KR101167586B1 - Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment - Google Patents

Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment Download PDF

Info

Publication number
KR101167586B1
KR101167586B1 KR1020090111904A KR20090111904A KR101167586B1 KR 101167586 B1 KR101167586 B1 KR 101167586B1 KR 1020090111904 A KR1020090111904 A KR 1020090111904A KR 20090111904 A KR20090111904 A KR 20090111904A KR 101167586 B1 KR101167586 B1 KR 101167586B1
Authority
KR
South Korea
Prior art keywords
water
sio
sol
nanoparticles
repellent
Prior art date
Application number
KR1020090111904A
Other languages
Korean (ko)
Other versions
KR20110055042A (en
Inventor
박성민
권일준
김지연
김창남
이경남
Original Assignee
한국염색기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국염색기술연구소 filed Critical 한국염색기술연구소
Priority to KR1020090111904A priority Critical patent/KR101167586B1/en
Publication of KR20110055042A publication Critical patent/KR20110055042A/en
Application granted granted Critical
Publication of KR101167586B1 publication Critical patent/KR101167586B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/11Oleophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/02Treating compositions in the form of solgel or aerogel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 SiO2 나노졸과 수분산폴리머를 사용하여 섬유고분자 및 직편물 등의 표면을 발수발유가공하기 위한 코팅조성물에 관한 것으로서 본 발명에 의해 처리매질 자체의 물성변화를 주지 않고도 표면에 초소수성 표면을 구현하여 발수발유 등의 다양한 기능을 동시에 갖도록 할 수 있다.The present invention relates to a coating composition for water-repellent coating of a surface of a fiber polymer, a woven fabric or the like using a SiO 2 nano-sol and a water-dispersible polymer. According to the present invention, It is possible to realize various functions such as water-repellent oil and the like simultaneously by implementing the surface.

듀얼스케일, 나노졸, 수분산폴리머, 표면, 발수가공 Dual scale, nano sol, water dispersion polymer, surface, water repellent processing

Description

섬유용 초발수발유코팅조성물 및 발수가공방법{Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment}Technical Field [0001] The present invention relates to a water-repellent, water-repellent,

본 발명은 섬유용 초발수발유코팅조성물에 관한 것으로서 보다 상세하게는 SiO2 나노졸을 수분산폴리머에 분산시켜 직물, 편물과 같은 섬유표면에 초발수발유면을 구현하기 위한 코팅조성물에 관한 것이다.More particularly, the present invention relates to a coating composition for dispersing an SiO 2 nano-sol in a water-dispersible polymer, thereby realizing a water-repellent surface on a fiber surface such as a fabric or a knitted fabric.

최근 들어 나노 사이즈를 관찰할 수 있는 측정기술의 발달과 더불어 자연계의 오묘한 발수메카니즘과 비슷한 메카니즘을 사용하여 초발수발유성을 나타내려는 시도가 최근 증가하고 있다. 그 중에서도 마이크로 돌기를 가지고 있는 연잎을 모방한 로투스 효과(lotus effect)의 구현에 많은 관심을 가지고 있다. 로투스 효과를 가지는 표면의 소수성을 결정하는 요소는 표면거칠기와 표면에너지인데, 이 두 가지 조건을 변화시킴으로써 소수성 정도를 조절할 수 있으며, 초소수성 표면을 구현할 수 있다.In recent years, with the development of measurement technology capable of observing nano-size, an attempt has been recently made to exhibit a water-repellent oil-repellent structure using a mechanism similar to that of a natural water-repellent mechanism. Among them, it is very interested in the implementation of lotus effect mimicking lotus leaf with microprojection. The factors that determine the hydrophobicity of the surface with the Lotus effect are the surface roughness and the surface energy. By changing these two conditions, the degree of hydrophobicity can be controlled and the superhydrophobic surface can be realized.

현재 초소수성 표면을 구현하고자 여러 업체에서 초발수발유제를 개발하여 섬유에 표면처리하고는 있으나, 이는 섬유에 처리 시 내구성이 떨어지거나 초소수성 구현에 한계를 가지고 있다. 그래서 초소수성 표면을 구현하려는 연구로서 플라 즈마 삭각 방법 등을 이용한 표면거칠기 증가시키는 방법이 모색되고 있으나 플라즈마 삭각 방법은 섬유의 물성이 떨어지는 문제점을 가지고 있다.In order to realize superhydrophobic surface, various companies have developed a water-repellent emulsion to treat the fiber surface, but this method has a limitation in the durability of the fiber treatment or the implementation of the super-hydrophobic property. Therefore, a method of increasing the surface roughness using a plasma cutting method and the like has been searched to realize a superhydrophobic surface, but the plasma cutting method has a problem that the physical properties of the fiber are poor.

섬유제품뿐만 아니라 유리 플라스틱 등에 있어서 발수성은 그 제품이 가지는 접촉각, 표면장력, 표면거칠기와 밀접한 관계가 있다. 일예로 접촉각의 경우 110ㅀ이상의 값을 가질 경우 발수도가 100을 넘고, 140ㅀ정도의 경우에는 초발수발유성 표면을 가짐으로서 발수, 발유 뿐 만 아니라, 셀프크리닝성(self-cleaning)을 나타낸다. 국내외적으로 발수가공에 관한 특허의 경우 일본공개특허 소화 51-2434호 및 일본공개특허소화 53-3747호에는 실리콘계발수제를 사용하는 방법이 소개되었으며, 일본공개특허소화 54-55697호에는 실리콘계 발수제 처리 후 불소계 발수제 유기용제용액으로 처리하는 방법이, 그리고 일본공개특허 소화 55-76167호에는 불소계 발수제로 처리한 후, 수산기 또는 카르복실기를 함유한 에틸렌성 불포화 단량체와 가교제의 유기용매용액을 부여하는 방법이 소개되어 있으나, 대부분이 접촉각 110ㅀ~ 120ㅀ, 발수도 100을 달성하는 정도의 기술수준을 나타내고 있다. 국내 특허의 경우에도 이와 별반 다르지 않다. 대한민국특허출원제1990-0021589호의 경우에도 불소계발수제 및 세섬도 고밀도 직물을 이용하여 발수도100을 달성하는 정도의 기술을 보이고 있으며, 대한민국특허출원제10-2001-0065617호의 경우에는 다공성무기지지체의 표면에 자기조립형개시제 및 그라프팅표면중합을 이용하여 고분자스킨층을 형성하여 초발수발유성을 나타내는 것을 특징으로 하고 있다. 또한 초발수발유 코팅을 위하여 기존의 방법들은, 우선 프렉탈 표면 구조(fractal surface structure)를 만들기 위한 공정을 수행한 후, 그 위에 발수 물질을 코팅하였다. 그러나 이러 한 방법을 사용하는 경우 두 단계의 공정이 필요하고, 프렉탈 구조를 만들기 위해서 코팅 재료의 표면을 에칭하는 공정에 비용이 많이 든다는 문제점이 있었다.In addition to fiber products, water repellency is closely related to the contact angle, surface tension, and surface roughness of the product. For example, when the contact angle is more than 110 발, the water repellency is more than 100, and when the contact angle is about 140 에는, the water repellency and self-cleaning as well as water repellency and oiling are exhibited. In the case of a patent relating to water-repellent processing both domestically and externally, a method of using a silicone-based water repellent agent was disclosed in Japanese Patent Publication No. 51-2434 and Japanese Patent Laid-Open No. 53-3747, and Japanese Patent Publication No. 54-55697 A method of treating with an organic solvent solution of a fluorine-based water repellent agent, and a method of applying an organic solvent solution of an ethylenically unsaturated monomer containing a hydroxyl group or a carboxyl group and a cross-linking agent after treatment with a fluorine-based water repellent agent is disclosed in Japanese Patent Laid-Open No. 55-76167 However, most of them show a level of technology that achieves a contact angle of 110 ㅀ ~ 120 ㅀ and water repellency of 100. Domestic patents are no different. Korean Patent Application No. 1990-0021589 also discloses a technique of achieving a water repellency of 100 by using a fluorine-based water repellent agent and a three-dense high-density fabric. In Korean Patent Application No. 10-2001-0065617, the surface of a porous inorganic support And a polymer skin layer is formed by using a self-assembled initiator and a grafting surface polymerization to exhibit a water-repellent and water-repellent property. In addition, in order to provide a water-repellent coating, the conventional methods are firstly subjected to a process for forming a fractal surface structure, and then a water repellent material is coated thereon. However, the use of such a method requires a two-step process, and there is a problem in that the process of etching the surface of the coating material in order to form the fractal structure is expensive.

그러므로 본 발명에서는 상기 종래기술들의 문제점을 해결하고 매질인 섬유표면에 듀얼스케일의 나노돌기를 부여함으로써 매질표면의 표면거칠기, 접촉각 및 표면장력을 높여 초발수발유성 표면을 부여할 수 있는 코팅조성물을 제공하는 것을 기술적과제로 한다.Accordingly, the present invention solves the problems of the prior arts and provides a coating composition capable of imparting a surface of initial and / or oily surface by increasing the surface roughness, the contact angle and the surface tension of the surface of the medium by imparting dual scale nano- To be a technical challenge.

그러므로 본 발명에 의하면, 평균입경 5 내지 100nm인 SiO2 나노입자를 함유하는 SiO2 졸(I)과 평균입경 250 내지 5,000nm인 SiO2 나노입자를 함유하는 SiO2 졸(Ⅱ)이 부피비 1:1 내지 40:1로 혼합된 혼합SiO2 졸이 수분산폴리머에 분산된 섬유용 초발수발유코팅조성물이 제공된다.Therefore, according to the present invention, a SiO 2 sol (I) containing SiO 2 nanoparticles having an average particle diameter of 5 to 100 nm and an SiO 2 sol (II) containing SiO 2 nanoparticles having an average particle diameter of 250 to 5,000 nm are mixed at a volume ratio of 1: 1 to 40: 1 mixed with SiO 2 sol mixture can be provided with a fiber chobal caregiver oil coating compositions dispersed in the polymer dispersion.

또한, 상기 섬유용 초발수발유코팅조성물을 이용하는 방법으로서 상기 섬유용 초발수발유코팅조성물에 피처리물을 픽업율 50~60%로 패딩하고 170~175℃에서 1~2분간 큐어링하는 것을 특징으로 하는 발수가공이 제공된다.Also, as a method of using the starting oil-and-water coating composition for fibers, the article to be treated is padded with a pickup ratio of 50 to 60% and cured at 170 to 175 ° C for 1 to 2 minutes Is provided.

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 제공되는 섬유용 초발수발유코팅조성물은 평균입경이 상이한 SiO2 나노입자를 함유하는 2종의 SiO2졸들을 혼합하여 수분산폴리머에 분산시킨 것으로서 섬유에 적용하는 경우에 섬유표면에 나노돌기를 부여함으로서 섬유표면의 표면거칠기, 접촉각 및 표면장력을 높여 초발수성 표면을 부여할 수 있는 코팅조성물이다.The starting oil-and-water coating composition for fibers according to the present invention is prepared by mixing two types of SiO 2 sols containing SiO 2 nanoparticles having different average particle diameters and dispersing them in an aqueous dispersion polymer. When applied to fibers, The surface of the fiber can be increased by increasing the surface roughness, the contact angle, and the surface tension of the fiber, thereby providing a super water repellent surface.

본 발명의 평균입경이 상이한 SiO2 나노입자를 함유하는 두 군의 SiO2졸은 평균입경 5 내지 100nm인 SiO2 나노입자를 함유하는 SiO2졸(Ⅰ)과 평균입경 250 내지 5,000nm인 SiO2 나노입자를 함유하는 SiO2졸(Ⅱ)로 구분 될 수 있는데, 본 발명에서는 SiO2 졸(Ⅰ)과 SiO2 졸(Ⅱ)를 부피비 1:1 내지 40:1로 혼합된 혼합SiO2 졸을 사용하여 소수성을 증가시키게 되는데, 상기 범위를 벗어나는 경우 물방울과 처리매질인 섬유 표면의 접촉면적이 커져 소수성기가 낮아질 수 있다.Of the groups containing a SiO 2 nano-particles with a mean particle size of different of the present invention, SiO 2 sol is an SiO 2 SiO 2 sol (Ⅰ) and average particle diameter of 250 to 5,000nm containing SiO 2 nano-particles is 5 to 100nm mean particle size may be separated by a SiO 2 sol (ⅱ) containing nano-particles, in the present invention, SiO 2 sol (ⅰ) and SiO 2 sol (ⅱ) the volume ratio of 1: the combined SiO 2 sol mixed at a 1: 1 to 40 If it is outside the above range, the contact area between the water droplet and the surface of the fiber, which is the treatment medium, becomes large, and the hydrophobic group may be lowered.

이와 같이 서로 다른 입경의 나노입자를 혼합하였을 때 듀얼스케일의 나노구조물을 잘 형성하게 되어 소수성이 증가하는데, 상기 듀얼스케일의 나노구조물 위에 물방울을 떨어뜨리면, 물방울은 듀얼스케일의 나노구조물 꼭지점과 접촉하게 되고, 꼭지점 아래의 구조물로는 물방울이 침투할 수 없게 된다. 즉, 물방울과 고체표면과의 접촉면적이 극소로 감소하게 되고, 이는 극소수성으로 나타나게 된다. 자연계에 존재하는 연잎의 미세 구조 역시 이와 같은 원리에 의해 극소수성을 나타나게 되는데, 이와 같은 원리를 로투스 효과(lotus effect)라 한다. 로투스 효과를 가지는 표면의 소수성을 결정하는 요소는 표면거칠기와 표면에너지인데, 이 두 가지 조건을 변화시킴으로써 소수성 정도를 조절할 수 있으며, 초소수성 표면을 구현할 수 있다. When the nanoparticles having different particle diameters are mixed, the nanostructures of the dual scale are formed well and the hydrophobicity is increased. When the water drops are dropped on the dual-scale nanostructure, the water drops come into contact with the vertices of the dual scale nanostructures And water droplets can not penetrate into the structure under the vertex. In other words, the contact area between the water droplet and the solid surface is reduced to a very small level, which is very low. The microstructure of the lotus leaf in the natural world is also very small due to this principle. This principle is called the lotus effect. The factors that determine the hydrophobicity of the surface with the Lotus effect are the surface roughness and the surface energy. By changing these two conditions, the degree of hydrophobicity can be controlled and the superhydrophobic surface can be realized.

본 발명에서 상기 평균입경 5 내지 100nm인 SiO2 나노입자를 함유하는 SiO2 졸(I)의 Si 함량은 3200~6400ppm이고, 평균입경 250 내지 5,000nm인 SiO2 나노입자를 함유하는 SiO2 졸(II)의 Si 함량은 3600~7200ppm인 것이 바람직한데, 특히 섬유는 수많은 필라멘트의 집속상태이므로 필름이나 유리면과 같이 표면이 평탄하지 아니하고 그 표면이 거치므로 상기와 같은 Si 함량을 갖도록 하는 것이 견뢰도 및 듀얼스케일의 발현에 좋다.SiO 2 sol containing nano-SiO 2 particles having a Si content of SiO 2 sol (I) is 3200 ~ 6400ppm, and the average particle size of 250 to 5,000nm containing SiO 2 nano-particles is 5 to 100nm and the average particle diameter in the present invention ( II) preferably has an Si content of 3600 to 7200 ppm. In particular, since the fibers are in a converging state of many filaments, the surface is not flat, such as a film or a glass surface, It is good for scale expression.

본 발명에서 사용하는 상기 SiO2 졸(I)은 테트라에틸오소실리케이트(tetraethyl orthosilicate) 1~30중량%, 질산 3~4중량%, 메탄올 1~25중량% 및 잔부로서 초순수로 이루어진 혼합용액을 반응하여 얻어지는 반응 생성물이고, 상기 SiO2 졸(Ⅱ)은 테트라에틸오소실리케이트(tetraethyl orthosilicate) 1~30중량%, 암모니아 3~4중량%, 메탄올 1~25중량% 및 잔부로서 초순수로 이루어진 혼합용액을 반응하여 얻어지는 반응 생성물을 사용하는 것이 처리매질인 섬유와 내구성있게 직접 결합시킬 수 있어 바람직하다. 촉매로서 질산 또는 암모니아를 선택적으로 사용함에 따라 SiO2 졸의 크기를 적절히 조절할 수 있다.The SiO 2 sol (I) used in the present invention is prepared by reacting a mixed solution composed of 1 to 30% by weight of tetraethyl orthosilicate, 3 to 4% by weight of nitric acid and 1 to 25% by weight of methanol and ultrapure water as the remainder by the mixed solution of pure water as a reaction product is obtained, it said SiO 2 sol (ⅱ) is tetraethylorthosilicate (tetraethyl orthosilicate) 1 ~ 30% by weight, ammonia 3-4% by weight, methanol 1-25% by weight and the balance It is preferable to use a reaction product obtained by the reaction because it can be durably bonded directly with the fiber as the treatment medium. By selectively using nitric acid or ammonia as the catalyst, the size of the SiO 2 sol can be appropriately controlled.

상기 수분산폴리머는 수용성 불소계 폴리머 및 수용성 플루오르 실란계 폴리머 중 어느 하나인 것을 사용하는 것이 섬유표면에서의 듀얼스케일 발현 및 견뢰도 향상측면에서 바람직한데, 수용성 불소계 폴리머는 하기 화학식 1 내지 화학식 4와 같은 것이 바람직하며, 수용성 플루오르 실란계 폴리머는 화학식 5와 같은 것이 바람직하다. 상기 수용성 불소계 폴리머 및 수용성 플루오르 실란계 폴리머는 공지된 수용성 불소계 발수제 및 수용성 플루오르 실란계 발수제를 사용하여도 좋다.The water-dispersible polymer is preferably a water-soluble fluorine-based polymer and a water-soluble fluorosilane-based polymer in view of dual-scale development on the surface of the fiber and improvement in fastness. And the water-soluble fluorosilane-based polymer is preferably the same as the chemical formula (5). The water-soluble fluorine-based polymer and the water-soluble fluorosilane-based polymer may be a known water-soluble fluorine-based water-repellent agent and a water-soluble fluorosilane-based water-repellent agent.

[화학식 1][Chemical Formula 1]

CF3(CF2)3SO2N(CH3)CH2CH2OHCF 3 (CF 2 ) 3 SO 2 N (CH 3 ) CH 2 CH 2 OH

[화학식 2](2)

CF3(CF2)3SO2N(CH3)CH(CH3)CH2OHCF 3 (CF 2 ) 3 SO 2 N (CH 3 ) CH (CH 3 ) CH 2 OH

[화학식 3](3)

CF3(CF2)3SO2N(CH3)CH2CH(CH3)OHCF 3 (CF 2 ) 3 SO 2 N (CH 3 ) CH 2 CH (CH 3 ) OH

[화학식 4][Chemical Formula 4]

CF3(CF2)3SO2N(CH2CH3)CH2CH2OHCF 3 (CF 2 ) 3 SO 2 N (CH 2 CH 3 ) CH 2 CH 2 OH

[화학식 5][Chemical Formula 5]

Figure 112009071014871-pat00001
Figure 112009071014871-pat00001

본 발명에서는 섬유용 초발수발유코팅조성물에 피처리물을 픽업율 50~60%로 패딩하고 170~175℃에서 1~2분간 큐어링하는 섬유발수가공방법을 제공한다. 이는 섬유표면에 듀얼 스케일의 표면 돌기를 생성토록 하여 섬유표면에 초소수성 표면을 구현하기 위한 것이다.The present invention provides a method for fiber water-repellent processing wherein a to-be-processed material is padded at a pick-up rate of 50 to 60% and cured at 170 to 175 ° C for 1 to 2 minutes. This is to create a dual scale surface protrusion on the fiber surface to create a superhydrophobic surface on the fiber surface.

본 발명에 의하면 물방울과 섬유표면의 접촉각을 극대화시키기 위하여 서로 다른 크기의 나노입자를 혼합하고 수분산폴리머와 혼합한 후 처리함으로써 처리매질인 섬유자체의 물성변화를 주지 않고도 섬유에 극소수성을 부여할 수 있는 발수발유가공을 제공할 수 있었다.According to the present invention, nanoparticles of different sizes are mixed and mixed with a water-dispersible polymer in order to maximize the contact angle between the water droplet and the surface of the fiber, thereby imparting a low water solubility to the fiber without changing the physical properties of the fiber itself Which can provide a foot-and-mouth workout.

이하 다음의 실시 예에서는 본 발명의 섬유용 초발수발유코팅조성물에 대한 비한정적인 예시를 하고 있다.The following examples illustrate non-limiting examples of a water-miscible coating composition for fibers of the present invention.

[합성례 1 ~ 4][Synthesis Examples 1 to 4]

1. SiO2 졸 제조.1. Preparation of SiO 2 sol.

SiO2 졸 제조는 암모니아와 메탄올, 증류수 혼합용액 330ml을 반응기에 미리 담아놓고 전구체인 테트라에틸오소실리케이트(tetraethyl orthosilicate)와 메탄올을 표 1과 같은 부피비로 첨가하여 SiO2 졸(Ⅱ)을 제조한다. To prepare the SiO 2 sol, 330 ml of a mixed solution of ammonia, methanol and distilled water was preliminarily packed in a reactor, and a precursor, tetraethyl orthosilicate and methanol were added at the same volume ratio as in Table 1 to prepare a SiO 2 sol (II).

또한, 반응기에 질산과 메탄올, 증류수 혼합용액 330ml을 만든 후 테트라에틸오소실리케이트(tetraethyl orthosilicate)과 메탄올을 표 2의 조건에 따라 다양한 부피비로 첨가시켜 SiO2 졸(Ⅰ)을 제조한 후, 완전한 반응을 유도하기 위해 2시간 동안 300~900rpm으로 계속 교반해 주었다. 반응이 끝난 후 30℃가 되도록 급랭한 후 필터링한다. 제조된 두군의 SiO2 졸의 균일한 입자분포와 크기를 알아보기 위해 입도분포분석기(ELS-8000, OTSUKA)로 분석하였다.In addition, 330 ml of a mixed solution of nitric acid, methanol and distilled water was prepared in the reactor, tetraethyl orthosilicate and methanol were added in various volume ratios according to the conditions of Table 2 to prepare SiO 2 sol (I) Lt; RTI ID = 0.0 > rpm < / RTI > for 2 hours. After completion of the reaction, quench at 30 ° C and filter. The particle size distribution and size of the SiO 2 sol of the two groups were analyzed with a particle size analyzer (ELS-8000, OTSUKA).

구 분division TEOS 투입량TEOS dosage 메탄올 투입량Amount of methanol input SiO2 나노입자입경SiO 2 nanoparticle particle size 합성례 1Synthetic Example 1 10ml10ml 90ml90ml 295.4nm295.4 nm 합성례 2Synthetic Example 2 30ml30ml 70ml70ml 313.7nm313.7 nm 합성례 3Synthetic Example 3 50ml50ml 50ml50ml 558.7nm558.7 nm 합성례 4Synthetic Example 4 70ml70ml 30ml30ml 628.5nm628.5 nm 합성례 5Synthetic Example 5 90ml90ml 10ml10ml 965.4nm965.4 nm

구 분division TEOS 투입량TEOS dosage 메탄올 투입량Amount of methanol input SiO2 나노입자입경SiO 2 nanoparticle particle size 합성례 6Synthetic Example 6 10ml10ml 90ml90ml 44.4nm44.4 nm 합성례 7Synthetic Example 7 30ml30ml 70ml70ml 50.6nm50.6 nm 합성례 8Synthetic Example 8 50ml50ml 50ml50ml 70.1nm70.1 nm 합성례 9Synthesis Example 9 70ml70ml 30ml30ml 89.1nm89.1 nm 합성례 10Synthetic Example 10 90ml90ml 10ml10ml 100.2nm100.2 nm

[실시예 1~15][Examples 1 to 15]

1. SiO2 졸/발수제 제조1. Preparation of SiO 2 sol / water repellent

합성례 1~10에서 각각 제조된 SiO2 나노졸을 하기 표 3의 조건에 따라 혼합한 후 다시 하기 화학식 5의 플루오르 실란계 폴리머와 혼합하여 섬유용초발수발유코팅조성물을 제조하였다.The SiO 2 nano sol prepared in each of Synthesis Examples 1 to 10 was mixed according to the conditions shown in Table 3 below and then mixed with the fluorosilane polymer of Formula 5 to prepare a fiber weevil water and oil coating composition.

상기 코팅조성물을 폴리에스테르 직물표면에 픽업율 60%로 패딩하고 170℃에서 2분간 큐어링하였다.The coating composition was padded to a polyester fabric surface at a pick-up rate of 60% and cured at 170 占 폚 for 2 minutes.

[화학식 5][Chemical Formula 5]

Figure 112009071014871-pat00002
Figure 112009071014871-pat00002

구 분division SiO2 입경 종류SiO 2 particle size type 혼합비Mixing ratio 실시예 1Example 1 100.2 : 558.7100.2: 558.7 1:11: 1 실시예 2Example 2 100.2 : 558.7100.2: 558.7 20:120: 1 실시예 3Example 3 100.2 : 558.7100.2: 558.7 40:140: 1 실시예 4Example 4 100.2 : 965.4100.2: 965.4 1:11: 1 실시예 5Example 5 100.2 : 965.4100.2: 965.4 20:120: 1 실시예 6Example 6 100.2 : 965.4100.2: 965.4 40:140: 1 실시예 7Example 7 313.7 : 558.7313.7: 558.7 1:11: 1 실시예 8Example 8 313.7 : 558.7313.7: 558.7 20:120: 1 실시예 9Example 9 313.7 : 558.7313.7: 558.7 40:140: 1 실시예 10Example 10 313.7 : 965.4313.7: 965.4 1:11: 1 실시예 11Example 11 313.7 : 965.4313.7: 965.4 20:120: 1 실시예 12Example 12 313.7 : 965.4313.7: 965.4 40:140: 1 실시예 13Example 13 558.7 : 965.4558.7: 965.4 1:11: 1 실시예 14Example 14 558.7 : 965.4558.7: 965.4 20:120: 1 실시예 15Example 15 558.7 : 965.4558.7: 965.4 40:140: 1

2. 물성측정2. Measurement of physical properties

1) 접촉각 측정1) Contact angle measurement

발수 가공된 폴리에스테르 직물의 표면성상 및 물리적 특성변화는 표면자유에너지 변화, 즉, 표면장력의 변화를 확인할 수 있는 접촉각을 측정함으로서 확인이 가능하여 접촉각측정기(DSA100, Kruss, Germany)를 사용하여 측정하였다. 각 측정에서 용액은 10㎕의 양만큼 떨어뜨린 후 측정하였으며, 3회 반복 측정하여 평균값과 편차를 구하였다. 이 때 증류수를 사용하였으며, 디지털 카메라를 이용하여 사진으로 촬영해 소수성을 평가하였다. 도 2는 입자 크기에 따른 접촉각을 알아보기 위한 모식도이다. 도 3 내지 도 7은 접촉각을 측정한 결과이다. The changes in the surface properties and physical properties of the water-repellent polyester fabric can be confirmed by measuring the contact angle, which is the change in the surface free energy, that is, the change in the surface tension, using a contact angle meter (DSA100, Kruss, Germany) Respectively. In each measurement, the solution was dropped by an amount of 10 μl, and the measurement was repeated three times to obtain an average value and a deviation. At this time, distilled water was used and the hydrophobicity was evaluated by photographing with a digital camera. FIG. 2 is a schematic diagram for explaining the contact angle according to the particle size. FIG. Figs. 3 to 7 show the result of measuring the contact angle.

실시예 1의 100.2nm/558.7nm의 나노입자를 1:1의 부피비로 혼합한 경우 접촉각은 138°, 실시예 2의 100.2nm/558.7nm의 나노입자를 20:1의 부피비로 혼합한 경우 접촉각은 141°, 실시예 3의 100.2nm/558.7nm의 나노입자를 40:1의 부피비로 혼합한 경우 접촉각은 142°(도 3), 실시예 4의 100.2nm/965.4nm의 나노입자를 1:1의 부피비로 혼합한 경우 접촉각은 135°, 실시예 5의 100.2nm/965.4nm의 나노입자를 20:1의 부피비로 혼합한 경우 접촉각은 142°, 실시예 6의 100.2nm/965.4nm의 나노입자를 40:1의 부피비로 혼합한 경우 접촉각은 138°(도 4), 실시예 7의 313.7nm/558.7nm의 나노입자를 1:1의 부피비로 혼합한 경우 접촉각은 138°, 실시예 8의 313.7nm/558.7nm의 나노입자를 20:1의 부피비로 혼합한 경우 접촉각은 141°, 실시예 9의 313.7nm/558.7nm의 나노입자를 40:1의 부피비로 혼합한 경우 접촉각은 140°(도 5), 실시예 10의 313.7nm/965.4nm의 나노입자를 1:1의 부피비로 혼합한 경우 접촉각은 142°, 실시예 11의 313.7nm/965.4nm의 나노입자를 20:1의 부피비로 혼합한 경우 접촉각은 144°, 실시예 12의 313.7nm/965.4nm 의 나노입자를 40:1의 부피비로 혼합한 경우 접촉각은 147°(도 6), 실시예 13의 313.7nm/965.4nm의 나노입자를 1:1의 부피비로 혼합한 경우 접촉각은 136°, 실시예 14의 313.7nm/965.4nm의 나노입자를 20:1의 부피비로 혼합한 경우 접촉각은 151°, 실시예 15의 313.7nm/965.4nm 의 나노입자를 40:1의 부피비로 혼합한 경우 접촉각은 158°(도 7)로 극소수성을 나타내었다. 이는 물방울과 섬유 표면의 접촉면적이 가장 작은 것을 나타내며, 나노스케일의 구조를 동시에 갖는 듀얼스케일 구조물이 소수성을 증가시켰음을 알 수 있다.When the nanoparticles of 100.2 nm / 558.7 nm of Example 1 were mixed at a volume ratio of 1: 1, when the contact angle was 138 ° and the nanoparticles of 100.2 nm / 558.7 nm of Example 2 were mixed at a volume ratio of 20: 1, The contact angle was 142 ° (FIG. 3), and the 100.2 nm / 965.4 nm nanoparticles of Example 4 were mixed in a volume ratio of 1: 1, the contact angle was 135 °, the contact angle was 142 ° when 100.2 nm / 965.4 nm nanoparticles of Example 5 were mixed at a volume ratio of 20: 1, and 100.2 nm / 965.4 nm nanometer of Example 6 When the particles were mixed at a volume ratio of 40: 1, the contact angle was 138 ° (FIG. 4). When the nanoparticles of Example 7 were mixed at a volume ratio of 1: 1, the contact angle was 138 °, Of the nanoparticles of 313.7 nm / 558.7 nm were mixed at a volume ratio of 20: 1, the contact angle was 141 °. When the nanoparticles of Example 9 were mixed at a volume ratio of 40: 1, the contact angle was 140 ° (Fig. 5), Example 10 of 313.7 nm / 965.4 nm were mixed at a volume ratio of 1: 1, the contact angle was 142 °. When the nanoparticles of 313.7 nm / 965.4 nm of Example 11 were mixed at a volume ratio of 20: 1, the contact angle was 144 °, the contact angle was 147 ° (FIG. 6) when 313.7 nm / 965.4 nm nanoparticles of Example 12 were mixed at a volume ratio of 40: 1, the ratio of 313.7 nm / 965.4 nm nanoparticles of Example 13 was 1: 1 When the nanoparticles were mixed at a volume ratio of 136 °, the contact angle was 151 ° and the nanoparticles of 313.7 nm / 965.4 nm of Example 15 were mixed when the contact angle was 136 ° and the nanoparticles of 313.7 nm / 965.4 nm of Example 14 were mixed at a volume ratio of 20: When mixed at a volume ratio of 40: 1, the contact angle was 158 ° (FIG. This indicates that the contact area between the water droplet and the fiber surface is the smallest, and that the dual scale structure having the nanoscale structure simultaneously increases the hydrophobicity.

2) 표면상태 측정2) Surface condition measurement

처리매질의 표면 상태의 측정은 표면 미세구조 변화를 나노레벨까지 관찰가능 한 전계방사형 주사전자현미경(FE-SEM, JSM-7500A, JEOL)을 사용하였으며, 가속전압 1kV, 전류 9A로 측정하였다. 또한 원자력간현미경(AFM, Digital instruments, NanoScope MulSimode)으로 표면 형상을 알아보았다. The surface state of the treatment medium was measured by using a field emission scanning electron microscope (FE-SEM, JSM-7500A, JEOL) capable of observing the surface microstructure change to the nano level and measuring the acceleration voltage 1 kV and the current 9A. We also investigated the surface morphology using atomic force microscopy (AFM, Digital instruments, NanoScope MulSimode).

도 8은 필름표면에 313.7nm의 입자와 수용성 불소계 및 플루오르 발수제를 혼합하여 처리한 형상이며 도 9는 100.2nm/558.7nm의 입자를 혼합하여 필름에 처리한 결과 연잎 모양의 듀얼스케일 형상을 띠고 있는 것을 확인할 수 있었다. FIG. 8 shows a form obtained by mixing particles of 313.7 nm with a water-soluble fluorine-based and fluorine-containing water repellent on the surface of the film, and FIG. 9 shows a dual scale shape of a leaflet-like shape obtained by mixing particles of 100.2 nm / 558.7 nm, .

도 10에서는 SiO2 졸과 수용성 불소계 및 플루오르 발수제를 혼합 처리한 실시예 3의 AFM 형상으로서 FE-SEM에서 확인한 나노돌기를 볼 수 있었다. In Fig. 10, nano-dots confirmed by FE-SEM were observed as the AFM shape of Example 3 in which SiO 2 sol, water-soluble fluorine-based, and fluorine-water repellent were mixed.

도 1은 SiO2 졸의 제조공정을 나타낸 공정순서도이며,FIG. 1 is a flow chart showing a process for producing a SiO 2 sol,

도 2는 입자 크기에 따른 접촉각을 알아보기 위한 모식도이며,FIG. 2 is a schematic view for explaining the contact angle according to the particle size,

도 3 내지 도 7은 실시예 3, 실시예 6, 실시예 9, 실시예 12, 실시예 15의 접촉각을 측정한 결과이며,Figs. 3 to 7 are the results of measuring the contact angles of Examples 3, 6, 9, 12 and 15,

도 8은 직물표면에 313.7nm의 입자와 발수제를 혼합하여 처리한 직물의 표면 상태를 측정한 전계방사형 주사전자현미경사진이며,8 is a field-emission scanning electron microscope image obtained by measuring the surface state of a fabric treated with a mixture of a particle of 313.7 nm and a water repellent agent on the fabric surface,

도 9는 실시예 3의 직물의 표면 상태를 측정한 전계방사형 주사전자현미경사 진이며,9 is a field emission scanning electron microscope photograph of the surface of the fabric of Example 3,

도 10은 실시예 3의 AFM 형상사진이다.10 is an AFM shape photograph of Example 3. Fig.

Claims (5)

평균입경 5 내지 100nm인 SiO2 나노입자를 함유하는 SiO2 졸(I)과 평균입경 250 내지 5,000nm인 SiO2 나노입자를 함유하는 SiO2 졸(Ⅱ)이 부피비 1:1 내지 40:1로 혼합된 혼합SiO2 졸이 수분산폴리머에 분산된 섬유용 초발수발유코팅조성물.SiO 2 sol (I) containing SiO 2 nanoparticles having an average particle diameter of 5 to 100 nm and SiO 2 sol (II) containing SiO 2 nanoparticles having an average particle diameter of 250 to 5,000 nm have a volume ratio of 1: 1 to 40: 1 the mixed mixture SiO 2 sol dispersed in the dispersion of polymer fibers chobal caregiver oil coating composition. 제 1항에 있어서, 상기 평균입경 5 내지 100nm인 SiO2 나노입자를 함유하는 SiO2 졸(I)에서 Si 함량은 3200~6400ppm이고, 평균입경 250 내지 5,000nm인 SiO2 나노입자를 함유하는 SiO2 졸(II)에서 Si 함량은 3600~7200ppm인 섬유용 초발수발유코팅조성물. The method according to claim 1, wherein the SiO 2 sol (1) containing SiO 2 nanoparticles having an average particle diameter of 5 to 100 nm has an Si content of 3200 to 6400 ppm, SiO 2 nanoparticles having an average particle diameter of 250 to 5,000 nm 2 < / RTI > sol (II) has a Si content of 3600 to 7200 ppm. 제 1항에 있어서, 상기 수분산폴리머는 수용성 불소계 폴리머 및 수용성 플루오르 실란계 폴리머 중 어느 하나인 섬유용 초발수발유코팅조성물.The composition of claim 1, wherein the water dispersible polymer is any one of a water-soluble fluoropolymer and a water-soluble fluorosilane-based polymer. 제 1항에 있어서, 상기 SiO2 졸(I)은 테트라에틸오소실리케이트(tetraethyl orthosilicate) 1~30중량%, 질산 3~4중량%, 메탄올 1~25중량% 및 잔부로서 초순수로 이루어진 혼합용액을 반응하여 얻어지는 반응 생성물이고, 상기 SiO2 졸(Ⅱ)은 테트라에틸오소실리케이트(tetraethyl orthosilicate) 1~30중량%, 암모니아 3~4중량%, 메탄올 1~25중량% 및 잔부로서 초순수로 이루어진 혼합용액을 반응하여 얻어지는 반응 생성물인 것을 특징으로 하는 섬유용 초발수발유코팅조성물.The method according to claim 1, wherein the SiO 2 sol (I) is a mixture of 1 to 30 wt% of tetraethyl orthosilicate, 3 to 4 wt% of nitric acid, 1 to 25 wt% of methanol, Wherein the SiO 2 sol (II) is a mixed solution of 1 to 30% by weight of tetraethyl orthosilicate, 3 to 4% by weight of ammonia, 1 to 25% by weight of methanol and ultrapure water as the remainder Of the total weight of the composition. 제 1항 내지 제 4항 중 어느 한 항 기재의 섬유용 초발수발유코팅조성물에 피처리물을 픽업율 50~60%로 패딩하고 170~175℃에서 1~2분간 큐어링하는 것을 특징으로 하는 섬유발수가공방법.A process for producing a fiber-initiated water-repellent coating composition for fiber according to any one of claims 1 to 4, characterized in that the object to be processed is padded at a pickup ratio of 50 to 60% and cured at 170 to 175 ° C for 1 to 2 minutes Fiber water repellent processing method.
KR1020090111904A 2009-11-19 2009-11-19 Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment KR101167586B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090111904A KR101167586B1 (en) 2009-11-19 2009-11-19 Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090111904A KR101167586B1 (en) 2009-11-19 2009-11-19 Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment

Publications (2)

Publication Number Publication Date
KR20110055042A KR20110055042A (en) 2011-05-25
KR101167586B1 true KR101167586B1 (en) 2012-07-27

Family

ID=44364131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090111904A KR101167586B1 (en) 2009-11-19 2009-11-19 Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment

Country Status (1)

Country Link
KR (1) KR101167586B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302266A (en) 2007-06-05 2008-12-18 Mitsubishi Electric Corp Coating method and article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302266A (en) 2007-06-05 2008-12-18 Mitsubishi Electric Corp Coating method and article

Also Published As

Publication number Publication date
KR20110055042A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
Feng et al. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes
Foorginezhad et al. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties
Xu et al. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization
Esmaeilzadeh et al. Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery
Manatunga et al. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials
Berendjchi et al. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper
Zhao et al. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides
US10155361B2 (en) Method of binding nanoparticles to glass
KR101411769B1 (en) Superhydrophilic coating compositions and their preparation
Sharma et al. A review on challenges, recent progress and applications of silica nanoparticles based superhydrophobic coatings
Xiang et al. Sustainable and versatile superhydrophobic cellulose nanocrystals
Mai et al. One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
Junaidi et al. Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash
KR101003266B1 (en) Process Of Water-Repellent Treatment for Polyester Fabrics Using TiO2-Sol
CN112981943B (en) Super-hydrophobic textile and preparation method thereof
Zhang et al. Large scale synthesis of Janus submicron sized colloids by wet etching anisotropic ones
KR20160144372A (en) Hydrophobic article
US11713543B2 (en) Fiber comprising thermoplastic elastomer and silica nanoparticle, stretchable hydrophobic fiber article prepared therewith, and method for preparing the same
KR101125163B1 (en) Method for Preparing Superhydrophobic Polyethylene terephthalate Fabric Using Nano Silica Particle and Water-repellent Agent
Phan et al. Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil–water separations
WO2017206010A1 (en) Article having amphiphobic coating film and method for preparation thereof
Xu et al. Preparation of robust and self-healing superamphiphobic cotton fabrics based on modified silica aerogel particles
KR101167586B1 (en) Water And Oil Repellent Composition For Textiles And Process Of Repellent Treatment
Palencia et al. Silane coupling agent structures on carbon nanofibers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170726

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180716

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190423

Year of fee payment: 8