KR101162817B1 - 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법 - Google Patents

마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법 Download PDF

Info

Publication number
KR101162817B1
KR101162817B1 KR1020097007864A KR20097007864A KR101162817B1 KR 101162817 B1 KR101162817 B1 KR 101162817B1 KR 1020097007864 A KR1020097007864 A KR 1020097007864A KR 20097007864 A KR20097007864 A KR 20097007864A KR 101162817 B1 KR101162817 B1 KR 101162817B1
Authority
KR
South Korea
Prior art keywords
flow path
chamber
substrate
analyte
microchannel
Prior art date
Application number
KR1020097007864A
Other languages
English (en)
Other versions
KR20090067183A (ko
Inventor
미노루 세끼
준야 다까기
가즈끼 야마모또
요시노리 아까기
Original Assignee
세키스이가가쿠 고교가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세키스이가가쿠 고교가부시키가이샤 filed Critical 세키스이가가쿠 고교가부시키가이샤
Publication of KR20090067183A publication Critical patent/KR20090067183A/ko
Application granted granted Critical
Publication of KR101162817B1 publication Critical patent/KR101162817B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis

Abstract

본 발명은 제조가 용이하고, 소량의 검체로 다수의 분석 측정을 할 수 있는, 특히 다수의 농도가 다른 검체나 다른 분석종을 동시에 용이하게 분석 측정할 수 있는 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법을 제공한다. 각각 폐액용 미세 유로와 연통하는 m행, n열의 검출부, 각 검출부에 혼합 유로를 통해 연통하는 m행, n열의 챔버, 각 행마다의 챔버에 패시브 밸브를 통해 연통하는 n개의 제1의 미세 유로, 각 열마다의 챔버에 패시브 밸브를 통해 연통하는 m개의 제2의 미세 유로 및 각 챔버에 연통하고, 가스 및/또는 세정액을 공급하기 위한 제3의 미세 유로를 포함하는 것을 특징으로 하는 마이크로 분석 측정 장치.
마이크로 분석 측정 장치, 검출부, 챔버, 미세 유로, 패시브 밸브, 분석종

Description

마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법 {MICROANALYSIS MEASURING APPARATUS AND MICROANALYSIS MEASURING METHOD USING THE SAME}
본 발명은 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법, 특히 다수의 측정을 동시 병행적으로 행할 수 있는 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법에 관한 것이다.
최근의 반도체 산업에서의 미세가공 기술의 발전에 따라, 실리콘이나 유리 등의 기판 상에 미소한 유로나 반응기, 또는 검출을 위한 전극 등 화학 분석에 필요한 요소를 집적화한 마이크로 칩을 이용한 분석 기기가 이용되게 되었다. DNA나 단백질 분석을 위한 마이크로 칩을 이용한 전기영동 장치는 이미 개발되어 시판되고 있다. 이러한 마이크로 칩을 이용한 분석 디바이스(마이크로 분석 시스템, μ-Total Analysis System; μ-TAS)는 화학 분석 실험의 집적화, 높은 작업 처리량, 자원 절약, 공간 절약, 및 로우 에미션을 가능하게 하는 것으로서, 현재 다양한 마이크로 칩의 개발이 세계적 규모로 행해지고 있다. 개발이 진행되고 있는 다양한 마이크로 칩의 구체예로서는, 생화학 분석을 중심으로 전기 영동이나 크로마토그래피를 행하는 분리용 마이크로 칩, 면역측정(immunoassay)이나 효소 분석을 하는 어 세이용 마이크로 칩, 및 중합효소 연쇄 반응(polymerase chain reaction; PCT)을 행하는 합성 반응용 마이크로 칩 등을 들 수 있다. 이들 마이크로 칩은 운반이 용이하기 때문에, 이들 마이크로 칩을 이용함으로써, 샘플링한 그 자리에서 환경 분석을 하거나, 고정밀도의 임상 시험을 베드사이드에서 행하는 것도 가능하게 할 수 있는 것으로서 기대되고 있다.
이러한 마이크로 칩을 이용한 측정 장치로서, 예를 들면 하기 특허 문헌 1에는 이하와 같은 장치가 개시된다. 즉, 하기 특허 문헌 1에 개시된 유체 시료 중의 특이적 결합물을 광학적으로 측정하는 장치에서는 형광 표지 또는 광산란 표지가 결합된 제2의 특이적 결합 멤버와 결합된 피측정 물질에 특이적으로 결합하여 상기 특이적 결합물을 구성할 수 있는 제1의 특이적 결합 멤버가 적어도 일 표면에 고정되어 있는 반응부가 구비된다. 또한, 출광측 가장자리면을 갖는 투명한 도파로의 일면에 제1의 공간층을 개재시킨 투명 기재층이 적층되고, 다른 면에 제2의 공간층을 개재시킨 광 흡수층이 적층된다. 상기 제1의 공간층과 제2의 공간층은 연통된, 유체 시료를 주입하기 위한 층이다. 여기서는 도파로의 굴절률이 유체 시료의 굴절률보다 크게 된다.
또한, 하기 특허 문헌 2에는 복수의 측정을 동시에 행할 수 있는 방법으로서 이하의 온 칩 바이오 어세이 방법이 개시된다. 여기서는 격자형으로 배열한 복수의 미세 구멍이 관통된 기판으로 이루어지는 미세 구멍 칩의 하면에, 세포 도입용 미소 유체 칩이 고착되고, 미세 구멍 칩과 세포 도입용 미소 유체 칩 사이에 복수의 미세한 세포 도입용 유로가 형성된다. 상기 유로를 통해 현탁된 세포를 미세 구멍 칩의 미세 구멍에 흘려 넣는다. 이어서, 미세 구멍 칩의 상면에, 피검 물질 도입용 미소 유체 칩을, 그의 복수의 미세한 피검 물질 도입용 유로가 상기 복수의 미세한 세포 도입용 유로와 교차하도록 고착되어, 미세 구멍 칩과 피검 물질 도입용 미소 유체 칩 사이에 복수의 미세한 피검 물질 도입용 유로를 형성한다. 상기 유로를 통해 피검 물질을 흘려 넣고, 미세 구멍 칩의 미세 구멍 내의 세포와 접촉시켜, 소정 시간 후 또는 소정 시간 간격으로 피검 물질이 세포에 미치는 영향의 정도를 원위치에서 검출한다.
특허 문헌 1: 일본 특허 공개 제2005-140682호 공보
특허 문헌 2: 일본 특허 공개 제2005-46121호 공보
그러나, 특허 문헌 1에 기재된 광학적 측정 장치를 이용한 경우에서는 하나의 장치에서 1종류의 피검체에 대한 측정밖에 할 수 없었고, 하나의 장치에서 다수의 다른 피검체를 동시에 측정할 수는 없었다.
또한, 특허 문헌 2에 기재된 온 칩 바이오 어세이 방법에서는 원하는 혼합비에 기초하여 정확하게 혼합하는 것은 곤란하였다. 또한, 검체?시약을 도입할 때에도, 칩에 접속된 송류 펌프나 밸브를 조작할 필요가 있었다. 이 때문에, 검체?시약의 도입 작업이 번잡하였다. 따라서, 특허 문헌 2에 기재된 온 칩 바이오 어세이 방법을 이용하는 경우, 높은 재현성으로 정량적으로 측정하기 위해서는 고도한 기술이 필요하여, 용이하면서 안정적으로 측정을 행하는 것은 곤란하였다.
본 발명의 목적은 상기 결점을 감안하여, 제조가 용이하고, 소량의 검체로 다수의 분석 측정을 할 수 있고, 특히 다수의 농도가 다른 검체나 다른 분석종(analyte)을 동시에 용이하게 분석 측정할 수 있는 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법을 제공하는 데에 있다.
본 발명에 따른 마이크로 분석 측정 장치는 각각 폐액용 미세 유로와 연통하는 m행, n열의 검출부, 각 검출부에 혼합 유로를 통해 연통하는 m행, n열의 챔버, 각 행마다의 챔버에 패시브 밸브를 통해 연통하는 n개의 제1의 미세 유로, 각 열마다의 챔버에 패시브 밸브를 통해 연통하는 m개의 제2의 미세 유로 및 각 챔버에 연통하고 가스 및/또는 세정액을 공급하기 위한 제3의 미세 유로를 포함하는 것을 특징으로 한다.
상기 검출부에 있어서, 광학적 측정 방법 또는 전기 화학적 측정 방법 등의 적절한 측정 방법으로 측정이 행해진다. m×n개의 검출부가 종횡 대략 등간격으로 m행, n열 설치된다. m 및 n은 양의 정수이다. m 및 n이 너무 작으면 한번에 분석 측정할 수 있는 수가 적어진다. 한편, m 및 n이 너무 크면 장치가 대형화된다는 결점이나 제조가 곤란해진다는 결점 등이 있다. 따라서, m 및 n의 각각은 2 내지 10인 것이 바람직하고, 3 내지 6인 것이 보다 바람직하다. 챔버 및 혼합 유로의 각각도 종횡 대략 등간격으로 m행, n열 설치된다. 즉, 챔버 및 혼합 유로는 각각 합계 m×n개씩 설치된다.
제1의 미세 유로는 n개 설치되어 있고, 패시브 밸브를 통해 각 열의 챔버에 각각 연통된다. 이 때문에, 제1의 미세 유로의 일단부로부터 공급된 유체가 패시브 밸브로 일정량만큼 칭취되고, 그 칭취된 액체가 챔버에 공급된다. n개의 제1의 미세 유로는 독립되어 있는 것이 바람직하다. 이에 따르면, 농도나 종류가 다른 n 종류의 유체를 검출부에 공급하는 것이 가능하기 때문이다.
제2의 미세 유로는 m개 설치되어 있고, 패시브 밸브를 통해 각 행의 챔버에 연통된다. 이 때문에, 제2의 미세 유로의 일단부로부터 공급된 유체는 패시브 밸브에 있어서 일정량만큼 칭취되고, 그 칭취된 유체가 챔버에 공급된다. m개의 제2의 미세 유로는 독립되어 있는 것이 바람직하다. 이에 따르면, 농도나 종류가 다른 m 종류의 액체를 공급하는 것이 가능하기 때문이다.
제1의 미세 유로 및 제2의 미세 유로는 검체나 시약 등의 액체를 패시브 밸브를 통해, 매트릭스형으로 배열된 복수의 챔버의 각각에 일정량의 검체나 시약을 분배 공급하는 것이다. 이 때문에, 제1의 미세 유로의 상류측 단부 및 제2의 미세 유로의 상류측 단부 각각에는 가스 펌프 등의 가스 용출원이 접속되어 있는 것이 바람직하다. 가스 용출원은 직접 접속될 수도 있고, 검체 저류부나 시약 저장소를 통해 접속될 수도 있다.
챔버는 혼합 유로를 통해 검출부와 접속된다. 제1의 미세 유로에서 칭취된 액체와 제2의 미세 유로에서 칭취된 액체는 함께 챔버에 공급되고, 혼합 유로에서 혼합되면서 검출부로 보내진다. 혼합 유로의 형상은 제1의 미세 유로에서 칭취된 유체와 제2의 미세 유로에서 칭취된 액체가 혼합될 수 있는 형상이면 좋고, 예를 들면 유로가 굴곡하여 왕복하는 형상 등을 들 수 있다. 혼합 유로는 일부분에 있어서 크게 직경 확장될 수 있다. 또한, 혼합 유로는 좌우 비대칭인 벽면을 가질 수도 있다.
챔버의 혼합 유로가 연통된 측과 반대측의 상류측에는 제3의 미세 유로가 접속된다. 제3의 미세 유로는 챔버에 공급된 액체를 검출부에 보내고/보내거나 챔버와 검출부를 세정하기 위해 가스 및/또는 세정액을 공급하는 것으로서, 가스 및/또는 세정액을 공급하기 위해, 제3의 미세 유로의 상류측의 일단부에 세정액 저장소 및 가스 펌프 등의 가스 용출원이 접속되어 있는 것이 바람직하다.
검출부에는 폐액용 미세 통로가 접속된다. 폐액용 미세 통로의 타단부는 대기와 연통하고 있고, 액체를 보낼 때에 계 내의 기체는 이 타단부로부터 배출되고, 또한 이 타단부로부터 불필요한 폐액을 배출시키는 것도 가능하다. 또한, "대기와 연통하고 있는" 것에는 대용량 용기에 접속되어 있는 것이나 가스 확산 투과막을 갖는 용기에 접속되어 있는 것도 포함된다.
상기 마이크로 분석 측정 장치는 마이크로 칩 등에 조립하여 소량의 검체로 분석 측정하는 장치이기 때문에, 챔버 및 검출부의 용적은 피코리터 내지 마이크로리터 정도의 크기가 바람직하고, 정확한 분석 측정을 행하기 위해서는 챔버에 공급된 유체로 검출부가 충만되는 것이 바람직하기 때문에, 챔버의 용적이 검출부의 용적 이상인 것이 바람직하다.
폐액용 미세 유로, 검출부, 혼합 유로, 챔버, 패시브 밸브, 제1의 미세 유로, 제2의 미세 유로 및 제3의 미세 유로는 기판 내에 형성되어 있는 것이 바람직하다. 그러나, 이들 모든 부재를 동일한 기판 내에 형성하는 것은 곤란하기 때문에, 복수의 기판에 나누어 형성한 후, 복수의 기판을 적층하여 접합시키도록 할 수도 있다. 예를 들면, 제1의 기판의 일면에 혼합 유로용 오목부, 챔버용 오목부, 제1의 미세 유로용 오목부, 제1의 미세 유로용 오목부와 챔버용 오목부에 연통하는 패시브 밸브용 오목부 및 제3의 미세 유로용 오목부를 형성함과 함께, 제2의 기판의 일면에 제2의 미세 유로용 오목부, 제2의 미세 유로용 오목부에 연통하는 패시브 밸브용 오목부 및 폐액용 미세 유로용 오목부를 형성하고, 제3의 기판에 검출부용 관통 구멍 및 제2의 미세 유로에 연통하는 패시브 밸브와 챔버용 오목부를 연통하는 관통 구멍이 형성되어 있고, 제1의 기판의 일면과 제2의 기판의 일면 사이에 제3의 기판을 적층함으로써 검출부, 챔버, 패시브 밸브, 제1의 미세 유로, 제2의 미세 유로, 제3의 미세 유로 및 폐액용 미세 유로를 형성하는 것이 바람직하다.
본 발명에 따른 제1의 마이크로 분석 측정 방법은 상기 본 발명에 따른 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브에서 칭취하여 챔버로 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 이어서 혼합액을 검출부로 보내고, 혼합액 중의 미반응된 인식 분자를 검출부에 고정되어 있는 표준 물질과 결합시켜 검출부를 세정한 후, 표준 물질과 결합된 인식 분자를 형광, 광산란 또는 흡광을 초래하는 광학 표지에 의해 광학적으로 측정하는 것을 특징으로 한다.
상기 분석종과 특이적으로 결합하는 인식 분자는 전형적으로는 분석종과 특이적으로 결합하는 분자와 정량을 위한 표지 물질이 결합된 것이다. 표지 물질로서는 광학 표지, 효소 표지, 금속 표지 등이 바람직하게 이용된다. 광학 표지는 형광, 광산란 또는 흡광, 화학 발광 등의 광학 효과를 초래하는 광학 표지로서, 특히 형광을 발하는 광학 표지를 형광 표지라 부른다. 형광 표지는 광선의 조사를 받았을 때에 광선을 변환함으로써 형광을 발생시키는 물질이다. 형광 표지의 구체예로서는, 예를 들면 광선의 조사를 받았을 때에 형광을 발생시키는 화합물, 이 형광을 발생시키는 화합물을 함유하는 합성 수지 입자 등을 들 수 있다. 효소 표지, 금속 표지를 이용하는 경우에는, 상기 제3의 미세 유로로부터 이들 표지와 상호 작용하여 발광하는 시약을 도입함으로써, 광학 표지와 동일한 발광계를 구성할 수 있다.
형광을 발생시키는 화합물의 구체예로서는, 예를 들면 플루오레세인이소티오시아네이트, 플루오레세인, 플루오레세인-N-히드록시숙신이미드에스테르, 6-((4-(4,4-디플루오로-5-2-티에닐)4-4-보라-3a,4a-디아자-5-인다센-3-일)페녹시)아세틸)아미노)헥산산, 숙신이미딜에스테르, 4-아세트아미드-4'-이소시아네이토스틸벤-2,2'-디술폰산, 7-아미노-4-메틸쿠마린, 7-아미노-4-트리메틸쿠마린, N-4-아닐리노-1-나프틸)말레이미드, 단실클로라이드, 4',6-디아미디노-2-페닐인돌, 5-(4,6-디클로로트리아진-2-일)아미노플루오레세인, 4,4'-디이소티오시아네이토스틸벤-2,2'-디술폰산, 에오신이소티오시아네이트, 에리트로신 B, 플루오레스카민, 플루오레세인-5(6)-카르복시아미드카프로산 N-히드록시숙신이미드에스테르, 5-이소티오시아네이트(isothiosyanate)디아세테이트, 4-메틸움벨리페론, o-프탈디알데히드, QFITC, 로다민 B 이소티오시아네이트, 황산 로다민 101 산클로라이드, 테트라메틸로다민이소티오시아네이트, 2',7'-디플루오로플루오레세인, 시아닌계 색소, 로다민, 희토류 금속 착체 등을 들 수 있고, 발광 수명이 긴 희토류 금속 착체가 특히 바람직하다.
광산란 표지는 광선의 조사를 받았을 때에 광선을 산란시킬 수 있는 화합물 또는 미립자이다. 광산란 표지의 구체예로서는, 예를 들면 금, 은 등 금속의 콜로이드 미립자 응집체, CdS, CdSe 등의 칼코게나이트 미립자, 폴리스티렌 수지, 폴리카보네이트 수지, 폴리(메트)아크릴 수지 등의 중합체 미립자, 실리카겔, 알루미나, 산화티탄 등의 무기 산화물 미립자, 이들의 2종 이상의 조합에 의한 코어셸 미립자 등을 들 수 있다. 상기 중합체 미립자 및 무기 산화물 미립자는 염색될 수도 있고, 형광 분자나 금속 나노 입자가 분산된 것일 수도 있다. 광산란 표지는 파장 의존성이 있는 광산란 특성을 가질 수도 있다.
상기 분석종과 특이적으로 결합하는 분자는 피측정 물질에 특이적으로 결합할 수 있는 것이다.
따라서, 상기 분석종과 특이적으로 결합하는 분자의 종류는 분석종 및 표준 물질에 대응하여 달라지지만, 이 분자의 구체예로서는, 예를 들면 효소, 미생물, 항원, 항체, 항체 단편, 렉틴, 수용체, 이오노포어, 양성자 펌프, 생체막, 인공 생체 소자, DNA의 분자, RNA의 분자, PNA의 분자, 막 단백질, 핵내 수용체, 압타머, 당쇄, 당단백질, 메탈로프로테인으로 이루어지는 군으로부터 선택된 1종 또는 이들의 혼합물 등을 들 수 있다.
상기 표준 물질은 상기 분석종과 특이적으로 결합하는 분자에 대하여 분석종과 동일한 거동을 하는 물질이다. 표준 물질은 분석종과 완전히 동일 구조의 분자 또는 물질일 수도 있고, 분석종과 특이적으로 결합하는 분자의 인식 부분에 대응하는 구조를 갖는 분자 또는 물질일 수도 있다. 표준 물질의 구체예로서는, 예를 들면 효소, 미생물, 항원, 항체, 항체 단편, 렉틴, 수용체, 이오노포어, 양성자 펌프, 생체막, 인공 생체 소자, DNA의 분자, RNA의 분자, PNA의 분자, 단백질, 아미노산, 당쇄, 당단백질, 메탈로프로틴, 금속 이온 등을 들 수 있다.
따라서, 면역 측정 방법의 경우에는 분석종과 표준 물질과 항체 또는 항원이 사용되고, 분석종과 특이적으로 결합하는 분자로서는 여기에 특이적으로 반응하는 항원 또는 항체가 사용된다.
본 발명에 따른 제2의 마이크로 분석 측정 방법은 본 발명에 따른 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브에서 칭취하여 챔버로 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 이어서 혼합액을 검출부로 보내어, 혼합액 중의 미반응된 인식 분자를 검출부에 고정되어 있는 표준 물질과 결합시키고, 검출부를 세정한 후, 표준 물질과 결합된 인식 분자를 전기 화학적으로 측정하는 것을 특징으로 한다. 인식 분자는 전기 화학적 응답이 큰 화합물 또는 물질에 의해 표지가 붙어 있을 수 수 있다.
본 발명에 따른 제2의 마이크로 분석 측정 방법은 표준 물질과 결합된 인식 분자를 전기 화학적으로 측정하는 것 이외에는 본 발명에 따른 마이크로 분석 측정 방법과 동일하다. 본 발명에 있어서도 종래 공지된 임의의 전기 화학측정 방법을 채용할 수 있고, 전기 화학 측정 방법의 구체예로서는, 예를 들면 볼타메트리법, 스트리핑 볼타메트리법, 암페로메트리법, 포텐시오메트리법, 쿨로메트리법 등을 들 수 있다. 이들 전기 화학 측정 방법에 있어서 인가하는 전압이나 전류의 파형의 구체예로서는, 예를 들면 적절하게 펄스파, 미분 펄스파, 삼각파, 스텝파 등을 들 수 있다.
본 발명에 따른 제3의 마이크로 분석 측정 방법은 본 발명에 따른 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로의 각각에, 분석종을 포함하는 검체 및 분석종과 특이적으로 반응하거나, 또는 제3 성분의 첨가에 의해 또는 그대로 발색 또는 발광하는 시약을 공급하고, 패시브 밸브에서 칭취하여 챔버로 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 검출부에서 혼합액의 발색 또는 발광을 측정하는 것을 특징으로 한다. 제3 성분의 첨가가 필요한 경우에는 예를 들면 제3의 유로로부터 도입할 수 있다.
분석종과 특이적으로 반응하는 물질로 개질하는 화합물의 구체예로서는, 퍼옥시다아제나 알칼리포스파다아제 등의 효소를 들 수 있고, 반응하여 발색 또는 발광하는 시약의 구체예로서는 테트라-메틸-벤지딘, AMPREX RED, 루미놀 등을 들 수 있다.
본 발명에 따른 제4의 마이크로 분석 측정 방법은 본 발명에 따른 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 반응하여 응집하는 물질을 포함하는 시약을 공급하고, 패시브 밸브에서 칭취하여 챔버로 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 검출부에서 혼합액의 탁도를 측정하는 것을 특징으로 한다.
분석종과 특이적으로 반응하는 물질로 개질하는 화합물의 구체예로서는, 지질막, 금 콜로이드, 라텍스 입자 등을 들 수 있다.
본 발명에서의 제5의 마이크로 분석 측정 방법은 본 발명에 따른 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브에서 칭취하여 챔버로 보내어 혼합 용액으로 하고, 챔버 내에 고정된 다른 분석종 인식 분자와, 분석종과, 시약 유래의 인식 분자를 샌드위치형으로 결합시키고, 계속해서 제3의 유로로부터 인식 분자의 표지 효소에 의해 소화되는 물질의 용액을 도입하여 챔버 내의 혼합 용액을 치환하고, 표지 효소에 의해 소화된 생성물을 검출부로 유도하여 검출부에 포집하고, 검출부에 포집된 표지 효소에 의해 소화된 생성물의 농도를 검출부에서 측정함으로써 간접적으로 검체 중의 분석종 농도를 구하는 것을 특징으로 한다.
구체적으로는, 표지 효소로서 티오콜린에스테라아제, 표지 효소에 의해 소화되는 물질로서 티오콜린, 표지 효소에 의해 소화된 생성물로서 티올을 이용하고, 검출부에 금 또는 은 등의 귀금속을 포함시키는 구성으로 할 수도 있다. 그 경우, 티올 등의 표지 효소에 의해 소화된 생성물이 검출부에서 포집된다. 귀금속막 상의 티올은 표면 플라즈몬 흡수 계측 또는 전기 화학적 계측에 의해 정량할 수 있다.
또한, 표지 효소로서 알코올 산화효소, 표지 효소에 의해 소화되는 물질로서 저분자 알코올, 표지 효소에 의해 소화된 생성물로서 알데히드를 이용할 수도 있다. 그 경우, 저분자 알코올의 산화물에 대응하는 알데히드가 검출부에서 포집된다. 이 때문에, 검출부에, 예를 들면 저분자 알데히드를 포집하기 위한 아민류 등의 알칼리 관능기를 갖는 분자 수식을 포함시킬 수도 있다.
(발명의 효과)
본 발명에 따르면, 제조가 용이하고, 소량의 검체로 다수의 분석 측정을 할 수 있고, 특히 다수의 농도가 다른 검체나 다른 분석종을 동시 병행적으로 용이하게 분석 측정할 수 있는 마이크로 분석 측정 방법을 제공할 수 있다.
도 1은 기판 (1a)의 평면도이다.
도 2는 기판 (1b)의 평면도이다.
도 3은 기판 (1b)의 주요부를 나타내는 확대 평면도이다.
도 4는 기판 (2a)의 평면도이다.
도 5는 기판 (2a)의 주요부를 나타내는 확대 평면도이다.
도 6은 기판 (2b)의 평면도이다.
도 7은 제3의 기판의 평면도이다.
도 8은 마이크로 분석 측정 장치의 도 2에 나타내는 A-A 단면도이다.
도 9는 마이크로 분석 측정 장치의 도 2에 나타내는 B-B 단면도이다.
도 10은 패시브 밸브의 원리를 설명하기 위한 개념적인 설명도이다.
도 11은 패시브 밸브의 원리를 설명하기 위한 개념적인 설명도이다.
도 12는 패시브 밸브의 원리를 설명하기 위한 개념적인 설명도이다.
도 13은 제4의 실시 형태에 따른 마이크로 분석 측정 장치에서의 기판 (1a) 의 평면도이다.
부호의 설명
1: 제1의 기판
1a: 기판
1b: 기판
2: 제2의 기판
2a: 기판
2b: 기판
3: 제3의 기판
4: 제1의 미세 유로
5: 제2의 미세 유로
6: 제3의 미세 유로
7: 폐액용 미세 유로
8, 9: 패시브 밸브
10: 챔버
11: 검출부
12: 혼합 유로
(제1의 실시 형태)
우선, 패시브 밸브의 원리를 도면을 참조하여 설명한다. 도 10 내지 도 12 는 패시브 밸브의 원리를 설명하기 위한 개념적 설명도이다.
유로 (C)와 유로 (D) 사이에는 유로 (E)와 유로 (F)가 배치된다. 유로 (E)는 유로 (C)에 접속된다. 유로 (E)의 선단부와 유로 (D)는 유로 (F)에 의해 접속된다.
도 10에 나타낸 바와 같이, 유로 (C)에 액체 (13)을 도입하면, 액체 (13)은 유로 (E)에 인입된다. 유로 (E)가 비교적 넓은 경우에는 유로 (C)에 유체를 도입하는 압력으로 액체 (13)은 유로 (E)에 인입된다. 유로 (E)가 비교적 좁은 경우에 있어서, 유로 (E)가 젖기 쉬운 유로벽을 가질 때에는 모관 인력에 의해 액체 (13)은 유로 (E)에 용이하게 인입된다. 한편, 유로 (E)가 비교적 좁은 경우에 있어서, 유로 (E)가 잘 젖지 않는 유로벽을 가질 때에는 유로 (C)측으로부터 적절한 압력을 가함으로써 유로 (E)에 액체 (13)을 압입할 수 있다. 또한, "잘 젖지 않는 유로벽"이란, "모관 인력이 기능하기 어려운 유로벽"이라 바꿔 말할 수 있다.
유로 (C) 및 유로 (E)가 젖기 쉬운 성질의 유로벽을 갖는 경우에는 유로 (C)보다 유로 (E)를 좁게 해 두면, 액체 (13)은 보다 강한 모관 인력에 의해 유로 (C) 및 유로 (E)에 자발적으로 인입된다. 유로 (C) 및 유로 (E)가 잘 젖지 않는 성질의 유로벽을 갖는 경우에는 유로 (C)측으로부터 액체 (13)에 적당한 압력을 부여함으로써 액체 (13)을 유로 (E)에 도입할 수 있다.
유로 (F)는 유로 (C), 유로 (D) 및 유로 (E)보다 좁기 때문에, 유로 (F)의 입구 경계면 또는 출구 경계면에서 액체 (13)은 정지한다.
구체적으로는, 유로 (F)의 유로 (E)측의 단부면까지 도달한 액체 (13)은, 유 로 (F)가 잘 젖지 않는 유로벽을 갖는 경우에는 도 10 및 11에 나타낸 바와 같이 유로 (F)의 모관 척력에 의해 액체 (13)가 정지하여 유로 (F)에는 들어가지 않는다. 유로 (E)가 잘 젖지 않는 유로벽인 경우에도, 유로 (E)의 모관 척력보다 유로 (F)의 모관 척력 쪽이 강하기 때문에, 유로 (F)에 액체 (13)이 들어가는 일은 없다.
한편, 유로 (F)가 젖기 쉬운 유로벽을 갖는 경우에는, 도 12에 나타낸 바와 같이 유로 (F)의 유로 (D)측의 단부면까지 도달한 액체 (13)은 유로 (F)의 모관 인력에 의해 유로에 인입된다. 단, 유로 (F)는 유로 (D)보다 좁기 때문에, 모관 인력에 의해 유로 (F)의 출구 경계면에서 액체 (13)은 정지하여 유로 (D)에는 액체 (13)은 들어가지 않는다.
또한, 유로 (F)의 출구에서의 유로벽과 유로 (D)에서의 유로벽이 직각이 아닌 완만한 곡면을 구성하고 있는 경우에는, 유로 아래의 출구에서의 모관 인력이 작아져 액체가 조금씩 유로 (D)로 누설될 우려가 있다. 또한, 유로 (F)의 출구 경계면을 직각으로 성형하는 것은 곤란하다. 따라서, 유로 (F)는 잘 젖지 않는 성질을 갖는 유로벽에 의해 형성되어 있는 것이 바람직하다.
또한, "잘 젖지 않는 성질"이란, 액체가 유로 (C)에 인입되었을 때에, 그 대로의 압력으로는 유로를 통과할 수 없어, 유로 내에서 액체가 정지하는 경우의 유로벽의 성질을 말하며, 일반적으로 액체와 유로벽과의 접촉각이 90도 이상인 것을 말한다.
유로 (E)에 유체를 도입한 후, 유로 (C) 내에 잔류하는 액체 (13)을, 예를 들면 유로 (C)의 양단부에 적당한 압력차를 생기게 하는 등 하여, 유로 (C) 내의 유로 (E)와 접촉하지 않는 부분에까지 액체 (13)을 이동시킨다. 유로 (C) 내로부터 액체 (13)을 제거할 수도 있다. 이때, 유로 (E) 내의 액체 (13)은 통상적으로 유로 (C) 내로는 되돌아가지 않는다. 이 때문에, 유로 (E)의 용적 또는 유로 (E)의 용적과 유로 (F)의 용적과의 총 용적에 맞는 부피의 액체의 칭취가 가능하다.
유로 (C)의 압력이 유로 (D)의 압력보다 약간 커지도록 양 유로간에 적당한 압력차를 생기게 하는 등 하여, 유로 (E) 또는 유로 (E)와 유로 (F) 내에 칭취된 액체 (13)을 유로 (D)로 이송할 수 있다.
다음으로, 도 1 내지 도 9를 참조하여 본 실시 형태의 마이크로 분석 측정 장치에 대하여 설명한다. 도 1은 기판 (1a)를 나타내는 평면도이고, 도 2는 기판 (1b)를 나타내는 평면도이다. 도 8에 나타낸 바와 같이 기판 (1a)와 기판 (1b)를 적층함으로써 제1의 기판 (1)이 형성된다. 도 3은 기판 (1b)의 주요부를 나타내는 확대 평면도이다. 도 4는 기판 (2a)를 나타내는 평면도이고, 도 6은 기판 (2b)를 나타내는 평면도이다. 도 8에 나타낸 바와 같이 기판 (2a)와 기판 (2b)를 적층함으로써 제2의 기판 (2)가 형성된다. 도 5는 기판 (2a)의 주요부를 나타내는 확대 평면도이다. 도 7은 제3의 기판 (3)을 나타내는 평면도이다. 도 8은 마이크로 분석 측정 장치의 A-A 단면도이고, 도 9는 B-B 단면도이다. 또한, 이 마이크로 분석 측정 장치에 있어서는 m=n=4이다.
도 2에 나타낸 바와 같이, 마이크로 분석 측정 장치에는, 제1의 미세 유로용 관통 구멍 (41, 42, 43 및 44)와, 제3의 미세 유로용 관통 구멍 (61, 62, 63 및 64)이 형성된다. 제3의 미세 유로용 관통 구멍 (61, 62, 63 및 64)은 등간격으로 평행하게 형성된다. 제3의 미세 유로용 관통 구멍 (61, 62, 63 및 64)의 각각은 일단부에 있어서 제3의 미세 유로용 관통 구멍 (6)에 접속된다.
가늘고 긴 형상의 16개의 챔버용 관통 구멍 (1011, 1012, 1013, 1014 … 1043, 1044)은 4행, 4열로 등간격으로 형성된다. 1열째의 챔버용 관통 구멍 (1011 … 1041)은 상류측에 있어서 제3의 미세 유로용 관통 구멍 (61)에 연통된다. 2열째의 챔버용 관통 구멍 (1012 … 1042)은 상류측에 있어서 제3의 미세 유로용 관통 구멍 (62)에 접속된다. 3열째의 챔버용 관통 구멍 (1013 … 1043)은 상류측에 있어서 제3의 미세 유로용 관통 구멍 (63)에 접속되고, 4열째의 챔버용 관통 구멍 (1014 … 1044)은 상류측에 있어서 제3의 미세 유로용 관통 구멍 (64)에 접속된다.
제1의 미세 유로용 관통 구멍 (41)에는 등간격으로 패시브 밸브용 관통 구멍 (811 … 841)이 접속된다. 제1의 미세 유로용 관통 구멍 (42)에는 등간격으로 패시브 밸브용 관통 구멍 (812 … 842)이 접속된다. 제1의 미세 유로용 관통 구멍 (43)에는 등간격으로 패시브 밸브용 관통 구멍 (813 … 843)이 접속된다. 제1의 미세 유로용 관통 구멍 (42)에는 등간격으로 패시브 밸브용 관통 구멍 (814 … 844)이 설치 된다. 도 3에 나타낸 바와 같이, 각 패시브 밸브 (8)은 밸브 (81)과 칭량부 (82)를 구비하고, 칭량부 (82)는 제1의 미세 유로 (4)보다 좁은 미세 유로에 의해 구성된다. 밸브 (81)은 칭량부 (82) 및 챔버 (10) 중 어느 하나보다 좁게 형성되어 있고, 대응하는 챔버 (10)에 접속된다.
각 챔버용 관통 구멍 (1011, 1012, 1013, 1014 … 1043, 1044)의 하류측에는 혼합 유로용 관통 구멍 (1211, 1212, 1213, 1214 … 1243, 1244)이 접속된다. 혼합 유로용 관통 구멍 (12)는 미세 유로이고, 직각으로 굴곡되어 왕복하는 형상으로 형성된다. 바꿔 말하면, 혼합 유로용 관통 구멍 (12)는 도중부에 있어서 복수회 굴곡되고, 양끝이 동일 방향을 향한 형상으로 형성된다. 혼합 유로용 관통 구멍 (12)의 하류측은 제3의 기판 (3)과 적층했을 때에 형성되는 검출부 (11)과 접속된다. 또한, 도 2에 나타내는 부호 (1111, 1112, 1113, 1114 … 1143, 1144)는 도 7에 나타내는 제3의 기판 (3)과 적층했을 때에 형성되는 검출부 (11)의 위치를 나타내고 있다.
기판 (1a)와 기판 (1b)로 형성된 제1의 기판 (1)에는 적층함으로써, 일면에 혼합 유로 (12)용 오목부, 챔버 (10)용 오목부, 제1의 미세 유로 (5)용 오목부, 제1의 미세 유로용 오목부와 챔버용 오목부에 연통하는 패시브 밸브 (8)용 오목부 및 제3의 미세 유로 (6)용 오목부가 형성된다.
도 4에 나타낸 바와 같이, 기판 (2a)에는 등간격으로 평행하게 배치된 제2의 미세 유로용 관통 구멍 (51, 52, 53 및 54)과, 등간격으로 평행하게 배치된 폐액용 미세 유로용 관통 구멍 (71, 72, 73 및 74)이 형성된다. 폐액용 미세 유로용 관통 구멍 (71, 72, 73 및 74)은 각각 일단부에 있어서 폐액용 미세 유로용 관통 구멍 (7)에 접속된다.
제2의 미세 유로용 관통 구멍 (51)에는 패시브 밸브용 관통 구멍 (911, 912, 913, 914)이 접속된다. 제2의 미세 유로용 관통 구멍 (52)에는 패시브 밸브용 관통 구멍 (921, … 924)이 접속된다. 제2의 미세 유로용 관통 구멍 (53)에는 패시브 밸브용 관통 구멍 (931, … 934)이 접속된다. 제2의 미세 유로용 관통 구멍 (54)에는 패시브 밸브용 관통 구멍 (941, … 944)이 접속된다. 도 5에 나타낸 바와 같이, 각 패시브 밸브 (9)는 밸브 (91)과 칭량부 (92)를 구비하고 있다. 칭량부 (92)는 제2의 미세 유로 (5)보다 좁게 형성된다. 밸브 (91)은 칭량부 (92) 및 챔버 (10) 중 어느 하나보다 좁게 형성된다. 또한, 도 5에 나타내는 밸브 (91)의 선단 (91a)는 도 3에 나타낸 바와 같이 챔버 (10)에 이어져 있다.
도 7에 있어서, 제3의 기판 (3)에는 16개의 밸브용 관통 구멍 (9311, 9312, 9313, 9314 … 9343, 9344)이 4행, 4열로 등간격으로 형성된다. 밸브용 관통 구멍 (93)의 굵기, 형상은 밸브 (91)과 동일하다. 제3의 기판 (3)과 기판 (2a)를 적층했을 때에 대응하는 밸브용 관통 구멍 (93)과 밸브 (91)이 접속됨과 동시에, 제3의 기판 (3)과 기판 (1b)를 적층했을 때에 대응하는 밸브용 관통 구멍 (93)과 챔버 (10)이 접속된다.
도 5에 나타낸 바와 같이, 폐액용 미세 유로용 관통 구멍 (71, 72, 73 및 74)에는 각각 4개, 합계 16개의 돌기 관통 구멍 (71)이 접속된다. 폐액용 미세 유로용 관통 구멍 (71, 72, 73, 74)은 검출부 (11)과 연통하도록 형성된다.
도 7에 있어서, 제3의 기판 (3)에는 16개의 검출부용 관통 구멍 (1111, 1112, 1113, 1114 … 1143, 1144)이 4행, 4열로 등간격으로 형성된다. 검출부용 관통 구멍 (1111, 1112, 1113, 1114)은 제3의 기판과 기판 (2a)를 적층했을 때에, 폐액용 미세 유로용 관통 구멍 (71)의 각 돌기 관통 구멍 (71)과 검출부용 관통 구멍 (1111, 1112, 1113, 1114)이 접속되고, 폐액용 미세 유로용 관통 구멍 (72)의 각 돌기 관통 구멍 (71)과 검출부용 관통 구멍 (1121, … 1124)이 접속되고, 폐액용 미세 유로용 관통 구멍 (73)의 각 돌기 관통 구멍 (71)과 검출부용 관통 구멍 (1131, … 1134)가 접속되고, 폐액용 미세 유로용 관통 구멍 (74)의 각 돌기 관통 구멍 (71)과 검출부용 관통 구멍 (1141, 1142, 1143, 1144)이 접속되도록 형성된다.
기판 (2a)와 기판 (2b)를 적층함으로써, 일면에 제2의 미세 유로용 오목부, 제2의 미세 유로용 오목부에 접속된 패시브 밸브용 오목부 (9) 및 폐액용 미세 유로용 오목부 (7)이 형성된 제2의 기판 (2)가 형성된다.
기판 (2a), 기판 (2b) 및 제3의 기판 (3)에는 관통 구멍 (411 내지 414, 421 내지 424, 431 내지 434, 441 내지 444, 451 내지 454 및 461 내지 464)이 형성된다. 관통 구멍 (411 내지 414, 421 내지 424, 431 내지 434, 441 내지 444, 451 내지 454, 461 내지 464)은 기판 (1b), 제3의 기판 (3), 기판 (2a) 및 기판 (2b)가 순차적으로 적층되었을 때에, 관통 구멍 (411, 421 및 431)이 제1의 미세 유로용 관통 구멍 (41)의 일단부에 접속되도록 형성된다. 마찬가지로, 관통 구멍 (412 내지 414, 422 내지 424, 432 내지 434)은 각각 제1의 미세 유로용 관통 구멍 (42 내지 44)의 일단부(도 2에 있어서 상측 단부)에 접속되도록 형성된다. 관통 구멍 (441 내지 444, 451 내지 454, 461 내지 464)는 각각 제1의 미세 유로용 관통 구멍 (41 내지 44)의 타단부에 접속되도록 형성된다. 따라서, 관통 구멍 (43)으로부터 액체가 공급되면, 액체는 관통 구멍 (42), 관통 구멍 (41), 제1의 미세 유로 (4), 관통 구멍 (44), 관통 구멍 (45)를 경유하여 관통 구멍 (46)으로부터 배출된다.
기판 (2a), 기판 (2b) 및 제3의 기판 (3)에는, 관통 구멍 (511 내지 514, 521 내지 524, 531 내지 534, 541 내지 544, 551 내지 554, 561 내지 564)이 형성된다. 관통 구멍 (511 내지 514, 521 내지 524, 531 내지 534, 541 내지 544, 551 내지 554, 561 내지 564)은 기판 (1b), 제3의 기판 (3), 기판 (2a) 및 기판 (2b)가 순차적으로 적층되었을 때에, 관통 구멍 (511, 521 및 531)이 제2의 미세 유로용 관통 구멍 (51)의 일단부에 접속되도록 형성된다. 마찬가지로, 관통 구멍 (512 내지 514, 522 내지 524, 532 내지 534)은 각각 제2의 미세 유로용 관통 구멍 (52 내지 54)의 일단부에 접속되도록 형성된다. 관통 구멍 (541 내지 544, 551 내지 554, 561 내지 564)은 각각 제2의 미세 유로용 관통 구멍 (51 내지 54)의 타단부에 접속되도록 형성된다. 따라서, 관통 구멍 (53)으로부터 액체가 공급되면, 액체는 관통 구멍 (42), 관통 구멍 (41), 제2의 미세 유로 (5), 관통 구멍 (54), 관통 구멍 (55)를 경유하여 관통 구멍 (56)으로부터 배출된다.
제3의 기판 (3), 기판 (2a) 및 기판 (2b)에는 관통 구멍 (61, 62 및 63)이 형성된다. 관통 구멍 (61, 62, 63)은 기판 (1b), 제3의 기판 (3), 기판 (2a) 및 기판 (2b)를 순차적으로 적층했을 때에, 제3의 미세 유로용 관통 구멍 (6)의 일단부에 접속되도록 형성된다. 따라서, 제3의 미세 유로 (6)으로부터 배출된 폐액 및 가스는 관통 구멍 (61) 및 관통 구멍 (62)를 경유하여 관통 구멍 (63)으로부터 배출된다.
검출부 (11), 챔버 (10), 패시브 밸브 (8, 9), 제1의 미세 유로 (4), 제2의 미세 유로 (5), 제3의 미세 유로 (6) 및 폐액용 미세 유로 (7)은 제1의 기판 (1)과 제2의 기판 (2)와 제3의 기판 (3)에 의해 구성된다. 제1의 미세 유로 (4), 제2의 미세 유로 (5) 및 제3의 미세 유로 (6)으로의 액체의 주입구 및 제1의 미세 유로 (4), 제2의 미세 유로 (5), 제3의 미세 유로 (6) 및 폐액용 미세 유로 (7)로부터의 배출구는 모두 제2의 기판 (2), 구체적으로는 기판 (2b)에 개구된다.
또한, 본 실시 형태의 마이크로 분석 측정 장치는 광학적 측정 방법, 전기 화학적 측정 방법 등의 측정 방법으로 측정이 실시되기 때문에, 검출부의 상하의 적어도 한쪽의 기재는 투명한 것이 바람직하다. 특히, 제1의 기판 (1)의 검출부에 대응하는 표면에, 분석종과 동등한 표준 물질을 고정하여 측정할 때에는 적어도 제2의 기판 (2)의 검출부에 대응하는 부분은 투명한 것이 바람직하다.
기판의 재료로서는, 예를 들면 폴리디메틸실록산(PDMS), 유리, 실리콘, 광 반응성 수지나 그 밖의 수지, 금속, 세라믹, 다이아몬드 라이크 카본 및 이들의 조합 등을 들 수 있다.
기판의 제조법으로서는, 예를 들면 기계 가공, 사출 성형이나 압축 성형으로 대표되는 전사 기술, 드라이 에칭(RIE, IE, IBE, 플라즈마 에칭, 레이저 에칭, 반응성 이온 에칭, 레이저 박리, 블라스트 가공, 방전 가공, LIGA, 전자빔 에칭, FAB), 습식 에칭(화학 침식), 광 조형이나 세라믹 부설 등의 일체 성형, 각종 물질을 층형으로 코팅, 증착, 스퍼터링, 퇴적하고, 부분적으로 제거함으로써 미세 구조물을 형성하는 표면 미세가공 기술(Surface Micro-machining), 필름 테이프 등의 1장 이상의 시트형 물질에 의해 개구 부분을 형성하여 홈을 형성하는 방법, 잉크젯이나 디스펜서에 의해 유로 구성 재료를 적하, 주입하여 형성시키는 방법 등을 들 수 있다.
각 기판의 접합법으로서는, 예를 들면 접착제에 의한 접착, 프라이머에 의한 수지 접합, 확산 접합, 양극 접합, 공정 접합, 열 융착, 초음파 접합, 레이저 용융, 용제?용해 용매에 의한 접합, 점착 테이프, 접착 테이프, 표면 관능기 가교, 압착, 자신 흡착제에 의한 결합, 물리적인 유지, 요철에 의한 조합을 들 수 있다.
본 실시 형태에서는 5장의 기판을 접합시킨 마이크로 분석 측정 장치를 설명하지만, 기판 (1a)와 기판 (1b)가 적층된 형상의 제1의 기판 및 기판 (2a)와 기판 (2b)가 적층된 형상의 제2의 기판을 각각 일체적으로 제조하여, 제1의 기판, 제3의 기판 및 제2의 기판의 3장의 기판에 의해 마이크로 분석 측정 장치를 구성할 수 있다.
본 실시 형태의 마이크로 분석 측정 장치의 구성은 상술한 바와 같고, 본 실시 형태의 마이크로 분석 측정 장치는 제조가 용이하고, 검체나 시약의 데드볼륨을 줄일 수 있음과 동시에, 장치 전체의 공간 절약화와 저비용화를 실현할 수 있다.
또한, 본 실시 형태의 마이크로 분석 측정 장치에서는 복수의 검출부 (11)이 설치되어 있고, 또한 검출부 (11)마다 그 검출부 (11)에 전용의 패시브 밸브 (8 및 9)와 챔버 (10)이 설치된다. 이 때문에, 각 검출부 (11)에서의 측정은 실질적으로 동시 병렬적으로 실행된다. 각 패시브 밸브 (8, 9)에서의 칭취량을 다르게 함으로써, 복수의 검출부 (11)에 검체와 분석종을 검출하기 위한 시약과의 혼합 비율이 다른 혼합액을 도입할 수 있다. 따라서, 1종류의 검체에 대하여, 검체와 분석종을 검출하기 위한 시약과의 혼합 비율이 다른 복수 종류의 혼합액에 대하여 동일한 마이크로 분석 측정 장치에서 동시 병렬적으로 측정하는 것이 가능하다.
또한, 각 패시브 밸브에서의 칭취량을 동일하게 함으로써, 복수의 검출부 (11)에 공급하는 검체나 시약을 열 또는 행마다 변경하는 것도 가능하다. 따라서, 다른 복수 종류의 검체에 대하여 동일한 마이크로 분석 측정 장치에서 동시에 측정하는 것이 가능해지고, 다른 복수 종류의 시약을 이용한 동일 검체에 대한 복수 분석종의 측정에 대해서도 동일한 마이크로 분석 측정 장치에서 동시 병렬적으로 측정하는 것이 가능하다.
이와 같이, 본 실시 형태의 마이크로 분석 측정 장치에 따르면, 복수 종류의 측정을 동시 병렬적으로 행할 수 있다. 구체적으로, 본 실시 형태에서는 검출부 (11)이 합계 16개 설치되어 있기 때문에, 하나의 마이크로 분석 측정 장치에서 최대 16 종류의 측정을 동시에 행할 수 있다.
다음으로, 본 실시 형태에 따른 마이크로 분석 측정 장치를 이용한 마이크로 분석 측정 방법에 대하여 설명한다. 우선, 검출부 (11)에서의 제1의 기판 (1)의 표면에 분석종과 동등한 표준 물질을 고정해 둔다. 다음으로, 제1의 미세 유로 (4)에 분석종을 포함하는 검체를 공급하고, 패시브 밸브 (8)에 있어서 분석종을 포함하는 검체를 칭취한다. 한편, 제2의 미세 유로 (5)로부터는 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 패시브 밸브 (9)에 있어서 칭취한다.
패시브 밸브 (8)에 칭취된 소정량의 분석종을 포함하는 검체를, 예를 들면 제1의 미세 유로 (4)에 가스 용출원으로부터 가스를 공급함으로써 가압하고, 칭량부 (82)로부터 밸브 (81)을 경유시켜 챔버 (10)으로 보낸다. 패시브 밸브 (9)에 칭취된 소정량의 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을, 예 를 들면 제2의 미세 유로 (5)에 가스 용출원으로부터 가스를 공급함으로써 가압하고, 칭량부 (92)로부터 밸브 (91) 및 밸브용 관통 구멍 (93)을 경유시켜 챔버 (10)으로 보낸다. 챔버 (10) 내에서 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약이 혼합되어 혼합액이 제조된다.
제3의 미세 유로 (6)측에 가스 용출원으로부터 가스를 공급함으로써 가압하고, 챔버 (10) 내의 혼합액을 혼합 유로 (12)를 통과하여 검출부 (11)로 보낸다. 혼합액은 혼합 유로 (12)에 있어서 더욱 균일하게 혼합되어, 혼합액 중의 분석종과, 분석종과 특이적으로 결합하는 인식 분자가 반응한다. 검출부 (11) 내에서는 검출부 (11)의 제1의 기판면 (11a)에 고정되어 있는 분석종과 동등한 표준 물질과 혼합액 중의 미반응된 인식 분자가 결합한다. 그 후, 검출부 (11)을 세정하고, 제1의 기판면 (11a)에 고정된 표준 물질과 결합된 인식 분자를 형광, 광산란 또는 흡광을 초래하는 광학 표지에 의해 광학적으로 측정한다.
(제2의 실시 형태)
상기 제1의 실시 형태에서는 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 이용한 마이크로 분석 측정 방법에 대하여 설명했지만, 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약 대신에 분석종과 특이적으로 반응하여 발색 또는 발광하는 시약을 이용할 수도 있다. 이 경우, 검출부 (11)에서는 상기 시약의 발색 또는 발광을 검출한다.
(제3의 실시 형태)
상기 제1의 실시 형태의 분석종과 특이적으로 결합하는 인식 분자를 포함하 는 시약 대신에 분석종과 특이적으로 반응하여 응집하는 물질을 포함하는 시약을 이용할 수도 있다. 이 경우, 검출부 (11)은 혼합액의 탁도를 검출한다.
(제4의 실시 형태)
도 13은 제4의 실시 형태에 따른 마이크로 분석 측정 장치에서의 기판 (1a)의 평면도이다. 본 제4의 실시 형태에 따른 마이크로 분석 측정 장치는 스톱 밸브 (20a, 20b, 20c, 20d)와, 시약 저장소 (21a, 21b, 21c, 21d)와, 가스 용출원으로서의 펌프 (22a, 22b, 22c, 22d)를 갖는 점에서 상기 제1의 실시 형태에 따른 마이크로 분석 측정 장치와는 다르다. 구체적으로는, 본 실시 형태에서는 각 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 도 13에 있어서 상측에 위치하는 하류측 단부에는 스톱 밸브 (20a, 20b, 20c, 20d)가 설치된다. 한편, 각 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 도 13에 있어서 하측에 위치하는 상류측 단부는 시약 저장소 (21a, 21b, 21c, 21d)를 통해 펌프 (22a, 22b, 22c, 22d)가 접속된다.
이 때문에, 패시브 밸브 (8)에 있어서 칭량하는 액체를 미리 시약 저장소 (21a, 21b, 21c, 21d)에 저장해 둠으로써, 펌프 (22a, 22b, 22c, 22d)를 작동시킴으로써 액체를 패시브 밸브 (8)에 용이하게 공급할 수 있다. 또한, 스톱 밸브 (20a, 20b, 20c, 20d)를 설치해 둠으로써, 패시브 밸브 (8)에 공급되지 않고 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)에 잔존한 액체를 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 패시브 밸브 (8)과 접속된 접속부로부터 용이하게 제거하는 것도 가능하다. 따라서, 본 제4의 실시 형태에 따른 마이크로 분석 측정 장치에 따르면, 패시브 밸브 (8)에 있어서 액체를 용이하게 칭량할 수 있다.
스톱 밸브 (20a, 20b, 20c, 20d)를 설치하지 않는 경우에는, 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)에 잔존한 액체를 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 패시브 밸브 (8)과 접속된 부분으로부터 제거하기 위해, 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 하류측 단부를 복잡한 구조로 할 필요가 있다. 이 때문에, 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 하류측 단부는 교착된 복잡한 구조가 되는 것이 통상적이었다. 이에 반해, 본 실시 형태와 같이 스톱 밸브 (20a, 20b, 20c, 20d)를 설치함으로써, 종래 필요하였던 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 하류측 단부의 복잡한 구조는 불필요해지고, 제1의 미세 유로용 관통 구멍 (41, 42, 43, 44)의 하류측 단부를 교착하지 않도록 할 수 있다. 즉, 스톱 밸브 (20a, 20b, 20c, 20d)를 설치함으로써, 마이크로 분석 측정 장치의 구성을 심플하게 할 수 있다.
패시브 밸브 (9)에서의 액체의 칭량을 용이하게 하는 측면에서, 패시브 밸브 (9)측에 있어서도 마찬가지로 스톱 밸브와 시약 저장소와 펌프를 설치하는 것이 바람직하다.
또한, 본 실시 형태에서는 마이크로 분석 측정 장치 내에 펌프 (22a, 22b, 22c, 22d)가 배치되는 구성에 대하여 설명했지만, 펌프 (22a, 22b, 22c, 22d)는 마이크로 분석 측정 장치 외에 배치할 수도 있다.

Claims (13)

  1. 각각 폐액용 미세 유로와 연통하는 m행, n열의 검출부, 각각의 검출부에 혼합 유로를 통해 연통하는 m행, n열의 챔버, 각 행마다의 챔버에 패시브 밸브를 통해 연통하는 n개의 제1의 미세 유로, 각 열마다의 챔버에 패시브 밸브를 통해 연통하는 m개의 제2의 미세 유로, 및 각 챔버에 연통하고 가스 및/또는 세정액을 공급하기 위한 제3의 미세 유로를 포함하고, 상기 패시브 밸브는 일정량의 액체를 칭취(秤取)하여 챔버에 공급하는 것을 특징으로 하는 마이크로 분석 측정 장치.
  2. 제1항에 있어서, 제1의 미세 유로, 제2의 미세 유로 및 제3의 미세 유로가 가스 용출원에 접속되어 있는 것을 특징으로 하는 마이크로 분석 측정 장치.
  3. 제1항 또는 제2항에 있어서, n개의 제1의 미세 유로가 각각 독립되어 있는 것을 특징으로 하는 마이크로 분석 측정 장치.
  4. 제1항 또는 제2항에 있어서, m개의 제2의 미세 유로가 각각 독립되어 있는 것을 특징으로 하는 마이크로 분석 측정 장치.
  5. 제1항 또는 제2항에 있어서, 챔버 및 검출부의 용적이 피코리터 내지 마이크로리터 정도의 크기이고, 챔버의 용적이 검출부의 용적과 동일 또는 검출부의 용적보다 큰 것을 특징으로 하는 마이크로 분석 측정 장치.
  6. 제1항 또는 제2항에 있어서, 제1의 기판의 일면에 혼합 유로용 오목부, 챔버용 오목부, 제1의 미세 유로용 오목부, 제1의 미세 유로용 오목부와 챔버용 오목부에 연통하는 패시브 밸브용 오목부, 및 제3의 미세 유로용 오목부가 형성되고, 제2의 기판의 일면에 제2의 미세 유로용 오목부, 제2의 미세 유로용 오목부에 연통하는 패시브 밸브용 오목부, 및 폐액용 미세 유로용 오목부가 형성되고, 제3의 기판에 검출부용 관통 구멍 및 제2의 미세 유로에 연통하는 패시브 밸브와 챔버용 오목부를 연통하는 관통 구멍이 형성되어 있고, 제1의 기판의 일면과 제2의 기판의 일면 사이에 제3의 기판을 적층함으로써 검출부, 챔버, 패시브 밸브, 제1의 미세 유로, 제2의 미세 유로, 제3의 미세 유로 및 폐액용 미세 유로가 형성되어 있는 것을 특징으로 하는 마이크로 분석 측정 장치.
  7. 제6항에 있어서, 제2의 기판 또는 제2의 기판의 검출부에 대응하는 부분이 투명한 것을 특징으로 하는 마이크로 분석 측정 장치.
  8. 제6항에 있어서, 제1의 기판의 검출부에 대응하는 표면에, 분석종과 동등한 표준 물질이 고정되어 있는 것을 특징으로 하는 마이크로 분석 측정 장치.
  9. 제1항 또는 제2항에 기재된 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브로 칭취(秤取)하여 챔버에 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 이어서 혼합액을 검출부로 보내어, 혼합액 내의 미반응된 인식 분자를 검출부에 고정되어 있는 표준 물질과 결합시키고, 검출부를 세정한 후, 표준 물질과 결합된 인식 분자를 형광, 광산란 또는 흡광을 초래하는 광학 표지에 의해 광학적으로 측정하는 것을 특징으로 하는 마이크로 분석 측정 방법.
  10. 제1항 또는 제2항에 기재된 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브로 칭취하여 챔버에 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 이어서 혼합액을 검출부로 보내어, 혼합액 내의 미반응된 인식 분자를 검출부에 고정되어 있는 표준 물질과 결합시키고, 검출부를 세정한 후, 표준 물질과 결합된 인식 분자를 전기 화학적으로 측정하는 것을 특징으로 하는 마이크로 분석 측정 방법.
  11. 제1항 또는 제2항에 기재된 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 반응하여 발색 또는 발광하는 시약을 공급하고, 패시브 밸브로 칭취하여 챔버에 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 검출부에서 혼합액의 발색 또는 발광을 측정하는 것을 특징으로 하는 마이크로 분석 측정 방법.
  12. 제1항 또는 제2항에 기재된 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 반응하여 응집하는 시약을 공급하고, 패시브 밸브로 칭취하여 챔버에 보내어 혼합액으로 하고, 챔버 및 혼합 유로에서 혼합 반응시키고, 검출부에서 혼합액의 탁도를 측정하는 것을 특징으로 하는 마이크로 분석 측정 방법.
  13. 제1항 또는 제2항에 기재된 마이크로 분석 측정 장치의 제1의 미세 유로 및 제2의 미세 유로에 각각 분석종을 포함하는 검체 및 분석종과 특이적으로 결합하는 인식 분자를 포함하는 시약을 공급하고, 패시브 밸브로 칭취하여 챔버에 보내어 혼합 용액으로 하고, 챔버 내에 고정된 별도의 분석종 인식 분자와, 분석종과, 시약 유래의 인식 분자를 샌드위치형으로 접합시키고, 계속해서 제3의 미세 유로로부터 인식 분자의 표지 효소에 의해 소화되는 물질의 용액을 도입하여 챔버 내의 혼합 용액을 치환하고, 표지 효소에 의해 소화된 생성물을 검출부로 유도하여 검출부에서 포집하고, 표지 효소에 의해 소화된 생성물의 농도를 검출부에서 측정함으로써 간접적으로 검체 중의 분석종 농도를 구하는 것을 특징으로 하는 마이크로 분석 측정 방법.
KR1020097007864A 2006-10-19 2007-10-18 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법 KR101162817B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2006-284566 2006-10-19
JP2006284566 2006-10-19
PCT/JP2007/070365 WO2008047875A1 (fr) 2006-10-19 2007-10-18 Appareil de mesure de microanalyse et procédé de mesure de microanalyse utilisant cet appareil

Publications (2)

Publication Number Publication Date
KR20090067183A KR20090067183A (ko) 2009-06-24
KR101162817B1 true KR101162817B1 (ko) 2012-07-05

Family

ID=39314092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097007864A KR101162817B1 (ko) 2006-10-19 2007-10-18 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법

Country Status (7)

Country Link
US (1) US8058072B2 (ko)
EP (1) EP2075584B1 (ko)
JP (1) JP4141494B2 (ko)
KR (1) KR101162817B1 (ko)
CN (1) CN101523222B (ko)
AT (1) ATE553387T1 (ko)
WO (1) WO2008047875A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722977B2 (ja) * 2008-08-27 2011-07-13 シャープ株式会社 検出器具、分析装置、検出方法および検出器具の制御方法
CN105334343B (zh) * 2010-09-14 2018-03-27 彭兴跃 一种微流路芯片系列微器件的结构
KR20120063162A (ko) 2010-12-07 2012-06-15 삼성전자주식회사 유전자 분석 장치 및 이를 이용한 유전자 분석 방법
WO2013128493A1 (en) * 2012-03-02 2013-09-06 Sekisui Integrated Research Inc. Nucleic acid amplification reactor
US9506934B2 (en) * 2013-04-29 2016-11-29 Honeywell International Inc. Polymer test cartridge mixer for cell lysis
CN103285451A (zh) * 2013-05-27 2013-09-11 苏州扬清芯片科技有限公司 一种输液芯片及其制备方法
JP6253547B2 (ja) * 2014-08-25 2017-12-27 株式会社日立製作所 送液デバイスおよび送液デバイスを用いた化学分析装置
CN105115911B (zh) * 2015-09-18 2018-02-09 清华大学 一种水质检测方法及其专用微流控芯片
CN108072766A (zh) * 2016-11-17 2018-05-25 台达电子工业股份有限公司 流体取样系统
CN111556966A (zh) * 2017-12-01 2020-08-18 Mks仪器公司 用于自由基气体和短时间存活分子的多传感器气体取样检测系统和使用方法
CN109825431A (zh) * 2019-03-18 2019-05-31 中国人民解放军军事科学院军事医学研究院 寡核苷酸原位组装仪
CN111812085A (zh) * 2020-07-27 2020-10-23 重庆大学 一种发酵黄水检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109793A1 (en) * 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures
JP2004529333A (ja) 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2204912C (en) * 1994-11-10 2005-01-04 David Sarnoff Research Center, Inc. Liquid distribution system
US6117396A (en) 1998-02-18 2000-09-12 Orchid Biocomputer, Inc. Device for delivering defined volumes
DE60141454D1 (de) 2000-03-14 2010-04-15 Micronics Inc Mikrofluid-analysekassette
US6653625B2 (en) 2001-03-19 2003-11-25 Gyros Ab Microfluidic system (MS)
US7429354B2 (en) 2001-03-19 2008-09-30 Gyros Patent Ab Structural units that define fluidic functions
US6717136B2 (en) 2001-03-19 2004-04-06 Gyros Ab Microfludic system (EDI)
CA2467587A1 (en) * 2001-11-30 2003-06-12 Fluidigm Corporation Microfluidic device and methods of using same
DE10302721A1 (de) 2003-01-23 2004-08-05 Steag Microparts Gmbh Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
JP2005046121A (ja) 2003-07-31 2005-02-24 Japan Science & Technology Agency オンチップバイオアッセイ方法及びキット
JP2005134372A (ja) * 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 被検物質測定装置
JP4436109B2 (ja) 2003-11-07 2010-03-24 積水化学工業株式会社 光学的測定装置及びそれを用いた特異的結合物の光学的測定方法
US7432106B2 (en) * 2004-03-24 2008-10-07 Applied Biosystems Inc. Liquid processing device including gas trap, and system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529333A (ja) 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット
US20040109793A1 (en) * 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures

Also Published As

Publication number Publication date
EP2075584A4 (en) 2011-04-06
ATE553387T1 (de) 2012-04-15
KR20090067183A (ko) 2009-06-24
CN101523222B (zh) 2012-09-19
EP2075584A1 (en) 2009-07-01
US8058072B2 (en) 2011-11-15
US20100317538A1 (en) 2010-12-16
CN101523222A (zh) 2009-09-02
EP2075584B1 (en) 2012-04-11
JP4141494B2 (ja) 2008-08-27
JPWO2008047875A1 (ja) 2010-02-25
WO2008047875A1 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
KR101162817B1 (ko) 마이크로 분석 측정 장치 및 이를 이용한 마이크로 분석 측정 방법
US7125711B2 (en) Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
JP4571129B2 (ja) 反応試薬区域に流体を均一に塗布する方法
US8124015B2 (en) Multiplexed, microfluidic molecular assay device and assay method
CN101754812B (zh) 流体连接器和微流体系统
US20110124130A1 (en) Device and method for analysis of samples with depletion of analyte content
US20030124623A1 (en) Microfluidic device and surface decoration process for solid phase affinity binding assays
US20030175980A1 (en) Ribbon flow cytometry and cell sorting
US20040265172A1 (en) Method and apparatus for entry and storage of specimens into a microfluidic device
JP2005520150A (ja) リボンフローサイトメトリーおよび細胞の分類
WO2004008142A1 (ja) 分析用チップ、分析用チップユニット、分析装置及びそれを用いた分析方法並びに分析用チップの作製方法
CA2477413A1 (en) Method and apparatus for precise transfer and manipulation of fluids by centrifugal, and/or capillary forces
US9079179B2 (en) Microfluidic device comprising sensor
EP1711827B1 (en) Detecting element and detection method
Pugia et al. Microfluidic tool box as technology platform for hand-held diagnostics
JP5137007B2 (ja) マイクロチップ
KR100661930B1 (ko) 미세 유체 채널을 이용한 효소 활성도 분석용 칩 및 이를이용한 효소 활성도 측정 방법
KR100960670B1 (ko) 모세관을 이용한 랩온어칩 및 그 제조 방법
WO2021021069A1 (en) Microfluidic sample labeling
WO2019136153A1 (en) High-efficiency, array-based, single-cell sequencing prep system that correlates cell phenotype with genotype

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee