KR101166026B1 - A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism - Google Patents

A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism Download PDF

Info

Publication number
KR101166026B1
KR101166026B1 KR1020040054076A KR20040054076A KR101166026B1 KR 101166026 B1 KR101166026 B1 KR 101166026B1 KR 1020040054076 A KR1020040054076 A KR 1020040054076A KR 20040054076 A KR20040054076 A KR 20040054076A KR 101166026 B1 KR101166026 B1 KR 101166026B1
Authority
KR
South Korea
Prior art keywords
ala
leu
gly
glu
val
Prior art date
Application number
KR1020040054076A
Other languages
Korean (ko)
Other versions
KR20060005189A (en
Inventor
이병욱
강환구
박영훈
고은성
정성오
주재영
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020040054076A priority Critical patent/KR101166026B1/en
Publication of KR20060005189A publication Critical patent/KR20060005189A/en
Application granted granted Critical
Publication of KR101166026B1 publication Critical patent/KR101166026B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/007Carnitine; Butyrobetaine; Crotonobetaine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 N-트리메틸라이신 히드록실라제 활성을 코딩하는 폴리뉴클레오티드, 3-히드록시-6-N-트리메틸라이신 알돌라제 활성을 코딩하는 폴리뉴클레오티드, γ-트리메틸아미노알데히드 데히드로게나제 활성을 코딩하는 폴리뉴클레오티드 및 γ-부틸로베타인 히드록실라제 활성을 코딩하는 폴리뉴클레오티드를 포함하는 엔테로박테리아세 속에 속하는 미생물 및 그를 이용하여 L-카르니틴을 제조하는 방법을 제공한다. The present invention relates to polynucleotides encoding N-trimethyllysine hydroxylase activity derived from Neurospora crassa , polynucleotides encoding 3-hydroxy-6-N-trimethyllysine aldolase activity. microorganisms belonging to the genus Enteroceracete comprising a polynucleotide encoding γ-trimethylaminoaldehyde dehydrogenase activity and a polynucleotide encoding γ-butylbetaine hydroxylase activity and L-carnitine using the same. It provides a method of manufacturing.

L-카르니틴, 뉴로스포라 크라사 L-Carnitine, Neurospora Krasa

Description

뉴로스포라 크라사 유래 L-카르니틴 생합성 관련 유전자를 포함하는 엔테로박테리아세 속 미생물 및 이를 이용한 L-카르니틴의 제조방법{A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism}A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism}

도 1은 뉴로스포라 크라사에서 추정되는 L-카르니틴의 생합성 경로를 나타내는 도면이다.1 is a diagram showing the biosynthetic pathway of L-carnitine estimated in neurospora Krasa.

도 2는 pT7-7carB의 작제도를 나타낸다.2 shows the construction of pT7-7 carB .

도 3은 pT7-7carC의 작제도를 나타낸다.3 shows the construction of pT7-7 carC .

도 4는 pT7-7carD의 작제도를 나타낸다.4 shows the construction of pT7-7 carD .

도 5는 pT7-7carE의 작제도를 나타낸다.5 shows the construction of pT7-7 carE .

도 6은 pT7-7carB, pT7-7carC, pT7-7carD, 및 pT7-7carE 중에 삽입되어 있는 각 유전자를 전기영동하여 확인한 사진이다. 도 6에서 레인 1 : 마커, 2 : carD, 3 : carC, 4 : carD 및 5 : carE이다.Figure 6 is a photograph confirmed by electrophoresis of each gene inserted in pT7-7 carB , pT7-7 carC , pT7-7 carD , and pT7-7 carE . In Figure 6, lane 1: marker, 2: carD , 3: carC , 4: carD, and 5: carE .

도 7은 pT7-7carB, pT7-7carC, pT7-7carD, 및 pT7-7carE로 각각 형질전환된 대장균 BL21(DE3)를 배양하여 조추출물을 얻고 SDS-PAGE를 수행한 결과를 나타내는 도면이다. 도 7에서 레인 1 : 마커, 2 : 음성 대조군, 3 : TMLH (52 KDa), 4 : SHMT (53 KDa), 5 : TMABADH (55 KDa) 및 6 : BBH (49 KDa)이다. 7 is a diagram showing the result of the crude extract obtained by culturing Escherichia coli BL21 (DE3) transformed with pT7-7 carB , pT7-7 carC , pT7-7 carD , and pT7-7 carE , respectively, and performing SDS-PAGE. to be. In Figure 7, lane 1: marker, 2: negative control, 3: TMLH (52 KDa), 4: SHMT (53 KDa), 5: TMABADH (55 KDa) and 6: BBH (49 KDa).

도 8은 pT7-7BE의 작제도를 나타내는 도면이다.Fig. 8 shows the construction of pT7-7BE.

도 9는 pACYC184CD의 작제도를 나타내는 도면이다.9 is a diagram illustrating a construction of pACYC184CD.

뉴로스포라 크라사 유래 L-카르니틴 생합성 관련 유전자를 포함하는 엔테로박테리아세 속 미생물 및 이를 이용한 L-카르니틴의 제조방법에 관한 것이다.The present invention relates to a microorganism of the genus Enterobacteria containing neurospora Krasa-derived L-carnitine biosynthesis-related genes and a method for producing L-carnitine using the same.

L-카르니틴 (3-히드록시-4-트리메틸아미노부티레이트)은 생물체 내에 통상적으로 존재하며, 활성화된 긴사슬 지방산을 미토콘드리아 내막을 가로질러 미토콘드리아 마트릭스로 전달하는 화합물로, 양쪽성 화합물 (zwitterionic compound)이다. 생체내에서 L-카르니틴은 라이신 또는 단백질 중의 라이신 (이하 단백질 라이신이라 한다)으로부터 합성되는 것으로 알려져 있다. 포유동물에서는 일반적으로 단백질 라이신이 L-카르니틴 생합성의 전구체로서 사용되나, 뉴로스포라 크라사는 유리 라이신을 사용하는 것이 특징이다. L-카르니틴 생합성의 생합성 과정에서, ε-N,N,N-트리메틸라이신, ε-N,N,N-트리메틸-β-히드록시라이신, N,N,N-트리메틸아미노 부티르알데히드 중간체, 및 γ-부티로베타인이 형성된다. γ-부티로베타인은 γ-부티로베타인 히드록실라제에 의하여 히드록실화되어 L-카르니틴으로 된다. 도 1은 뉴로스포라 크라사에서 L-카르니틴의 추정 생합성 경로를 나타내는 도면이다.L-carnitine (3-hydroxy-4-trimethylaminobutyrate) is a compound commonly present in organisms that delivers activated long-chain fatty acids across the mitochondrial inner membrane to the mitochondrial matrix, a zwitterionic compound to be. In vivo, L-carnitine is known to be synthesized from lysine or lysine in proteins (hereinafter referred to as protein lysine). In mammals, protein lysine is generally used as a precursor of L-carnitine biosynthesis, but neurospora Krasa is characterized by the use of free lysine. In the biosynthesis process of L-carnitine biosynthesis, ε-N, N, N-trimethyllysine, ε-N, N, N-trimethyl-β-hydroxylysine, N, N, N-trimethylamino butyraldehyde intermediate, and γ-butyrobetaine is formed. γ-butyrobetaine is hydroxylated by γ-butyrobetaine hydroxylase to L-carnitine. 1 is a diagram showing the estimated biosynthetic pathway of L-carnitine in Neurospora Krasa.

L-카르니틴은 화학 합성법, 효소 반응에 의한 반합성법, 및 미생물을 이용한 L-카르니틴의 생산에 의하여 생산될 수 있다. 그러나, 화학 합성법에 의하는 경우, DL-카르니틴의 라세미체가 얻어지기 때문에 이들을 분리하여야 하는 문제점이 있었다. 효소 반응에 의한 반합성법으로서 예를 들면, 미국특허 제4,221,869호에는 조효소로서 NAD를 사용한 카르니틴 데히드로게나제 (EC 1.1.1.108)로 데히드로카르니틴로부터 L-카르니틴을 제조하는 방법이 개시되어 있다. 그러나, 데히드로카르니틴은 아주 불안정하고 아세토닐 트리메틸암모늄과 이산화탄소로 자발적으로 분해된다. 또한, 독일특허 DE-OS-3123975호에는 뉴로스포라 크라사로부터 분리한 γ-부티로베타인 히드록실라제 (EC 1.14.11.1)로 γ-부티로베타인으로부터 L-카르니틴을 제조하는 방법이 개시되어 있다. 그러나, 히드록실화 반응 동안에 α-케토글루타레이트 및 환원제 (즉, 아스코베이트)가 반응물 중에 첨가되어야 하는 단점이 있었다. L-carnitine can be produced by chemical synthesis, semisynthesis by enzymatic reaction, and production of L-carnitine using microorganisms. However, in the case of the chemical synthesis method, since racemates of DL-carnitine are obtained, there is a problem of separating them. As a semisynthetic method by an enzymatic reaction, for example, US Pat. No. 4,221,869 discloses a process for producing L-carnitine from dehydrocarnitine with carnitine dehydrogenase (EC 1.1.1.108) using NAD as coenzyme. However, dehydrocarnitine is very unstable and spontaneously decomposes into acetonyl trimethylammonium and carbon dioxide. German Patent DE-OS-3123975 also discloses a method for producing L-carnitine from γ-butyrobetaine with γ-butyrobetaine hydroxylase (EC 1.14.11.1) isolated from neurospora krasa. Is disclosed. However, there was a drawback that α-ketoglutarate and a reducing agent (ie, ascorbate) had to be added in the reaction during the hydroxylation reaction.

미생물을 이용한 L-카르니틴의 생산 방법으로서, 미국특허 제5,028,538호에는 크로토노베타인 (4-N,N,N-트리에틸아미노 크로톤산)을 함유하는 배지에서 대장균 044 K 74를 배양하고, 배양물로부터 L-카르니틴을 회수하는 방법이 개시되어 있다. 또한, 미국특허 제4,708,936호에는 아크로모박터 자이로스옥시단스 (Achromobacter xylosoxydans) DSM 3225 (HK 1331b)를 크로토노베타인 및/또는 γ-부티로베타인를 포함하는 배지에서 배양하여 L-카르니틴을 제조하는 방법이 개시되어 있다. 그러나, 이들 방법에 의하면 크로토노베타인과 같은 L-카르니틴 생합성의 전구체 또는 중간체가 아닌 화합물을 사용하여야 하고, L-카르니틴 생산 효율도 높지 않다는 단점이 있다. 따라서, 미생물을 이용한 L-카르니틴의 제조방법에 있어서 생산 효율을 개선시킬 필요가 남아 있다. As a method for producing L-carnitine using microorganisms, U. S. Patent No. 5,028, 538 cultures Escherichia coli 044 K 74 in a medium containing crotonovebetaine (4-N, N, N-triethylamino crotonic acid), followed by culturing. A method for recovering L-carnitine from water is disclosed. In addition, U.S. Patent No. 4,708,936 discloses L-carnitine by culturing Achromobacter xylosoxydans DSM 3225 (HK 1331b) in a medium containing crotonobbetaine and / or γ-butyrobetaine. A method is disclosed. However, these methods require the use of compounds other than precursors or intermediates of L-carnitine biosynthesis, such as crotonovebetaine, and disadvantages of low L-carnitine production efficiency. Therefore, there remains a need to improve the production efficiency in the method for producing L-carnitine using microorganisms.

이에 본 발명자들은 값싼 전구체를 이용할 수 있으면서도, L-카르니틴의 생산 효율이 높은 미생물을 제작하고자 노력하던 중 뉴로스포라 크라사 유래의 L-카르니틴 생합성 경로에 관여하는 유전자가 엔테로박테리아세 속의 미생물에서 잘 발현되는 것을 발견하고 본 발명을 완성하기에 이르렀다.The inventors of the present invention have been able to use inexpensive precursors, and while trying to manufacture microorganisms with high production efficiency of L-carnitine, the genes involved in the L-carnitine biosynthesis pathway derived from neurospora krasa are well known in microorganisms of the genus Enterocera bacteria. It was found to be expressed and came to complete the present invention.

본 발명의 목적은 높은 효율로 L-카르니틴을 생산할 수 있는 미생물을 제공하는 것이다.It is an object of the present invention to provide a microorganism capable of producing L-carnitine with high efficiency.

또한, 본 발명의 목적은 상기 미생물을 이용하여 L-카르니틴을 제조하는 방법을 제공하는 것이다. It is also an object of the present invention to provide a method for producing L-carnitine using the microorganism.

본 발명은 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 N-트리메틸라이신 히드록실라제 (N-trimethyllysine hydroxylase) (TMLH) 활성을 코딩하는 폴리뉴클레오티드,The present invention relates to polynucleotides encoding N-trimethyllysine hydroxylase (TMLH) activity derived from Neurospora crassa ,

3-히드록시-6-N-트리메틸라이신 알돌라제 (3-hydroxy-6-N-trimethyllysine aldolase) (SHMT) 활성을 코딩하는 폴리뉴클레오티드,Polynucleotides encoding 3-hydroxy-6-N-trimethyllysine aldolase (SHMT) activity,

γ-트리메틸아미노알데히드 데히드로게나제 (γ-trimethylaminoaldehyde dehydrogenase) (TMABADH) 활성을 코딩하는 폴리뉴클레오티드 및 polynucleotides encoding γ-trimethylaminoaldehyde dehydrogenase (TMABADH) activity and

γ-부틸로베타인 히드록실라제 (γ-butyrobetaine hydroxylase) (BBH) 활성을 코딩하는 폴리뉴클레오티드를 갖는 엔테로박테리아세 속에 속하는 미생물을 제공한다. Provided are microorganisms belonging to the genus Enterobacteriaceae with polynucleotides encoding γ-butyrobetaine hydroxylase (BBH) activity.                     

본 발명의 미생물은 상기 4 종류의 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 것이면 어느 것이 포함된다. 바람직하게는, 상기 미생물은 에세리키아 콜라이 (Escherichia coli)이고, 더욱 바람직하게는 에세리키아 콜라이 (Escherichia coli) (수탁번호 KCCM-10581)이다.The microorganism of the present invention includes any of those containing polynucleotides encoding the four kinds of proteins. Preferably, the microorganism is Escherichia coli , more preferably Escherichia coli (Accession No. KCCM-10581).

본 발명의 4 종류의 단백질 즉, TMLH, SHMT, TMABADH 및 BBH를 각각 코딩하는 폴리뉴클레오티드는 벡터를 통하여, 또는 그 자체로서 미생물에 도입된 것일 수 있다. 상기 4 종류의 단백질을 코딩하는 폴리뉴클레오티드가 벡터를 통하여 미생물에 도입되는 경우, 상기 4 종류의 단백질를 코딩하는 폴리뉴클레오티드가 단일의 벡터에 포함되어 도입되어진 것이거나, 하나 이상의 벡터에 포함되어 도입된 것일 수 있다. 본 발명에 있어서, 벡터란 당업계에 잘 알려진 의미로서 사용된다. 벡터란 일반적으로 핵산을 세포 내로 도입하는데 사용되는 핵산의 구조체이다. 이러한 핵산의 구조체는 바람직하게는, 플라스미드 또는 바이러스 게놈 유래의 핵산 구조체이다. The four kinds of proteins of the present invention, that is, polynucleotides encoding TMLH, SHMT, TMABADH and BBH, respectively, may be introduced into a microorganism through a vector or as such. When the polynucleotides encoding the four kinds of proteins are introduced into the microorganism through the vector, the polynucleotides encoding the four kinds of proteins are included in a single vector or introduced in one or more vectors. Can be. In the present invention, a vector is used as a meaning well known in the art. Vectors are generally constructs of nucleic acids used to introduce nucleic acids into cells. The construct of such nucleic acid is preferably a nucleic acid construct from a plasmid or viral genome.

본 발명에서 사용된 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 N-트리메틸라이신 히드록실라제 (N-trimethyllysine hydroxylase) (TMLH)를 코딩하는 폴리뉴클레오티드는 뉴로스포라 크라사 유래의 N-트리메틸라이신 히드록실라제 (TMLH)를 코딩한다. N-트리메틸라이신 히드록실라제 (TMLH)는 뉴로스포라 크라사 세포에서 ε-N-트리메틸라이신을 β-히드록시-ε-N-트리메틸라이신을 γ-N-트리메틸아미노부티르알데히드로 전환하는 반응을 촉매하는 것으로 여겨지나, 본 발명의 범위가 이러한 특정한 작용 기작에 한정되는 것은 아니다. 상기 N-트리메틸라이신 히드록실라제 (TMLH)를 코딩하는 폴리뉴클레오티드는 바람직하게는, 서열번호 13의 아미노산 서열을 코딩하는 폴리뉴클레오티드이다. 더욱 바람직하게는, 서열번호 17의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드이다. The polynucleotide encoding N-trimethyllysine hydroxylase (TMLH) derived from Neurospora crassa used in the present invention is N-trimethyl derived from neurospora crasa. Encodes lysine hydroxylase (TMLH). N-trimethyllysine hydroxylase (TMLH) converts ε-N-trimethyllysine to β-hydroxy-ε-N-trimethyllysine to γ-N-trimethylaminobutyraldehyde in neurospora Krasa cells. Although believed to catalyze the reaction, the scope of the present invention is not limited to this particular mechanism of action. The polynucleotide encoding the N-trimethyllysine hydroxylase (TMLH) is preferably a polynucleotide encoding the amino acid sequence of SEQ ID NO: 13. More preferably, the polynucleotide has a nucleotide sequence of SEQ ID NO.

본 발명에서 사용된 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 3-히드록시-6-N-트리메틸라이신 알돌라제 (3-hydroxy-6-N-trimethyllysine aldolase) (SHMT)를 코딩하는 폴리뉴클레오티드는 뉴로스포라 크라사 유래의 3-히드록시-6-N-트리메틸라이신 알돌라제 (SHMT)를 코딩한다. 3-히드록시-6-N-트리메틸라이신 알돌라제 (SHMT)는 뉴로스포라 크라사 세포에서 β-히드록시-ε-N-트리메틸라이신을 γ-N-트리메틸아미노부티르알데히드로 전환하는 반응을 촉매하는 것으로 여겨지나, 본 발명의 범위가 이러한 특정한 작용 기작에 한정되는 것은 아니다. 상기 3-히드록시-6-N-트리메틸라이신 알돌라제 (SHMT)를 코딩하는 폴리뉴클레오티드는 바람직하게는, 서열번호 14의 아미노산 서열을 코딩하는 폴리뉴클레오티드이다. 더욱 바람직하게는, 서열번호 18의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드이다. Poly encoding 3-hydroxy-6-N-trimethyllysine aldolase (SHMT) derived from Neurospora crassa used in the present invention The nucleotides encode 3-hydroxy-6-N-trimethyllysine aldolase (SHMT) from Neurospora Krasa. 3-hydroxy-6-N-trimethyllysine aldolase (SHMT) converts β-hydroxy-ε-N-trimethyllysine to γ-N-trimethylaminobutyraldehyde in neurospora Krasa cells Although believed to catalyze the scope of the invention is not limited to this particular mechanism of action. The polynucleotide encoding the 3-hydroxy-6-N-trimethyllysine aldolase (SHMT) is preferably a polynucleotide encoding the amino acid sequence of SEQ ID NO: 14. More preferably, it is a polynucleotide having the nucleotide sequence of SEQ ID NO: 18.

본 발명에서 사용된 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 γ-트리메틸아미노알데히드 데히드로게나제 (γ-trimethylaminoaldehyde dehydrogenase) 활성 (TMABADH)를 코딩하는 폴리뉴클레오티드는 뉴로스포라 크라사 유래의 γ-트리메틸아미노알데히드 데히드로게나제 활성 (TMABADH)를 코딩한다. γ-트리메틸아미노알데히드 데히드로게나제 활성 (TMABADH)은 뉴로스포라 크라사 세포에서 γ-N-트리메틸아미노부티르알데히드를 γ-부티로베타인으로 전환하는 반응 을 촉매하는 것으로 여겨지나, 본 발명의 범위가 이러한 특정한 작용 기작에 한정되는 것은 아니다. 상기 γ-트리메틸아미노알데히드 데히드로게나제 활성 (TMABADH)를 코딩하는 폴리뉴클레오티드는 바람직하게는, 서열번호 15의 아미노산 서열을 코딩하는 폴리뉴클레오티드이다. 더욱 바람직하게는, 서열번호 19의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드이다. The polynucleotide encoding γ-trimethylaminoaldehyde dehydrogenase activity (TMABADH) derived from Neurospora crassa used in the present invention is γ derived from Neurospora Krasa. -Encodes trimethylaminoaldehyde dehydrogenase activity (TMABADH). Although γ-trimethylaminoaldehyde dehydrogenase activity (TMABADH) is believed to catalyze the reaction of converting γ-N-trimethylaminobutyraldehyde to γ-butyrobetaine in neurospora Krasa cells, The scope is not limited to this particular mechanism of action. The polynucleotide encoding the γ-trimethylaminoaldehyde dehydrogenase activity (TMABADH) is preferably a polynucleotide encoding the amino acid sequence of SEQ ID NO: 15. More preferably, they are polynucleotides having the nucleotide sequence of SEQ ID NO: 19.

본 발명에서 사용된 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 γ-부틸로베타인 히드록실라제 (γ-butyrobetaine hydroxylase) (BBH) 활성을 코딩하는 폴리뉴클레오티드는 뉴로스포라 크라사 유래의 γ-부틸로베타인 히드록실라제 (BBH)를 코딩한다. γ-부틸로베타인 히드록실라제 (BBH)은 뉴로스포라 크라사 세포에서 γ-부티로베타인을 L-카르니틴으로 전환하는 반응을 촉매하는 것으로 여겨지나, 본 발명의 범위가 이러한 특정한 작용 기작에 한정되는 것은 아니다. 상기 γ-부틸로베타인 히드록실라제 (BBH)를 코딩하는 폴리뉴클레오티드는 바람직하게는, 서열번호 16의 아미노산 서열을 코딩하는 폴리뉴클레오티드이다. 더욱 바람직하게는, 서열번호 20의 뉴클레오티드 서열을 갖는 폴리뉴클레오티드이다. Polynucleotides encoding γ-butyrobetaine hydroxylase (BBH) activity derived from Neurospora crassa used in the present invention may be derived from Neurospora Krasa . encodes γ-butylobetaine hydroxylase (BBH). Although γ-butylobetaine hydroxylase (BBH) is believed to catalyze the reaction of converting γ-butyrobetaine to L-carnitine in neurospora Krasa cells, the scope of the present invention is directed to this specific mechanism of action. It is not limited to. The polynucleotide encoding the γ-butylobetaine hydroxylase (BBH) is preferably a polynucleotide encoding the amino acid sequence of SEQ ID NO. More preferably, the polynucleotide has a nucleotide sequence of SEQ ID NO: 20.

본 발명은 또한, 상기 본 발명에 따른 따른 미생물을 ε-N-트리메틸라이신, β-히드록시-N-트리메틸라이신, γ-N-트리메틸아미노부티르알데히드, γ-부티로베타인 및 그의 혼합물로 구성되는 군으로부터 선택되는 기질의 존재하에서 배양하여 L-카르니틴을 배양물 중에 생산하는 단계를 포함하는, L-카르니틴의 제조방법을 제공한다. The invention also relates to microorganisms according to the invention comprising ε-N-trimethyllysine, β-hydroxy-N-trimethyllysine, γ-N-trimethylaminobutyraldehyde, γ-butyrobetaine and mixtures thereof. It provides a method for producing L-carnitine, comprising the step of producing L-carnitine in the culture by culturing in the presence of a substrate selected from the group consisting of.

본 발명의 L-카르니틴 제조방법에 있어서, 상기 본 발명에 따른 따른 미생 물은 상기한 바와 같다. In the L-carnitine production method of the present invention, the microorganism according to the present invention is as described above.

본 발명의 L-카르니틴 제조방법에 있어서, 상기 N-트리메틸라이신, β-히드록시-N-트리메틸라이신, γ-N-트리메틸아미노부티르알데히드, γ-부티로베타인 및 그의 혼합물로 구성되는 군으로부터 선택되는 기질의 농도는 특별히 제한되는 것은 아니나, 바람직하게는 배양 배지의 중량에 비하여, 0.1 내지 10 중량 %이다.In the method for producing L-carnitine of the present invention, the group consisting of the above-mentioned N-trimethyllysine, β-hydroxy-N-trimethyllysine, γ-N-trimethylaminobutyraldehyde, γ-butyrobetaine and mixtures thereof The concentration of the substrate selected from is not particularly limited, but is preferably 0.1 to 10% by weight relative to the weight of the culture medium.

본 발명의 방법에 있어서, 배양물 중의 L-카르니틴은 회수 과정에 의하여 분리 정제될 수 있다. 이러한 분리 정제 과정은 당업계에 잘 알려져 있다. 이러한 방법에는 예를 들면, 한외여과, 원심분리 및 사별 (decantation)과 같은 배양물로부터 세포를 분리하여 상등액을 얻고, 얻어진 상등액을 양이온 교환 크로마토그래피, 또는 전기투석 후 재결정에 의하여 L-카르니틴을 회수되는 방법이 포함되나, 여기에 한정되는 것은 아니다.In the method of the present invention, L-carnitine in culture can be separated and purified by a recovery process. Such separation and purification procedures are well known in the art. In this method, for example, cells are separated from cultures such as ultrafiltration, centrifugation and decantation to obtain a supernatant, and the obtained supernatant is recovered by L-carnitine by cation exchange chromatography or recrystallization after electrodialysis. Methods include, but are not limited to:

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실시예 : Example

본 실시예에서는 뉴로스포라 크라사로부터 L-카르니틴의 생합성에 관련되는 4 종류의 단백질을 코딩하는 폴리뉴클레오티드를 선발하고, 이를 포함하는 핵산 구조체를 제조하였다. 다음으로, 이들 구조체로 대장균을 형진전환하고 그로부터 얻어지는 형질전환된 대장균을 L-카르니틴 생산 경로의 중간 산물을 포함하는 배지에서 배양하여 L-카르니틴을 생산한 다음 회수하였다. In this example, polynucleotides encoding four kinds of proteins related to the biosynthesis of L-carnitine were selected from neurospora krasa, and a nucleic acid construct comprising the same was prepared. Next, E. coli was transformed into these constructs, and the transformed E. coli obtained therefrom was cultured in a medium containing an intermediate product of the L-carnitine production route to produce L-carnitine and then recovered.                     

실시예 1 : 뉴로스포라 크라사로부터 TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드의 분리Example 1 Isolation of Polynucleotides Encoding TMLH, SHMT, TMABADH and BBH from Neurospora Krasa

본 실시예에서는 뉴로스포라 크라사로부터 TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드를 분리하고, 클로닝하여 그의 염기서열을 분석하였다.
In this example, polynucleotides encoding TMLH, SHMT, TMABADH and BBH were isolated from neurospora krasa, cloned, and their nucleotide sequences were analyzed.

(1) 뉴로스포라 크라사의 cDNA 라이브러리의 제작(1) Construction of cDNA Library of Neurospora Krasa

뉴로스포라 크라사 균체 (포자체를 포함)를 포함하는 배양물로부터 총 mRNA를 분리하고, 폴리 T 프라이머를 이용하여 역전사 반응을 수행한 다음 PCR 반응을 수행하여 cDNA를 증폭하였다. 증폭된 cDNA는 EcoRI 및 XhoI으로 처리한 다음, λAD5 클로닝 벡터의 EcoRI 및 XhoI 부위에 삽입하여 뉴로스포라 크라사 유래 cDNA 라이브러리를 제작하였다. Total mRNA was isolated from cultures containing neurospora Krasa cells (including spores), reverse transcription was carried out using poly T primers, and then PCR reactions were performed to amplify cDNA. The amplified cDNA was treated with EcoRI and XhoI, and then inserted into the EcoRI and XhoI sites of the λAD5 cloning vector to prepare a neurospora Krasa-derived cDNA library.

다음으로, 상기 cDNA 라이브러리를 대장균 BNN322에 감염시킨 다음 대장균 BNN322를 배양하여 증폭하였다. 먼저, 대장균 BNN322를 카나마이신 50 ㎍/ml과 0.2 % 포도당을 포함하는 LB 배지에서 밤새 배양하였다. 그 결과 얻어진 배양물을 원심분리한 다음, 상등액을 제거하고 세포 펠렛은 1 ml의 10 mM MgSO4에 재현탁하였다. 얻어진 현탁액과 5 x 107 PFU의 상기 λ cDNA 라이브러리를 30 ℃에서 30 분 동안 진탕없이 배양하였다. 상기 배양물에 2 ml의 LB 배지를 더 첨가하고, 30 ℃에서 1 시간 동안 진탕 배양기에서 진탕하였다. 배양된 세포를 암피실린 (75 ㎍/ml)을 포함하는 LB 배지 플레이트에 도말하고, 37 ℃에서 8 시간 동안 배양하였다. 상기 플 레이트의 콜로니로부터 위저드 키트 (Wizard kit)를 사용하여 cDNA 라이브러리 풀을 분리하였다. 이렇게 분리된 cDNA 라이브러리 풀을 포함하는 λ를 TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드를 증폭하기 위한 주형으로서 사용하였다.
Next, the cDNA library was infected with E. coli BNN322, and then cultured and amplified E. coli BNN322. First, E. coli BNN322 was incubated overnight in LB medium containing 50 μg / ml of kanamycin and 0.2% glucose. The resulting culture was centrifuged, then the supernatant was removed and the cell pellet was resuspended in 1 ml of 10 mM MgSO 4 . The resulting suspension and the λ cDNA library of 5 × 10 7 PFU were incubated at 30 ° C. for 30 minutes without shaking. 2 ml of LB medium was further added to the culture and shaken in a shake incubator at 30 ° C. for 1 hour. Cultured cells were plated in LB medium plates containing ampicillin (75 μg / ml) and incubated at 37 ° C. for 8 hours. CDNA library pools were isolated from the colonies of the plates using the Wizard kit. [Lambda] comprising such isolated cDNA library pool was used as a template for amplifying polynucleotides encoding TMLH, SHMT, TMABADH and BBH.

(2) TMLH를 코딩하는 폴리뉴클레오티드 (carB 유전자)의 증폭, 클로닝 및 TMLH 생성의 확인(2) Confirmation of amplification, cloning and TMLH production of polynucleotides encoding TMLH ( carB gene)

(a) TMLH를 코딩하는 폴리뉴클레오티드 (carB 유전자)의 증폭 및 클로닝(a) Amplification and cloning of polynucleotides encoding the TMLH ( carB gene)

상기 (1)의 cDNA 라이브러리 풀을 포함하는 λ를 주형으로 하고, 서열번호 1과 2를 프라이머로 하여 PCR을 수행하였다. 그 결과 얻어지는 PCR 산물을 아가로즈 겔 전기영동하였으며, 약 1.4 kb의 원하는 산물을 확인하였다. 상기 서열번호 1과 2의 프라이머는 뉴로스포라 크라사 유래 TMLH의 개시 코돈과 종결 코돈을 코딩하는 서열로 추정되는 서열을 포함하고 있으며, 이는 공지의 인간 및 랫트 유래 TMLH의 아미노산 서열을 뉴로스포라 유전체로부터 발현되는 전체 단백질의 아미노산 서열과 상동성 검색을 통하여, 뉴로스포라 크라사 유래 TMLH를 추정하고 이로부터 설계된 것이다. PCR was performed using λ containing the cDNA library pool of (1) as a template and SEQ ID NOs: 1 and 2 as primers. The resulting PCR product was subjected to agarose gel electrophoresis, confirming the desired product of about 1.4 kb. The primers of SEQ ID NOs: 1 and 2 include sequences estimated to be sequences encoding start codons and stop codons of neurospora Krasa-derived TMLH, which are known as aminospores of human and rat-derived TMLH. By searching for homology with the amino acid sequence of the entire protein expressed from the genome, neurospora Krasa derived TMLH was designed from this.

상기 PCR 산물을 EcoRI과 SalI으로 소화하고, 동일한 효소로 처리된 pBS KS+ (Stratagene Inc.)에 연결하고, 얻어지는 PCR 산물이 삽입된 pBS KS+ carB로 대장균 DH5α를 형질전환하였다. 상기 형질전환된 대장균 DH5α를 37 ℃에서 8 시간 동안 배양한 다음, pBS KS+ carB를 분리하고 EcoRI과 SalI으로 처리하여 PCR 산물이 제대로 삽입되었는지를 확인하였다. 다음으로, 상기 분리된 pBS KS+ carB를 NdeI과 SalI으로 처리한 다음, 아가로즈 겔에서 전기영동한 다음 NdeI 및 SalI 단편을 분리하였다. 상기 단편을 동일한 효소로 처리된 발현 벡터 pT7-7에 연결하여 pT7-7carB를 얻었다 (도 2 참조). 상기 pT7-7carB로 대장균 BL21(DE3)를 형질전환하였다. The PCR product was digested with EcoRI and SalI, linked to pBS KS + (Stratagene Inc.) treated with the same enzyme, and transformed into E. coli DH5α with pBS KS + carB inserted with the obtained PCR product. The transformed E. coli DH5α was incubated at 37 ° C. for 8 hours, and then pBS KS + carB was isolated and treated with EcoRI and SalI to confirm that the PCR product was correctly inserted. Next, the isolated pBS KS + carB was treated with NdeI and SalI, followed by electrophoresis on an agarose gel, and then NdeI and SalI fragments were separated. The fragment was linked to the expression vector pT7-7 treated with the same enzyme to obtain pT7-7 carB (see FIG. 2). E. coli BL21 (DE3) was transformed with the pT7-7 carB .

(b) TMLH 생성의 확인(b) Confirmation of TMLH Generation

이렇게 얻어진 pT7-7carB로 형질전환된 대장균 BL21(DE3)를 암피실린 (100 ㎍/ml)이 첨가된 LB 배지 50 ml가 채워진 250 ml 배플 플라스크에서 OD600 값이 0.6이 될 때까지 37 ℃에서 배양한 다음, IPTG (1 mM)을 첨가한 한 다음 4 시간 더 배양하였다. 배양물로부터 pT7-7carB를 분리하여 NdeI 및 SalI으로 처리하여 아가로즈 겔에서 전기영동하였다. 그 결과를 도 6에 나타내었다. 도 6에 나타낸 바와 같이 NdeI 및 SalI 단편에 대응되는 밴드를 확인할 수 있었다 (레인 2). 다음으로, pT7-7carB를 분리하여 carB의 뉴클레오티드 서열을 분석한 결과, NCBI의 뉴로스포라 크라사 게놈 데이터 베이스에 저장되어 있는 서열과 동일함을 확인하였다 (서열번호 17). E. coli BL21 (DE3) transformed with pT7-7 carB thus obtained was incubated at 37 ° C. in a 250 ml baffle flask filled with 50 ml of LB medium supplemented with ampicillin (100 μg / ml) until the OD 600 value was 0.6. Then, IPTG (1 mM) was added, followed by further 4 hours of incubation. PT7-7 carB was isolated from the culture and treated with NdeI and SalI and electrophoresed on agarose gel. The results are shown in FIG. As shown in FIG. 6, the bands corresponding to the NdeI and SalI fragments were identified (lane 2). Next, pT7-7 carB was isolated and analyzed for the nucleotide sequence of carB , and found to be identical to the sequence stored in the neurospora Krasa genomic database of NCBI (SEQ ID NO: 17).

또한, pT7-7carB로 형질전환된 대장균 BL21(DE3)의 배양물 중에 발현된 TMLH의 활성을 조사하였다. 먼저, 상기 배양물을 4,000 xg에서 15 분 동안 원심분리하여 세포 펠렛을 회수하였다. 얻어진 세포 펠렛을 1ml의 파쇄 버퍼 (lysis buffer) (10 mM 인산 나트륨 완충액 pH 7.4 중의 140 mM NaCl, 200 g/l 글리세롤, 및 1 mM DTT)에 첨가하고 재현탁하였다. 상기 세포 현탁물을 얼음조에 담그고 초음파 분쇄기를 이용하여 10 초씩 5 회 초음파를 처리하여 세포를 파쇄하였다. 세포 파쇄물을 4 ℃에서 10,000g로 20 내지 30 분 동안 원심분리한 다음, 세포 파편 (cell debris)을 제거하고 상등액을 회수하여 세포 조추출물을 얻었다. 얻어진 세포 조추출물로부터 시료를 채취하여 8 % SDS-PAGE를 수행하였다 (도 7 참조). SDS-PAGE를 수행한 결과 약 52 KDa의 TMLH에 해당하는 밴드를 확인할 수 있었다.
In addition, the activity of TMLH expressed in the culture of Escherichia coli BL21 (DE3) transformed with pT7-7 carB was investigated. First, the culture was centrifuged at 4,000 xg for 15 minutes to recover cell pellets. The resulting cell pellet was added to 1 ml of lysis buffer (140 mM NaCl in 200 mM sodium phosphate buffer pH 7.4, 200 g / l glycerol, and 1 mM DTT) and resuspended. The cell suspension was immersed in an ice bath and sonicated five times for 10 seconds using an ultrasonic mill to disrupt cells. The cell debris was centrifuged at 10,000 g at 4 ° C. for 20 to 30 minutes, then cell debris was removed and the supernatant was recovered to obtain a crude crude extract. Samples were taken from the obtained crude cell extracts and subjected to 8% SDS-PAGE (see FIG. 7). SDS-PAGE showed a band corresponding to a TMLH of about 52 KDa.

(3) 3-히드록시-6-N-트리메틸라이신 알돌라제 (SHMT)를 코딩하는 폴리뉴클레오티드 (carC)의 증폭, 클로닝 및 SHMT 생성의 확인(3) Confirmation of amplification, cloning and SHMT production of polynucleotide ( carC ) encoding 3-hydroxy-6-N-trimethyllysine aldolase (SHMT)

(a) 3-히드록시-6-N-트리메틸라이신 알돌라제 (SHMT)를 코딩하는 폴리뉴클레오티드 (carC)의 증폭 및 클로닝(a) Amplification and cloning of polynucleotides ( carC ) encoding 3-hydroxy-6-N-trimethyllysine aldolase (SHMT)

상기 (1)의 cDNA 라이브러리 풀을 포함하는 λ를 주형으로 하고, 서열번호 3과 4를 프라이머로 하여 PCR을 수행하였다. 그 결과 얻어지는 PCR 산물을 아가로즈 겔 전기영동하였으며, 약 1.4 kb의 원하는 산물을 확인하였다. 상기 서열번호 3과 4의 프라이머는 뉴로스포라 크라사 유래 SHMT의 개시 코돈과 종결 코돈을 코딩하는 서열로 추정되는 서열을 포함하고 있으며, 이는 공지의 인간 및 랫트 유래 SHMT의 아미노산 서열을 뉴로스포라 유전체로부터 발현되는 전체 단백질의 아미노산 서열과 상동성 검색을 통하여, 뉴로스포라 크라사 유래 SHMT를 추정하고 이로부터 설계된 것이다. PCR was performed using λ including the cDNA library pool of (1) as a template and SEQ ID NOs: 3 and 4 as primers. The resulting PCR product was subjected to agarose gel electrophoresis, confirming the desired product of about 1.4 kb. The primers of SEQ ID NOs: 3 and 4 include sequences estimated to be sequences encoding start codons and stop codons of neurospora Krasa-derived SHMTs, which are known as neurospora amino acid sequences of human and rat-derived SHMTs. By searching for homology with the amino acid sequence of the whole protein expressed from the genome, SHSP derived neurospora Krasa was designed from this.                     

상기 PCR 산물을 EcoRI과 SalI으로 소화하고, 동일한 효소로 처리된 pBS KS+ (Stratagene Inc.)에 연결하고, 얻어지는 PCR 산물이 삽입된 pBS KS+ carC로 대장균 DH5α를 형질전환하였다. 상기 형질전환된 대장균 DH5α를 37 ℃에서 8 시간 동안 배양한 다음, pBS KS+ carC를 분리하고 EcoRI과 SalI으로 처리하여 PCR 산물이 제대로 삽입되었는지를 확인하였다. 다음으로, 상기 분리된 pBS KS+ carC를 NdeI과 SalI으로 처리한 다음, 아가로즈 겔에서 전기영동한 다음 NdeI 및 SalI 단편을 분리하였다. 상기 단편을 동일한 효소로 처리된 발현 pT7-7에 연결하여 pT7-7carC를 얻었다 (도 3 참조). 상기 pT7-7carC로 대장균 BL21(DE3)를 형질전환하였다. The PCR product was digested with EcoRI and SalI, linked to pBS KS + (Stratagene Inc.) treated with the same enzyme, and transformed into E. coli DH5α with pBS KS + carC inserted with the resulting PCR product. The transformed E. coli DH5α was incubated at 37 ° C. for 8 hours, and then pBS KS + carC was isolated and treated with EcoRI and SalI to confirm that the PCR product was properly inserted. Next, the isolated pBS KS + carC was treated with NdeI and SalI, followed by electrophoresis on an agarose gel, and then NdeI and SalI fragments were separated. The fragment was linked to expression pT7-7 treated with the same enzyme to obtain pT7-7 carC (see FIG. 3). E. coli BL21 (DE3) was transformed with the pT7-7 carC .

(b) SHMT 생성의 확인(b) Confirmation of SHMT Generation

이렇게 얻어진 pT7-7carC로 형질전환된 대장균 BL21(DE3)를 암피실린 (100 ㎍/ml)이 첨가된 LB 배지 50 ml가 채워진 250 ml 배플 플라스크에서 OD600 값이 0.6이 될 때까지 37 ℃에서 배양한 다음, IPTG (1 mM)을 첨가한 한 다음 4 시간 더 배양하였다. 배양물로부터 pT7-7carC를 분리하여 NdeI 및 SalI으로 처리하여 아가로즈 겔에서 전기영동하였다. 그 결과를 도 6에 나타내었다. 도 6에 나타낸 바와 같이 NdeI 및 SalI 단편에 대응되는 밴드를 확인할 수 있었다 (레인 3). 다음으로, pT7-7carC를 분리하여 carC의 뉴클레오티드 서열을 분석한 결과, NCBI의 뉴로스포라 크라사 게놈 데이터 베이스에 저장되어 있는 서열과 동일함을 확인하였다 (서열번호 18). E. coli BL21 (DE3) transformed with pT7-7 carC thus obtained was incubated at 37 ° C. in a 250 ml baffle flask filled with 50 ml of LB medium supplemented with ampicillin (100 μg / ml) until the OD 600 value was 0.6. Then, IPTG (1 mM) was added, followed by further 4 hours of incubation. PT7-7 carC was isolated from the culture and treated with NdeI and SalI and electrophoresed on agarose gel. The results are shown in FIG. As shown in FIG. 6, the bands corresponding to the NdeI and SalI fragments were identified (lane 3). Next, pT7-7 carC was isolated and analyzed for the nucleotide sequence of carC . As a result, it was confirmed that it was identical to the sequence stored in the neurospora Krasa genomic database of NCBI (SEQ ID NO: 18).

또한, pT7-7carC로 형질전환된 대장균 BL21(DE3)의 배양물 중에 발현된 SHMT의 활성을 조사하였다. 먼저, 상기 배양물을 4,000 xg에서 15 분 동안 원심분리하여 세포 펠렛을 회수하였다. 얻어진 세포 펠렛을 1ml의 파쇄 버퍼 (lysis buffer) (10 mM 인산 나트륨 완충액 pH 7.4 중의 140 mM NaCl, 200 g/l 글리세롤, 및 1 mM DTT)에 첨가하고 재현탁하였다. 상기 세포 현탁물을 얼음조에 담그고 초음파 분쇄기를 이용하여 10 초씩 5 회 초음파를 처리하여 세포를 파쇄하였다. 세포 파쇄물을 4 ℃에서 10,000g로 20 내지 30 분 동안 원심분리한 다음, 세포 파편 (cell debris)을 제거하고 상등액을 회수하여 세포 조추출물을 얻었다. 얻어진 세포 조추출물로부터 시료를 채취하여 8 % SDS-PAGE를 수행하였다 (도 7 참조). SDS-PAGE를 수행한 결과 약 53 KDa의 SHMT에 해당하는 밴드를 확인할 수 있었다.In addition, the activity of SHMT expressed in the culture of Escherichia coli BL21 (DE3) transformed with pT7-7 carC was investigated. First, the culture was centrifuged at 4,000 xg for 15 minutes to recover cell pellets. The resulting cell pellet was added to 1 ml of lysis buffer (140 mM NaCl in 200 mM sodium phosphate buffer pH 7.4, 200 g / l glycerol, and 1 mM DTT) and resuspended. The cell suspension was immersed in an ice bath and sonicated five times for 10 seconds using an ultrasonic mill to disrupt cells. The cell debris was centrifuged at 10,000 g at 4 ° C. for 20 to 30 minutes, then cell debris was removed and the supernatant was recovered to obtain a crude crude extract. Samples were taken from the obtained crude cell extracts and subjected to 8% SDS-PAGE (see FIG. 7). SDS-PAGE showed a band corresponding to SHMT of about 53 KDa.

(4) γ-트리메틸아미노알데히드 데히드로게나제 (TMABADH)를 코딩하는 폴리뉴클레오티드 (carD)의 증폭, 클로닝 및 TMABADH 생성의 확인(4) Amplification, cloning of polynucleotide ( carD ) encoding γ-trimethylaminoaldehyde dehydrogenase (TMABADH), confirmation of TMABADH production

(a) γ-트리메틸아미노알데히드 데히드로게나제 (TMABADH)를 코딩하는 폴리뉴클레오티드 (carD)의 증폭 및 클로닝(a) Amplification and cloning of polynucleotides ( carD ) encoding γ-trimethylaminoaldehyde dehydrogenase (TMABADH)

상기 (1)의 cDNA 라이브러리 풀을 포함하는 λ를 주형으로 하고, 서열번호 5과 6을 프라이머로 하여 PCR을 수행하였다. 그 결과 얻어지는 PCR 산물을 아가로즈 겔 전기영동하였으며, 약 1.5 kb의 원하는 산물을 확인하였다. 상기 서열번호 5와 6의 프라이머는 뉴로스포라 크라사 유래 TMABDH의 개시 코돈과 종결 코돈을 코딩하는 서열로 추정되는 서열을 포함하고 있으며, 이는 공지의 인간 및 랫트 유래 TMABDH의 아미노산 서열을 뉴로스포라 유전체로부터 발현되는 전체 단백질의 아미 노산 서열과 상동성 검색을 통하여, 뉴로스포라 크라사 유래 TMABDH를 추정하고 이로부터 설계된 것이다. PCR was performed using λ comprising the cDNA library pool of (1) as a template and SEQ ID NOs: 5 and 6 as primers. The resulting PCR product was subjected to agarose gel electrophoresis, confirming the desired product of about 1.5 kb. The primers of SEQ ID NOs: 5 and 6 include sequences estimated to be sequences encoding initiation and termination codons of neurospora Krasa-derived TMABDH. Through homology with amino acid sequences of whole proteins expressed from the genome, neurospora Krasa-derived TMABDH was designed and designed therefrom.

상기 PCR 산물을 EcoRI과 SalI으로 소화하고, 동일한 효소로 처리된 pBS KS+ (Stratagene Inc.)에 연결하고, 얻어지는 PCR 산물이 삽입된 pBS KS+ carD로 대장균 DH5α를 형질전환하였다. 상기 형질전환된 대장균 DH5α를 37 ℃에서 8 시간 동안 배양한 다음, pBS KS+ carD를 분리하고 EcoRI과 SalI으로 처리하여 PCR 산물이 제대로 삽입되었는지를 확인하였다. 다음으로, 상기 분리된 pBS KS+ carD를 NdeI과 SalI으로 처리한 다음, 아가로즈 겔에서 전기영동한 다음 NdeI 및 SalI 단편을 분리하였다. 상기 단편을 동일한 효소로 처리된 발현 pT7-7에 연결하여 pT7-7carD를 얻었다 (도 4 참조). 상기 pT7-7carD로 대장균 BL21(DE3)를 형질전환하였다. The PCR product was digested with EcoRI and SalI, linked to pBS KS + (Stratagene Inc.) treated with the same enzyme, and transformed into E. coli DH5α with pBS KS + carD inserted with the obtained PCR product. The transformed E. coli DH5α was incubated at 37 ° C. for 8 hours, and then pBS KS + carD was isolated and treated with EcoRI and SalI to confirm that the PCR product was properly inserted. Next, the isolated pBS KS + carD was treated with NdeI and SalI, followed by electrophoresis on an agarose gel, and then NdeI and SalI fragments were separated. The fragment was linked to expression pT7-7 treated with the same enzyme to obtain pT7-7 carD (see FIG. 4). E. coli BL21 (DE3) was transformed with the pT7-7 carD .

(b) TMABADH 생성의 확인(b) Confirmation of TMABADH production

이렇게 얻어진 pT7-7carD로 형질전환된 대장균 BL21(DE3)를 암피실린이 첨가된 LB 배지 50 ml가 채워진 250 ml 배플 플라스크에서 OD600 값이 0.6이 될 때까지 37 ℃에서 배양한 다음, IPTG (1 mM)을 첨가한 한 다음 4 시간 더 배양하였다. 배양물로부터 pT7-7carD를 분리하여 NdeI 및 SalI으로 처리하여 아가로즈 겔에서 전기영동하였다. 그 결과를 도 6에 나타내었다. 도 6에 나타낸 바와 같이 NdeI 및 SalI 단편에 대응되는 밴드를 확인할 수 있었다 (레인 4). 다음으로, pT7-7carD를 분리하여 carD의 뉴클레오티드 서열을 분석한 결과, NCBI의 뉴로스포라 크라사 게 놈 데이터 베이스에 저장되어 있는 서열과 동일함을 확인하였다 (서열번호 19). E. coli BL21 (DE3) transformed with pT7-7 carD thus obtained was cultured in a 250 ml baffle flask filled with 50 ml of LB medium supplemented with ampicillin at 37 ° C. until the OD 600 value was 0.6, followed by IPTG (1 mM) was added and then incubated for another 4 hours. PT7-7 carD was isolated from the culture and treated with NdeI and SalI and electrophoresed on agarose gel. The results are shown in FIG. As shown in FIG. 6, the bands corresponding to the NdeI and SalI fragments were identified (lane 4). Next, pT7-7 carD was isolated and analyzed for the nucleotide sequence of carD , and it was confirmed that it was identical to the sequence stored in the neurospora Krasage genome database of NCBI (SEQ ID NO: 19).

또한, pT7-7carD로 형질전환된 대장균 BL21(DE3)의 배양물 중에 발현된 TMABADH의 활성을 조사하였다. 먼저, 상기 배양물을 4,000 xg에서 15 분 동안 원심분리하여 세포 펠렛을 회수하였다. 얻어진 세포 펠렛을 1ml의 파쇄 버퍼 (lysis buffer) (10 mM 인산 나트륨 완충액 pH 7.4 중의 140 mM NaCl, 200 g/l 글리세롤, 및 1 mM DTT)에 첨가하고 재현탁하였다. 상기 세포 현탁물을 얼음조에 담그고 초음파 분쇄기를 이용하여 10 초씩 5 회 초음파를 처리하여 세포를 파쇄하였다. 세포 파쇄물을 4 ℃에서 10,000g로 20 내지 30 분 동안 원심분리한 다음, 세포 파편 (cell debris)을 제거하고 상등액을 회수하여 세포 조추출물을 얻었다. 얻어진 세포 조추출물로부터 시료를 채취하여 8 % SDS-PAGE를 수행하였다 (도 7 참조). SDS-PAGE를 수행한 결과 약 55 KDa의 TMABADH에 해당하는 밴드를 확인할 수 있었다. In addition, the activity of TMABADH expressed in the culture of Escherichia coli BL21 (DE3) transformed with pT7-7 carD was investigated. First, the culture was centrifuged at 4,000 xg for 15 minutes to recover cell pellets. The resulting cell pellet was added to 1 ml of lysis buffer (140 mM NaCl in 200 mM sodium phosphate buffer pH 7.4, 200 g / l glycerol, and 1 mM DTT) and resuspended. The cell suspension was immersed in an ice bath and sonicated five times for 10 seconds using an ultrasonic mill to disrupt cells. The cell debris was centrifuged at 10,000 g at 4 ° C. for 20 to 30 minutes, then cell debris was removed and the supernatant was recovered to obtain a crude crude extract. Samples were taken from the obtained crude cell extracts and subjected to 8% SDS-PAGE (see FIG. 7). SDS-PAGE showed a band corresponding to TMABADH of about 55 KDa.

(5) γ-부티로베타인 히드록실라제 (BBH)를 코딩하는 폴리뉴클레오티드 (carE)의 증폭, 클로닝 및 역가의 확인(5) Confirmation of amplification, cloning and titer of polynucleotide ( carE ) encoding γ-butyrobetaine hydroxylase (BBH)

(a) γ-부티로베타인 히드록실라제 (BBH)를 코딩하는 폴리뉴클레오티드 (carE)의 증폭 및 클로닝(a) Amplification and cloning of polynucleotides ( carE ) encoding γ-butyrobetaine hydroxylase (BBH)

상기 (1)의 cDNA 라이브러리 풀을 포함하는 λ를 주형으로 하고, 서열번호 7과 8을 프라이머로 하여 PCR을 수행하였다. 그 결과 얻어지는 PCR 산물을 아가로즈 겔 전기영동하였으며, 약 1.3 kb의 원하는 산물을 확인하였다. 상기 서열번호 7과 8의 프라이머는 뉴로스포라 크라사 유래 BBH의 개시 코돈과 종결 코돈을 코딩하는 서열로 추정되는 서열을 포함하고 있으며, 이는 공지의 인간 및 랫트 유래 BBH의 아미노산 서열을 뉴로스포라 유전체로부터 발현되는 전체 단백질의 아미노산 서열과 상동성 검색을 통하여, 뉴로스포라 크라사 유래 BBH를 추정하고 이로부터 설계된 것이다. PCR was performed using λ comprising the cDNA library pool of (1) as a template and SEQ ID NOs. 7 and 8 as primers. The resulting PCR product was subjected to agarose gel electrophoresis, confirming the desired product of about 1.3 kb. The primers of SEQ ID NOs: 7 and 8 include sequences estimated to be sequences encoding start codons and stop codons of neurospora Krasa-derived BBH, which are known as neurospora amino acid sequences of known human and rat-derived BBHs. By searching for homology with the amino acid sequence of the whole protein expressed from the genome, neurospora Krasa-derived BBH was estimated and designed therefrom.

상기 PCR 산물을 EcoRI과 SalI으로 소화하고, 동일한 효소로 처리된 pUC19 에 연결하고, 얻어지는 PCR 산물이 삽입된 pUC19carE로 대장균 DH5α를 형질전환하였다. 상기 형질전환된 대장균 DH5α를 암피실린 (100 ㎍/ml)이 첨가된 LB 배지에서 37 ℃에서 8 시간 동안 배양한 다음, pUC19carE를 분리하고 EcoRI과 SalI으로 처리하여 PCR 산물이 제대로 삽입되었는지를 확인하였다. 다음으로, 상기 분리된 pUC19carE를 NdeI과 SalI으로 처리한 다음, 아가로즈 겔에서 전기영동한 다음 NdeI 및 SalI 단편을 분리하였다. 상기 단편을 동일한 효소로 처리된 발현 pT7-7에 연결하여 pT7-7carE를 얻었다 (도 5 참조). 상기 pT7-7carE로 대장균 BL21(DE3)를 형질전환하였다. The PCR product was digested with EcoRI and SalI, linked to pUC19 treated with the same enzyme, and transformed into E. coli DH5α with pUC19 carE inserted with the obtained PCR product. The transformed Escherichia coli DH5α was incubated for 8 hours at 37 ° C. in LB medium to which ampicillin (100 μg / ml) was added, and then the pUC19 carE was isolated and treated with EcoRI and SalI to confirm that the PCR product was correctly inserted. . Next, the isolated pUC19 carE was treated with NdeI and SalI, followed by electrophoresis on an agarose gel, and then NdeI and SalI fragments were separated. The fragment was linked to expression pT7-7 treated with the same enzyme to obtain pT7-7 carE (see FIG. 5). E. coli BL21 (DE3) was transformed with the pT7-7 carE .

이렇게 얻어진 pT7-7carE로 형질전환된 대장균 BL21(DE3)를 암피실린 (100 ㎍/ml)이 첨가된 LB 배지 50 ml가 채워진 250 ml 배플 플라스크에서 OD600 값이 0.6이 될 때까지 37 ℃에서 배양한 다음, IPTG (1 mM)을 첨가한 한 다음 4 시간 더 배양하였다. 배양물로부터 pT7-7carE를 분리하여 NdeI 및 SalI으로 처리하여 0.8 % 아가로즈 겔에서 전기영동하였다. 그 결과를 도 6에 나타내었다. 도 6에 나타낸 바와 같이 NdeI 및 SalI 단편에 대응되는 밴드를 확인할 수 있었다. 다음으로, pT7-7carE를 분리하여 carE의 뉴클레오티드 서열 (1278 bp)을 분석한 결과, NCBI의 뉴 로스포라 크라사 게놈 데이터 베이스에 저장되어 있는 서열과 동일함을 확인하였다 (서열번호 20).E. coli BL21 (DE3) transformed with pT7-7 carE thus obtained was incubated at 37 ° C. in a 250 ml baffle flask filled with 50 ml of LB medium supplemented with ampicillin (100 μg / ml) until the OD 600 value was 0.6. Then, IPTG (1 mM) was added, followed by further 4 hours of incubation. PT7-7 carE was isolated from the culture and treated with NdeI and SalI and electrophoresed on 0.8% agarose gel. The results are shown in FIG. As shown in FIG. 6, bands corresponding to the NdeI and SalI fragments were identified. Next, pT7-7 carE was isolated and the nucleotide sequence (1278 bp) of carE was analyzed, and it was confirmed that it was identical to the sequence stored in NCBI's Neurospora Krasa genomic database (SEQ ID NO: 20).

(b) BBH 단백질 생성 확인(b) Confirmation of BBH protein production

pT7-7carE로 형질전환된 대장균 BL21(DE3)의 배양물 중에 발현된 BBH의 활성을 조사하였다. 먼저, 상기 배양물을 4,000 xg에서 15 분 동안 원심분리하여 세포 펠렛을 회수하였다. 얻어진 세포 펠렛을 1ml의 파쇄 버퍼 (lysis buffer) (10 mM 인산 나트륨 완충액 pH 7.4 중의 140 mM NaCl, 200 g/l 글리세롤, 및 1 mM DTT)에 첨가하고 재현탁하였다. 상기 세포 현탁물을 얼음조에 담그고 초음파 분쇄기를 이용하여 10 초씩 5 회 초음파를 처리하여 세포를 파쇄하였다. 세포 파쇄물을 4 ℃에서 10,000 g로 20 내지 30 분 동안 원심분리한 다음, 세포 파편 (cell debris)을 제거하고 상등액을 회수하여 세포 조추출물을 얻었다. 얻어진 세포 조추출물로부터 시료를 채취하여 8 % SDS-PAGE를 수행하였다 (도 7 참조). SDS-PAGE를 수행한 결과 약 49 KDa의 BBH를 확인할 수 있었다. The activity of BBH expressed in culture of Escherichia coli BL21 (DE3) transformed with pT7-7 carE was investigated. First, the culture was centrifuged at 4,000 xg for 15 minutes to recover cell pellets. The resulting cell pellet was added to 1 ml of lysis buffer (140 mM NaCl in 200 mM sodium phosphate buffer pH 7.4, 200 g / l glycerol, and 1 mM DTT) and resuspended. The cell suspension was immersed in an ice bath and sonicated five times for 10 seconds using an ultrasonic mill to disrupt cells. Cell debris was centrifuged at 10,000 g at 4 ° C. for 20 to 30 minutes, then cell debris was removed and the supernatant was recovered to obtain cell crude extract. Samples were taken from the obtained crude cell extracts and subjected to 8% SDS-PAGE (see FIG. 7). SDS-PAGE showed a BBH of about 49 KDa.

실시예 2 : carB, carC, carDcarE를 함유하는 숙주 세포의 제조Example 2 Preparation of Host Cells Containing carB , carC , carD and carE

본 실시예에서는 실시예 1에서 제작된 뉴로스포라 크라사 cDNA 라이브러리로부터 carBcarE 유전자를 증폭하고, 이들 2 개의 유전자를 동시에 갖는 pT7-7BE를 제조하였다. 또한, 실시예 1에서 제작된 뉴로스포라 크라사 cDNA 라이브러리로부터 carCcarD 유전자를 증폭하고, 이들 2 개의 유전자를 동시에 갖는 pACYC184CD를 제조하였다. 이렇게 제작된 pT7-7BE와 pACYC184CD를 대장균 균주에 도입하여 carB, carC, carDcarE 유전자 모두를 갖는 형질전환된 균주 세포를 제조하였다. 상기 균주를 대장균 DH5α CJ2004로 명명하고, 2004년 1월 27일 국제기탁기관인 한국미생물보존센터에 기탁하였다 (수탁번호 KCCM-10581). In this example, carB and carE genes were amplified from the neurospora Krasa cDNA library prepared in Example 1, and pT7-7BE having these two genes was prepared. In addition, carC and carD genes were amplified from the neurospora Krasa cDNA library prepared in Example 1, and pACYC184CD having these two genes was prepared. PT7-7BE and pACYC184CD thus prepared were introduced into E. coli strains to prepare transformed strain cells having all of carB , carC , carD and carE genes. The strain was named Escherichia coli DH5α CJ2004, and was deposited on January 27, 2004 at the Korea Microorganism Conservation Center (Accession No. KCCM-10581).

(1) carBcarE 유전자를 동시에 갖는 pT7-7BE의 제조(1) Preparation of pT7-7BE Having CarB and CarE Genes Simultaneously

먼저, 뉴로스포라 크라사 cDNA 라이브러리를 주형으로 하고, 서열번호 1 및 2의 올리고뉴클레오티드를 프라이머로 하여 carB를 증폭하였다. 다음으로, 뉴로스포라 크라사 cDNA 라이브러리를 주형으로 하고, 서열번호 7 및 8의 올리고뉴클레오티드를 프라이머로 하여 T7 프로모터로부터 정지 코돈을 포함하는 carE를 증폭하였다. 이렇게 증폭된 carB와 E의 증폭산물을 pT7-7에 도입하였다. 먼저, carE 증폭 산물을 BamHI과 SalI으로 처리하여 BamHI 및 SalI 단편을 얻고, 이를 동일한 효소로 처리된 pT7-7와 연결하여, pT7-7carE를 얻었다. 다음으로, carB 증폭산물을 NdeI과 EcoRI으로 처리하여 NdeI 및 EcoRI 단편을 얻고, 이를 동일한 효소로 처리된 pT7-7carE와 연결하여, pT7-7BE를 얻었다 (도 8 참조). First, the neurospora Krasa cDNA library was used as a template, and carB was amplified using oligonucleotides of SEQ ID NOs: 1 and 2 as primers. Next, carE containing a stop codon was amplified from the T7 promoter using a neurospora Krasa cDNA library as a template and oligonucleotides of SEQ ID NOs: 7 and 8 as primers. The amplified products of carB and E thus amplified were introduced into pT7-7. First, the carE amplification product was treated with BamHI and SalI to obtain BamHI and SalI fragments, which were then linked with pT7-7 treated with the same enzyme to obtain pT7-7 carE . Next, carB amplification products were treated with NdeI and EcoRI to obtain NdeI and EcoRI fragments, which were then linked with pT7-7 carE treated with the same enzyme to obtain pT7-7BE (see FIG. 8).

(2) carCcarD 유전자를 동시에 갖는 pACYC184CD의 제조(2) Preparation of pACYC184CD Having CarC and CarD Genes Simultaneously

먼저, 뉴로스포라 크라사 cDNA 라이브러리를 주형으로 하고, 서열번호 3 및 4의 올리고뉴클레오티드를 프라이머로 하여 T7 프로모터로부터 정지 코돈을 포함하는 carC를 증폭하였다. 다음으로, 뉴로스포라 크라사 cDNA 라이브러리를 주형으로 하고, 서열번호 5 및 6의 올리고뉴클레오티드를 프라이머로 하여 T7 프로모터로부터 정지 코돈을 포함하는 carD를 증폭하였다. 이렇게 증폭된 carCD의 증폭산물을 pACYC184에 도입하였다. 먼저, carC 증폭 산물을 BamHI과 HIndIII로 처리하여 BamHI 및 HindIII 단편을 얻고, 이를 동일한 효소로 처리된 pACYC184와 연결하여, pACYC184carC를 얻었다. 다음으로, carD 증폭산물을 BamHI과 SalI으로 처리하여 BamHI 및 SalI 단편을 얻고, 이를 동일한 효소로 처리된 pACYC184carC와 연결하여, pACYC184CD를 얻었다 (도 9 참조). First, carC containing a stop codon was amplified from the T7 promoter using a neurospora Krasa cDNA library as a template and oligonucleotides of SEQ ID NOs: 3 and 4 as primers. Next, the neurospora Krasa cDNA library was used as a template, and the carD containing the stop codon was amplified from the T7 promoter using oligonucleotides of SEQ ID NOs: 5 and 6 as primers. The amplified products of carC and D thus amplified were introduced into pACYC184. First, the carC amplification product was treated with BamHI and HIndIII to obtain BamHI and HindIII fragments, which were linked with pACYC184 treated with the same enzyme to obtain pACYC184 carC . Next, the carD amplification product was treated with BamHI and SalI to obtain BamHI and SalI fragments, which were then linked with pACYC184 carC treated with the same enzyme to obtain pACYC184CD (see FIG. 9).

실시예 3 : TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드를 포함하는 균주를 이용한 L-카르니틴의 생산Example 3 Production of L-Carnitine Using Strains Comprising Polynucleotides Encoding TMLH, SHMT, TMABADH and BBH

본 실시예에서는 실시예 1에서 생산된 pT7-7carB, pT7-7carC, pT7-7carD, 및 pT7-7carE로 각각 형질전환된 대장균 BL21(DE3)을 트리메틸라이신을 포함하는 배지에서 혼합 배양하여 L-카르니틴 생산량을 확인하였다. 또한, 실시예 2에 제작된 pT7-7BE와 pACYC184CD로 동시에 형질전환된 대장균 BL21(DE3)을 배양하여 L-카르니틴 생산량을 확인하였다.In this example, E. coli BL21 (DE3) transformed with pT7-7 carB , pT7-7 carC , pT7-7 carD , and pT7-7 carE produced in Example 1, respectively, was mixed and cultured in a medium containing trimethyllysine. L-carnitine production was confirmed. In addition, L-carnitine production was confirmed by culturing Escherichia coli BL21 (DE3) transformed simultaneously with pT7-7BE and pACYC184CD prepared in Example 2.

(1) pT7-7carB, pT7-7carC, pT7-7carD, 및 pT7-7carE로 각각 형질전환된 대장균 BL21(DE3)의 혼합 배양(1) Mixed culture of Escherichia coli BL21 (DE3) transformed with pT7-7 carB , pT7-7 carC , pT7-7 carD , and pT7-7 carE , respectively

먼저, 각각의 균주를 암피실린 (100 ㎍/ml)이 첨가된 LB 고체 평판 배지에 도말하여 배양하였다. 각 균주의 콜로니를 암피실린 (100 ㎍/ml)이 첨가된 20 ml의 LB 배지를 포함하는 플라스크에서 37 ℃에서 12 시간 동안 배양하여 OD600이 1.0 이 될 때까지 배양하였다. 이렇게 배양된 각 균주의 배양물을 동량 (0.1 ml 씩)으로 2 mM의 트리메틸라이신을 포함하는 암피실린 (100 ㎍/ml)이 첨가된 LB 배지 20 ml를 포함하고 있는 250 ml 배플 플라스크에 첨가하고 37 ℃에서 OD600 값이 0.6이 될때까지 배양하였다. IPTG를 첨가하는 경우는 OD600 값이 0.6이 된 후, IPTG (1 mM)를 첨가하고 4 시간 더 배양하였다. 대조군으로 트리메틸라이신이 첨가되지 않은 LB 배지를 사용하였으며, 동일한 방법으로 IPTG를 첨가하여 배양하였다.First, each strain was plated and cultured in LB solid plate medium to which ampicillin (100 μg / ml) was added. Colonies of each strain were incubated for 12 hours at 37 ° C. in a flask containing 20 ml of LB medium to which ampicillin (100 μg / ml) was added until OD 600 became 1.0. Cultures of each of these cultured strains were then added in equal amounts (0.1 ml each) to a 250 ml baffle flask containing 20 ml of LB medium supplemented with ampicillin (100 μg / ml) containing 2 mM trimethyllysine and 37 The cells were incubated at an OD 600 value of 0.6. In case of adding IPTG, after the OD 600 value was 0.6, IPTG (1 mM) was added and incubated for 4 hours. LB medium without trimethyl lysine was used as a control, and cultured by adding IPTG in the same manner.

배양이 종료된 후, 배양물 중의 L-카르니틴의 함량을 측정하였다. 500 ㎕의 배양 상등액을 취하여 1.2 M의 퍼클로릭산 (perchloric acid) 500 ㎕와 혼합하였다. 혼합된 용액을 실온에서 10 분 동안 배양 후, 5 분 동안 원심분리하였다. 상등액 600 ㎕와 0.7 M의 K3PO4 320 ㎕를 혼합하고, 얼음조에서 20 분 동안 방치하였다. 혼합액을 5 분 동안 원심분리하고, 750 ㎕의 상등액만을 취하여 250 ㎕의 멸균증류수와 혼합하여 희석시킨다. 이 용액에 100 ㎕의 DNTB/H2O2를 넣고 10분 동안 방치하였다. 50 ㎕의 카탈라제 용액을 넣고 30 분 동안 실온에 방치한 다음, 원심분리하여 상등액 1 ml를 회수하였다. 여기에 50 ㎕의 아세틸 CoA를 넣고, 실온에서 5 분 동안 방치하였다. 2.26 ㎕의 카르니틴 아세틸 트란스퍼라제를 넣고 상온에서 10 분 동안 방치하였다. 405 nm에서 흡광도를 측정한 후에 L-카르니틴의 양을 계산하였다. 그 결과를 하기 표 1에 나타내었다.After the incubation was completed, the content of L-carnitine in the culture was measured. 500 μl of culture supernatant was taken and mixed with 500 μl of 1.2 M perchloric acid. The mixed solution was incubated at room temperature for 10 minutes and then centrifuged for 5 minutes. 600 μl of supernatant and 320 μl of 0.7 M K 3 PO 4 were mixed and left in an ice bath for 20 minutes. The mixture is centrifuged for 5 minutes, only 750 μl of supernatant is taken and diluted with 250 μl of sterile distilled water. 100 μl of DNTB / H 2 O 2 was added to the solution and left for 10 minutes. 50 μl of the catalase solution was added and allowed to stand at room temperature for 30 minutes, followed by centrifugation to recover 1 ml of the supernatant. 50 [mu] l of acetyl CoA was added thereto and allowed to stand at room temperature for 5 minutes. 2.26 μl of carnitine acetyl transferase was added thereto and allowed to stand at room temperature for 10 minutes. After measuring absorbance at 405 nm, the amount of L-carnitine was calculated. The results are shown in Table 1 below.

표 1. 혼합 배양에 의한 L-카르니틴의 생산량Table 1. Production of L-Carnitine by Mixed Culture

배양조건Culture condition 농도 (㎍/ml)Concentration (㎍ / ml) LB 배지 (IPTG 유도)LB medium (IPTG induction) 00 2 mM 트리메틸라이신을 포함하는 LB 배지 (IPTG 유도 없음)LB medium containing 2 mM trimethyllysine (no IPTG induction) 0.160.16 2 mM 트리메틸라이신을 포함하는 LB 배지 (IPTG 유도)LB medium containing 2 mM trimethyllysine (IPTG induction) 0.970.97

표 1에 나타낸 바와 같이, TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드를 각각 포함하는 균주를 트리메틸라이신을 포함하는 배지에서 혼합 배양함으로써, L-카르니틴을 높은 효율로 생산할 수 있었다.As shown in Table 1, L-carnitine was produced at high efficiency by mixing and culturing strains containing polynucleotides encoding TMLH, SHMT, TMABADH and BBH in a medium containing trimethyllysine.

(2) 실시예 2에 제작된 pT7-7BE와 pACYC184CD로 동시에 형질전환된 대장균 BL21(DE3)의 배양을 통한 L-카르니틴의 생산(2) Production of L-carnitine by culturing Escherichia coli BL21 (DE3) simultaneously transformed with pT7-7BE and pACYC184CD prepared in Example 2

먼저, 상기 각각의 균주를 암피실린 (100 ㎍/ml)과 클로람페니콜 (50 ㎍/ml)이 첨가된 LB 고체 평판배지에 도말하여 배양하였다. 각각의 균주의 콜로니를 암피실린 (100 ㎍/ml)과 클로람페니콜 (50 ㎍/ml)이 각각 첨가된 20 ml의 LB 배지를 포함하는 플라스크에서 37 ℃에서 12 시간 동안 배양하여 OD600이 1.0 가 될 때까지 배양하였다. 이렇게 배양된 각각의 균주의 배양물 0.1 ml를 2 mM의 트리메틸라이신을 포함하는 LB 배지 20 ml를 포함하고 있는 250 ml 배플 플라스크에 첨가하고 37 ℃에서 OD600 값이 0.6이 될때까지 배양하였다. IPTG를 첨가하는 경우는 OD600 값이 0.6이 된 후, IPTG (1 mM)를 첨가하고 4 시간 더 배양하였다. 대조군으로 트리메틸라이신이 첨가되지 않은 LB 배지를 사용하였으며, 동일한 방법으로 IPTG를 첨가하여 배양하였다.First, each strain was incubated in LB solid plate medium to which ampicillin (100 μg / ml) and chloramphenicol (50 μg / ml) were added. Colonies of each strain were incubated at 37 ° C. for 12 hours in a flask containing 20 ml of LB medium supplemented with ampicillin (100 μg / ml) and chloramphenicol (50 μg / ml), respectively, to give an OD 600 of 1.0. Incubated until. 0.1 ml of each strain cultured in this way was added to a 250 ml baffle flask containing 20 ml of LB medium containing 2 mM trimethyllysine and incubated at 37 ° C. until the OD 600 value was 0.6. In case of adding IPTG, after the OD 600 value was 0.6, IPTG (1 mM) was added and incubated for 4 hours. LB medium without trimethyl lysine was used as a control, and cultured by adding IPTG in the same manner.

배양이 종료된 후, 배양물 중의 L-카르니틴의 함량을 상기 (1)과 동일하게 측정하였다. 그 결과를 하기 표 2에 나타내었다.After the incubation was completed, the content of L-carnitine in the culture was measured in the same manner as in (1) above. The results are shown in Table 2 below.

표 2. 단일 배양에 의한 L-카르니틴의 생산량Table 2. Production of L-Carnitine by Single Culture

배양조건Culture condition 농도 (㎍/ml)Concentration (㎍ / ml) LB 배지 (IPTG 유도)LB medium (IPTG induction) 00 2 mM 트리메틸라이신을 포함하는 LB 배지 (IPTG 유도 없음)LB medium containing 2 mM trimethyllysine (no IPTG induction) 0.650.65 2 mM 트리메틸라이신을 포함하는 LB 배지 (IPTG 유도)LB medium containing 2 mM trimethyllysine (IPTG induction) 1.121.12

표 2에 나타낸 바와 같이, TMLH, SHMT, TMABADH 및 BBH를 코딩하는 폴리뉴클레오티드를 모두 포함하는 균주를 트리메틸라이신을 포함하는 배지에서 배양함으로써, L-카르니틴을 높은 효율로 생산할 수 있었다. 또한, 표 1에 나타낸 L-카르니틴의 생산량과 비교하였을 때, 단일 배양에 의하여는 경우가 생산 효율이 높은 것을 알 수 있었다. As shown in Table 2, L-carnitine could be produced with high efficiency by culturing a strain containing all polynucleotides encoding TMLH, SHMT, TMABADH and BBH in a medium containing trimethyllysine. Moreover, when compared with the production amount of L-carnitine shown in Table 1, it turned out that the production efficiency is high by the single culture.

본 발명에 따른 미생물에 의하면, L-카르니틴 생산능이 우수하여 발효 통하여 L-카르니틴을 생산하는 방법에 유용하게 이용될 수 있다.According to the microorganism according to the present invention, it is excellent in L-carnitine production ability can be usefully used in the method for producing L-carnitine through fermentation.

본 발명에 따른 L-카르니틴의 제조 방법에 의하면, 엔테로박테리아세 속에 속하는 미생물을 이용하여 L-카르니틴을 높은 효율로 생산할 수 있다.According to the method for producing L-carnitine according to the present invention, L-carnitine can be produced with high efficiency by using microorganisms belonging to the genus Enterobacteriaceae.

<110> CJ Corporation <120> A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism <130> PN054899 <160> 20 <170> KopatentIn 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 atgaattcca tatgagaccg caagtggtag gg 32 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 atgaattctc attttccgct ggtttctttc cg 32 <210> 3 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 3 atgaattcca tatgtctacc tactccctct cc 32 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 4 attgtcgact tagagaccgg catcgtatct 30 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 5 atgaattcca tatggaagtc gagcttacgg cc 32 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 6 attgtcgact catgccgcca ggtttacatg gat 33 <210> 7 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 7 atgaattcca tatgatggcc acggcagcgg ttcag 35 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 8 attagtcgac tcaataccct cccccaccct g 31 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 9 atggatccta atacgactca ctataggga 29 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 10 attaagcttt tagagaccgg catcgtatct 30 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 11 atggatccta atacgactca ctataggga 29 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 12 atggatccta atacgactca ctataggga 29 <210> 13 <211> 471 <212> PRT <213> Neuropora crassa <400> 13 Met Arg Pro Gln Val Val Gly Ala Ile Leu Arg Ser Arg Ala Val Val 1 5 10 15 Ser Arg Gln Pro Leu Ser Arg Thr His Ile Phe Ala Ala Val Thr Val 20 25 30 Ala Lys Ser Ser Ser Pro Ala Gln Asn Ser Arg Arg Thr Phe Ser Ser 35 40 45 Ser Phe Arg Arg Leu Tyr Glu Pro Lys Ala Glu Ile Thr Ala Glu Gly 50 55 60 Leu Glu Leu Ser Pro Pro Gln Ala Val Thr Gly Gly Lys Arg Thr Val 65 70 75 80 Leu Pro Asn Phe Trp Leu Arg Asp Asn Cys Arg Cys Thr Lys Cys Val 85 90 95 Asn Gln Asp Thr Leu Gln Arg Asn Phe Asn Thr Phe Ala Ile Pro Ser 100 105 110 Asp Ile His Pro Thr Lys Val Glu Ala Thr Lys Glu Asn Val Thr Val 115 120 125 Gln Trp Ser Asp Asn His Thr Ser Thr Tyr Pro Trp Pro Phe Leu Ser 130 135 140 Phe Tyr Leu Thr Ser Asn Ala Arg Gly His Glu Asn Asp Gln Ile Ser 145 150 155 160 Leu Trp Gly Ser Glu Ala Gly Ser Arg Pro Pro Thr Val Pro Phe Pro 165 170 175 Arg Val Met Ala Ser Asp Gln Gly Val Ala Asp Leu Thr Ala Met Ile 180 185 190 Lys Glu Phe Gly Phe Cys Phe Val Lys Asp Thr Pro His Asp Asp Pro 195 200 205 Asp Val Thr Arg Gln Leu Leu Glu Arg Ile Ala Phe Ile Arg Val Thr 210 215 220 His Tyr Gly Gly Phe Tyr Asp Phe Thr Pro Asp Leu Ala Met Ala Asp 225 230 235 240 Thr Ala Tyr Thr Asn Leu Ala Leu Pro Ala His Thr Asp Thr Thr Tyr 245 250 255 Phe Thr Asp Pro Ala Gly Leu Gln Ala Phe His Leu Leu Glu His Lys 260 265 270 Ala Ala Pro Ser Arg Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro 275 280 285 Ser Glu Glu Lys Glu Ala Ala Gly Ser Ala Ala Gly Glu Ala Ala Ala 290 295 300 Ala Ala Glu Gly Gly Lys Ser Leu Leu Val Asp Gly Phe Asn Ala Ala 305 310 315 320 Arg Ile Leu Lys Glu Glu Asp Pro Arg Ala Tyr Glu Ile Leu Ser Ser 325 330 335 Val Arg Leu Pro Trp His Ala Ser Gly Asn Glu Gly Ile Thr Ile Ala 340 345 350 Pro Asp Lys Leu Tyr Pro Val Leu Glu Leu Asn Glu Asp Thr Gly Glu 355 360 365 Leu His Arg Val Arg Trp Asn Asn Asp Asp Arg Gly Val Val Pro Phe 370 375 380 Gly Glu Lys Tyr Ser Pro Ser Glu Trp Tyr Glu Ala Ala Arg Lys Trp 385 390 395 400 Asp Gly Ile Leu Arg Arg Lys Ser Ser Glu Leu Trp Val Gln Leu Glu 405 410 415 Pro Gly Lys Pro Leu Ile Phe Asp Asn Trp Arg Val Leu His Gly Arg 420 425 430 Ser Ala Phe Ser Gly Ile Arg Arg Ile Cys Gly Gly Tyr Ile Asn Arg 435 440 445 Asp Asp Phe Ile Ser Arg Trp Arg Asn Thr Asn Tyr Pro Arg Ser Glu 450 455 460 Val Leu Pro Arg Val Thr Gly 465 470 <210> 14 <211> 480 <212> PRT <213> Neurospora crassa <400> 14 Met Ser Thr Tyr Ser Leu Ser Glu Thr His Lys Ala Met Leu Glu His 1 5 10 15 Ser Leu Val Glu Ser Asp Pro Gln Val Ala Glu Ile Met Lys Lys Glu 20 25 30 Val Gln Arg Gln Arg Glu Ser Ile Ile Leu Ile Ala Ser Glu Asn Val 35 40 45 Thr Ser Arg Ala Val Phe Asp Ala Leu Gly Ser Pro Met Ser Asn Lys 50 55 60 Tyr Ser Glu Gly Leu Pro Gly Ala Arg Tyr Tyr Gly Gly Asn Gln His 65 70 75 80 Ile Asp Glu Ile Glu Val Leu Cys Gln Asn Arg Ala Leu Glu Ala Phe 85 90 95 His Leu Asp Pro Lys Gln Trp Gly Val Asn Val Gln Cys Leu Ser Gly 100 105 110 Ser Pro Ala Asn Leu Gln Val Tyr Gln Ala Ile Met Pro Val His Gly 115 120 125 Arg Leu Met Gly Leu Asp Leu Pro His Gly Gly His Leu Ser His Gly 130 135 140 Tyr Gln Thr Pro Gln Arg Lys Ile Ser Ala Val Ser Thr Tyr Phe Glu 145 150 155 160 Thr Met Pro Tyr Arg Val Asn Ile Asp Thr Gly Leu Ile Asp Tyr Asp 165 170 175 Thr Leu Glu Lys Asn Ala Gln Leu Phe Arg Pro Lys Val Leu Val Ala 180 185 190 Gly Thr Ser Ala Tyr Cys Arg Leu Ile Asp Tyr Glu Arg Met Arg Lys 195 200 205 Ile Ala Asp Ser Val Gly Ala Tyr Leu Val Val Asp Met Ala His Ile 210 215 220 Ser Gly Leu Ile Ala Ser Glu Val Ile Pro Ser Pro Phe Leu Tyr Ala 225 230 235 240 Asp Val Val Thr Thr Thr Thr His Lys Ser Leu Arg Gly Pro Arg Gly 245 250 255 Ala Met Ile Phe Phe Arg Arg Gly Val Arg Ser Val Asp Ala Lys Thr 260 265 270 Gly Lys Glu Thr Leu Tyr Asp Leu Glu Asp Lys Ile Asn Phe Ser Val 275 280 285 Phe Pro Gly His Gln Gly Gly Pro His Asn His Thr Ile Thr Ala Leu 290 295 300 Ala Val Ala Leu Lys Gln Ala Ala Ser Pro Glu Phe Lys Glu Tyr Gln 305 310 315 320 Gln Lys Val Val Ala Asn Ala Lys Ala Leu Glu Lys Lys Leu Lys Glu 325 330 335 Leu Gly Tyr Lys Leu Val Ser Asp Gly Thr Asp Ser His Met Val Leu 340 345 350 Val Asp Leu Arg Pro Ile Gly Val Asp Gly Ala Arg Val Glu Phe Leu 355 360 365 Leu Glu Gln Ile Asn Ile Thr Cys Asn Lys Asn Ala Val Pro Gly Asp 370 375 380 Lys Ser Ala Leu Thr Pro Gly Gly Leu Arg Ile Gly Thr Pro Ala Met 385 390 395 400 Thr Ser Arg Gly Phe Gly Glu Ala Asp Phe Glu Lys Val Ala Val Phe 405 410 415 Val Asp Glu Ala Val Lys Leu Cys Lys Glu Ile Gln Ala Ser Leu Pro 420 425 430 Lys Glu Ala Asn Lys Gln Lys Asp Phe Lys Ala Lys Ile Ala Thr Ser 435 440 445 Asp Ile Pro Arg Ile Asn Glu Leu Lys Gln Glu Ile Ala Ala Trp Ser 450 455 460 Asn Thr Phe Pro Leu Pro Val Glu Gly Trp Arg Tyr Asp Ala Gly Leu 465 470 475 480 <210> 15 <211> 495 <212> PRT <213> Neurospora crassa <400> 15 Met Glu Val Glu Leu Thr Ala Pro Asn Gly Lys Lys Trp Met Gln Pro 1 5 10 15 Leu Gly Leu Phe Ile Asn Asn Glu Phe Val Lys Ser Ala Asn Glu Gln 20 25 30 Lys Leu Ile Ser Ile Asn Pro Thr Thr Glu Glu Glu Ile Cys Ser Val 35 40 45 Tyr Ala Ala Thr Ala Glu Asp Val Asp Ala Ala Val Ser Ala Ala Arg 50 55 60 Lys Ala Phe Arg His Glu Ser Trp Lys Ser Leu Ser Gly Thr Glu Arg 65 70 75 80 Gly Ala Leu Met Arg Lys Leu Ala Asp Leu Val Ala Glu Asn Ala Glu 85 90 95 Ile Leu Ala Thr Ile Glu Cys Leu Asp Asn Gly Lys Pro Tyr Gln Thr 100 105 110 Ala Leu Asn Glu Asn Val Pro Glu Val Ile Asn Val Leu Arg Tyr Tyr 115 120 125 Ala Gly Tyr Ala Asp Lys Asn Phe Gly Gln Val Ile Asp Val Gly Pro 130 135 140 Ala Lys Phe Ala Tyr Thr Val Lys Glu Pro Leu Gly Val Cys Gly Gln 145 150 155 160 Ile Ile Pro Trp Asn Tyr Pro Leu Asp Met Ala Ala Trp Lys Leu Gly 165 170 175 Pro Ala Leu Cys Cys Gly Asn Thr Val Val Leu Lys Leu Ala Glu Gln 180 185 190 Thr Pro Leu Ser Val Leu Tyr Leu Ala Lys Leu Ile Lys Glu Ala Gly 195 200 205 Phe Pro Pro Gly Val Ile Asn Ile Ile Asn Gly His Gly Arg Glu Ala 210 215 220 Gly Ala Ala Leu Val Gln His Pro Gln Val Asp Lys Ile Ala Phe Thr 225 230 235 240 Gly Ser Thr Thr Thr Gly Lys Glu Ile Met Lys Met Ala Ser Tyr Thr 245 250 255 Met Lys Asn Ile Thr Leu Glu Thr Gly Gly Lys Ser Pro Leu Ile Val 260 265 270 Phe Glu Asp Ala Asp Leu Glu Leu Ala Ala Thr Trp Ser His Ile Gly 275 280 285 Ile Met Ser Asn Gln Gly Gln Ile Cys Thr Ala Thr Ser Arg Ile Leu 290 295 300 Val His Glu Lys Ile Tyr Asp Glu Phe Val Glu Lys Phe Lys Ala Lys 305 310 315 320 Val Gln Glu Val Ser Val Leu Gly Asp Pro Phe Glu Glu Ser Thr Phe 325 330 335 His Gly Pro Gln Val Thr Lys Ala Gln Tyr Glu Arg Val Leu Gly Tyr 340 345 350 Ile Asn Val Gly Lys Glu Glu Gly Ala Thr Val Met Met Gly Gly Glu 355 360 365 Pro Ala Pro Gln Asn Gly Lys Gly Phe Phe Val Ala Pro Thr Val Phe 370 375 380 Thr Asn Val Lys Pro Thr Met Lys Ile Phe Arg Glu Glu Ile Phe Gly 385 390 395 400 Pro Cys Val Ala Ile Thr Thr Phe Lys Thr Glu Glu Glu Ala Leu Thr 405 410 415 Leu Ala Asn Asp Ser Met Tyr Gly Leu Gly Ala Ala Leu Phe Thr Lys 420 425 430 Asp Leu Thr Arg Ala His Arg Val Ala Arg Glu Ile Glu Ala Gly Met 435 440 445 Val Trp Val Asn Ser Ser Asn Asp Ser Asp Phe Arg Ile Pro Phe Gly 450 455 460 Gly Val Lys Gln Ser Gly Ile Gly Arg Glu Leu Gly Glu Ala Gly Leu 465 470 475 480 Ala Pro Tyr Cys Asn Val Lys Ser Ile His Val Asn Leu Ala Ala 485 490 495 <210> 16 <211> 425 <212> PRT <213> Neurospora crassa <400> 16 Met Ala Thr Ala Ala Val Gln Val Ser Val Pro Ala Pro Val Gly Gln 1 5 10 15 Pro Asp Ile Gly Tyr Ala Pro Asp His Asp Lys Tyr Leu Ala Arg Val 20 25 30 Lys Arg Arg Arg Glu Asn Glu Lys Leu Glu Ser Ser Leu Pro Pro Gly 35 40 45 Phe Pro Arg Arg Leu Asp Ser Asp Leu Val Trp Asp Gly Asn Thr Leu 50 55 60 Ala Glu Thr Tyr Asp Trp Thr Tyr Arg Leu Thr Glu Glu Ala Ile Asp 65 70 75 80 Glu Ile Glu Ala Ala Leu Arg His Phe Lys Ser Leu Asn Lys Pro Leu 85 90 95 Gly Tyr Ile Asn Gln Glu Thr Phe Pro Leu Pro Arg Leu His His Thr 100 105 110 Leu Arg Ser Leu Ser His Glu Leu His His Gly His Gly Phe Lys Val 115 120 125 Leu Arg Gly Leu Pro Val Thr Ser His Thr Arg Glu Glu Asn Ile Ile 130 135 140 Ile Tyr Ala Gly Val Ser Ser His Val Ala Pro Ile Arg Gly Arg Gln 145 150 155 160 Asp Asn Gln His Asn Gly His Pro Ala Asp Val Val Leu Ala His Ile 165 170 175 Lys Asp Leu Ser Thr Thr Val Ser Asp Val Ser Lys Ile Gly Ala Pro 180 185 190 Ala Tyr Thr Thr Glu Lys Gln Val Phe His Thr Asp Ala Gly Asp Ile 195 200 205 Val Ala Leu Phe Cys Leu Gly Glu Ala Ala Glu Gly Gly Gln Ser Tyr 210 215 220 Leu Ser Ser Ser Trp Lys Val Tyr Asn Glu Leu Ala Ala Thr Arg Pro 225 230 235 240 Asp Leu Val Arg Thr Leu Ala Glu Pro Trp Val Ala Asp Glu Phe Gly 245 250 255 Lys Glu Gly Arg Lys Phe Ser Val Arg Pro Leu Leu His Phe Gln Ser 260 265 270 Thr Ala Ala Ala Ala Ser Arg Glu Ala Lys Pro Glu Ser Glu Arg Leu 275 280 285 Ile Ile Gln Tyr Ala Arg Arg Thr Phe Thr Gly Tyr Trp Gly Leu Pro 290 295 300 Arg Ser Ala Asp Ile Pro Pro Ile Thr Glu Ala Gln Ala Glu Ala Leu 305 310 315 320 Asp Ala Leu His Phe Thr Ala Glu Lys Tyr Ala Val Ala Leu Asp Phe 325 330 335 Arg Gln Gly Asp Val Gln Phe Val Asn Asn Leu Ser Val Phe His Ser 340 345 350 Arg Ala Gly Phe Arg Asp Glu Gly Glu Lys Gln Arg His Leu Val Arg 355 360 365 Leu Trp Leu Arg Asp Pro Glu Asn Ala Trp Glu Thr Pro Glu Ala Leu 370 375 380 Lys Glu Arg Trp Glu Arg Val Tyr Gly Gly Val Ser Pro Glu Arg Glu 385 390 395 400 Val Phe Pro Leu Glu Pro Gln Ile Arg Ser Ala Ser Lys Gly Glu Ser 405 410 415 Val Gly Thr Gln Gly Gly Gly Gly Tyr 420 425 <210> 17 <211> 1407 <212> DNA <213> Neurospora crassa <400> 17 atgagaccgc aagtggtagg ggcaatcctc cgctctagag ctgttgtcag cagacaacct 60 ctttcgagga cccatatctt tgctgccgtc actgttgcaa agtcctcatc acctgcccag 120 aactcgagaa gaaccttttc atcctctttc cgacggttgt atgagccaaa ggcggagata 180 acagctgagg gacttgagtt gagccctcca caggctgtta cgggtggaaa gcggactgtt 240 ttacccaact tctggctacg tgacaactgc cggtgtacga aatgcgtgaa ccaagatact 300 ctccagagaa acttcaacac ttttgccatc ccctccgaca tccacccaac aaaggttgaa 360 gccaccaagg agaacgtcac cgtccaatgg tccgacaacc acacatccac ctacccctgg 420 cccttcctct ctttctacct cacctccaac gcgcgcgggc acgaaaacga ccagatctcc 480 ctctggggct ccgaagccgg ctcccgcccg ccaaccgtct ccttccctcg cgtgatggca 540 tcagaccagg gcgtcgccga cctaaccgcc atgatcaaag agttcggctt ctgtttcgtc 600 aaagacacac cccatgacga cccggacgtg acccgccagc ttctggagag aatcgccttt 660 atccgagtga cccattacgg cggcttttac gatttcacgc ccgacctcgc gatggccgac 720 acggcgtaca cgaacctggc gctgccggcg catacggata cgacgtactt cacggacccg 780 gcggggttgc aggcttttca cttgttggag cataaggccg ctccttctcg tcctcctcct 840 cctcctcctc ctcctcctcc tccttctgaa gaaaaagaag ctgcaggctc agcagcaggg 900 gaggcggcgg cggcagcaga agggggaaag tcgttgttgg tcgatgggtt caacgccgcg 960 aggattctga aggaggagga tccccgggct tatgagatct tgagcagcgt gagactgccg 1020 tggcatgcga gtggaaacga agggatcacg attgcgcccg ataagcttta tccggtgctg 1080 gaactgaatg aggataccgg ggaactgcat agggttaggt ggaataatga tgataggggt 1140 gtggtgccgt ttggggagaa gtacagcccg tcagagtggt atgaggcggc gaggaagtgg 1200 gatgggattt tgaggaggaa gagcagcgag ttgtgggtgc agttggagcc ggggaagccg 1260 ttgaggttct tcatggacgg agcgcgttct cgggtattag gaggatttgt ggagggtata 1320 tcaaccgcga tgacttcatc tctcggtgga ggaacacgaa ttacccaagg agcgaggttc 1380 ttccgagggt tactggttaa ggactga 1407 <210> 18 <211> 1443 <212> DNA <213> Neurospora crassa <400> 18 atgtctacct actccctctc cgagactcac aaggccatgc tcgagcatag cttggtcgag 60 tccgaccccc aggtcgccga gatcatgaag aaggaggttc agcgccagcg cgagtccatc 120 atcctcatcg cctccgagaa cgtcacctcg cgtgccgtct tcgatgccct cggctccccc 180 atgtccaaca agtactcgga gggtcttccc ggcgcccgct actatggtgg caaccagcac 240 atcgacgaga tcgaggttct ctgccagaac cgtgcccttg aggccttcca cctcgacccc 300 aagcagtggg gtgtcaatgt tcagtgcttg tccggcagcc ctgccaacct ccaggtctac 360 caggccatca tgcccgtcca cggcagactc atgggtcttg acctccccca cggtggccat 420 ctttcccacg gttaccagac cccccagcgc aagatctctg ctgtctctac ctacttcgag 480 accatgccct accgcgtcaa cattgacact ggtctcatcg actacgatac cctcgagaag 540 aacgcccagc tcttccgccc caaggtcctc gtcgccggta cctctgccta ctgccgtctg 600 attgactacg agcgcatgcg caagattgcc gactccgttg gcgcttacct tgtcgtcgat 660 atggctcaca tttccggcct cattgcctcc gaggttatcc cctcgccctt cctctacgcc 720 gatgtcgtca ccaccaccac tcacaagtct ctccgtggcc ctcgtggcgc catgatcttc 780 ttccgccgcg gtgtccgctc cgttgacgcc aagaccggca aggagaccct ctacgacctt 840 gaggacaaga tcaacttctc cgtcttccct ggtcaccagg gtggccccca caaccacacc 900 atcaccgccc ttgccgttgc cctcaagcag gctgcctccc ccgagttcaa ggagtaccag 960 cagaaggtcg ttgccaacgc caaggctctc gagaagaagc tcaaggagct cggctacaag 1020 ctcgtctctg acggcactga ctctcacatg gtcctcgttg accttcgccc catcggcgtc 1080 gatggtgccc gtgttgagtt cctccttgag cagatcaaca ttacctgcaa caagaacgcc 1140 gttcccggcg acaagagcgc cctcaccccc ggcggtctcc gtattggtac ccccgctatg 1200 acctcccgtg gcttcggcga ggccgacttc gagaaggtcg ccgtcttcgt cgatgaggct 1260 gtcaagctct gcaaggagat ccaggcttcc ctccccaagg aggctaacaa gcagaaggac 1320 ttcaaggcca agatcgccac cagcgatatt ccccgcatca acgagctcaa gcaggagatt 1380 gccgcctgga gcaacacctt ccccctcccc gttgagggct ggagatacga tgccggtctc 1440 taa 1443 <210> 19 <211> 1488 <212> DNA <213> Neurospora crassa <400> 19 atggaagtcg agcttacggc ccccaacggc aagaagtgga tgcagccact gggcttgttc 60 attaataacg agtttgtcaa aagtgccaat gagcagaagt tgatttccat caacccaact 120 accgaagagg agatctgctc ggtatacgcc gcaaccgccg aggatgttga cgccgcagta 180 tcagcagccc gcaaggcctt taggcacgaa tcatggaagt cgctatccgg cactgagcgc 240 ggcgccctga tgcgcaagct ggccgaccta gtggccgaga atgccgaaat cctagccacc 300 atcgagtgcc tggacaacgg caagccgtat cagacagccc ttaacgagaa cgtgcccgaa 360 gtgatcaacg tcctcaggta ctatgccggc tatgcggaca agaactttgg ccaagtgatt 420 gacgttggcc ccgccaagtt tgcctacacg gtcaaggagc ctctcggcgt atgtggccag 480 atcatcccct ggaactaccc gctagatatg gccgcctgga agctggggcc agctctctgc 540 tgcggcaaca ccgtggtcct caagctggcc gagcagactc ccctgtccgt gttgtacttg 600 gctaagctca ttaaggaggc cggcttccct cccggtgtga tcaatatcat caacggacac 660 ggcagggaag cgggtgccgc acttgtgcaa catcctcagg tggacaagat tgcctttacc 720 ggcagcacca ctacgggcaa ggagatcatg aagatggctt cctataccat gaagaacatc 780 accctggaga ctggcggcaa gtcaccgttg atcgtgtttg aggatgccga ccttgagctg 840 gcggcgacat ggtcacacat cggcatcatg agcaaccagg gccaaatctg cacagccact 900 tcacgcattc tcgtgcacga gaagatctac gacgagtttg tcgaaaaatt caaggccaaa 960 gtccaggagg tttcggtact cggcgacccc ttcgaggaga gcacgttcca cggacctcag 1020 gtcaccaaag cgcagtatga gcgtgttctg ggctatatca atgtcggaaa ggaagagggt 1080 gccacggtga tgatgggtgg tgagccggct ccgcagaacg gtaaaggttt ctttgtggcc 1140 ccgactgtct tcacgaacgt caagccgacc atgaagatct tcagggagga gatctttggg 1200 ccctgcgtgg ccattaccac gttcaaaacg gaggaggagg cgttgacgct ggccaacgac 1260 agcatgtatg gcctgggagc ggctctgttc accaaggacc taaccagggc acacagagtg 1320 gcgcgggaga tcgaggccgg catggtctgg gtcaacagca gcaacgattc agactttagg 1380 attccatttg gaggcgtgaa gcagtctggt attgggaggg agttgggaga ggcaggtctg 1440 gcaccttatt gcaacgtcaa gagtatccat gtaaacctgg cggcatga 1488 <210> 20 <211> 1278 <212> DNA <213> Neurospora crassa <400> 20 atggccacgg cagcggttca ggtttcagtc ccagctccgg ttggacaacc agatatcggg 60 tacgctcctg accacgacaa gtacctcgca agagtcaaaa gacgacgaga aaacgagaag 120 ctggagtcgt ctcttccgcc aggtttccct cgaagactag actcggacct tgtgtgggac 180 ggcaacaccc tcgccgagac gtacgactgg acctacagac tgacagaaga ggccattgat 240 gaaatcgagg ccgcgcttcg tcattttaag agcctcaaca agcccctagg ctacatcaac 300 caagaaacct tcccccttcc ccgcctacac cacactctcc gctccctctc ccacgagctc 360 caccacggcc acggcttcaa agtcctccgc gggctccccg tcacctccca tacacgcgag 420 gaaaacatca tcatctacgc cggcgtctcc tcgcatgtcg ctcctatccg cggccgccag 480 gacaaccagc acaacggcca cccagccgac gtagtcctag cacacatcaa agacctgtcc 540 acgactgttt ctgacgtgag caaaatcggt gcacccgcct acaccaccga gaaacaagtc 600 ttccacaccg acgcaggcga catcgtcgcc ctcttttgct tgggagaggc cgccgagggc 660 ggacagagtt acctgtccag cagctggaag gtgtacaacg agctggcagc cactcggccc 720 gatctggttc gcacgctggc ggagccgtgg gtggcggacg agtttggcaa ggaagggagg 780 aagttttctg tgcgaccgct tttgcatttt cagtctactg ctgctgctgc ttctagggaa 840 gcaaagcccg agtctgaacg gctcatcatc cagtacgccc gccgcacgtt tacggggtat 900 tggggattac cgaggtcggc ggatatcccg cccattacgg aggcgcaggc ggaggcgttg 960 gatgcgctgc actttacggc ggagaagtac gcggtggcgc tggatttcag gcagggggat 1020 gtccagtttg tgaataactt gagtgtgttc cattcgaggg cggggtttag agatgagggg 1080 gagaagcaga ggcatttggt taggttgtgg ttgagagatc cggagaatgc gtgggagacg 1140 cccgaggcgt tgaaggaacg gtgggaacgc gtgtatggcg gggtgagtcc ggagagggag 1200 gtgtttccgc ttgagccgca gattaggagc gcgagtaagg gggagagcgt ggggacgcag 1260 ggtgggggag ggtattga 1278 <110> CJ Corporation <120> A microorganism of Enterobacteriacae genus haboring genes          associated with L-carintine biosynthesis and method of producing          L-carnitine using the microorganism <130> PN054899 <160> 20 <170> Kopatentin 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 1 atgaattcca tatgagaccg caagtggtag gg 32 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 2 atgaattctc attttccgct ggtttctttc cg 32 <210> 3 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 3 atgaattcca tatgtctacc tactccctct cc 32 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 4 attgtcgact tagagaccgg catcgtatct 30 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 5 atgaattcca tatggaagtc gagcttacgg cc 32 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 6 attgtcgact catgccgcca ggtttacatg gat 33 <210> 7 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 7 atgaattcca tatgatggcc acggcagcgg ttcag 35 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 8 attagtcgac tcaataccct cccccaccct g 31 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 9 atggatccta atacgactca ctataggga 29 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 10 attaagcttt tagagaccgg catcgtatct 30 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 11 atggatccta atacgactca ctataggga 29 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 12 atggatccta atacgactca ctataggga 29 <210> 13 <211> 471 <212> PRT <213> Neuropora crassa <400> 13 Met Arg Pro Gln Val Val Gly Ala Ile Leu Arg Ser Arg Ala Val Val   1 5 10 15 Ser Arg Gln Pro Leu Ser Arg Thr His Ile Phe Ala Ala Val Thr Val              20 25 30 Ala Lys Ser Ser Ser Pro Ala Gln Asn Ser Arg Arg Thr Phe Ser Ser          35 40 45 Ser Phe Arg Arg Leu Tyr Glu Pro Lys Ala Glu Ile Thr Ala Glu Gly      50 55 60 Leu Glu Leu Ser Pro Pro Gln Ala Val Thr Gly Gly Lys Arg Thr Val  65 70 75 80 Leu Pro Asn Phe Trp Leu Arg Asp Asn Cys Arg Cys Thr Lys Cys Val                  85 90 95 Asn Gln Asp Thr Leu Gln Arg Asn Phe Asn Thr Phe Ala Ile Pro Ser             100 105 110 Asp Ile His Pro Thr Lys Val Glu Ala Thr Lys Glu Asn Val Thr Val         115 120 125 Gln Trp Ser Asp Asn His Thr Ser Thr Tyr Pro Trp Pro Phe Leu Ser     130 135 140 Phe Tyr Leu Thr Ser Asn Ala Arg Gly His Glu Asn Asp Gln Ile Ser 145 150 155 160 Leu Trp Gly Ser Glu Ala Gly Ser Arg Pro Pro Thr Val Pro Phe Pro                 165 170 175 Arg Val Met Ala Ser Asp Gln Gly Val Ala Asp Leu Thr Ala Met Ile             180 185 190 Lys Glu Phe Gly Phe Cys Phe Val Lys Asp Thr Pro His Asp Asp Pro         195 200 205 Asp Val Thr Arg Gln Leu Leu Glu Arg Ile Ala Phe Ile Arg Val Thr     210 215 220 His Tyr Gly Gly Phe Tyr Asp Phe Thr Pro Asp Leu Ala Met Ala Asp 225 230 235 240 Thr Ala Tyr Thr Asn Leu Ala Leu Pro Ala His Thr Asp Thr Thr Tyr                 245 250 255 Phe Thr Asp Pro Ala Gly Leu Gln Ala Phe His Leu Leu Glu His Lys             260 265 270 Ala Ala Pro Ser Arg Pro Pro Pro Pro Pro Pro Pro Pro Pro         275 280 285 Ser Glu Glu Lys Glu Ala Ala Gly Ser Ala Ala Gly Glu Ala Ala Ala     290 295 300 Ala Ala Glu Gly Gly Lys Ser Leu Leu Val Asp Gly Phe Asn Ala Ala 305 310 315 320 Arg Ile Leu Lys Glu Glu Asp Pro Arg Ala Tyr Glu Ile Leu Ser Ser                 325 330 335 Val Arg Leu Pro Trp His Ala Ser Gly Asn Glu Gly Ile Thr Ile Ala             340 345 350 Pro Asp Lys Leu Tyr Pro Val Leu Glu Leu Asn Glu Asp Thr Gly Glu         355 360 365 Leu His Arg Val Arg Trp Asn Asn Asp Asp Arg Gly Val Val Pro Phe     370 375 380 Gly Glu Lys Tyr Ser Pro Ser Glu Trp Tyr Glu Ala Ala Arg Lys Trp 385 390 395 400 Asp Gly Ile Leu Arg Arg Lys Ser Ser Glu Leu Trp Val Gln Leu Glu                 405 410 415 Pro Gly Lys Pro Leu Ile Phe Asp Asn Trp Arg Val Leu His Gly Arg             420 425 430 Ser Ala Phe Ser Gly Ile Arg Arg Ile Cys Gly Gly Tyr Ile Asn Arg         435 440 445 Asp Asp Phe Ile Ser Arg Trp Arg Asn Thr Asn Tyr Pro Arg Ser Glu     450 455 460 Val Leu Pro Arg Val Thr Gly 465 470 <210> 14 <211> 480 <212> PRT <213> Neurospora crassa <400> 14 Met Ser Thr Tyr Ser Leu Ser Glu Thr His Lys Ala Met Leu Glu His   1 5 10 15 Ser Leu Val Glu Ser Asp Pro Gln Val Ala Glu Ile Met Lys Lys Glu              20 25 30 Val Gln Arg Gln Arg Glu Ser Ile Ile Leu Ile Ala Ser Glu Asn Val          35 40 45 Thr Ser Arg Ala Val Phe Asp Ala Leu Gly Ser Pro Met Ser Asn Lys      50 55 60 Tyr Ser Glu Gly Leu Pro Gly Ala Arg Tyr Tyr Gly Gly Asn Gln His  65 70 75 80 Ile Asp Glu Ile Glu Val Leu Cys Gln Asn Arg Ala Leu Glu Ala Phe                  85 90 95 His Leu Asp Pro Lys Gln Trp Gly Val Asn Val Gln Cys Leu Ser Gly             100 105 110 Ser Pro Ala Asn Leu Gln Val Tyr Gln Ala Ile Met Pro Val His Gly         115 120 125 Arg Leu Met Gly Leu Asp Leu Pro His Gly Gly His Leu Ser His Gly     130 135 140 Tyr Gln Thr Pro Gln Arg Lys Ile Ser Ala Val Ser Thr Tyr Phe Glu 145 150 155 160 Thr Met Pro Tyr Arg Val Asn Ile Asp Thr Gly Leu Ile Asp Tyr Asp                 165 170 175 Thr Leu Glu Lys Asn Ala Gln Leu Phe Arg Pro Lys Val Leu Val Ala             180 185 190 Gly Thr Ser Ala Tyr Cys Arg Leu Ile Asp Tyr Glu Arg Met Arg Lys         195 200 205 Ile Ala Asp Ser Val Gly Ala Tyr Leu Val Val Asp Met Ala His Ile     210 215 220 Ser Gly Leu Ile Ala Ser Glu Val Ile Pro Ser Pro Phe Leu Tyr Ala 225 230 235 240 Asp Val Val Thr Thr Thr Thr His Lys Ser Leu Arg Gly Pro Arg Gly                 245 250 255 Ala Met Ile Phe Phe Arg Arg Gly Val Arg Ser Val Asp Ala Lys Thr             260 265 270 Gly Lys Glu Thr Leu Tyr Asp Leu Glu Asp Lys Ile Asn Phe Ser Val         275 280 285 Phe Pro Gly His Gln Gly Gly Pro His Asn His Thr Ile Thr Ala Leu     290 295 300 Ala Val Ala Leu Lys Gln Ala Ala Ser Pro Glu Phe Lys Glu Tyr Gln 305 310 315 320 Gln Lys Val Val Ala Asn Ala Lys Ala Leu Glu Lys Lys Leu Lys Glu                 325 330 335 Leu Gly Tyr Lys Leu Val Ser Asp Gly Thr Asp Ser His Met Val Leu             340 345 350 Val Asp Leu Arg Pro Ile Gly Val Asp Gly Ala Arg Val Glu Phe Leu         355 360 365 Leu Glu Gln Ile Asn Ile Thr Cys Asn Lys Asn Ala Val Pro Gly Asp     370 375 380 Lys Ser Ala Leu Thr Pro Gly Gly Leu Arg Ile Gly Thr Pro Ala Met 385 390 395 400 Thr Ser Arg Gly Phe Gly Glu Ala Asp Phe Glu Lys Val Ala Val Phe                 405 410 415 Val Asp Glu Ala Val Lys Leu Cys Lys Glu Ile Gln Ala Ser Leu Pro             420 425 430 Lys Glu Ala Asn Lys Gln Lys Asp Phe Lys Ala Lys Ile Ala Thr Ser         435 440 445 Asp Ile Pro Arg Ile Asn Glu Leu Lys Gln Glu Ile Ala Ala Trp Ser     450 455 460 Asn Thr Phe Pro Leu Pro Val Glu Gly Trp Arg Tyr Asp Ala Gly Leu 465 470 475 480 <210> 15 <211> 495 <212> PRT <213> Neurospora crassa <400> 15 Met Glu Val Glu Leu Thr Ala Pro Asn Gly Lys Lys Trp Met Gln Pro   1 5 10 15 Leu Gly Leu Phe Ile Asn Asn Glu Phe Val Lys Ser Ala Asn Glu Gln              20 25 30 Lys Leu Ile Ser Ile Asn Pro Thr Thr Glu Glu Glu Ile Cys Ser Val          35 40 45 Tyr Ala Ala Thr Ala Glu Asp Val Asp Ala Ala Val Ser Ala Ala Arg      50 55 60 Lys Ala Phe Arg His Glu Ser Trp Lys Ser Leu Ser Gly Thr Glu Arg  65 70 75 80 Gly Ala Leu Met Arg Lys Leu Ala Asp Leu Val Ala Glu Asn Ala Glu                  85 90 95 Ile Leu Ala Thr Ile Glu Cys Leu Asp Asn Gly Lys Pro Tyr Gln Thr             100 105 110 Ala Leu Asn Glu Asn Val Pro Glu Val Ile Asn Val Leu Arg Tyr Tyr         115 120 125 Ala Gly Tyr Ala Asp Lys Asn Phe Gly Gln Val Ile Asp Val Gly Pro     130 135 140 Ala Lys Phe Ala Tyr Thr Val Lys Glu Pro Leu Gly Val Cys Gly Gln 145 150 155 160 Ile Ile Pro Trp Asn Tyr Pro Leu Asp Met Ala Ala Trp Lys Leu Gly                 165 170 175 Pro Ala Leu Cys Cys Gly Asn Thr Val Val Leu Lys Leu Ala Glu Gln             180 185 190 Thr Pro Leu Ser Val Leu Tyr Leu Ala Lys Leu Ile Lys Glu Ala Gly         195 200 205 Phe Pro Pro Gly Val Ile Asn Ile Ile Asn Gly His Gly Arg Glu Ala     210 215 220 Gly Ala Ala Leu Val Gln His Pro Gln Val Asp Lys Ile Ala Phe Thr 225 230 235 240 Gly Ser Thr Thr Thr Gly Lys Glu Ile Met Lys Met Ala Ser Tyr Thr                 245 250 255 Met Lys Asn Ile Thr Leu Glu Thr Gly Gly Lys Ser Pro Leu Ile Val             260 265 270 Phe Glu Asp Ala Asp Leu Glu Leu Ala Ala Thr Trp Ser His Ile Gly         275 280 285 Ile Met Ser Asn Gln Gly Gln Ile Cys Thr Ala Thr Ser Arg Ile Leu     290 295 300 Val His Glu Lys Ile Tyr Asp Glu Phe Val Glu Lys Phe Lys Ala Lys 305 310 315 320 Val Gln Glu Val Ser Val Leu Gly Asp Pro Phe Glu Glu Ser Thr Phe                 325 330 335 His Gly Pro Gln Val Thr Lys Ala Gln Tyr Glu Arg Val Leu Gly Tyr             340 345 350 Ile Asn Val Gly Lys Glu Glu Gly Ala Thr Val Met Met Gly Gly Glu         355 360 365 Pro Ala Pro Gln Asn Gly Lys Gly Phe Phe Val Ala Pro Thr Val Phe     370 375 380 Thr Asn Val Lys Pro Thr Met Lys Ile Phe Arg Glu Glu Ile Phe Gly 385 390 395 400 Pro Cys Val Ala Ile Thr Thr Phe Lys Thr Glu Glu Glu Ala Leu Thr                 405 410 415 Leu Ala Asn Asp Ser Met Tyr Gly Leu Gly Ala Ala Leu Phe Thr Lys             420 425 430 Asp Leu Thr Arg Ala His Arg Val Ala Arg Glu Ile Glu Ala Gly Met         435 440 445 Val Trp Val Asn Ser Ser Asn Asp Ser Asp Phe Arg Ile Pro Phe Gly     450 455 460 Gly Val Lys Gln Ser Gly Ile Gly Arg Glu Leu Gly Glu Ala Gly Leu 465 470 475 480 Ala Pro Tyr Cys Asn Val Lys Ser Ile His Val Asn Leu Ala Ala                 485 490 495 <210> 16 <211> 425 <212> PRT <213> Neurospora crassa <400> 16 Met Ala Thr Ala Ala Val Gln Val Ser Val Pro Ala Pro Val Gly Gln   1 5 10 15 Pro Asp Ile Gly Tyr Ala Pro Asp His Asp Lys Tyr Leu Ala Arg Val              20 25 30 Lys Arg Arg Arg Glu Asn Glu Lys Leu Glu Ser Ser Leu Pro Pro Gly          35 40 45 Phe Pro Arg Arg Leu Asp Ser Asp Leu Val Trp Asp Gly Asn Thr Leu      50 55 60 Ala Glu Thr Tyr Asp Trp Thr Tyr Arg Leu Thr Glu Glu Ala Ile Asp  65 70 75 80 Glu Ile Glu Ala Ala Leu Arg His Phe Lys Ser Leu Asn Lys Pro Leu                  85 90 95 Gly Tyr Ile Asn Gln Glu Thr Phe Pro Leu Pro Arg Leu His His Thr             100 105 110 Leu Arg Ser Leu Ser His Glu Leu His His Gly His Gly Phe Lys Val         115 120 125 Leu Arg Gly Leu Pro Val Thr Ser His Thr Arg Glu Glu Asn Ile Ile     130 135 140 Ile Tyr Ala Gly Val Ser Ser His Val Ala Pro Ile Arg Gly Arg Gln 145 150 155 160 Asp Asn Gln His Asn Gly His Pro Ala Asp Val Val Leu Ala His Ile                 165 170 175 Lys Asp Leu Ser Thr Thr Val Ser Asp Val Ser Lys Ile Gly Ala Pro             180 185 190 Ala Tyr Thr Thr Glu Lys Gln Val Phe His Thr Asp Ala Gly Asp Ile         195 200 205 Val Ala Leu Phe Cys Leu Gly Glu Ala Ala Glu Gly Gly Gln Ser Tyr     210 215 220 Leu Ser Ser Ser Trp Lys Val Tyr Asn Glu Leu Ala Ala Thr Arg Pro 225 230 235 240 Asp Leu Val Arg Thr Leu Ala Glu Pro Trp Val Ala Asp Glu Phe Gly                 245 250 255 Lys Glu Gly Arg Lys Phe Ser Val Arg Pro Leu Leu His Phe Gln Ser             260 265 270 Thr Ala Ala Ala Ala Ser Arg Glu Ala Lys Pro Glu Ser Glu Arg Leu         275 280 285 Ile Ile Gln Tyr Ala Arg Arg Thr Phe Thr Gly Tyr Trp Gly Leu Pro     290 295 300 Arg Ser Ala Asp Ile Pro Pro Ile Thr Glu Ala Gln Ala Glu Ala Leu 305 310 315 320 Asp Ala Leu His Phe Thr Ala Glu Lys Tyr Ala Val Ala Leu Asp Phe                 325 330 335 Arg Gln Gly Asp Val Gln Phe Val Asn Asn Leu Ser Val Phe His Ser             340 345 350 Arg Ala Gly Phe Arg Asp Glu Gly Glu Lys Gln Arg His Leu Val Arg         355 360 365 Leu Trp Leu Arg Asp Pro Glu Asn Ala Trp Glu Thr Pro Glu Ala Leu     370 375 380 Lys Glu Arg Trp Glu Arg Val Tyr Gly Gly Val Ser Pro Glu Arg Glu 385 390 395 400 Val Phe Pro Leu Glu Pro Gln Ile Arg Ser Ala Ser Lys Gly Glu Ser                 405 410 415 Val Gly Thr Gln Gly Gly Gly Gly Tyr             420 425 <210> 17 <211> 1407 <212> DNA <213> Neurospora crassa <400> 17 atgagaccgc aagtggtagg ggcaatcctc cgctctagag ctgttgtcag cagacaacct 60 ctttcgagga cccatatctt tgctgccgtc actgttgcaa agtcctcatc acctgcccag 120 aactcgagaa gaaccttttc atcctctttc cgacggttgt atgagccaaa ggcggagata 180 acagctgagg gacttgagtt gagccctcca caggctgtta cgggtggaaa gcggactgtt 240 ttacccaact tctggctacg tgacaactgc cggtgtacga aatgcgtgaa ccaagatact 300 ctccagagaa acttcaacac ttttgccatc ccctccgaca tccacccaac aaaggttgaa 360 gccaccaagg agaacgtcac cgtccaatgg tccgacaacc acacatccac ctacccctgg 420 cccttcctct ctttctacct cacctccaac gcgcgcgggc acgaaaacga ccagatctcc 480 ctctggggct ccgaagccgg ctcccgcccg ccaaccgtct ccttccctcg cgtgatggca 540 tcagaccagg gcgtcgccga cctaaccgcc atgatcaaag agttcggctt ctgtttcgtc 600 aaagacacac cccatgacga cccggacgtg acccgccagc ttctggagag aatcgccttt 660 atccgagtga cccattacgg cggcttttac gatttcacgc ccgacctcgc gatggccgac 720 acggcgtaca cgaacctggc gctgccggcg catacggata cgacgtactt cacggacccg 780 gcggggttgc aggcttttca cttgttggag cataaggccg ctccttctcg tcctcctcct 840 cctcctcctc ctcctcctcc tccttctgaa gaaaaagaag ctgcaggctc agcagcaggg 900 gaggcggcgg cggcagcaga agggggaaag tcgttgttgg tcgatgggtt caacgccgcg 960 aggattctga aggaggagga tccccgggct tatgagatct tgagcagcgt gagactgccg 1020 tggcatgcga gtggaaacga agggatcacg attgcgcccg ataagcttta tccggtgctg 1080 gaactgaatg aggataccgg ggaactgcat agggttaggt ggaataatga tgataggggt 1140 gtggtgccgt ttggggagaa gtacagcccg tcagagtggt atgaggcggc gaggaagtgg 1200 gatgggattt tgaggaggaa gagcagcgag ttgtgggtgc agttggagcc ggggaagccg 1260 ttgaggttct tcatggacgg agcgcgttct cgggtattag gaggatttgt ggagggtata 1320 tcaaccgcga tgacttcatc tctcggtgga ggaacacgaa ttacccaagg agcgaggttc 1380 ttccgagggt tactggttaa ggactga 1407 <210> 18 <211> 1443 <212> DNA <213> Neurospora crassa <400> 18 atgtctacct actccctctc cgagactcac aaggccatgc tcgagcatag cttggtcgag 60 tccgaccccc aggtcgccga gatcatgaag aaggaggttc agcgccagcg cgagtccatc 120 atcctcatcg cctccgagaa cgtcacctcg cgtgccgtct tcgatgccct cggctccccc 180 atgtccaaca agtactcgga gggtcttccc ggcgcccgct actatggtgg caaccagcac 240 atcgacgaga tcgaggttct ctgccagaac cgtgcccttg aggccttcca cctcgacccc 300 aagcagtggg gtgtcaatgt tcagtgcttg tccggcagcc ctgccaacct ccaggtctac 360 caggccatca tgcccgtcca cggcagactc atgggtcttg acctccccca cggtggccat 420 ctttcccacg gttaccagac cccccagcgc aagatctctg ctgtctctac ctacttcgag 480 accatgccct accgcgtcaa cattgacact ggtctcatcg actacgatac cctcgagaag 540 aacgcccagc tcttccgccc caaggtcctc gtcgccggta cctctgccta ctgccgtctg 600 attgactacg agcgcatgcg caagattgcc gactccgttg gcgcttacct tgtcgtcgat 660 atggctcaca tttccggcct cattgcctcc gaggttatcc cctcgccctt cctctacgcc 720 gatgtcgtca ccaccaccac tcacaagtct ctccgtggcc ctcgtggcgc catgatcttc 780 ttccgccgcg gtgtccgctc cgttgacgcc aagaccggca aggagaccct ctacgacctt 840 gaggacaaga tcaacttctc cgtcttccct ggtcaccagg gtggccccca caaccacacc 900 atcaccgccc ttgccgttgc cctcaagcag gctgcctccc ccgagttcaa ggagtaccag 960 cagaaggtcg ttgccaacgc caaggctctc gagaagaagc tcaaggagct cggctacaag 1020 ctcgtctctg acggcactga ctctcacatg gtcctcgttg accttcgccc catcggcgtc 1080 gatggtgccc gtgttgagtt cctccttgag cagatcaaca ttacctgcaa caagaacgcc 1140 gttcccggcg acaagagcgc cctcaccccc ggcggtctcc gtattggtac ccccgctatg 1200 acctcccgtg gcttcggcga ggccgacttc gagaaggtcg ccgtcttcgt cgatgaggct 1260 gtcaagctct gcaaggagat ccaggcttcc ctccccaagg aggctaacaa gcagaaggac 1320 ttcaaggcca agatcgccac cagcgatatt ccccgcatca acgagctcaa gcaggagatt 1380 gccgcctgga gcaacacctt ccccctcccc gttgagggct ggagatacga tgccggtctc 1440 taa 1443 <210> 19 <211> 1488 <212> DNA <213> Neurospora crassa <400> 19 atggaagtcg agcttacggc ccccaacggc aagaagtgga tgcagccact gggcttgttc 60 attaataacg agtttgtcaa aagtgccaat gagcagaagt tgatttccat caacccaact 120 accgaagagg agatctgctc ggtatacgcc gcaaccgccg aggatgttga cgccgcagta 180 tcagcagccc gcaaggcctt taggcacgaa tcatggaagt cgctatccgg cactgagcgc 240 ggcgccctga tgcgcaagct ggccgaccta gtggccgaga atgccgaaat cctagccacc 300 atcgagtgcc tggacaacgg caagccgtat cagacagccc ttaacgagaa cgtgcccgaa 360 gtgatcaacg tcctcaggta ctatgccggc tatgcggaca agaactttgg ccaagtgatt 420 gacgttggcc ccgccaagtt tgcctacacg gtcaaggagc ctctcggcgt atgtggccag 480 atcatcccct ggaactaccc gctagatatg gccgcctgga agctggggcc agctctctgc 540 tgcggcaaca ccgtggtcct caagctggcc gagcagactc ccctgtccgt gttgtacttg 600 gctaagctca ttaaggaggc cggcttccct cccggtgtga tcaatatcat caacggacac 660 ggcagggaag cgggtgccgc acttgtgcaa catcctcagg tggacaagat tgcctttacc 720 ggcagcacca ctacgggcaa ggagatcatg aagatggctt cctataccat gaagaacatc 780 accctggaga ctggcggcaa gtcaccgttg atcgtgtttg aggatgccga ccttgagctg 840 gcggcgacat ggtcacacat cggcatcatg agcaaccagg gccaaatctg cacagccact 900 tcacgcattc tcgtgcacga gaagatctac gacgagtttg tcgaaaaatt caaggccaaa 960 gtccaggagg tttcggtact cggcgacccc ttcgaggaga gcacgttcca cggacctcag 1020 gtcaccaaag cgcagtatga gcgtgttctg ggctatatca atgtcggaaa ggaagagggt 1080 gccacggtga tgatgggtgg tgagccggct ccgcagaacg gtaaaggttt ctttgtggcc 1140 ccgactgtct tcacgaacgt caagccgacc atgaagatct tcagggagga gatctttggg 1200 ccctgcgtgg ccattaccac gttcaaaacg gaggaggagg cgttgacgct ggccaacgac 1260 agcatgtatg gcctgggagc ggctctgttc accaaggacc taaccagggc acacagagtg 1320 gcgcgggaga tcgaggccgg catggtctgg gtcaacagca gcaacgattc agactttagg 1380 attccatttg gaggcgtgaa gcagtctggt attgggaggg agttgggaga ggcaggtctg 1440 gcaccttatt gcaacgtcaa gagtatccat gtaaacctgg cggcatga 1488 <210> 20 <211> 1278 <212> DNA <213> Neurospora crassa <400> 20 atggccacgg cagcggttca ggtttcagtc ccagctccgg ttggacaacc agatatcggg 60 tacgctcctg accacgacaa gtacctcgca agagtcaaaa gacgacgaga aaacgagaag 120 ctggagtcgt ctcttccgcc aggtttccct cgaagactag actcggacct tgtgtgggac 180 ggcaacaccc tcgccgagac gtacgactgg acctacagac tgacagaaga ggccattgat 240 gaaatcgagg ccgcgcttcg tcattttaag agcctcaaca agcccctagg ctacatcaac 300 caagaaacct tcccccttcc ccgcctacac cacactctcc gctccctctc ccacgagctc 360 caccacggcc acggcttcaa agtcctccgc gggctccccg tcacctccca tacacgcgag 420 gaaaacatca tcatctacgc cggcgtctcc tcgcatgtcg ctcctatccg cggccgccag 480 gacaaccagc acaacggcca cccagccgac gtagtcctag cacacatcaa agacctgtcc 540 acgactgttt ctgacgtgag caaaatcggt gcacccgcct acaccaccga gaaacaagtc 600 ttccacaccg acgcaggcga catcgtcgcc ctcttttgct tgggagaggc cgccgagggc 660 ggacagagtt acctgtccag cagctggaag gtgtacaacg agctggcagc cactcggccc 720 gatctggttc gcacgctggc ggagccgtgg gtggcggacg agtttggcaa ggaagggagg 780 aagttttctg tgcgaccgct tttgcatttt cagtctactg ctgctgctgc ttctagggaa 840 gcaaagcccg agtctgaacg gctcatcatc cagtacgccc gccgcacgtt tacggggtat 900 tggggattac cgaggtcggc ggatatcccg cccattacgg aggcgcaggc ggaggcgttg 960 gatgcgctgc actttacggc ggagaagtac gcggtggcgc tggatttcag gcagggggat 1020 gtccagtttg tgaataactt gagtgtgttc cattcgaggg cggggtttag agatgagggg 1080 gagaagcaga ggcatttggt taggttgtgg ttgagagatc cggagaatgc gtgggagacg 1140 cccgaggcgt tgaaggaacg gtgggaacgc gtgtatggcg gggtgagtcc ggagagggag 1200 gtgtttccgc ttgagccgca gattaggagc gcgagtaagg gggagagcgt ggggacgcag 1260 ggtgggggag ggtattga 1278  

Claims (9)

뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 서열번호 13의 아미노산 서열을 갖는 N-트리메틸라이신 히드록실라제 활성을 코딩하는 폴리뉴클레오티드,Polynucleotides encoding N-trimethyllysine hydroxylase activity having the amino acid sequence of SEQ ID NO: 13 derived from Neurospora crassa , 서열번호 14의 아미노산 서열을 갖는 3-히드록시-6-N-트리메틸라이신 알돌라제 활성을 코딩하는 폴리뉴클레오티드,A polynucleotide encoding 3-hydroxy-6-N-trimethyllysine aldolase activity having the amino acid sequence of SEQ ID NO: 14, 서열번호 15의 아미노산 서열을 갖는 γ-트리메틸아미노알데히드 데히드로게나제 활성을 코딩하는 폴리뉴클레오티드 및 A polynucleotide encoding γ-trimethylaminoaldehyde dehydrogenase activity having the amino acid sequence of SEQ ID NO: 15 and 서열번호 16의 아미노산 서열을 갖는 γ-부틸로베타인 히드록실라제 활성을 코딩하는 폴리뉴클레오티드를 포함하는 에세리키아 콜라이 (Escherichia coli) 종에 속하는 미생물. A microorganism belonging to an Escherichia coli species comprising a polynucleotide encoding a γ-butyllobetaine hydroxylase activity having the amino acid sequence of SEQ ID NO: 16. 삭제delete 제1항에 있어서, 상기 미생물은 에세리키아 콜라이 (Escherichia coli) 수탁번호 KCCM-10581인 미생물.The microorganism of claim 1, wherein the microorganism is Escherichia coli accession No. KCCM-10581. 삭제delete 삭제delete 삭제delete 삭제delete 제1항 또는 제3항의 미생물을 N-트리메틸라이신, β-히드록시-N-트리메틸라이신, γ-N-트리메틸아미노부티르알데히드, γ-부티로베타인 및 그의 혼합물로 구성되는 군으로부터 선택되는 기질의 존재하에서 배양하여 L-카르니틴을 배양물 중에 생산하는 단계를 포함하는 L-카르니틴의 제조방법.The microorganism of claim 1 or 3 is selected from the group consisting of N-trimethyllysine, β-hydroxy-N-trimethyllysine, γ-N-trimethylaminobutyraldehyde, γ-butyrobetaine and mixtures thereof. A method for producing L-carnitine comprising culturing in the presence of a substrate to produce L-carnitine in a culture. 제8항에 있어서, 상기 N-트리메틸라이신, β-히드록시-N-트리메틸라이신, γ-N-트리메틸아미노부티르알데히드, γ-부티로베타인 및 그의 혼합물로 구성되는 군으로부터 선택되는 기질의 농도는 배양 배지의 중량에 비하여, 0.1 내지 10 중량 % 인 방법.The substrate according to claim 8, wherein the substrate is selected from the group consisting of N-trimethyllysine, β-hydroxy-N-trimethyllysine, γ-N-trimethylaminobutyraldehyde, γ-butyrobetaine and mixtures thereof. The concentration is from 0.1 to 10% by weight relative to the weight of the culture medium.
KR1020040054076A 2004-07-12 2004-07-12 A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism KR101166026B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040054076A KR101166026B1 (en) 2004-07-12 2004-07-12 A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040054076A KR101166026B1 (en) 2004-07-12 2004-07-12 A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism

Publications (2)

Publication Number Publication Date
KR20060005189A KR20060005189A (en) 2006-01-17
KR101166026B1 true KR101166026B1 (en) 2012-07-19

Family

ID=37117251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040054076A KR101166026B1 (en) 2004-07-12 2004-07-12 A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism

Country Status (1)

Country Link
KR (1) KR101166026B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1904632B1 (en) * 2005-07-19 2010-06-30 CJ CheilJedang Corporation A microorganism of enterobacteriacae genus haboring genes associated with l-carintine biosynthesis and methos of producing l-carnitine using the microorganism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346293B1 (en) 1993-10-08 2002-11-30 론자 아게 Genes for butyrobetaine/crotonobetaine-l-carnitine metabolism and their use for the microbiological production of l-carnitine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346293B1 (en) 1993-10-08 2002-11-30 론자 아게 Genes for butyrobetaine/crotonobetaine-l-carnitine metabolism and their use for the microbiological production of l-carnitine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEMS Microbiol Lett. 2002 Apr 23;210(1):19-23.

Also Published As

Publication number Publication date
KR20060005189A (en) 2006-01-17

Similar Documents

Publication Publication Date Title
US8932835B2 (en) Process for the enantioselective enzymatic reduction of intermediates
Aarnikunnas et al. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes
US7553652B2 (en) Process for the preparation of (S)- or (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
US20050181490A1 (en) Fermentation process for preparing coenzyme Q10 by the recombinant Agrobacterium tumefaciens
JPH10229885A (en) New alcohol/aldehyde dehydrogenase
WO2013129393A1 (en) Hydrocarbon synthase gene, and use thereor
CN111454918B (en) Enol reductase mutant and application thereof in preparation of (R) -citronellal
KR100713103B1 (en) - - A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism
KR101166026B1 (en) A microorganism of Enterobacteriacae genus haboring genes associated with L-carintine biosynthesis and method of producing L-carnitine using the microorganism
EP1904632B1 (en) A microorganism of enterobacteriacae genus haboring genes associated with l-carintine biosynthesis and methos of producing l-carnitine using the microorganism
JP4759054B2 (en) S-adenosylmethionine-β-N-lysine-methyltransferase from Neurospora crassa, gene encoding it, vector and host cell containing the gene, and trimethyllysine using the host cell How to produce
US7195900B2 (en) Cloning and expression of D-amino acid oxidase from arthrobacter protophormiae
JP2009089649A (en) Diaphorase gene of clostridium kluyveri and its application
KR101755349B1 (en) Microorganism producing L-threonine and process for producing L-threonine using the same
US20050239180A1 (en) Nucleotide sequence coding for a mannitol-2 dehydrogenase and method for the production of d-mannitol
KR102291199B1 (en) Biocatalytic process for the production of (r)-3-quinuclidinol
KR100227960B1 (en) Sorbitol dehydrogenase of gluconobacter suboxydans and gene thereof
RU2486239C2 (en) Polypeptides for enantioselective enzymatic restoration of intermediate compounds
CN105624127B (en) A kind of glucose dehydrogenase and its application in synthesis statins drug midbody
CN117210429A (en) Histidine trimethylase EgtD mutant and application thereof
TW202413637A (en) Mutant ketoreductase with increased ketoreductase activity as well as methods and uses involving the same
CN118109465A (en) Promoter mutant for efficiently expressing D-aspartate oxidase in escherichia coli and application thereof
KR20200026261A (en) Ectoin-producing yeast
JP5866604B2 (en) Novel microorganism and method for producing 2,3-dihydroxybenzoic acid and salicylic acid using the same
WO2007023602A1 (en) Novel enzyme, method of producing the same and method of producing monoacetylpolyamine by using the enzyme

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160530

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 8