KR101164401B1 - 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법 - Google Patents

액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법 Download PDF

Info

Publication number
KR101164401B1
KR101164401B1 KR1020090082877A KR20090082877A KR101164401B1 KR 101164401 B1 KR101164401 B1 KR 101164401B1 KR 1020090082877 A KR1020090082877 A KR 1020090082877A KR 20090082877 A KR20090082877 A KR 20090082877A KR 101164401 B1 KR101164401 B1 KR 101164401B1
Authority
KR
South Korea
Prior art keywords
inhibitor
liquid medium
lactamase
ampc
plasmid
Prior art date
Application number
KR1020090082877A
Other languages
English (en)
Other versions
KR20110024751A (ko
Inventor
송원근
정석훈
김재석
김한성
이규만
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020090082877A priority Critical patent/KR101164401B1/ko
Publication of KR20110024751A publication Critical patent/KR20110024751A/ko
Application granted granted Critical
Publication of KR101164401B1 publication Critical patent/KR101164401B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02006Beta-lactamase (3.5.2.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 기질확장형 β-락타메이즈(ESBL) 또는 플라스미드 매개 AmpC β-락타메이즈(PABL)를 신속하고 정확하게 분류하고 탐지하는 액체배지 미량희석법에 관한 것이다.
액체배지 미량희석법(Broth microdilution), 클라뷸란산(clavulanic acid), 보론산(boronic acid), 기질확장성 β-락타메이즈(extended-spectrum β-lactamase, ESBL), 플라스미드 매개 AmpC β-락타메이즈(PABL)

Description

액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법{Method to detect Extended-Spectrum β-Lactamases and AmpC β-Lactamases using Broth Microdilution Method}
본 발명은 기질확장형 β-락타메이즈(ESBL) 또는 플라스미드 매개 AmpC β-락타메이즈(PABL)를 신속하고 정확하게 분류하고 탐지하는 액체배지 미량희석법에 관한 것이다.
플라스미드 유래 광범위 β-락타메이즈{plasmid-borne extended-spectrum β-lactamases (ESBLs)} 및 플라스미드 매개 AmpC β-락타메이즈{plasmid-mediated AmpC β-lactamases (PABLs)}를 함유한 장내세균의 급속한 전세계적 확산은 임상에 심각한 위협이 되고 있다 (Bradford, P. A. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951, Livermore, D. M. 2003. Bacterial resistance: origins, epidemiology, and impact. Clin. Infect. Dis. 36:S11-S23). ESBL은 숙주에 페니실린(penicillins), 옥시이미노-세팔로스포린(oxyimino-cephalosporins) 및 모노박탐(monobactams)에 대한 내성을 부여할 수 있으며, ESBL의 가수분해 활성은 통상 클라뷸란산{clavulanic acid (CA)}에 의해 억제된다(Paterson, D. L. and R. A. Bonomo. 2005. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18:657-686). PABL은 또한 카바페넴(carbapenems)을 제외한 광범위한 β-락탐에 대한 내성을 제공하지만, 그 가수분해 활성은 클라뷸란산에 의해 거의 저해를 받지 않는다(Philippon. A., G. Arlet, and G. A. Jacoby. 2002. Plasmid-determined AmpC type β-lactamases. Antimicrob. Agents Chemother. 46:1-11). 장내세균의 ESBL 및 PABL을 빠르고 정확하게 탐지하는 것은 알맞은 항생제 치료 및 적절한 감염 조절에 있어서 매우 중요하다. ESBLs 및 PABLs을 탐지하는 많은 방법들이 제안되었지만, 어떤 방법들은 수행하기가 어렵고, 많은 시간이 소요되며, 결과를 해석하기가 용이하지 않았다 (Drieux, L., F. Brossier, W. Sougakoff, and V. Jarier. 2008. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect. 14(Suppl 1):90-103, Jacoby, G. A. 2009. AmpC β-lactamases. Clin. Microbiol. Rev. 22:161-182). KPC 효소를 비롯한 클래스 A 카바페네메이즈(carbapenemases)의 확산은 탐지를 더욱 어렵게 만든다 (Bratu, S., D. Landman, R. Haag, R. Recco, A. Eramo, M. Alam, and J. Quale. 2005. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new treat to our antibiotic armamentarium. Arch. Intern. Med. 165:1430-1435, Queenan, A. M., and K. Bush. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20:440-458).
임상 및 실험실 표준화 기구(Clinical and Laboratory Standards Institute; CLSI)는 이.콜라이(Escherichia coli), 클렙시엘라 뉴모니애(Klebsiella pneumoniae), 클렙시엘라 옥시토카(Klebsiella oxytoca) 및 프로테우스 미라빌리스(Proteus mirabilis) 내에서 ESBL 생산을 구분하고 확인하기 위한 표준 액체배지 미량희석법(standard broth microdilution) 및 디스크 감수성 시험법(disk susceptibility test)에 대해 기재한다. 그러나, 최근 다른 종에 대해 이용할 수 있는 가이드라인은 없다(Clinical and Laboratory Standards Institute. 2009. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement. Document M100-S19, Clinical and Laboratory Standards Institute, Wayne, PA). 클라뷸란산의 저해효과를 이용하여 ESBL 생산을 추측하는 반자동 항균제 감수성 검사 시스템은 현재 상업적으로 판매되고 있다. 그러나, 그것은 클렙시엘라 뉴모니애(Klebsiella pneumoniae), 클렙시엘라 옥시토카(Klebsiella oxytoca) 및 이.콜라이(Escherichia coli)에만 제한적으로 적용할 수 있는 것이다.
AmpC 효소의 존재를 선별 또는 확인하는 표준화된 방법은 아직 없다. 세파마이신 저항성은 AmpC 효소의 존재를 암시하지만, 포린 결손(porin loss)에 의해 유사한 현상이 나타날 수 있다 (Hernandez-Alles, S., M. Conejo, A. Pascual, J. M. Tomas, V. J. Benedi, and L. Mertinez-Martinez. 2000. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. J. Antimicrob. Chemother. 46:273-277, Martinez-Martinez, L., A. Pascual, S. Hernandez-Alles, D. Alvarez-Diaz, A. I. Suarez, J. Tran, V. J. Benedi, and G. A. Jacoby. 1999. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43:1669-1673). 최근, AmpC 저해제인 보론산 화합물에 의한 세포탁심(cefotaxime; CTX) 세프타지딤(ceftazidime; CAZ) 및 세포테탄(cefotetan; CTT) 디스크 주위의 성장억제존의 확대와 관련된 AmpC β-락타메이즈 시험법이 제안되었다 (Coudron, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J. Clin. Microbiol. 43:4163-4167, Yagi, T., J. Wachino, H. Kurokawa, S. Suzuki, K. Yamane, Y. Doi, N. Shibata, H. Kato, K. Shibayama, and T. Arakawa. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamases-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 43:2551-2558). 보론산(BA) 시험법은 플라스미드-유래와 염색체-유래 AmpC β-락타메이즈를 구별할 수 없다.
본 발명자들은 최근 ESBL 확인용 CLSI 디스크 시험법과 유사하게, ESBL과 PABL을 모두 생산하는 종을 탐지하는 보론산 디스크 시험법의 진단학적 유용성을 평가하였다. 본 발명자들은 보론산 디스크 시험법이 장내세균(Enterobacteriaceae)에서 ESBL 및 PABL을 탐지하는 정확하고도 간단한 도구임을 발견하였다 (Jeong, S. H., W. Song, M. J. Park, J. S. Kim, H. S. Kim, I. K. Bae, and K. M. Lee. 2008. Boronic acid disk tests for identification of extended-spectrum β-lactamases production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC β-lactamases. Int. J. Antimicrob. Agents 31:467-471, Song, W., I. K. Bae, Y. N. Lee, C. H. Lee, S. H. Lee, and S. H. Jeong. 2007. Detection of extended-spectrum β-lactamases by using boronic acid as an AmpC β-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J. Clin. Microbiol. 45:1180-1184, Song, W., S. H. Jeong, J. S. Kim, H. S. Kim, D. H. Shin, K. H. Roh, and K. M. Lee. 2007. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn. Microbiol. Infect. Dis. 57:315-318).
본 발명의 목적은 각각 ESBL과 PABL을 저해하는 클라뷸란산 및 보론산을 이용하여 ESBL 및 PABL을 탐지할 수 있고, 상업적으로 판매되는 반자동 시스템에 사용 가능한 액체배지 미량희석법을 제공하려는 것이다.
최근 SENTRY 아시아-태평양 데이타를 기초로 하여 양성 ESBL 선별 결과를 나타내지만 ESBL 확인 결과에서는 음성을 나타내는 이.콜라이 및 클렙시엘라 뉴모니애(K. pneumoniae) 분리주에 대한 관심이 높아지고 있다. 이러한 표현형은 이.콜라이 및 클렙시엘라 뉴모니애에서 각각 8.9% 및 20.3%로 관찰되었고, 이들 분리주 중 높게는 75%가 PABL 유전자를 보유하고 있었다 (Bell, J. M., M. Chitsaz, J. D. Turnidge, M. Barton, L. J. Walters, and R. N. Jones. 2007. Prevalence and significance of a negative extended-spectrum β-lactamase (ESBL) confirmation test result after a positive ESBL screening test result for isolates of Escherichia coli and Klebsiella pneumoniae: results from the SENTRY Asia-Pacific Surveillance Program. J. Clin. Microbiol. 45:1478-1482).
동일 균주 내에 PABL 및 ESBL이 공존하는 경우는 ESBL 확인 시험에서 오류 음성판정을 일으키는 가장 중요한 원인이다 (Coudron, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J. Clin. Microbiol. 43:4163-4167). 본 발명자들은 CLSI 디스크 확인 시험법이 PABL 및 ESBL을 모두 생산하는 이.콜라이 및 클렙시엘라 뉴모니애 분리주에서 각각 19% 및 14%의 오류 음성결과를 나타냄을 발견하였다 (Song, W., I. K. Bae, Y. N. Lee, C. H. Lee, S. H. Lee, and S. H. Jeong. 2007. Detection of extended-spectrum β-lactamases by using boronic acid as an AmpC β-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J. Clin. Microbiol. 45:1180-1184). 염색체 유래 AmpC 효소를 보유한 장내세균속(Enterobacter spp.), 세라티아 마르세슨스(S. marcescens) 및 시트로박터 프룬디(C. freundii)에서의 ESBL 탐지 또한 용이하지 않다. 본 발명자들의 앞선 데이타에서는 CLSI 디스크 확인 시험법이 이들 종의 ESBL 생산 분리주 28%에서 오류 음성 결과를 나타냄을 발견하였다 (Jeong, S. H., W. Song, M. J. Park, J. S. Kim, H. S. Kim, I. K. Bae, and K. M. Lee. 2008. Boronic acid disk tests for identification of extended-spectrum β-lactamases production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC β-lactamases. Int. J. Antimicrob. Agents 31:467-471). 최근의 연구는 CA를 넣은 또는 넣지 않은 CTX 및 CAZ를 이용한 CLSI BMD 확인 시험법이 64개의 ESBL 생산 장내세균 분리주 중 16개(25%)에서 오류 음성 결과를 나타냄을 보여준다. 오류 음성 결과를 나타내는 모든 분리주들은 ESBL 및 AmpC 효소를 모두 보유하고 있었다 (데이타 나타내지 않음). 그러나, CA 없이 또는 CA 존재 하에 CTX-BA 및 CAZ-BA를 이용한 본 발명의 변형 CLSI BMD 확인 시험법은 PABL 존재와 관계 없이 ESBL을 탐지함에 있어서 완벽한 성과를 보여주었다. 이와 같은 결과는 BA 및/또는 CA의 존재 또는 부재 하에 CTX 및 CAZ로 수행하는 BMD 시험이 종에 대한 참조자료 없이도 임상 미생물 실험실에서 ESBL- 및/또는 AmpC 생산 장내세균을 탐지하는데 유용함을 암시한다.
BMD 시험법은 최근의 반자동 항생제 내성 시험 시스템 도입으로 인하여 임상 실험실에서 최소생육저해농도(MIC)를 결정하는데 가장 잘 알려진 방법 중 하나이다 (Yagi, T., J. Wachino, H. Kurokawa, S. Suzuki, K. Yamane, Y. Doi, N. Shibata, H. Kato, K. Shibayama, and T. Arakawa. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamases-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 43:2551-2558). 그러나, ESBL 양성 장내세균을 탐지함에 있어서 반자동 시스템인 Vitek 2™, MicroScan™ 및 BD Phoenix™의 수행능력은 천차만별이며, 특히 AmpC 생산 엔테로박터(Enterobacter) 및 시트로박터(Citrobacter) 종과 같은 미생물에서는 그 수행능력에 많은 차이가 있었다 (Wiegand, I., H. K. Geiss, D. Mack, E. Strurenburg, and H. Seifert. 2007. Detection of extended-spectrum β-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. J. Clin. Microbiol. 45:1167-1174). BD Phoenix™는 PABL과 공존하는 ESBL 확인시험에서 저조한 수행결과를 나타내었다 (Robberts, F. J. L., P. C. Kohner, and R. Patel. 2009. Unreliable extendedspectrum β-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J. Clin. Microbiol. 47:358-361). 반면, CA 없이 또는 CA 존재 하에 CTX-BA 및 CAZ-BA를 이용하는 본 발명의 BMD 시험법은 ESBLs 및 PABLs 탐지 목적으로 상업적으로 판매 중인 반자동 시스템의 일상적 이용에 적용할 수 있다.
본 발명자들은 각각 ESBL(extended-spectrum β-lactamases)과 PABL(AmpC β-lactamase)을 저해하는 클라뷸란산 및 보론산을 이용하여 ESBL 및 PABL의 생산을 탐지하는 액체배지 미량희석법을 발명하여 그 효율을 평가하였다. 총 100개의 장내세균 임상 분리주가 분석되었다. CTX, CAZ, 아즈트레오남(aztreonam; ATM) 또는 세페핌(cefepime; FEP)을 두 배씩 희석하고, 클라뷸란산 및/또는 보론산을 넣거나 넣지 않은 뮬러-힌튼 액체배지(Mueller-Hinton broth)를 제조하였다. 클라뷸란산 및 보론산 존재 하에 CTX, CAZ, ATM, 또는 FEP의 최소생육억제농도가 8배 또는 그 이상 감소하면 각각 ESBL 및/또는 플라스미드-매개 AmpC β-락타메이즈(PABL) 양성인 것으로 판단한다. 클라뷸란산을 이용한 시험법에서 보론산 함유 광범위 β-락탐(CTX-BA, CAZ-BA, ATM-BA, 및 FEP-BA)은 보론산을 넣지 않은 것에 비하여 ESBL 생산주를 탐지함에 있어서 높은 양성 확률을 나타내었다. 클라뷸란산 및 보론산을 넣은 CTX- 및 CAZ-기반 BMD 시험법의 조합은 ESBL 및 PABL 탐지에 있어서 100%의 민감성과 특이성을 나타내었다. 이러한 액체배지 미량희석 시험법(BMD)은 장내세균에서 ESBL 및 PABL을 탐지함에 있어서 상업적으로 판매 중인 반자동 시스템을 이용할 수 있다.
본 발명은 액체배지 미량희석법을 이용하여 기질확장성 β-락타메이즈(ESBL) 생산균주를 탐지하는 방법에 있어서,
(1) 세포탁심-PABL 저해제 액체배지 대 세포탁심-ESBL 저해제-PABL 저해제 액체배지의 조합,
(2) 세프타지딤-PABL 저해제 액체배지 대 세프타지딤-ESBL 저해제-PABL 저해제 액체배지의 조합,
(3) 아즈트레오남-PABL 저해제 액체배지 대 아즈트레오남-ESBL 저해제-PABL 저해제 액체배지의 조합,
(4) 세페핌-PABL 저해제 액체배지 대 세페핌-ESBL 저해제-PABL 저해제 액체배지의 조합,
(5) 세프트리액손(ceftriaxone)-PABL 저해제 액체배지 대 세프트리액손(ceftriaxone)-ESBL 저해제-PABL 저해제 액체배지의 조합, 및
(6) 세포독심(cefpodoxime)-PABL 저해제 액체배지 대 세포독심(cefpodoxime)-ESBL 저해제-PABL 저해제 액체배지의 조합; 중 선택된 1 이상의 조합을 이용하여 ESBL 생산균주 탐지방법을 제공한다.
또한, 본 발명은 상기 액체배지에 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세프트리액손(ceftriaxone) 또는 세포독심(cefpodoxime)이 각각 0.25 내지 1024㎍/㎖ 함유되며, PABL 저해제는 100~500㎍/㎖, ESBL 저해제는 1~10㎍/㎖ 함유되는 것을 특징으로 하는 ESBL 생산균주 탐지방법을 제공한다.
또한, 본 발명은 상기 ESBL 저해제와 PABL 저해제를 모두 함유한 액체배지의 최소생육억제농도가 ESBL 저해제를 함유하고 PABL 저해제를 함유하지 않은 액체배지의 최소생육억제농도보다 8배 이상 작은 때 그 세균을 ESBL 생산균으로 판정하는 것을 특징으로 하는 ESBL 생산균주 탐지방법을 제공한다.
또한, 본 발명은 액체배지 미량희석법을 이용하여 플라스미드-매개 AmpC 락타메이즈(PABL) 생산균주를 탐지하는 방법에 있어서,
(1) 세포탁심-ESBL 저해제 액체배지 대 세포탁심-ESBL 저해제-PABL 저해제 액체배지의 조합,
(2) 세프타지딤-ESBL 저해제 액체배지 대 세프타지딤-ESBL 저해제-PABL 저해제 액체배지의 조합,
(3) 아즈트레오남-ESBL 저해제 액체배지 대 아즈트레오남-ESBL 저해제-PABL 저해제 액체배지의 조합,
(4) 세폭시틴(cefoxitin)-ESBL 저해제 액체배지 대 세폭시틴(cefoxitin)-ESBL 저해제-PABL 저해제 액체배지의 조합 및
(5) 세포테탄(cefotetan)-ESBL 저해제 액체배지 대 세포테탄(cefotetan)-ESBL 저해제-PABL 저해제 액체배지의 조합; 중 선택된 1 이상의 조합을 이용한 PABL 생산균주 탐지방법을 제공한다.
또한, 본 발명은 ESBL 저해제와 PABL 저해제를 모두 함유한 액체배지의 최소생육억제농도가 ESBL 저해제를 함유하고 PABL 저해제를 함유하지 않은 액체배지의 최소생육억제농도보다 8배 이상 작은 때 그 세균을 PABL 생산균으로 판정하는 것을 특징으로 하는 PABL 생산균주 탐지방법을 제공한다.
또한, 본 발명은 상기 액체배지에 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세폭시틴(cefoxitin) 또는 세포테탄(cefotetan)이 각각 0.25~1024㎍/㎖ 함유되며, PABL 저해제는 100~500㎍/㎖, ESBL 저해제는 1~10㎍/㎖ 함유되는 것을 특징으로 하는 PABL 생산균주 탐지방법을 제공한다. 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세폭시틴(cefoxitin) 또는 세포테탄(cefotetan) 등은 0.25 ~ 1024㎍/㎖ 범위에서 사용하는 것이 바람직하다. 상기 항생제가 0.25㎍/㎖ 미만 농도일 때 항생제로서의 기능을 잘 발휘하지 못하며, 또한, 1024㎍/㎖ 이내의 농도에서도 충분히 균주 탐지가 가능하므로 1024㎍/㎖를 초과하는 범위에서의 균주 탐지는 경제적이지 못하다. 또, 상기 PABL 저해제 및 ESBL 저해제의 농도 범위는 PABL 또는 ESBL 활성을 억제하기에 적합한 범위이다.
또한, 본 발명은 상기 PABL 저해제가 페닐보론산, 3-아미노페닐보론산을 포함하는 보론산및 클록사실린(cloxacillin) 중에서 선택되는 1종 이상임을 특징으로 한다.
또한, 본 발명은 상기 ESBL 저해제가 클라뷸란산임을 특징으로 한다.
또한, 본 발명은 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세프트리액손(ceftriaxone), 세포독심(cefpodoxime), 세폭시틴(cefoxitin) 및 세포테탄(cefotetan) 중 선택된 1종과 PABL 저해제 및 ESBL 저해제가 함유된 베타-락타메이즈 생산균주 스크리닝용 액체배지를 제공한다.
또한, 본 발명은 상기 액체배지에 세포탁심, 세프타지딤, 아즈트레오남, 세 페핌, 세프트리액손(ceftriaxone), 세포독심(cefpodoxime), 세폭시틴(cefoxitin) 또는 세포테탄(cefotetan)이 각각 0.25~1024㎍/㎖ 함유되며, PABL 저해제는 100~500㎍/㎖, ESBL 저해제는 1~10㎍/㎖ 함유되는 것을 특징으로 하는 베타-락타메이즈 생산균주 스크리닝용 액체배지를 제공한다.
클라뷸란산을 이용한 시험법에서 보론산 함유 광범위 β-락탐(CTX-BA, CAZ-BA, ATM-BA, 및 FEP-BA)은 보론산을 넣지 않은 것에 비하여 ESBL 생산주를 탐지함에 있어서 높은 양성 확률을 나타내었다. 클라뷸란산 및 보론산을 넣은 CTX- 및 CAZ-기반 BMD 시험법의 조합은 ESBL 및 PABL 탐지에 있어서 100%의 민감성과 특이성을 나타내었다. 이러한 액체배지 미량희석 시험법(BMD)은 장내세균에서 ESBL 및 PABL을 탐지함에 있어서 상업적으로 판매 중인 반자동 시스템을 이용할 수 있다.
이하, 구체적인 실시예를 들어 본 발명의 구성을 좀더 자세히 설명한다. 그러나, 본 발명의 범위가 아래 실시예의 기재범위에 의하여 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다. 예컨대, 아래 실시예에 기재된 항생제 외에도 다양한 항생제를 이용하여 본 발명의 기술사상을 구현할 수 있으며, ESBL 저해제, PABL 저해제 또한 실시예에 기재된 것 외에도 다양한 저해제들을 적용하여 본 발명의 기술사상을 구현하는 것이 가능하므로, 본 발명의 범위가 다양한 응용에도 미친다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
재료와 방법
세균 균주(Bacterial strains)
이. 콜라이(E. coli) (n = 14), 클렙시엘라 옥시토카(K. oxytoca) (n = 3), 클렙시엘라 뉴모니아(K. pneumonia) (n = 28), 프로테우스 미라빌리스(P. mirabilis) (n = 5), 살모넬라 속(Salmonella spp.) (n = 1), 엔테로박터 클로아세아(Enterobacter cloacae) (n = 20), 엔테로박터 아에로게네스(E. aerogenes) (n = 8), 세라티아 마르세슨스(Serratia marcescens) (n = 13) 및 시트로박터 프룬디(Citrobacter freundii) (n = 8)의 총 100개 임상 분리주가 본 발명의 본 실시예에 이용되었다. 53개는 ESBL 생산주였고, 11개는 PABL 및 ESBL 동시생산주(coproducers)이며, 15개는 PABL 생산주이며, 21개는 염색체 AmpC 과잉생산주(chromosomal AmpC hyperproducers)였다(표 1). 98개의 분리주는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 잘 알려진 적절한 생화학적, 표현형질적 및 분자적 공정으로 미리 특성을 규명하여 β-락타메이즈 생산 타입을 결정하였다 (Jeong, S. H., W. Song, M. J. Park, J. S. Kim, H. S. Kim, I. K. Bae, and K. M. Lee. 2008. Boronic acid disk tests for identification of extended-spectrum β-lactamases production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC β-lactamases. Int. J. Antimicrob. Agents 31:467- 471, Song, W., I. K. Bae, Y. N. Lee, C. H. Lee, S. H. Lee, and S. H. Jeong. 2007. Detection of extended-spectrum β-lactamases by using boronic acid as an AmpC β-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J. Clin.Microbiol. 45:1180-1184, Song, W., S. H. Jeong, J. S. Kim, H. S. Kim, D. H. Shin, K. H. Roh, and K. M. Lee. 2007. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn. Microbiol. Infect. Dis. 57:315-318). TEM-52 및 CTX-M-14 β-락타메이즈가 각각 잠복된 두 개의 프로테우스 미라빌리스(P. mirabilis)를 이경원 박사(연세대학교 의과대학, 한국)로부터 입수하였다.
액체배지 미량희석법(BMD testing)
CTX, CAZ, 아즈트레오남(aztreonam; ATM) 및 세페핌(cefepime; FEP)을 0.25 내지 512㎍/㎖ 범위 내에서 두 배씩 희석하고, 고정 농도 4㎍/㎖의 클라뷸란산 및/또는 고정농도 200㎍/㎖의 보론산을 넣은 또는 넣지 않은 뮬러-힌튼 액체배지(Mueller-Hinton broth media)를 제조하여 96웰 마이크로플레이트에 넣었다. 세균 현탁액을 CLSI 문서 M7-A8에 따라 각 웰에 접종시켰다 (Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 8th ed. Approved standard M7-A8. Clinical and Laboratory Standards Institute, Wayne, PA). 플레이트는 37℃로 오버나잇 배양하였다.
i) CA와 조합한 광범위 β-락탐 (CTX-CA, CAZ-CA, ATM-CA, 또는 FEP-CA) 대 CTX, CAZ, ATM 또는 FEP, 또는 ⅱ) CA와 조합한 BA 함유 기질 확장성 β-락탐(CTX-CABA, CAZ-CA-BA, ATM-CA-BA, 또는 FEP-CA-BA) 대 BA를 함유한 기질 확장성 β-락탐(CTX-BA, CAZ-BA, ATM-BA 또는 FEP-BA)의 최소생육저해농도(MIC)가 8배 또는 그 이상 감소하면 ESBL 생산 양성으로 판단하였다.
i) BA와 조합한 광범위 β-락탐 (CTX-BA, CAZ-BA 또는 ATM-BA) 대 CTX, CAZ 또는 ATM, 또는 ⅱ) BA와 조합한 CA를 함유하는 광범위 β-락탐 (CTX-CA-BA, CAZ-CA-BA 또는 ATM-CA-BA) 대 CA를 함유하는 광범위 β-락탐 (CTX-CA, CAZ-CA or ATM-CA)의 최소생육저해농도(MIC)가 8배 또는 그 이상 감소하면 이. 콜라이(E. coli), 클렙시엘라 옥시토카(K. oxytoca), 클렙시엘라 뉴모니아(K. pneumonia), 프로테우스 미라빌리스(P. mirabilis) 및 살모넬라 속(Salmonella spp.)에서 AmpC β-락타메이즈 생산 양성인 것으로 판단하였다. 이. 콜라이 ATCC 25922는 음성 대조군으로 사용하였다.
결과
ESBL 탐지를 위한 액체배지 미량희석 시험법
보론산을 함유한 광범위 β-락탐으로 수행한 ESBL 탐지 시험은 보론산을 함유하지 않은 것에 비하여 높은 민감성을 나타내었다. CTX, CAZ, ATM, 및 FEP가 64 개의 ESBL 생산 분리주에 대하여 각각 46 (72%), 44 (69%), 54 (83%), 및 60 (94%)의 양성 시험결과를 나타낸 것에 비하여 CTX-BA, CAZ-BA, ATM-BA, 및 FEP-BA는 64개의 ESBL 생산 분리주에 대하여 각각 63 (98%), 58 (91%), 63 (98%), 및 63(98%)의 양성 시험결과를 나타내었다. 보론산을 함유하거나 함유하지 않은 FEP-기반 BMD 시험법은 36개의 ESBL을 생산하지 않는 분리주에서 각각 4(11%; 세 개의 DHA-1-생산 클렙시엘라 뉴모니애 및 하나의 CMY-1-생산 이.콜라이 분리주) 및 1(3%; CMY-1-생산 이.콜라이 분리주)의 잘못된 양성반응 결과를 나타내었다. 이 시험법은 64개의 ESBL 생산 분리주에 대하여 각각 1개{CTX-M-3-생산 세라티아 마르세슨스(S. marcescens) 분리주} 및 4개{하나의 SHV-12-생산 클렙시엘라 뉴모니애(K. pneumoniae), 하나의 SHV-12-생산 엔테로박터 클로아새(E. cloacae), 하나의 CTX-M-9-생산 엔테로박터 클로아새(E. cloacae) 및 하나의 CTX-M-3-생산 세라티아 마르세슨스(S. marcescens) 분리주}의 잘못된 양성반응 결과를 나타내었다. CTX-BA 및 CAZ-BA 또는 CTX-BA 및 ATM-BA 조합으로 수행한 ESBL 탐지 시험의 민감성과 특이성은 100%였다.
PABL 탐지를 위한 액체배지 미량희석 시험법
클라뷸란산을 함유한 광범위 β-락탐으로 수행한 PABL 탐지 시험은 클라뷸란산을 함유하지 않은 것에 비하여 높은 민감성을 나타내었다. CTX, CAZ, 및 ATM이 26개의 PABL 생산 분리주에 대하여 각각 16 (62%), 14 (54%), 및 10 (38%)의 양성 시험결과를 나타낸 것에 비하여 CTX-CA, CAZ-CA, 및 ATM-CA는 26개의 PABL 생산 분 리주에 대하여 각각 25 (96%), 25 (96%), 및 22 (85%)의 양성을 나타내었다. CTX 또는 CAZ 시험이 25개의 PABL을 생산하지 않는 분리주에 대하여 각각 4(16%) 및 3(12%)의 잘못된 양성반응 결과를 나타낸 반면, CTX-CA, CAZ-CA, 및 ATM-CA으로 한 시험에서는 잘못된 양성반응이 나타나지 않았다. CTX-CA 및 CAZ-CA 조합으로 수행한 PABL 탐지 시험의 민감성과 특이성은 100%였다.
Figure 112009054282330-pat00001
Figure 112009054282330-pat00002
Figure 112009054282330-pat00003

Claims (12)

  1. 액체배지 미량희석법을 이용하여 기질확장형 β-락타메이즈(ESBL) 생산균주를 탐지하는 방법에 있어서,
    [{세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세프트리액손(ceftriaxone) 및 세포독심(cefpodoxime)으로 이루어진 그룹 중 선택된 1종의 항생제 A}-플라스미드-매개 AmpC 락타메이즈 저해제인 보론산 액체배지] 대 [항생제 A-기질확장형 β-락타메이즈 저해제인 클라뷸란산-플라스미드-매개 AmpC 락타메이즈 저해제인 보론산 액체배지]의 조합을 이용하여 기질확장형 β-락타메이즈 생산균주를 탐지하는 방법.
  2. 삭제
  3. 삭제
  4. 청구항 1에 있어서,
    상기 액체배지에는 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세프트리액손(ceftriaxone) 또는 세포독심(cefpodoxime)이 각각 0.25 내지 1024㎍/㎖ 함유되며, 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산은 100~500㎍/㎖, 기질확장형 β-락타메이즈 저해제인 클라뷸란산은 1~10㎍/㎖ 함유되는 것을 특징으로 하는 기질확장형 β-락타메이즈 생산균주를 탐지하는 방법.
  5. 청구항 1에 있어서,
    기질확장형 β-락타메이즈 저해제인 클라뷸란산과 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산을 모두 함유한 액체배지의 최소생육억제농도가 기질확장형 β-락타메이즈 저해제인 클라뷸란산을 함유하고 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산을 함유하지 않은 액체배지의 최소생육억제농도보다 8배 이상 작은 때 그 세균을 기질확장형 β-락타메이즈 생산균으로 판정하는 것을 특징으로 하는 기질확장형 β-락타메이즈 생산균주를 탐지하는 방법.
  6. 액체배지 미량희석법을 이용하여 플라스미드-매개 AmpC 락타메이즈(PABL) 생산균주를 탐지하는 방법에 있어서,
    [{세포탁심, 세프타지딤, 아즈트레오남, 세폭시틴(cefoxitin) 및 세포테탄(cefotetan)으로 이루어진 그룹 중 선택된 1종의 항생제 B}-기질확장형 β-락타메이즈 저해제인 클라뷸란산 액체배지] 대 [항생제 B-기질확장형 β-락타메이즈 저해제인 클라뷸란산-플라스미드-매개 AmpC 락타메이즈 저해제인 보론산 액체배지]의 조합을 이용한 플라스미드-매개 AmpC 락타메이즈 생산균주 탐지방법.
  7. 삭제
  8. 삭제
  9. 청구항 6에 있어서,
    기질확장형 β-락타메이즈 저해제인 클라뷸란산과 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산을 모두 함유한 액체배지의 최소생육억제농도가 기질확장형 β-락타메이즈 저해제인 클라뷸란산을 함유하고 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산을 함유하지 않은 액체배지의 최소생육억제농도보다 8배 이상 작은 때 그 세균을 플라스미드-매개 AmpC 락타메이즈 생산균으로 판정하는 것을 특징으로 하는 플라스미드-매개 AmpC 락타메이즈 생산균주 탐지방법.
  10. 청구항 6에 있어서,
    상기 액체배지에는 세포탁심, 세프타지딤, 아즈트레오남, 세페핌, 세폭시틴(cefoxitin) 또는 세포테탄(cefotetan)이 각각 0.25~1024㎍/㎖ 함유되며, 플라스미드-매개 AmpC 락타메이즈 저해제인 보론산은 100~500㎍/㎖, 기질확장형 β-락타메이즈 저해제인 클라뷸란산은 1~10㎍/㎖ 함유되는 것을 특징으로 하는 플라스미드-매개 AmpC 락타메이즈 생산균주 탐지방법.
  11. 삭제
  12. 삭제
KR1020090082877A 2009-09-03 2009-09-03 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법 KR101164401B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090082877A KR101164401B1 (ko) 2009-09-03 2009-09-03 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090082877A KR101164401B1 (ko) 2009-09-03 2009-09-03 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법

Publications (2)

Publication Number Publication Date
KR20110024751A KR20110024751A (ko) 2011-03-09
KR101164401B1 true KR101164401B1 (ko) 2012-07-12

Family

ID=43932537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082877A KR101164401B1 (ko) 2009-09-03 2009-09-03 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법

Country Status (1)

Country Link
KR (1) KR101164401B1 (ko)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Clin. Microbiol.(제43권, 제8호, 제4163-4167면, 2005년).*

Also Published As

Publication number Publication date
KR20110024751A (ko) 2011-03-09

Similar Documents

Publication Publication Date Title
Hrabák et al. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories
Tsakris et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory
Nordmann et al. Identification and screening of carbapenemase-producing Enterobacteriaceae
EP2723884B1 (en) Method for detecting the presence of carbapenemase-producing bacteria in a sample
Yilmaz et al. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae
US20200407770A1 (en) Method for detecting the presence of expanded spectrum b-lactamase-producing bacteria in a sample
Al-Bayssari et al. Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century
Saito et al. Evaluation of a simple phenotypic method for the detection of carbapenemase-producing Enterobacteriaceae
EP1987155A2 (en) Selective culture medium
Genc et al. The identification of carbapenemase types in Enterobacteriaceae by using molecular assay and phenotyping confirmation tests
Jeong et al. Boronic acid disk tests for identification of extended-spectrum β-lactamase production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC β-lactamases
JP7479433B2 (ja) クラスa型カルバペネマーゼ産生菌の検出方法および検出用多ウェルプレート
KR101164401B1 (ko) 액체배지 미량희석법을 이용한 기질확장성 베타-락타메이즈 또는 AmpC 베타-락타메이즈 탐지방법
Jeong et al. Broth microdilution method to detect extended-spectrum β-lactamases and AmpC β-lactamases in Enterobacteriaceae isolates by use of clavulanic acid and boronic acid as inhibitors
KR101389696B1 (ko) β-락타메이즈 저해제를 이용한 액체배지 미량희석법으로 KPC 및 MBL 생산을 탐지하는 방법
Teethaisong et al. A nitrocefin disc supplemented with ertapenem for rapid screening of carbapenemase-producing Enterobacteriaceae
Singh The incidence of AmpC β-lactamases producing Klebsiella pneumoniae subspecies pneumoniae
Al-Taie Molecular detection of medically important metallo-β-lactamases produced by multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae
Farajnia OXA-10 and OXA-2 ESBLs among multidrug-resistant Pseudomonas aeruginosa isolates from North West of Iran
Abdelmoktader et al. Methods of ESBLs Detection in Clinical Microbiology Lab
Czobor et al. ESBL genes in Multi Drug Resistant Gram negative strains isolated in a one year survey from an Intensive Care Unit in Bucharest, Romania
Ranjan et al. Ampicillin-Eating, Carbapenem-Resistant, Super-Superbug Pseudomonas sp. MR 02, Isolated from an Indian River, Mahananada, Has Exhaustive Repertoire of Genes to Combat All Classes of Antibiotics and Catabolize β-Lactams for Its Sustenance
Ngom et al. Molecular typing of extended spectrum β-lactamase producing klebsiella pneumoniae strains isolated in the university hospital center of Dakar
Shin et al. Evaluation of dipicolinic acid-based Mueller Hinton agar biplate for detection of IMP-1 and VIM-2 type metallo-beta-lactamase in imipenem non-susceptible gram negative bacilli
Faghihi et al. Detection of plasmid-mediated AmpC β-lactamases in Klebsiella pneumoniae clinical isolates from Bushehr province, Iran

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160708

Year of fee payment: 5