KR101163024B1 - Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same - Google Patents

Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same Download PDF

Info

Publication number
KR101163024B1
KR101163024B1 KR20100113443A KR20100113443A KR101163024B1 KR 101163024 B1 KR101163024 B1 KR 101163024B1 KR 20100113443 A KR20100113443 A KR 20100113443A KR 20100113443 A KR20100113443 A KR 20100113443A KR 101163024 B1 KR101163024 B1 KR 101163024B1
Authority
KR
South Korea
Prior art keywords
waste paper
pretreatment
waste
treatment
microwave
Prior art date
Application number
KR20100113443A
Other languages
Korean (ko)
Other versions
KR20120052014A (en
Inventor
배현종
신한기
위승곤
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR20100113443A priority Critical patent/KR101163024B1/en
Publication of KR20120052014A publication Critical patent/KR20120052014A/en
Application granted granted Critical
Publication of KR101163024B1 publication Critical patent/KR101163024B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/36Explosive disintegration by sudden pressure reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 바이오매스의 가수분해 전처리방법 및 상기 방법으로 처리된 바이오매스를 이용한 당화합물 및 바이오에탄올 생산 방법에 관한 것으로, 보다 구체적으로는 폐신문지 또는 폐인쇄용지를 포함한 폐지를 재생공정에서 이용되는 해섬기에서 물리적으로 전처리한 후 마이크로웨이브 및 팝핑 복합전처리함으로써 바이오매스로서 폐신문지 또는 폐인쇄용지를 포함하는 폐지를 사용하여도 높은 당화 및 발효 효율을 얻을 수 있는 폐지가수분해전처리방법 및 상기 방법으로 처리된 폐지로부터 당화합물 및 바이오에탄올을 제조하는 방법에 관한 것이다. The present invention relates to a hydrolysis pretreatment method of biomass and a sugar compound and bioethanol production method using the biomass treated by the above method, and more particularly, waste paper including waste newspaper or waste paper is used in a regeneration process. Microbial and popping complex pretreatment after physical pretreatment in sea islands, and waste paper hydrolysis pretreatment method which can obtain high saccharification and fermentation efficiency even if waste paper including waste newspaper or waste printing paper is used as biomass. The present invention relates to a method for producing a sugar compound and bioethanol from treated waste paper.

Description

당화수율향상을 위한 폐지가수분해전처리방법, 상기 방법으로 처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법 {Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same } Wastewater hydrolysis pretreatment method for improving glycation yield, sugar compound and bioethanol production process using waste paper treated by the above method {Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio- ethanol using the same}

본 발명은 바이오매스의 가수분해 전처리방법 및 상기 방법으로 처리된 바이오매스를 이용한 당화합물 및 바이오에탄올 생산 방법에 관한 것으로, 보다 구체적으로는 폐신문지 또는 폐인쇄용지를 포함한 폐지를 재생공정에서 이용되는 해섬기에서 물리적으로 전처리한 후 마이크로웨이브 및 팝핑 복합전처리함으로써 바이오매스로서 폐신문지 또는 폐인쇄용지를 포함하는 폐지를 사용하여도 높은 당화 및 발효 효율을 얻을 수 있는 폐지가수분해전처리방법, 상기 방법으로 처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법에 관한 것이다.
The present invention relates to a hydrolysis pretreatment method of biomass and a sugar compound and bioethanol production method using the biomass treated by the above method, and more particularly, waste paper including waste newspaper or waste paper is used in a regeneration process. Wastewater hydrolysis pretreatment method which can obtain high saccharification and fermentation efficiency even if waste paper including waste newspaper or waste paper is used as biomass by physical pretreatment in sea island, followed by microwave and popping complex pretreatment. It relates to a sugar compound and a bioethanol production method using the treated waste paper.

바이오매스로부터 바이오에탄올 생산 기술은 브라질이나 미국 등지에서 당질(사탕수수 즙) 및 전분질계(옥수수 및 밀)을 이용하여 상업화되고 있으며, 대규모 바이오에탄올 생산 공장이 가동되고 있다. 반면 지구상에서 가장 풍부한 물질로 농ㆍ임 폐기물, 펄프 폐액, 폐지 및 각종 건축 폐기물을 포한 초ㆍ목본류 식물체를 포함하는 리그노셀룰로오스계 바이오매스로부터 바이오에탄올 생산 공정은 미래 바이오에너지 생산을 위해 커다란 잠재성을 가지고 있으나, 과거 수 십 년간 기술개발과 연구를 통해 기본적인 공정은 밝혀졌음에도 불구하고 대량생산 시스템 적용의 한계와 경제성 문제로 인해 아직까지 상용화는 이루어지지 않고 있는 실정이다. Bioethanol production technology from biomass is commercialized using sugar (sugarcane juice) and starch system (corn and wheat) in Brazil and the United States, and large bioethanol production plants are operating. On the other hand, the bioethanol production process from lignocellulosic biomass, including herbaceous and woody plants including agricultural and forestry wastes, pulp waste, waste paper and various construction wastes as the most abundant substances on earth, has great potential for future bioenergy production. Although the basic process has been revealed through technology development and research in the past decades, commercialization has not been achieved yet due to the limitations of the mass production system application and economic problems.

폐지는 타 리그노셀룰로오스계 바이오매스와는 달리 이미 기계적, 화학적 처리 과정을 거친 상태로 산이나 알칼리 처리와 같은 강력한 전처리 과정이 필요가 없다. 그럼에도 불구하고 폐지로부터 당 생산을 위해 전자빔, 이산화탄소 폭쇄, 망간화물과 같은 mild한 전처리 공정을 적용하였을 경우 당화 수율이 낮고 경제성이 낮으며, 일부는 환경 문제를 유발한다. 이러한 문제점을 해결하기 위해 폐지에 적합한 전처리 방법을 개발하고자 화학적 전처리 방법을 전혀 사용하지 않고 섬유 해섬기, 마이크로 웨이브, 팝핑기 및 복합 전처리 방법을 사용하여 기질의 효소 당화율을 측정하여 최적의 전처리 방법을 득하였다. Unlike other lignocellulosic biomass, waste paper has already undergone mechanical and chemical treatment and does not require strong pretreatment such as acid or alkali treatment. Nevertheless, mild pretreatment processes such as electron beam, carbon dioxide depletion, and manganese for the production of sugars from waste paper have low glycation yield and low economic efficiency, and some cause environmental problems. In order to solve this problem, the optimal pretreatment method is achieved by measuring the enzyme glycosylation rate of the substrate using fiber pretreatment, microwave, popping machine and complex pretreatment method without using any chemical pretreatment method. Gained.

우리나라는 2008년에 약 11백만 톤의 종이 및 판지를 생산하였고, 종이 소비량은 약 9.5백만 톤을 차지하여 제지산업 규모가 세계 10위권이다. 특히 폐지 재활용률은 83%로 연간 800만 톤으로 세계에서 가장 높다. 기본적으로 펄프 생산이 취약한 우리나라의 경우 이러한 폐지 재활용은 바이오매스의 재활용이라는 측면에서 매우 친환경적일 뿐만 아니라 "폐지 재활용에 따른 온실 가스 배출 저감효과 분석"에 따르면 폐지 1톤을 재활용시 1.07톤의 이산화탄소 저감효과가 있는 것으로 알려졌고, 폐지의 재활용은 펄프 대체 효과, 온실가스 배출 저감 및 탄소 흡수원인 산림을 보호하는 기능을 가지고 있다. In 2008, Korea produced about 11 million tons of paper and cardboard, and paper consumption accounted for about 9.5 million tons, making the paper industry the world's top 10. In particular, the recycling rate of waste paper is 83%, the highest in the world at 8 million tons per year. In Korea, where pulp production is basically weak, such waste paper recycling is not only eco-friendly in terms of biomass recycling, but according to the "Analysis of Greenhouse Gas Emissions Reduction from Waste Paper Recycling", the reduction of 1.07 tons of carbon dioxide when recycling 1 tonne of waste paper is recycled. It is known to be effective, and waste paper recycling has the function of replacing pulp, reducing greenhouse gas emissions and protecting forests as a carbon sink.

바이오연료 생산공정은 크게 원료수집, 전처리, 당화, 발효, 그리고 정제 등의 공정으로 이루어져 있다. 폐지 중 신문지는 주로 침엽수재 펄프를 사용하기 때문에 리그닌의 함량이 높고 조직이 치밀하여 효소 가수분해가 쉽지 않은 문제점을 가지고 있다. 그리고 폐지는 이미 기계적, 화학적 처리 공정을 거쳐 리그닌 및 일부 헤미셀룰로오스가 제거 되었기 때문에 기존의 리그노셀룰로오스 전처리와 같은 방법으로는 효소 당화율을 높이기는 쉽지 않다. 또한 폐신문지나 인쇄용지에는 전체 종이 무게의 2% 이하의 잉크 성분뿐만 아니라 신문지 및 인쇄지의 인쇄적성을 높이기 위해 첨가되는 충진제는 소수성을 띠고 있어 친수성인 셀룰로오스에 효소의 접근성을 저하시키는 원인이 된다. 따라서 이러한 폐지로 부터 바이오에탄올 생산을 위한 당화 효율 및 발효 수율을 높이기 위해서는 탈묵(잉크제거 공정) 및 충진제의 제거가 필수적이다. 종래의 탈묵 및 충진제 제거 공정은 알칼리 조건하에서 실시되었으며, 이러한 알칼리 조건하에서 섬유는 팽윤되고 친수성을 가진 계면 특성을 가진다. 그러나 이러한 처리 방법은 부상 부유와 세척 공정을 거치는 과정에서 공정수의 사용이 많고 잉크 성분 이외의 성분이 부상ㆍ배출되어 당화 및 발효 수율이 저하되고, 재활용 공정으로 2차 환경오염을 유발하는 문제점을 가지고 있다. The biofuel production process consists of raw material collection, pretreatment, saccharification, fermentation, and purification. Newspaper of the waste paper mainly uses coniferous pulp, so the lignin content is high and the tissue is dense, so that the enzyme hydrolysis is not easy. And since waste paper has already been removed by lignin and some hemicellulose through mechanical and chemical treatment, it is not easy to increase the enzyme glycosylation rate by the same method as the conventional lignocellulosic pretreatment. In addition, in addition to the ink component of 2% or less of the total weight of paper in waste paper or printing paper, the filler added to increase the printability of newspapers and printing papers is hydrophobic, which causes the enzyme accessibility to hydrophilic cellulose. Therefore, in order to increase the saccharification efficiency and fermentation yield for the production of bioethanol from such waste paper, it is necessary to remove the deinking (ink removal process) and the filler. Conventional deinking and filler removal processes have been carried out under alkaline conditions, in which the fibers have swelling and hydrophilic interfacial properties. However, this treatment method uses a lot of process water in the process of floating flotation and washing, floating and discharging components other than ink components, resulting in poor saccharification and fermentation yields, and causing secondary environmental pollution through recycling processes. Have.

따라서, 폐지 특히 폐신문지로부터 바이오에탄올의 효율적인 생산을 위해서는 당화 및 발효 저해 물질로 작용하는 폐신문지의 잉크와 충진제를 제거하고, 잉크 및 충진제 제거에 따른 2차 환경문제를 유발하지 않으며, 전처리 공정에서의 에너지 소비를 절감할 수 있는 전처리 방법의 개발이 필요하다.
Therefore, in order to efficiently produce bioethanol from waste paper, especially waste paper, ink and fillers in waste papers that act as inhibitors of saccharification and fermentation are removed, and the secondary environmental problems of ink and fillers are not removed. There is a need for the development of pretreatment methods to reduce energy consumption.

본 발명자는 상기와 같은 종래 기술의 제반 단점과 문제점을 해결하기 위해 노력한 결과 폐지로부터 바이오에탄올 생산 공정을 개발함으로써 본 발명을 완성하게 되었다.The present inventors have completed the present invention by developing a bioethanol production process from waste paper as a result of trying to solve all the disadvantages and problems of the prior art as described above.

따라서, 본 발명의 목적은 바이오매스로 폐신문지 및/또는 폐인쇄용지를 포함하는 폐지를 사용하는 경우에도 당화효율 및 바이오에탄올 생산 수율을 극대화 할 수 있도록 폐지를 효과적으로 가수분해 시킬 수 있는 가수분해전처리방법, 상기 전처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법을 제공하는 것이다. Accordingly, an object of the present invention is a hydrolysis pretreatment that can effectively hydrolyze waste paper so as to maximize the saccharification efficiency and yield of bioethanol even when using waste paper including waste newspaper and / or waste print paper as biomass. The present invention provides a method for producing a sugar compound and bioethanol using the pretreated waste paper.

본 발명의 다른 목적은 전처리 공정에서 화학약품을 전혀 사용하지 않아 환경문제를 유발하지 않을 뿐만 아니라, 전처리 공정에서의 에너지 소비를 절감할 수 있는 폐지가수분해전처리방법, 상기 전처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법을 제공하는 것이다. Another object of the present invention is not to use any chemicals in the pretreatment process does not cause environmental problems, waste paper hydrolysis pretreatment method that can reduce the energy consumption in the pretreatment process, sugar compounds using the pretreatment waste paper And it provides a method for producing bioethanol.

본 발명의 또 다른 목적은 간단하고 단순한 공정을 통해 바이오에탄올을 생산하기 위한 공정 소요시간 단축과 경제성 확보를 통해 산업화가 가능한 폐지가수분해 전처리방법, 상기 전 처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법을 제공하는 것이다. Still another object of the present invention is to reduce the process time required to produce bioethanol through a simple and simple process, and to secure industrialization through waste paper hydrolysis pretreatment method, manufacturing a sugar compound and bioethanol using the pretreated waste paper. To provide a way.

본 발명의 또 다른 목적은 화학약품을 전혀 사용하지 않고 폐신문지 및/또는 폐인쇄용지의 잉크 및 충진제를 제거하여 환경문제를 유발하지 않을 뿐만 아니라, 잉크 및 충진제 제거에 따른 2차 환경문제를 유발하지 않으면서도 페신문지 및/또는 폐인쇄지를 용이하게 가수분해할 수 있는 폐지가수분해 전처리방법, 상기 전 처리된 폐지를 이용한 당화합물 및 바이오에탄올 제조방법을 제공하는 것이다. Another object of the present invention is to remove the ink and fillers of waste newspapers and / or waste printing papers without using any chemicals, and not to cause environmental problems, and also to cause secondary environmental problems due to the removal of ink and fillers. The present invention provides a waste paper hydrolysis pretreatment method that can easily hydrolyze a paper fingerprint and / or waste print paper, a sugar compound and a bioethanol using the pretreated waste paper.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 목적을 달성하기 위해, 본 발명은 폐지를 해섬기로 처리하는 해섬단계; 상기 해섬된 폐지를 마이크로웨이브로 처리하는 마이크로웨이브처리단계; 상기 마이크로웨이브 처리된 폐지를 탈수하는 탈수단계; 및 상기 탈수된 폐지를 팝핑(popping)하는 팝핑단계를 포함하는 폐지가수분해 전처리방법을 제공한다.In order to achieve the above object, the present invention comprises a sea island step of treating waste paper with sea island; A microwave processing step of treating the de-sealed waste paper with a microwave; A dehydration step of dewatering the microwave-treated waste paper; And a popping step of popping the dehydrated waste paper.

바람직한 실시예에 있어서, 상기 마이크로웨이브처리단계는 상기 해섬된 폐지를 5분 내지 20분 동안 300W 내지 800W로 마이크로웨이브 처리하여 수행된다.In a preferred embodiment, the microwave treatment step is carried out by microwave treatment to 300W to 800W for 5 to 20 minutes the de-sealed waste paper.

바람직한 실시예에 있어서, 상기 마이크로웨이브처리단계는 상기 해섬된 폐지 100중량부당 300 내지 1000중량부의 물에 침지시킨 상태로 수행된다.In a preferred embodiment, the microwave treatment step is performed in a state immersed in 300 to 1000 parts by weight of water per 100 parts by weight of the de-sealed waste paper.

바람직한 실시예에 있어서, 상기 팝핑단계는 팝핑기에서 5~20 ㎏ㆍf/㎠의 압력 하에 처리하여 수행된다. In a preferred embodiment, the popping step is performed by treating under a pressure of 5-20 kg.f / cm 2 in a popping machine.

또한, 본 발명은 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 얻어진 폐지를 당화시키는 당화단계를 포함하는 폐지를 이용한 당화합물 제조방법을 제공한다.The present invention also provides a method for producing a sugar compound using waste paper comprising a saccharification step of saccharifying waste paper obtained by the hydrolysis pretreatment method of any one of claims 1 to 4.

바람직한 실시예에 있어서, 상기 당화단계는 상기 폐지 100중량부 당 당화효소 1 내지 20중량부를 처리하여 수행된다.In a preferred embodiment, the saccharification step is performed by treating 1 to 20 parts by weight of glycosylase per 100 parts by weight of the waste paper.

바람직한 실시예에 있어서, 상기 당화효소는 셀룰라아제, 자일라나아제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 어느 하나이다.In a preferred embodiment, the glycosylase is any one selected from the group consisting of cellulase, xylanase and mixtures thereof.

또한, 본 발명은 폐지를 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 처리하는 전처리단계; 상기 전처리단계에서 얻어진 폐지를 당화시키는 당화단계; 및 상기 당화단계에서 얻어진 당화합물을 발효시키는 발효단계를 포함하는 폐지를 이용한 바이오에탄올제조방법을 제공한다. In addition, the present invention is a pre-treatment step of treating waste paper by the hydrolysis pre-treatment method of any one of claims 1 to 4; A saccharification step of saccharifying waste paper obtained in the pretreatment step; And it provides a bioethanol manufacturing method using waste paper comprising a fermentation step of fermenting the sugar compound obtained in the saccharification step.

바람직한 실시예에 있어서, 상기 당화 단계와 발효단계는 단일 반응기 내에서 동시에 수행된다.In a preferred embodiment, the saccharification step and the fermentation step are carried out simultaneously in a single reactor.

바람직한 실시예에 있어서, 상기 당화 단계와 발효 단계의 동시 수행을 위해 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 중 어느 하나의 재조합 균주가 처리된다.
In a preferred embodiment, Klebsiella oxytoca P2, Brettanomyces curstersii, Saccharomyces uvzrun for simultaneous execution of the saccharification step and the fermentation step The recombinant strain of any one of Candida brassicae is processed.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명에 의하면 바이오매스로 폐신문지 및/또는 폐인쇄용지를 포함한 폐지를 사용하여도 화학적 전처리를 사용하지 않고 당화효율을 효과적으로 높일 수 있다. First, according to the present invention, even if waste paper including waste newspaper and / or waste printing paper is used as biomass, glycosylation efficiency can be effectively increased without using chemical pretreatment.

또한, 본 발명에 의하면 화학약품을 전혀 사용하지 않아 환경문제를 유발하지 않으면서도, 당화공정에서 당화효율을 60% 이상 향상 시킬 수 있다. In addition, the present invention can improve the saccharification efficiency by 60% or more in the saccharification process without causing any environmental problems because no chemicals are used.

또한, 본 발명에 의하면 간단하고 단순한 공정을 통해 바이오에탄올을 생산하기 위한 경제적인 효과를 높임으로써 폐지를 이용한 바이오에탄올 제조의 산업화가 가능하다. In addition, according to the present invention, it is possible to industrialize the production of bioethanol using waste paper by increasing the economic effect for producing bioethanol through a simple and simple process.

또한, 본 발명에 의하면 폐지 중 특히 리그닌 함량이 높은 폐신문지를 재료로 당화합물 및 바이오에탄올을 제조할 수 있다.According to the present invention, a sugar compound and bioethanol can be prepared from waste paper having a particularly high lignin content in waste paper.

또한, 본 발명에 의하면 당화 및 발효 저해 물질의 생성을 최소화하여 당화 효율 증대 및 발효 수율을 향상시킬 수 있다.
In addition, according to the present invention it is possible to minimize the production of saccharification and fermentation inhibitors to increase the saccharification efficiency and improve the fermentation yield.

도 1은 본 발명의 가수분해전처리방법 및 상기 전처리방법이 수행된 폐지시료가 바이오에탄올로 생물학적으로 전환되는 공정을 보여주는 모식도이고
도 2는 본 발명의 실시예에 따른 가수분해전처리방법이 수행된 폐지시료와 비교예에 따른 전처리방법이 수행된 폐지시료의 효소가수분해율 변화를 나타낸 막대그래프이며,
도 3는 본 발명의 실시예에 따른 가수분해전처리방법이 수행된 폐지시료와 비교예에 따른 전처리방법이 수행된 폐지시료를 효소 가수분해 했을 때 셀룰로오스로부터 글루코오스의 전환율을 나타낸 막대그래프이며,
도 4은 본 발명의 실시예에 따른 가수분해전처리방법이 수행된 폐지시료를 당화할 때, 사용되는 가수분해 효소에 따라 생성되는 단당류를 분석한 HPLC 분석 결과그래프이다.
1 is a schematic diagram showing a process for biologically converting the hydrolyzed pretreatment method of the present invention and the waste paper subjected to the pretreatment method into bioethanol.
FIG. 2 is a bar graph showing changes in enzyme hydrolysis of waste paper subjected to the pretreatment method according to an embodiment of the present invention and waste paper to which the pretreatment method according to the comparative example was performed.
3 is a bar graph showing the conversion rate of glucose from cellulose when enzymatic hydrolysis of the waste paper subjected to the hydrolysis pretreatment method according to the embodiment of the present invention and the waste paper subjected to the pretreatment method according to the comparative example,
Figure 4 is a graph of the HPLC analysis results of analyzing the monosaccharides produced according to the hydrolysis enzyme used when saccharifying the waste paper subjected to the hydrolysis pretreatment method according to an embodiment of the present invention.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.Although the terms used in the present invention have been selected as general terms that are widely used at present, there are some terms selected arbitrarily by the applicant in a specific case. In this case, the meaning described or used in the detailed description part of the invention The meaning must be grasped.

이하, 첨부한 도면 및 바람직한 실시예를 참조하여 본 발명의 기술적 구성을 보다 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 것은 아니다. 즉, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다. Hereinafter, with reference to the accompanying drawings and preferred embodiments will be described in more detail the technical configuration of the present invention, which is intended to help the understanding of the present invention is not intended to limit the scope of the invention in any way. That is, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 폐신문지 및/또는 폐인쇄용지 등을 포함하는 폐지에 다량 함유되어 있으면서 효소 당화 공정에서 방해제로 작용하는 잉크와 충진제를 제거하기 위한 화학적 탈묵 공정 및 충진제 제거 공정을 효과적으로 대체할 수 있어 바이오매스로 폐신문지 및/또는 폐인쇄용지를 포함한 폐지를 사용하여도 높은 수율의 당화합물 및 바이오에탄올을 효과적으로 생산할 수 있는 폐지가수분해전처리방법에 있다. The technical feature of the present invention is to effectively replace the chemical deinking process and the filler removal process for removing the ink and fillers that act as a blocker in the enzymatic saccharification process while contained in a large amount of waste paper including waste newspaper and / or waste printing paper. In the waste paper hydrolysis pretreatment method which can produce high yields of sugar compounds and bioethanol even if waste paper including waste newspaper and / or waste printing paper is used as biomass.

따라서, 본 발명의 폐지가수분해전처리방법은 폐지를 해섬기로 처리하는 해섬단계; 상기 해섬된 폐지를 마이크로웨이브로 처리하는 마이크로웨이브처리단계; 상기 마이크로웨이브 처리된 폐지를 탈수하는 탈수단계; 및 상기 탈수된 폐지를 팝핑(popping)하는 팝핑단계를 포함한다. Therefore, the waste paper hydrolysis pretreatment method of the present invention comprises a sea island step of treating waste paper with a sea island; A microwave processing step of treating the de-sealed waste paper with a microwave; A dehydration step of dewatering the microwave-treated waste paper; And a popping step of popping the dehydrated waste paper.

이와 같이, 본 발명은 폐지를 해섬기로 해섬하여 해리한 후 마이크로웨이브로 처리한 다음 탈수 공정을 거쳐 팝핑하는 복합전처리 공정을 통해 폐지의 가수분해 효율을 현저히 높일 수 있다. As described above, the present invention can remarkably increase the hydrolysis efficiency of waste paper through a composite pretreatment process in which the waste paper is dissociated with a sea island and dissociated, treated with microwaves, and then popped through a dehydration process.

여기서, 해섬단계는 공지된 구성의 해섬기에 폐지를 넣어 처리하면 되므로 극히 용이하게 수행될 수 있다. 또한, 마이크로웨이브처리단계는 해섬된 폐지 100중량부당 300 내지 1000중량부의 물에 침지시켜 5분 내지 20분 동안 300W 내지 800W로 마이크로웨이브 처리하여 수행되는 것이 바람직하다. 탈수단계는 마이크로웨이브 처리된 폐지를 함수율 60 - 80%를 갖도록 수행되는 것이 바람직하며, 팝핑단계는 5~20 ㎏ㆍf/㎠, 특히 15~20 ㎏ㆍf/㎠의 압력 하에서 수행되는 것이 바람직하다. Here, the sea island step may be performed very easily because the waste paper is put into the sea island of a known configuration. In addition, the microwave treatment step is preferably carried out by microwave treatment at 300W to 800W for 5 to 20 minutes by immersion in 300 to 1000 parts by weight of water per 100 parts by weight of de-sealed waste paper. The dehydration step is preferably carried out to have a moisture content of 60-80% of the microwave-treated waste paper, and the popping step is preferably performed under a pressure of 5 to 20 kg · f / cm 2, especially 15 to 20 kg · f / cm 2. Do.

또한, 전처리된 바이오매스의 당화공정은 통상적인 방법에 따라 산 당화(acid saccharification)에 의해 수행될 수도 있으나, 본 발명에서는 산(acid)과 같은 화학물질이 전혀 첨가되지 않은 방법으로 효소 당화(enzymatic saccharification)에 의해 수행되는 것이 보다 바람직하다. 효소 당화를 위해서, 예를 들어, 셀룰라제, 자일라나제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 당화효소를 사용하는 것이 바람직하다. 대표적으로, 당화효소로는 중량비 1~2:1~2, 특히 2:1의 셀룰라제와 자일라나제의 혼합효소를 사용하는 것이 바람직할 수 있다. 당화효소는 바이오매스 100 중량부에 대하여 1~20 중량부의 양으로 사용하는 것이 바람직하다. 또한, 당화공정은 40~45 ℃의 온도에서 6~24 시간, 특히 24 시간 동안 수행하는 것이 바람직하다.In addition, the saccharification process of the pretreated biomass may be carried out by acid saccharification according to a conventional method, but in the present invention, the enzyme saccharification (enzymatic) by a method in which no chemical substance such as an acid is added at all. more preferably by saccharification). For enzyme saccharification, preference is given to using glycosylase selected from the group consisting of, for example, cellulase, xylanase and mixtures thereof. Representatively, it may be preferable to use a mixed enzyme of cellulase and xylanase in a weight ratio of 1 to 2: 1 to 2, especially 2: 1. The glycosylase is preferably used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the biomass. In addition, the saccharification process is preferably performed for 6 to 24 hours, particularly for 24 hours at a temperature of 40 ~ 45 ℃.

또한, 본 발명에서는, 바이오에탄올 생산을 위한 발효균주로는 효모, 예를 들어 사카로마이세스 세레비지에(Saccharomyces cerevisiae)를 사용할 수 있으며, 높은 당 농도에서도 발효를 수행할 수 있는 내당성 균주와 효소 당화의 최적 온도인 40~45 ℃ 부근에서도 에탄올 전환이 가능한 내열성 균주, 고가의 효소 사용량 절감과 고농도의 에탄올 생산을 위해 당화 및 발효를 동시에 수행할 수 있는 재조합 균주, 예를 들어, 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 등 당업계에 알려진 통상적인 균주 중 어느 것이라도 사용할 수 있다. 발효공정은 당화공정과 별도로 수행 시 25~30 ℃, 특히 30 ℃의 온도에서 12~24 시간 동안 수행하는 것이 바람직하지만, 당화공정과 동시에 수행될 수도 있다.
In addition, in the present invention, as a fermentation strain for the production of bioethanol, yeast, for example, Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) can be used, and sugar-resistant strains and enzymes capable of fermentation at high sugar concentrations. Heat resistant strain capable of converting ethanol even near the optimum temperature of glycosylation, recombinant strains capable of simultaneously glycosylation and fermentation to reduce the use of expensive enzymes and produce high concentrations of ethanol, for example, Krebsiella oxy Klebsiella oxytoca P2, Brettanomyces curstersii, Saccharomyces uvzrun , Candida brassicae , etc. Can also be used. When the fermentation process is performed separately from the saccharification process, it is preferable to carry out for 12 to 24 hours at a temperature of 25 to 30 ° C., particularly 30 ° C., but it may be performed simultaneously with the saccharification process.

실시예 1 Example 1

폐신문지(전남대학보)를 공지된 구성의 해섬기로 해리시킨 후 다음과 같이 마이크로웨이브처리와 팝핑 전처리를 실시하였다. 먼저 마이크로웨이브처리는 해섬된 폐신문지시료와 물의 중량비가 1:6이 되도록 해섬된 폐신문지시료를 물에 침지시켜 마이크로웨이브오븐 안에 위치시킨 후 750w에서 15분간 처리하였다. 그 후 공지된 구성의 탈수기를 이용하여 함수율 75%로 탈수한 다음, 함수율 75%로 맞춰진 폐신문지시료를 통상적으로 알려진 구조를 갖는 팝핑기(popping machine)에 넣고 200 ℃, 20 kgㆍf/ ㎤ 압력하에서 팝핑 전처리를 수행하여 폐신문지시료(MI+Pop)를 준비하였다.
After dissociating the waste paper (Jeonnam University Press) into a sea island of known configuration, microwave treatment and popping pretreatment were performed as follows. First, microwave treatment was performed by immersing the waste island waste paper sample in water in the microwave oven so that the weight ratio of the island fish waste paper sample and water was 1: 6, and then treated at 750w for 15 minutes. After dehydration at 75% water content using a dehydrator of a known configuration, the waste newspaper sample having a water content of 75% was placed in a popping machine having a conventionally known structure and subjected to 200 ° C., 20 kg · f / cm 3. A popping pretreatment was performed under pressure to prepare a waste paper indicator (MI + Pop).

비교예 1Comparative Example 1

실시예1 에서 사용된 것과 동일한 폐신문지로 전처리를 전혀 하지 않은 시료(WT)를 대조구(control)로 사용하였다.
A sample (WT) that had not been pretreated at all with the same waste newspaper as used in Example 1 was used as a control.

비교예 2Comparative Example 2

비교예1에서 사용된 것과 동일한 폐신문지를 실시예 1에 개시된 마이로웨이브 전처리 방법만 수행하여 폐신문지시료(MI)를 준비하였다.
A waste newspaper sample (MI) was prepared by performing only the myrowave pretreatment method described in Example 1, the same waste newspaper as used in Comparative Example 1.

비교예 3Comparative Example 3

비교예1에서 사용된 것과 동일한 폐신문지를 실시예 1에 개시된 팝핑 전처리방법만 수행하여 폐신문지시료(Pop)를 준비하였다.
A waste newspaper sample (Pop) was prepared by performing only the popping pretreatment method described in Example 1, the same waste newspaper used in Comparative Example 1.

실험예 1Experimental Example 1

실시예1에서 얻어진 폐신문지시료(MI+Pop) 및 비교예1-3에 의해 얻어진 폐신문지시료(WT), 폐신문지시료(MI), 및 폐신문지시료(Pop)의 화학적 구성 성분을 실험하고 그 결과를 표 1에 나타내었다. The chemical components of the waste newspaper sample (MI + Pop) obtained in Example 1 and the waste newspaper sample (WT), waste newspaper sample (MI), and waste newspaper sample (Pop) obtained in Comparative Example 1-3 were tested. The results are shown in Table 1.

%% WT(Control)WT (Control) MIMI PopPop MI+PopMI + Pop 유기용매 추출물 Organic Solvent Extract 0.4 0.4 0.30.3 0.20.2 0.20.2 홀로셀룰로오스 Holocellulose 73.673.6 74.174.1 75.375.3 75.875.8 리그닌  Lignin 19.619.6 19.219.2 18.618.6 18.718.7 회분 Ash 5.05.0 5.15.1 4.34.3 4.14.1

상기 표 1로부터, 가수분해전처리가 전혀 수행되지 않은 대조구(WT)에 비해 마이크로웨이브전처리구(MI), 팝핑전처리구(Pop), 마이크로웨이브+팝핑 복합전처리구(MI+Pop)의 홀로셀룰로오스 함량은 약간 증가하는 경향을 보인 반면 리그닌 및 회분의 함량은 소량 감소하게 나타났다. 이러한 결과는 각각의 전처리에 의해서 잉크 또는 충진제의 일부가 제거된 것을 의미하며 향후 당화율에도 영향을 미치는 것으로 나타났다.
From Table 1, the holocellulose content of the microwave pretreatment (MI), popping pretreatment (Pop), microwave + popping composite pretreatment (MI + Pop) compared to the control (WT) not subjected to hydrolysis pretreatment at all Tended to increase slightly, while the content of lignin and ash decreased slightly. These results indicate that some of the ink or filler was removed by each pretreatment, which also affects the future glycation rate.

실험예 2Experimental Example 2

실시예1에서 얻어진 폐신문지시료(MI+Pop) 및 비교예1-3에 의해 얻어진 폐신문지시료(WT), 폐신문지시료(MI), 및 폐신문지시료(Pop)의 단당류 변화를 분석하였다. 그 결과는 하기 표 2에 나타내었다.
The monosaccharide changes of the waste newspaper sample (MI + Pop) obtained in Example 1 and the waste newspaper sample (WT), waste newspaper sample (MI), and waste newspaper sample (Pop) obtained in Comparative Example 1-3 were analyzed. The results are shown in Table 2 below.

%% arabinosearabinose xylosexylose mannosemannose glucoseglucose galactosegalactose Control Control 0.50.5 8.58.5 5.25.2 52.952.9 1.31.3 Microwave Microwave 0.20.2 9.29.2 3.13.1 55.855.8 0.40.4 Popping Popping 0.10.1 8.98.9 3.33.3 57.157.1 0.20.2 Mi+Popping Mi + Popping 0.10.1 8.88.8 2.82.8 57.757.7 0.30.3

분석결과 글루코오스의 증가는 표 1에서 나타난 홀로셀룰로오스 양의 증가와 동일한 패턴을 보였으며, 비교적 안정한 구조인 셀룰로오스와 자일로오스를 제외한 나머지 당과 상기에 언급하였던 잉크나 충진제와 같은 무기성분들의 감소에 의한 것으로 나타났음을 표2로부터 알 수 있다. As a result, the increase in glucose showed the same pattern as the increase in the amount of holocellulose shown in Table 1, and the reduction of sugars other than cellulose and xylose, which are relatively stable structures, and the reduction of inorganic components such as inks and fillers mentioned above. It can be seen from Table 2 that appeared to be caused by.

이러한 실험결과에 따르면 본 발명의 복합 전처리 방법은 화학적 조성 변화와 더불어 물리적 및 구조적 변화를 일으키는 것으로 예측할 수 있다.
According to these experimental results, the complex pretreatment method of the present invention can be predicted to cause physical and structural changes in addition to chemical composition changes.

실시예 2Example 2

실시예1에서 얻어진 폐신문지시료(MI+Pop) 50㎎에 셀룰라제 600U/sub.g와 자일라제 300U/sub.g를 혼합하여 가하고, 37℃의 온도에서 96시간 동안 당화공정을 수행하여 당화합물(MI+Pop)을 얻었다.
To 50 mg of waste newspaper indicator (MI + Pop) obtained in Example 1 was added by mixing the cellulase 600U / sub.g and xylase 300U / sub.g, performing a saccharification process for 96 hours at a temperature of 37 ℃ A sugar compound (MI + Pop) was obtained.

비교예 4Comparative Example 4

비교예1에서 얻어진 폐신문지시료(WT)를 사용한 것을 제외하면 실시예 2와 동일한 방법을 수행하여 당화합물(WT)를 얻었다.
A sugar compound (WT) was obtained in the same manner as in Example 2 except that the waste newspaper indicator (WT) obtained in Comparative Example 1 was used.

비교예 5Comparative Example 5

비교예2에서 얻어진 폐신문지시료(MI)를 사용한 것을 제외하면 실시예 2와 동일한 방법을 수행하여 당화합물(MI)를 얻었다.
A sugar compound (MI) was obtained in the same manner as in Example 2 except that the waste newspaper indicator (MI) obtained in Comparative Example 2 was used.

비교예 6Comparative Example 6

비교예3에서 얻어진 폐신문지시료(Pop)를 사용한 것을 제외하면 실시예 2와 동일한 방법을 수행하여 당화합물(Pop)를 얻었다.
A sugar compound (Pop) was obtained in the same manner as in Example 2 except that the waste newspaper indicator (Pop) obtained in Comparative Example 3 was used.

실험예3Experimental Example 3

전처리공정에 따른 효소 당화 효율을 비교하기 위해, 실시예2, 비교예3 내지 6에서 얻어진 환원당을 DNS법을 사용하여 측정하였고, 그 측정결과는 도 2에 나타내었다. 또한, 실시예2, 비교예3 내지 6에서 얻어진 환원당을 HPLC를 이용하여 단당류 분석을 실시하였고, 각각의 비교예 및 실시예에 따른 폐신문지의 효소 당화후 셀룰로오스로부터 글루코오스로의 전환율을 도 3에 나타내었다. In order to compare the enzyme saccharification efficiency according to the pretreatment process, the reducing sugars obtained in Example 2 and Comparative Examples 3 to 6 were measured using the DNS method, and the measurement results are shown in FIG. 2. In addition, the monosaccharide analysis was performed on the reducing sugars obtained in Example 2 and Comparative Examples 3 to 6 using HPLC, and the conversion rate from cellulose to glucose after enzymatic saccharification of the waste paper according to Comparative Examples and Examples is shown in FIG. 3. Indicated.

도 2를 참조하면, 효소당화 후 대조구[당화합물(WT)]는 4.3 ㎎/㎖, 마이크로웨이브전처리구[당화합물(MI)]는 4.9 ㎎/㎖, 팝핑 전처리구[당화합물(Pop)]는 5.4 ㎎/㎖, 마이크로웨이브처리 후 팝핑 복합전처리구[당화합물(MI+Pop)]는 6.9 ㎎/㎖의 당함량 나타내었고, 대조구, 마이크로웨이브전처리구, 팝핑전처리구, 마이크로웨이브+팝핑 전처리구 순으로 당함량이 증가하는 것으로 나타났다. Referring to Figure 2, after the enzyme glycation control (sugar compound (WT)) 4.3 mg / ㎖, microwave pretreatment [sugar compound (MI)] 4.9 mg / ㎖, popping pretreatment [sugar compound (Pop)] Is 5.4 mg / ml, after microwave treatment popping composite pretreatment [sugar compound (MI + Pop)] showed a sugar content of 6.9 mg / ml, control, microwave pretreatment, popping pretreatment, microwave + popping pretreatment The sugar content increased in order.

이상의 실험결과는 본 발명의 가수분해전처리방법인 마이크로웨이브+팝핑 복합 전처리방법이 수행된 후 효소당화하여 얻어진 당화합물(MI+Pop)이 대조구, 마이크로웨이브전처리, 팝핑 전처리방법이 수행된 후 효소 당화하여 얻어진 당화합물(WT), (MI), (Pop)에 비해 각각 60%, 41%, 28% 증가하였음을 보여준다. The above experimental results showed that the glycosylated compound (MI + Pop) obtained by enzymatic saccharification after the microwave + popping composite pretreatment method of the hydrolysis pretreatment method of the present invention was subjected to the control, microwave pretreatment, and popping pretreatment method. 60%, 41%, and 28% increase compared to the sugar compounds (WT), (MI), and (Pop) obtained.

또한 도3을 참조하면, 각각의 비교예 및 실험예에 따른 전처리 후, 폐지내에 함유되어 있는 셀룰로오스의 효소 당화 효율을 조사한 결과 당화율은 대조구는 58%, 마이크로웨이브전처리구[당화합물(MI)]는 65%, 팝핑 전처리구[당화합물(Pop)]는 72%, 마이크로웨이브처리 후 팝핑 복합전처리구[당화합물(MI+Pop)]는 90%를 나타내었다. 특히 마이크로웨이브처리후 팝핑 복합 전처리구는 대조구의 당화율에 비해 55%정도 향상 시키는 것으로 나타났다.
In addition, referring to Figure 3, after the pretreatment according to the Comparative Examples and Experimental Examples, the enzyme saccharification efficiency of the cellulose contained in the waste paper was examined, the glycosylation rate was 58% in the control, microwave pretreatment [sugar compound (MI) ] Was 65%, popping pretreatment [sugar compound (Pop)] 72%, microwave treatment after popping composite pretreatment [sugar compound (MI + Pop)] showed 90%. In particular, the popping composite pretreatment after microwave treatment showed a 55% improvement over the glycation rate of the control.

실험예 4Experimental Example 4

실시예1의 폐신문지시료(MI+Pop)를 셀룰라아제 처리하여 얻어진 당화합물(C), 자일라아제 처리하여 얻어진 당화합물(X), 실시예2와 같이 셀룰라아제 및 자일라아제의 두 효소 혼합액을 처리하여 얻어진 당화합물(CX)에 대해 HPLC를 이용하여 단당류 분석을 실시하였다. 분석결과는 도 4에 나타내었다. A mixture of two enzymes, a sugar compound (C) obtained by treating the waste newspaper indicator (MI + Pop) of Example 1, a sugar compound (X) obtained by treating xylase, and a cellulase and xylase as in Example 2 Monosaccharide analysis was performed on the sugar compound (CX) obtained by treatment using HPLC. The analysis results are shown in FIG. 4.

도 4에 도시된 바와 같이 실시예1의 폐신문지시료(MI+Pop)를 각각 셀룰라아제, 자일라아제, 및 셀룰라아제와 자일나아제의 혼합액을 처리하여 얻어진 당화합물들을 비교해보면 당화합물(CX)에서 다른 당화합물(C) 및 (X)에 비해 글루코오스 피크가 훨씬 높게 나오는 것을 알 수 있으며, 효소 가수분해액내의 당은 대부분 글루코오스로 구성되어 있음을 보여준다. As shown in FIG. 4, when comparing the sugar compounds obtained by treating the pulmonary newspaper sample (MI + Pop) of Example 1 with a cellulase, xylase, and a mixture of cellulase and xylase, respectively, in the sugar compound (CX) It can be seen that the glucose peak is much higher than other sugar compounds (C) and (X), and the sugars in the enzyme hydrolyzate are mostly composed of glucose.

이러한 실험결과는 본 발명의 전처리방법에 의해 처리된 시료가 별다른 화학적 처리 없이 열적 물리적인 처리만으로 효소를 이용한 생물공학적 공정에 적합할 수 있음을 보여주는 것이다.
These experimental results show that the sample treated by the pretreatment method of the present invention may be suitable for biotechnological processes using enzymes by thermal and physical treatment without any chemical treatment.

실시예 5Example 5

바이오 에탄올 생산Bioethanol production

1. 가수분해 전처리공정1. Hydrolysis Pretreatment Process

실시예1과 동일한 공정을 수행하여 폐신문지시료(MI+Pop)를 얻었다. The same procedure as in Example 1 was carried out to obtain a waste newspaper sample (MI + Pop).

2. 당화공정2. Saccharification Process

실시예2와 동일한 공정을 수행하여 당화합물(MI+Pop) 즉 글루코오스를 얻었다.The same process as in Example 2 was performed to obtain a sugar compound (MI + Pop), that is, glucose.

3. 발효공정3. Fermentation process

얻어진 글루코오스 농도를 10%로 농축한 다음, 바이오에탄올 생산을 위한 발효균주로 사카로마이세스 세레비지에 15 g/ℓ를 가하고, 30 ℃의 온도에서 24시간 동안 발효 공정을 수행하여 바이오에탄올을 생산하였다.The resulting glucose concentration was concentrated to 10%, 15 g / l was added to Saccharomyces cerevisiae as a fermentation strain for bioethanol production, and bioethanol was produced by performing a fermentation process at a temperature of 30 ° C. for 24 hours. .

이 때, 당화공정과 발효공정은 동시에 수행될 수도 있다.
At this time, the saccharification process and the fermentation process may be performed at the same time.

한편, 상술된 실시예에서는 폐신문지를 사용하였으나, 폐인쇄지 및 폐골판지를 포함하여 모든 폐지에 본 발명의 가수분해전처리방법이 적용되어도 동일한 작용효과를 나타내는 것을 알 수 있었다. On the other hand, although the waste paper was used in the above-described embodiment, it was found that even if the hydrolysis pretreatment method of the present invention was applied to all waste paper including waste printing paper and waste cardboard, the same effect was obtained.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (10)

폐지를 해섬기로 처리하는 해섬단계;
상기 해섬된 폐지를 마이크로웨이브로 처리하는 마이크로웨이브처리단계;
상기 마이크로웨이브 처리된 폐지를 탈수하는 탈수단계; 및
상기 탈수된 폐지를 팝핑(popping)하는 팝핑단계를 포함하는 폐지가수분해 전처리방법.
A sea island step of treating waste paper with a sea island;
A microwave processing step of treating the de-sealed waste paper with a microwave;
A dehydration step of dewatering the microwave-treated waste paper; And
Waste paper hydrolysis pretreatment method comprising a popping step of popping the dehydrated waste paper.
제 1 항에 있어서,
상기 마이크로웨이브처리단계는 상기 해섬된 폐지를 5분 내지 20분 동안 300W 내지 800W로 마이크로웨이브 처리하여 수행되는 것을 특징으로 하는 폐지가수분해 전처리방법.
The method of claim 1,
The microwave treatment step is a waste paper hydrolysis pre-treatment method, characterized in that is carried out by microwave treatment to 300W to 800W for 5 to 20 minutes the de-sealed waste paper.
제 2 항에 있어서,
상기 마이크로웨이브처리단계는 상기 해섬된 폐지 100중량부당 300 내지 1000중량부의 물에 침지시킨 상태로 수행되는 것을 특징으로 하는 폐지가수분해 전처리방법.
The method of claim 2,
The microwave treatment step is a waste paper hydrolysis pre-treatment method, characterized in that carried out in a state immersed in 300 to 1000 parts by weight of water per 100 parts by weight of the de-sealed waste paper.
제 1 항에 있어서,
상기 팝핑단계는 팝핑기에서 5~20 ㎏ㆍf/㎠의 압력 하에 처리하는 것을 특징으로 하는 폐지가수분해 전처리방법.
The method of claim 1,
The popping step is a waste paper hydrolysis pre-treatment method characterized in that the treatment under a pressure of 5 ~ 20 kg · f / ㎠ in a popping machine.
제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 얻어진 폐지를 당화시키는 당화단계를 포함하는 폐지를 이용한 당화합물 제조방법.
A method for producing a sugar compound using waste paper comprising a saccharification step of saccharifying waste paper obtained by the hydrolysis pretreatment method according to any one of claims 1 to 4.
제 5 항에 있어서,
상기 당화단계는 상기 폐지 100중량부 당 당화효소 1 내지 20중량부를 처리하여 수행되는 것을 특징으로 하는 폐지를 이용한 당화합물 제조방법.
The method of claim 5, wherein
The glycosylation step is a sugar compound manufacturing method using waste paper, characterized in that the waste paper is processed by processing 1 to 20 parts by weight of glycosylase.
제 6 항에 있어서,
상기 당화효소는 셀룰라아제, 자일라나아제 및 이들의 혼합물로 구성된 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 폐지를 이용한 당화합물 제조방법.
The method according to claim 6,
The glycosylase is a method of producing a sugar compound using waste paper, characterized in that any one selected from the group consisting of cellulase, xylanase and mixtures thereof.
폐지를 제 1 항 내지 제 4 항 중 어느 한 항의 가수분해 전처리방법으로 처리하는 전처리단계;
상기 전처리단계에서 얻어진 폐지를 당화시키는 당화단계; 및
상기 당화단계에서 얻어진 당화합물을 발효시키는 발효단계를 포함하는 폐지를 이용한 바이오에탄올제조방법.
A pretreatment step of treating waste paper by the hydrolysis pretreatment method of any one of claims 1 to 4;
A saccharification step of saccharifying waste paper obtained in the pretreatment step; And
Bioethanol production method using waste paper comprising a fermentation step of fermenting the sugar compound obtained in the saccharification step.
제 8 항에 있어서,
상기 당화 단계와 발효단계는 단일 반응기 내에서 동시에 수행되는 것을 특징으로 하는 폐지를 이용한 바이오에탄올제조방법.
The method of claim 8,
The method for producing bioethanol using waste paper, characterized in that the saccharification step and the fermentation step is carried out simultaneously in a single reactor.
제 9 항에 있어서,
상기 당화 단계와 발효 단계의 동시 수행을 위해 크렙시엘라 옥시토카(Klebsiella oxytoca) P2, 브레타노마이세스 커스터시(Brettanomyces curstersii), 사카로마이세스 우브즈런(Saccharomyces uvzrun), 캔디다 브래시카에(Candida brassicae) 중 어느 하나의 재조합 균주가 처리되는 것을 특징으로 하는 폐지를 이용한 바이오에탄올제조방법.
The method of claim 9,
Klebsiella oxytoca P2, Brettanomyces curstersii, Saccharomyces uvzrun , Candida brascaier Candida brassicae bioethanol production method using waste paper, characterized in that any one of the recombinant strains is processed.
KR20100113443A 2010-11-15 2010-11-15 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same KR101163024B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100113443A KR101163024B1 (en) 2010-11-15 2010-11-15 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100113443A KR101163024B1 (en) 2010-11-15 2010-11-15 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same

Publications (2)

Publication Number Publication Date
KR20120052014A KR20120052014A (en) 2012-05-23
KR101163024B1 true KR101163024B1 (en) 2012-07-09

Family

ID=46268861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100113443A KR101163024B1 (en) 2010-11-15 2010-11-15 Process for the pre-treatment of waste paper to improve saccharification yield and process for the production of saccharides and bio-ethanol using the same

Country Status (1)

Country Link
KR (1) KR101163024B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147054A (en) * 2021-11-04 2022-03-08 杭州电子科技大学 Method for treating waste carton by microwave-assisted heating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131947A1 (en) 2006-12-01 2008-06-05 Cellencor, Inc. Treatment of Cellulosic Material for Ethanol Production
JP2009183211A (en) 2008-02-06 2009-08-20 Oji Paper Co Ltd Saccharification system, method for producing saccharified liquid and fermentation system
KR100965851B1 (en) 2007-10-11 2010-06-28 전남대학교산학협력단 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131947A1 (en) 2006-12-01 2008-06-05 Cellencor, Inc. Treatment of Cellulosic Material for Ethanol Production
KR100965851B1 (en) 2007-10-11 2010-06-28 전남대학교산학협력단 Processes for the pretreatment of lignocellulosic biomasses by popping method, and processes for the production of saccharides and bio-ethanol using the same
JP2009183211A (en) 2008-02-06 2009-08-20 Oji Paper Co Ltd Saccharification system, method for producing saccharified liquid and fermentation system

Also Published As

Publication number Publication date
KR20120052014A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
Bala et al. Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production
Mirahmadi et al. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production
Kapoor et al. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis
Eliana et al. Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass
US8609379B2 (en) Process for the production of alcohols from biomass
Negro et al. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass
Sassner et al. Steam pretreatment of Salix with and without SO 2 impregnation for production of bioethanol
Pangsang et al. Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production
Hideno et al. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface
US8889384B2 (en) Process for the production of alcohols from biomass
Waghmare et al. Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production
Lee et al. Recent developments of key technologies on cellulosic ethanol production
KR101036853B1 (en) Process for the pre-treatment of lignocellulosic biomass by popping method combined with wet milling and process for the production of saccarification and bio-ethanol using the same
Annamalai et al. Enhanced bioethanol production from waste paper through separate hydrolysis and fermentation
US20140024093A1 (en) Process for the production of digested biomass useful for chemicals and biofuels
Souza et al. Bioethanol from fresh and dried banana plant pseudostem
Kim et al. The effects of nonionic surfactants on the pretreatment and enzymatic hydrolysis of recycled newspaper
Cuevas et al. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones
KR101037708B1 (en) Process for the pre-treatment of lignocellulosic biomass by popping method combined with microwave and process for the production of saccarification and bio-ethanol using the same
Kang et al. Ethanol production from the mixture of hemicellulose prehydrolysate and paper sludge
Sangian et al. The effect of alkaline concentration on coconut husk crystallinity and the yield of sugars released
Shahbazi et al. Application of sequential aqueous steam treatments to the fractionation of softwood
US20240026388A1 (en) Method for treating a lignocellulosic biomass
Tran et al. Reusing Alkaline Solution in Lignocellulose Pretreatment to Save Consumable Chemicals without Losing Efficiency.
Wen et al. Efficient production of high concentration monosaccharides and ethanol from poplar wood after delignification and deacetylation

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160525

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190523

Year of fee payment: 8