 분말수지(ST 수지)를 각각 결합재인 시멘트 100중량%에 대하여 2.5중량% 사용하고 기타 성분은 하기의 표 2와 같이하여 콘크리트를 제조하여 다음과 같이 콘크리트의 28일 압축강도, 휨강도, 부착강도, 슬럼프를 측정하였다.
대조군으로 상기 수지를 사용하지 않은 일반콘크리트를 제조하였다.
그 결과를 하기의 표 2에 나타내었다.
슬럼프 측정
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
압축강도 측정
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
휨강도 측정
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
부착강도 측정
KS F 2386 「도로 포장체 부착면의 인장 접착 시험방법」에 따라 300mm × 300mm × 100mm의 밑판위에 시험체를 50mm두께로 타설하였다. 28일 재령 후, Φ100mm코어채취기로 시험체를 관통시켜 밑판의 일부까지 절단하고 인장 접착판을 시험체에 설치하였다. 설치된 인장 접착판을 인장시험기에 장착하여 0.1MPa/s의 속도로 유압을 가하면서 시험체를 인발하여 시험하였다.
하기의 표 2에서 확인할 수 있는 바와 같이, 비닐아세테이트 분말수지의 사용이 다른 메탈크릴산메틸 아크릴산프틸 분말수지, 스티렌 부틸아크릴레이트분말수지 보다 휨강도와 부착강도를 향상시킴을 알 수 있었다.
형태 평균 입자크기 pH 비중
백색 분말 74㎛ 9.1 480g/ℓ
Figure 112012039383665-pat00010
<실시예 2>
폴리비닐알콜 섬유를 사용한 콘크리트의 균열저항성능 측정
본 발명의 폴리비닐알콜 섬유의 표면의 거칠기를 도 1에 나타내었으며, 성능은 하기의 표 3에 나타내었다.
본 발명의 비닐아세테이트 섬유(VA 섬유), 셀룰로오스 섬유, 폴리프로필렌 섬유(PP 섬유)를 각각 결합재인 시멘트 100중량%에 대하여 1중량% 사용하고 기타 성분은 하기의 표 4와 같이하여 콘크리트를 제조하여 다음과 같이 콘크리트의 28일 압축강도, 휨강도, 부착강도, 슬럼프, 균열폭을 측정하였다.
대조군으로 상기 섬유를 사용하지 않은 일반콘크리트를 제조하였다.
그 결과를 하기의 표 4에 나타내었다.
슬럼프 측정
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
압축강도 측정
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
휨강도 측정
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
균열폭 측정
ASTM C 1581 「콘크리트의 균열발생 저항성 평가방법」에 따라 표준 강재 링 은 내부 직경:두께 12.7mm ± 0.4mm, 외부 직경: 305mm, 그리고 높이 152 mm을 갖는다. 내부링과 외부링 사이에 콘크리트 시험체를 타설하고 양생 후, 외부 강재를 탈형하였다. 시험체를 온도 21℃ ± 1.7℃, 상대습도 50 ± 4%로 일정하게 유지하며 재령 56일 동안 건조추숙으로 인한 균열발생 유무를 조사하고 균열 발생 시 균열폭 측정기를 사용하여 그 폭을 측정하였다.
하기의 표 4에서 확인할 수 있는 바와 같이, 폴리비닐알콜 섬유를 사용한 콘크리트가 가장 작은 균열폭을 보임을 알 수 있었다.
구 분 폴리비닐알콜(PVA) 섬유
섬유길이(mm) 6~9
직경(㎛) 16
비중 1.25
인장강도(MPa) 800~1,500
탄성계수(MPa) 1.1~3.7 × 104
Figure 112012039383665-pat00011
<실시예 3>
하기의 표 5와 같은 조성으로 본 발명의 분말수지 2.5중량%와 폴리머파이브 1중량%를 포함하는 초속경시멘트계 결합재를 사용한 초속경 라텍스 개질 콘크리트 조성물을 제조하였다.
<비교예 1>
하기의 표 5와 같은 조성으로 기존의 초속경 라텍스 개질 콘크리트를 제조하였다.
<비교예 2>
하기의 표 5와 같은 조성으로 분말수지 2.5중량%와 폴리머파이버 1중량%를 포함하는 초속경시멘트계 결합재를 사용한 초속경 콘크리트를 제조하였다.
Figure 112012032180539-pat00003
<시험예 1>
상기 실시예 3과 비교예 1 및 2에 대하여 다음과 시험방법에 따라 슬럼프, 공기량, 압축강도, 휨강도, 부착강도를 측정하였다.
슬럼프 측정
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
공기량 측정
S F 2421「압력법에 의한 굳지않은 콘크리트의 공기량 시험방법」에 따라 콘크리트를 1/3씩 25회 봉 다짐 및 용기 옆면을 나무망치로 10회씩 두드리며 채워 넣고 표면을 고르게 한 후 덮개를 부착하고 공기가 새지 않도록 조인 후 모든 밸브를 닫고 공기 핸드 펌프로 공기실의 압력을 초기 압력보다 크게 하고, 조절 밸브를 열어 압력계의 바늘을 초기압력의 눈금에 바르게 일치시킨 후 작동밸브를 열어 공기량을 측정하였다.
압축강도 측정
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
휨강도 측정
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
부착강도 측정
KS F 2386 「도로 포장체 부착면의 인장 접착 시험방법」에 따라 300mm × 300mm × 100mm의 밑판위에 시험체를 50mm두께로 타설한다. 28일 재령 후, Φ100mm코어채취기로 시험체를 관통시켜 밑판의 일부까지 절단하고 인장 접착판을 시험체에 설치한다. 설치된 인장 접착판을 인장시험기에 장착하여 0.1MPa/s의 속도로 유압을 가하면서 시험체를 인발하여 시험하였다.
그 결과를 하기의 표 6에 나타내었다.
하기의 표 6에서 확인할 수 있는 바와 같이, 실시예 3의 본 발명의 조성물을 사용한 콘크리트가 비교예 1의 기존 초속경라텍스 개질 콘크리트, 비교예 2의 분말수지 및 섬유를 사용한 초속경 콘크리트보다 동일한 배합에서 더 높은 압축강도, 휨 강도 및 부착강도를 보이는 것을 알 수 있었다.
Figure 112012032180539-pat00004
<시험예 2>
상기 실시예 3과 비교예 1 및 2에 대하여 시간에 따른 콘크리트의 길이변화율을 KS F 2424 「모르타르 및 콘크리트의 길이 변화 시험 방법」에 따라 공시체 제작 후 주변의 온도를 20℃ 습도를 60%로 유지하고 온도 및 습도를 유지한 상태에서 0.001mm감도를 가진 LVDT를 사용하여 시편의 길이변화를 측정한 후 길이변화율을 하기 산출식에 의하여 구하였다.
Figure 112012032180539-pat00005

그 결과를 하기의 표 7 및 도 3에 나타내었다.
하기의 표 7 및 도 3에서 확인할 수 있는 바와 같이, 실시예 3의 본 발명의 콘크리트의 시간에 따른 콘크리트 건조수축 정도는 비교예 1 및 2에 비하여 낮음을 알 수 있었다.
이러한 사실로부터 실시예 3의 건조수축의 저감은 콘크리트 균열발생을 억제하는데 우수한 효능을 가짐을 알 수 있었다.
<시험예 3>
상기 실시예 3과 비교예 1 및 2에 대하여 KS F2711에 규정한 전기전도도에 의한 콘크리트의 염소이온 침투저항성 방법으로 염소이온침투 저항성능을 측정하였다.
그 결과를 하기의 표 7에 나타내었다.
하기의 표 7에서 확인할 수 있는 바와 같이, 통과전하량이 4000 이상이면 염소이온의 투과정도가 매우 높아 침투 저항성은 불량한 수준이고, 2000~4000 이면 염소이온의 투과정도가 보통수준이며, 1000~2000이면 염소이온의 투과정도가 낮은 수준이고, 100~1000이면 염소이온의 투과정도가 매우 낮은 수준이며, 100 이하이면 염소이온이 투과되지 않는 수준으로 평가하는데, 실시예 3의 본 발명의 콘크리트 조성물은 분말수지, 섬유, 라텍스를 동시에 사용하기 때문에 염소이온침투가 비교예 1의 기존의 초속경 라텍스 개질 콘크리트와 동등하며, 비교예 2의 분말수지를 사용한 초속경 콘크리트보다 방수성능이 높음을 알 수 있었다.
Figure 112012032180539-pat00006

Claims (5)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 칼슘설포알루미네이트(CSA; Calcium SulfoAluminate) 함량이 50~80%인 CSA계 클링커(Clinker)를 분쇄한 분말 70~90중량%, 석고분말 5~25중량%, 분말수지 0.1~5중량% 및 폴리파이버(Polyfiber) 0.01~2.0중량%로 구성되는 초속경 시멘트계 결합재 15~20중량%; 잔골재 40~45중량%; 굵은골재 30~35중량%; 물 5~10중량%; 및 액상 라텍스 1~3중량%를 포함하여 구성되며,
    상기 분말수지는 액상수지 100중량%에 대하여 비닐 아세테이트 단량체(Vinyl acetate monomer) 35~40중량%, 폴리비닐알코올(Polyvinyl alcohol) 0.5~2중량%, 2-페녹시에탄올(2-Phenoxyethanol) 1~5중량% 및 물 55~60중량%를 혼합하여 제조된 액상수지를 고형화시킨 고형분인 것을 특징으로 하는 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물.
KR1020120042113A 2012-04-23 2012-04-23 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물 KR101168966B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120042113A KR101168966B1 (ko) 2012-04-23 2012-04-23 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120042113A KR101168966B1 (ko) 2012-04-23 2012-04-23 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물

Publications (1)

Publication Number Publication Date
KR101168966B1 true KR101168966B1 (ko) 2012-07-26

Family

ID=46717459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120042113A KR101168966B1 (ko) 2012-04-23 2012-04-23 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물

Country Status (1)

Country Link
KR (1) KR101168966B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581905B1 (ko) 2015-11-02 2016-01-04 김건우 콘크리트용 친환경 무시멘트 초속경 결합재 조성물 및 그 조성물이 함유된 초속경 콘크리트 조성물
KR101796932B1 (ko) 2015-06-12 2017-11-14 (주)콘텍이엔지 도로 포장 보수용 콘크리트 및 도로 포장 보수 공법
KR20180123959A (ko) * 2018-03-20 2018-11-20 (주)콘텍이엔지 긴급 보수용 콘크리트 및 그것의 시공 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840360B1 (ko) 2007-10-23 2008-06-23 (주)평강산업개발 맨홀인상용 섬유보강 초속경폴리머콘크리트 조성물 및콘크리트 보강 적층재를 이용한 맨홀 인상 보수공법
KR100873391B1 (ko) * 2008-08-08 2008-12-11 주식회사 홍서이엔씨 속경성 콘크리트 조성물, 그 제조방법 및 속경성 콘크리트 조성물을 이용한 콘크리트 포장 보수공법
KR100973497B1 (ko) 2010-05-12 2010-08-03 임펙트디엔씨 주식회사 속경성 시멘트 조성물, 이를 이용한 속경성 모르타르 조성물 및 콘크리트 구조물의 보수공법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840360B1 (ko) 2007-10-23 2008-06-23 (주)평강산업개발 맨홀인상용 섬유보강 초속경폴리머콘크리트 조성물 및콘크리트 보강 적층재를 이용한 맨홀 인상 보수공법
KR100873391B1 (ko) * 2008-08-08 2008-12-11 주식회사 홍서이엔씨 속경성 콘크리트 조성물, 그 제조방법 및 속경성 콘크리트 조성물을 이용한 콘크리트 포장 보수공법
KR100973497B1 (ko) 2010-05-12 2010-08-03 임펙트디엔씨 주식회사 속경성 시멘트 조성물, 이를 이용한 속경성 모르타르 조성물 및 콘크리트 구조물의 보수공법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796932B1 (ko) 2015-06-12 2017-11-14 (주)콘텍이엔지 도로 포장 보수용 콘크리트 및 도로 포장 보수 공법
KR101581905B1 (ko) 2015-11-02 2016-01-04 김건우 콘크리트용 친환경 무시멘트 초속경 결합재 조성물 및 그 조성물이 함유된 초속경 콘크리트 조성물
KR20180123959A (ko) * 2018-03-20 2018-11-20 (주)콘텍이엔지 긴급 보수용 콘크리트 및 그것의 시공 방법
KR102029186B1 (ko) * 2018-03-20 2019-10-07 (주)콘텍이엔지 긴급 보수용 콘크리트 및 그것의 시공 방법

Similar Documents

Publication Publication Date Title
Liu et al. Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete
Şahmaran et al. High-early-strength ductile cementitious composites with characteristics of low early-age shrinkage for repair of infrastructures
Hassan et al. The use of reclaimed asphalt pavement (RAP) aggregates in concrete
CN105236891B (zh) 一种嵌缝用柔性混凝土
Mirmoghtadaei et al. The impact of surface preparation on the bond strength of repaired concrete by metakaolin containing concrete
CN100434382C (zh) 水泥基材料塑性防裂用改性纤维及其制备方法
Li et al. Properties of polymer modified steel fiber-reinforced cement concretes
Mallat et al. Mechanical investigation of two fiber-reinforced repair mortars and the repaired system
KR101176823B1 (ko) 분말수지 및 폴리파이버를 사용한 라텍스 개질 콘크리트 조성물
KR20150142415A (ko) Pva섬유 보강 콘크리트 조성물 및 이를 이용한 pva 섬유 보강 콘크리트의 제조방법
KR101168966B1 (ko) 분말수지 및 폴리파이버를 사용한 초속경 라텍스 개질 콘크리트 조성물
KR101627811B1 (ko) 콘크리트 포장 보수용 초속경 칼라 시멘트 콘크리트 조성물, 그 제조 방법 및 이를 이용한 콘크리트 포장 보수공법
Gupta et al. Evaluation of polyester fiber reinforced concrete for use in cement concrete pavement works
Kang et al. Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles
WO2018231062A1 (en) Dry premixture for flexible concrete and method for its preparation and use thereof
Iyer Performance of basalt fibre mixed concrete
Cao et al. Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavement
Li et al. Static and dynamic behavior of extruded sheets with short fibers
Khayat et al. Design of ultra high performance concrete as an overlay in pavements and bridge decks.
Deshpande et al. Ductile concrete using engineered cementitious composites
Bamigboye et al. Experimental and modelling of flexural strength produced from granite-gravel combination in self-compacting concrete
CN108264287A (zh) 一种橡胶混凝土
Prahatheswaran et al. Study on structural behaviour of fiber reinforced concrete With Recron 3S fibers
Kumar et al. Performance Evaluation of polymer modified ferrocement mortar
Almabrok Characterization of cement-based mortar reinforced with chopped steel wool and polypropylene fibers

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190715

Year of fee payment: 8