KR101157045B1 - Batch compositions of carbon contained basic castable refractories for ladle slag line - Google Patents

Batch compositions of carbon contained basic castable refractories for ladle slag line Download PDF

Info

Publication number
KR101157045B1
KR101157045B1 KR1020040111843A KR20040111843A KR101157045B1 KR 101157045 B1 KR101157045 B1 KR 101157045B1 KR 1020040111843 A KR1020040111843 A KR 1020040111843A KR 20040111843 A KR20040111843 A KR 20040111843A KR 101157045 B1 KR101157045 B1 KR 101157045B1
Authority
KR
South Korea
Prior art keywords
weight
amount
composition
slag
resistance
Prior art date
Application number
KR1020040111843A
Other languages
Korean (ko)
Other versions
KR20060073022A (en
Inventor
정두화
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
포스코신기술연구조합
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원, 포스코신기술연구조합, (주)포스코켐텍 filed Critical 주식회사 포스코
Priority to KR1020040111843A priority Critical patent/KR101157045B1/en
Publication of KR20060073022A publication Critical patent/KR20060073022A/en
Application granted granted Critical
Publication of KR101157045B1 publication Critical patent/KR101157045B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/304Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Abstract

본 발명은 제강공정 중 용강 용기인 래들 벽체의 슬래그라인부 유입재로 사용되는 내침식성과 내침윤성 및 고내용성 갖도록 한 래들 슬래그라인용 탄소함유 염기성 유입재의 내화조성물에 관한 것으로서, 이는 마그네시아 크링커 58-72중량%, 스피넬 크링커 분말 20-25중량%, 입상의 인조흑연 분쇄물 또는 코크스 3-7중량%, 초미분 하소알루미나 5-10중량%를 기본조성으로 하고, 이에 외삽으로 초미분 실리카플라워, B4C, SiC, 헥사메타인산소다, 구연산을 상기 기본조성의 1/10중량% 초과하지 않도록 첨가(0중량% 제외)하여 혼합된 것이다.The present invention relates to a refractory composition of a carbon-containing basic inflow material for ladle slag, which is used as an inflow material of the slag grain portion of a ladle wall, which is a molten steel container, in a steelmaking process, which is a magnesia clinker 58. -72% by weight, spinel clinker powder 20-25% by weight, granular artificial graphite pulverized or coke 3-7% by weight, ultra finely calcined alumina 5-10% by weight, and extrapolated ultrafine silica flower , B4C, SiC, sodium hexametaphosphate, citric acid is mixed by adding (excluding 0% by weight) so as not to exceed 1/10% by weight of the basic composition.

래들벽체, 슬라그라인, 내침식성, 내침윤성, 고내용성 Ladle Wall, Slag Line, Erosion Resistance, Invasion Resistance, High Resistance

Description

래들 슬래그라인용 탄소함유 염기성 유입재의 내화조성물{Batch compositions of carbon contained basic castable refractories for ladle slag line} Batch compositions of carbon contained basic castable refractories for ladle slag line}

본 발명은 제강공정 중 용강 용기인 래들 벽체의 슬래그라인부 유입재로 사용되는 내침식성과 내침윤성 및 고내용성 갖도록 한 래들 슬래그라인용 탄소함유 염기성 유입재의 내화조성물에 관한 것이다.The present invention relates to a refractory composition of a carbon-containing basic inflow material for ladle slag to be used as the inflow material of the slag grain portion of the ladle wall, the molten steel container during the steelmaking process.

일반적으로 마그네시아질 내화물은 용강 및 슬래그에 대한 내식성이 우수하다는 특징을 지니고 있으므로 마그네시아를 주원료로 하는 각종 부정형 내화물이 개발되고 있다. 부정형내화물 중에서도 유입시공용 부정형 내화물은 시공이 간단하다는 장점 때문에 그 이용도가 높다. In general, because magnesia refractory has a feature of excellent corrosion resistance to molten steel and slag, various irregular refractory materials having magnesia as a main raw material have been developed. Among the amorphous refractory materials, the irregular refractory material for inflow construction is highly used because of its simple construction.

그러나, 마그네시아를 주원료로 사용한 마그네시아질 유입재는 대부분의 경우 결합제로 알루미나시멘트를 다량 사용하므로 용강이나 슬래그에 대해서 쉽게 용손되는 단점이 있다. However, the magnesia inflow material using magnesia as a main raw material has a disadvantage in that in most cases, a large amount of alumina cement is used as a binder and is easily melted against molten steel or slag.

또, 결합제로서 사용되는 알루미나시멘트는 마그네시아 골재와 미분을 혼합하여 물을 첨가하여 혼련 후 유입 성형시 수화반응에 의하여 성형재가 24시간 이내 의 짧은 시간에 노체로서의 강도를 발휘하게 하는데, 이를 위하여 통상 5-12%의 알루미나시멘트가 사용되고 있다. In addition, the alumina cement used as a binder is mixed with magnesia aggregate and fine powder to add water, and after kneading, the molding material exhibits strength as a furnace body in a short time within 24 hours by hydration reaction during inlet molding. -12% alumina cement is used.

상기한 바와 같이 알루미나시멘트는 단시간에 부정형재의 강도를 부여하는 장점이 있지만 고온에서는 기지(matrix)부에 MgO, Al2O3, CaO, SiO2를 포함한 저융점물질이 포함되고, 생성된 저융점 물질이 유출됨으로 내화재의 용손을 촉진시키는 단점이 있다. As described above, the alumina cement has the advantage of imparting the strength of the amorphous material in a short time, but at a high temperature, a low melting point material including MgO, Al 2 O 3 , CaO, and SiO 2 is included in the matrix at a high temperature. There is a disadvantage that the material is leaked to promote the melting loss of the refractory material.

또한, 저융점 물질은 외부의 슬래그와 함께 내화물 조직내에 있는 기공을 통하여 침투되며 침투된 물질은 조직내의 골재 및 기지와 반응하여 변질 층을 생성시킨다. 이렇게 생성된 변질 층은 구조적 스폴링의 원인이 되며, 이러한 구조적 스폴링에 의해 내화물이 박리 손상된다. In addition, the low melting point material penetrates through the pores in the refractory tissue with external slag and the penetrated material reacts with aggregate and matrix in the tissue to create a deteriorated layer. The altered layer thus produced causes structural spalling, and the refractory is peeled off by such structural spalling.

상기의 단점을 갖는 알루미나시멘트 결합 마그네시아질 유입재는 내식성이 우수한 마그네시아 재료의 고유 장점을 감소시키므로, 이러한 문제를 해결하기 위해서는 알루미나시멘트의 사용량을 감소시키는 것이 필수적이다.Since the alumina cement-bonded magnesia inflow material having the above disadvantages reduces the inherent advantages of the magnesia material having excellent corrosion resistance, it is essential to reduce the amount of alumina cement used to solve this problem.

본 발명은 상기의 문제점을 해소하고자 하는 것으로, 그 목적은, 마그네시아-스피넬-카본질 유입재의 결합제로서 사용되는 알루미나시멘트 대신에 초미분의 알루미나와 실리카플라워를 결합제로 사용하여 마그네시아질 유입재의 결점인 내스폴링성, 내침식 및 내침윤성을 향상시키고, 동시에 시공성이 우수한 마그네시아-스피넬-카본질 유입재를 제공함에 있다. The present invention aims to solve the above problems, and its object is to use the finely divided alumina and silica flower as a binder instead of the alumina cement used as the binder of the magnesia-spinel-carbon inflow material, which is a drawback of the magnesia inflow material. The present invention provides a magnesia-spinel-carbon inflow material which improves spalling resistance, erosion resistance, and infiltration resistance, and at the same time, excellent workability.

상기 목적을 달성하기 위한 본 발명의 특징적인 기술적 구성은, 마그네시아 크링커 58-72중량%, 스피넬 크링커 분말 20-25중량%, 입상의 인조흑연 분쇄물 또는 코크스 3-7중량%, 초미분 하소알루미나 5-10중량%를 기본조성으로 하고, 이에 외삽으로 초미분 실리카플라워, B4C, SiC, 헥사메타인산소다, 구연산 혼합물을 상기 기본조성의 1/10중량% 초과하지 않도록 첨가(0중량% 제외)하여 혼합된 것이다.Characteristic technical features of the present invention for achieving the above object, magnesia clinker 58-72% by weight, spinel clinker powder 20-25% by weight, granular artificial graphite ground or coke 3-7% by weight, ultra finely calcined alumina 5-10 wt% is used as the basic composition, and extrapolated ultrafine silica flower, B4C, SiC, sodium hexametaphosphate and citric acid mixture are added so as not to exceed 1/10 wt% of the basic composition (excluding 0 wt%). By mixing.

그리고, 상기 초미분 실리카플라워의 사용량은 1.0 - 3.0중량%이고, 상기 B4C의 사용량은 0.5-2중량%이며, 상기 SiC의 사용량은 1-3중량%이고, 상기 헥사메타인산소다의 사용량은 0.1-0.4중량%이며, 상기 구연산의 사용량은 0.02-0.04중량%이다.The ultrafine silica flower is used in an amount of 1.0 to 3.0% by weight, the amount of B4C used is 0.5-2% by weight, the amount of SiC used is 1-3% by weight, and the amount of sodium hexametaphosphate is 0.1. -0.4% by weight and the amount of citric acid used is 0.02-0.04% by weight.

이하 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 래들 슬래그라인용 염기성 유입재의 내화조성물 기본 조성은 마그네시아 크링커 58-72중량%, 스피넬 크링커 분말 20-25중량%, 입상의 인조흑연 분쇄물 또는 코크스 3-7중량%, 초미분 하소알루미나 5-10중량%인데, 그 이유는 하기와 같다.The basic composition of the refractory composition of the basic inflow material for ladle slag of the present invention is magnesia clinker 58-72% by weight, spinel clinker powder 20-25% by weight, granular artificial graphite powder or coke 3-7% by weight, ultra finely calcined alumina 5-10% by weight, for the following reason.

본 발명에서 사용하는 마그네시아 크링커의 순도는 유입재의 내화도를 높게 유지하기 위해 마그네시아(MgO)의 함량이 98%이상의 것을 사용함이 바람직하며, 소결 마그네시아 크링커나 전융 마그네시아 크링커 중 어느 것을 사용하여도 무방하나 고내식성을 얻기 위해서는 전융 마그네시아 크링커를 사용함이 바람직하다.The purity of the magnesia clinker used in the present invention is preferably used that the content of magnesia (MgO) of more than 98% in order to maintain the high refractory degree of inflow, it may be used any of sintered magnesia clinker or electrolytic magnesia clinker. In order to obtain corrosion resistance, it is preferable to use an electrolytic magnesia clinker.

상기 마그네시아는 주원료로서 그 사용량이 58~72중량%이다. 여기서, 상기 마그네시아 크링커의 함량을 58-72중량%로 함은 내식성 및 내침윤성 향상을 위해 첨가되는 인조흑연 분쇄물 또는 코크스와 스피넬 크링커 미분과 결합제인 하소 알루미나분말을 제외한 나머지 부분을 내화성 골재로 사용하는 것을 의미하며, 용강이나 슬래그에 대한 고내식성을 얻기 위해서는 다량의 마그네시아를 함유하는 것이 효과적이다. The magnesia is a main raw material is used 58-72% by weight. Here, the content of the magnesia clinker to 58-72% by weight is used as the refractory aggregate, except for artificial graphite pulverized powder or coke and spinel clinker fine powder and calcined alumina powder, which are added to improve corrosion resistance and infiltration resistance. In order to obtain high corrosion resistance to molten steel or slag, it is effective to contain a large amount of magnesia.

스피넬 크링커 분말은 유입재의 입도구성상 입자크기 0.074mm이하의 것을 사용하여야 하며, 첨가량은 20-25중량% 이어야 한다. 여기서 스피넬 크링커의 첨가량을 한정하는 이유는 슬래그에 대한 내침윤성을 향상시키는데 효과적이기 때문이다. The spinel clinker powder should have a particle size of 0.074mm or less due to the particle size of the inflow material, and the addition amount should be 20-25 wt%. The reason for limiting the amount of spinel clinker added here is that it is effective in improving the penetration resistance to slag.

탄소성분으로서 사용되는 인조흑연 분쇄물 또는 코크스 입자는 입자크기가 0.5-3mm 크기가 바람직하며, 첨가량은 3-7중량%가 적합하다. 입자크기가 0.5mm 이하이면 유입재의 내산화성이 떨어지며 시공성도 나쁘다. 또한 3mm를 초과하면 탄소성분의 고유역할인 내침식성과 내침윤성의 개선효과가 없다. 첨가량에 있어서 3중량% 미만에서는 슬래그에 대한 내식성과 내침윤성에 효과가 없고, 7중량%를 초과하면 시공성에 바람직하지 못하다. The artificial graphite pulverized product or coke particles used as the carbon component is preferably 0.5-3 mm in size, and preferably 3-7% by weight. If the particle size is 0.5mm or less, the oxidation resistance of the inflow material is inferior and the workability is bad. In addition, if it exceeds 3mm, there is no effect of improving the corrosion resistance and invasion resistance, which are inherent roles of the carbon component. If the added amount is less than 3% by weight, it is not effective in corrosion resistance and invasion resistance to slag. If it is more than 7% by weight, it is not preferable for workability.

하소 알루미나는 0.5㎛이하의 초미분 하소 알루미나를 5-10중량% 사용함이 바람직하다. 초미분의 하소 알루미나를 사용하게 되면 유입재의 유동성을 높여주는 동시에 결합제 역할을 하여 유입재의 건조강도를 높여준다. 이와 같은 알루미나 분말을 5중량% 미만 사용하면 유입재의 유동성이 저하되고 건조강도가 저하된다. 10중량%를 초과하면 오히려 유동성이 저하되고, 가격도 비싸지는 단점이 있다. As for calcined alumina, it is preferable to use 5-10 weight% of ultra-fine calcined alumina of 0.5 micrometer or less. The use of ultra-fine calcined alumina increases the fluidity of the influent and acts as a binder to increase the dry strength of the influent. If the alumina powder is used in less than 5% by weight, the flowability of the inflow material is lowered and the dry strength is lowered. If it exceeds 10% by weight, the liquidity is lowered, the price is also disadvantageous.

한편 본 발명에서는 상기와 같은 기본조성에 대하여 외삽으로 실리카플라워 초미분 1-3중량%, B4C 0.5-2%, SiC 1-3중량%,분산제로 헥사메타인산소다 0.1-0.4중량%, 경화지연제로 구연산 0.02-0.04중량%를 첨가하여 본 발명의 마그네시아-스피넬계 유입재를 조성함이 바람직한데, 그 이유는 하기와 같다. Meanwhile, in the present invention, extrapolation of 1-3% by weight of ultrafine silica flowers, 0.5-2% of B4C, 1-3% by weight of SiC, 0.1-0.4% by weight of hexamethaphosphate as a dispersant, and extrapolation to the basic composition as described above. It is preferable to form the magnesia-spinel type inflow material of the present invention by adding 0.02-0.04% by weight of zero citric acid, for the following reason.

상기 실리카플라워는 유동성을 부여하고 건조강도를 유지하게 할뿐만 아니라 중간온도영역(600-1000℃)에서 결합강도를 유지하기 위한 성분으로서, 그 사용량이 너무 적으면 유동성 부여 및 강도증진 효과가 미약하며, 너무 과다하게 첨가되면 오히려 유동성이 떨어지고 마그네시아-알루미나-실리카계의 저융점 물질을 생성시켜 열간강도 및 내식성이 저하되는 문제점이 있다. 따라서 본 발명에서는 상기 실리카플라워의 첨가량을 내화조성물 기본조성에 대하여 외삽으로 1-3중량%로 제한함이 바람직하다. The silica flower is not only to impart fluidity and maintain dry strength, but also to maintain bonding strength in the intermediate temperature range (600-1000 ° C.). However, if too much is added, there is a problem in that the fluidity is lowered and the magnesia-alumina-silica-based low melting point material is generated to lower the hot strength and the corrosion resistance. Therefore, in the present invention, it is preferable to limit the addition amount of the silica flower to 1-3% by weight extrapolated to the basic composition of the refractory composition.

B4C와 SiC는 유입재 내에 함유된 탄소의 내산화성을 증진시키기 위해 첨가되는 것으로서 B4C는 0.5-2중량% 첨가가 바람직한데 0.5중량% 미만에서는 내산화성 효과가 없으며, 2.0중량%를 초과하면 내식성이 저하되는 문제점이 있다. 또한, SiC는 1-3중량%의 첨가가 바람직한데 1중량%미만에서는 탄소의 산화방지 효과가 미흡하며, 3중량%를 초과하면 내식성이 저하된다. B4C and SiC are added to enhance the oxidation resistance of the carbon contained in the inflow material.B4C is preferably added in an amount of 0.5-2% by weight, but less than 0.5% by weight has no oxidation resistance effect. There is a problem of deterioration. In addition, SiC is preferably added in an amount of 1-3% by weight, but less than 1% by weight is insufficient in the antioxidant effect of carbon.

헥사메타인산소다는 분산제 역할을 하는 것으로서 충분한 분산성을 고려하여 그 첨가량을 상기 기본조성에 대하여 외삽으로 0.1-0.4중량%로 제한함이 바람직하다. 기본조성에 대하여 외삽으로 헥사메타인산소다의 첨가량이 0.1중량% 미만이면 유입재의 유동성이 부족하며, 0.4중량%를 초과하면 유동성 및 내식성이 오히려 저하된다. Sodium hexametaphosphate serves as a dispersant, and considering the sufficient dispersibility, the addition amount is preferably limited to 0.1-0.4% by weight extrapolated to the basic composition. When the addition amount of sodium hexametaphosphate by extrapolation to the basic composition is less than 0.1% by weight, the fluidity of the inflow material is insufficient, and when it exceeds 0.4% by weight, the fluidity and corrosion resistance are rather deteriorated.                     

구연산은 경화지연제 역할을 하는 것으로서 유입재 시공시 작업시간을 고려하여 그 첨가량을 상기 기본조성에 대하여 외삽으로 0.02-0.04중량%로 제한함이 바람직하다. 0.02중량% 미만 첨가하면 혼련물이 빨리 경화되어 시공작업에 지장을 초래하며, 0.04중량%를 초과하면 혼련시 유입재의 유동성이 심하게 저하되어 혼련 자체가 어려워진다.Citric acid acts as a curing retardant, in consideration of the working time during the inlet material construction, the addition amount is preferably limited to 0.02-0.04% by weight extrapolated to the basic composition. If it is added less than 0.02% by weight, the kneaded product will harden quickly, which may cause trouble in construction work. If it exceeds 0.04% by weight, the flowability of the inflow material will be severely degraded during kneading, and kneading itself will be difficult.

이하 본 발명의 실시예를 들어 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described.

[실시예][Example]

하기 표1과 같이 조성되는 성분들을 6.0%의 첨가수를 사용하여 래들용 유입재를 제조시, 유입재로서의 시공성 평가를 위한 플로우(flow)값의 측정하였으며, 시편을 제조한 후 곡강도, 잔존선변화율, 내침식성을 평가하여 하기표 1에 나타내었다. When preparing the input material for the ladle using the 6.0% of the added water to the components as shown in Table 1, the flow value for the evaluation of the workability as the input material was measured, and after the test piece was prepared, the bending strength, residual line The rate of change and the erosion resistance were evaluated and shown in Table 1 below.

이때 플로우 값은 내경 100mm의 플로우콘(flow cone)을 유동도 측정기의 금속제원판 중앙에 놓고 혼련된 시료를 약 1Kg 충진한 다음 플로우콘을 제거한 후 괴상의 시료만 남게되면 원판에 충격을 가한다. 원판의 상하 충격에 의해 원판상의 시료는 유동성의 크기에 따라 넓게 퍼진다. 15회 타격을 준후 유동된 재료의 최장부와 최단부를 측정하여 그 평균값을 플로우값으로 하였다. 이와 같은 플로우 값은 통상 150이상이면 시공성이 양호한 것으로 판단할 수 있다. At this time, the flow value is 100mm inside the flow cone (flow cone) is placed in the center of the metal plate of the flow meter and filled with about 1Kg of the kneaded sample and then remove the flow cone, and only the sample is left to impact the disc. Due to the up-and-down impact of the disc, the sample on the disc spreads widely according to the size of fluidity. After hitting 15 times, the longest part and the shortest part of the material which flowed were measured, and the average value was made into the flow value. If such a flow value is 150 or more normally, it can be judged that constructability is favorable.

곡강도와 잔존선변화율 측정을 위한 시편크기는 40mmx40mmx160mm로 제조하였으며, 침식시험용 시편은 118mm(뒷면 가로)x110mm(높이)x40mm(두께)x82mm(앞면 가로)의 횡제리형 크기로 유입 성형하여 24시간 양생 후 탈형하여 110℃에서 24시 간 건조하여 시험에 사용하였다. The specimen size for the measurement of bending strength and residual line change rate was manufactured as 40mmx40mmx160mm, and the specimen for erosion test was inflow molded into 118mm (back side) x110mm (height) x40mm (thickness) x82mm (front side) size after curing for 24 hours. It was demolded and dried at 110 ° C. for 24 hours to use for the test.

산화층 면적비는 각 시편에 대해 1400℃에서 3시간 산화 시험한 후 시편을 절단하고 탈탄면적의 비를 구해 내산화성을 나타내었다. 탈탄면적비가 높을수록 내산화성이 나쁜 것이다. The oxidized layer area ratio was oxidized for 3 hours at 1400 ° C for each specimen, and then the specimen was cut and the ratio of decarburized area was obtained. The higher the decarburized area ratio, the worse the oxidation resistance.

침식깊이 및 침윤 깊이는 염기도(CaO/SiO2의 비율) 3.5이고 전체 Fe가 17%인 래들 슬래그를 침식제로하여 1650℃-1700℃에서 4시간 회전침식시험한 후 시편의 중앙을 절단하여 측정한 값이다. The erosion depth and the depth of infiltration were measured by cutting the center of the specimen after 4 hours of rotational erosion test at 1650 ℃ -1700 ℃ using ladle slag having basicity (CaO / SiO2 ratio) 3.5 and total Fe 17% as erosion agent. to be.                     

Figure 112004061178843-pat00001
Figure 112004061178843-pat00001

상기 표1에서 알 수 있는 바와 같이 본 발명의 범위를 만족하는 실시예(1-2)의 경우에는 본 발명의 범위를 만족하지 못하는 비교예(1-9)의 경우보다 유입재의 특성이 우수함을 알 수 있다. As can be seen in Table 1, in the case of the embodiment (1-2) satisfying the scope of the present invention, the characteristics of the inflow material is superior to that of the comparative example (1-9), which does not satisfy the scope of the present invention. Able to know.                     

반면에 비교예1과 2는 흑연의 함량이 본 발명의 범위를 벗어난 것으로 내침윤성과 내식성이 및 시공성이 떨어짐을 알 수 있다. 비교예3은 초미분 알루미나를 본 발명의 범위보다 적게 첨가한 것으로 건조강도가 약하고 잔존수축을 나타내며, 비교예4는 초미분 알루미나의 첨가량이 청구범위를 초과한 것으로 혼련물의 유동성이 저하되고 잔존팽창율이 과도하여 구조적 안정성에 문제가 있다. On the other hand, Comparative Examples 1 and 2, the content of graphite is out of the scope of the present invention, it can be seen that the infiltration resistance and corrosion resistance is poor. Comparative Example 3 is the addition of ultra-fine alumina less than the range of the present invention shows a low dry strength and residual shrinkage, Comparative Example 4 is the addition amount of ultra-fine alumina exceeds the claims, the fluidity of the kneaded product is reduced and the residual expansion rate This excess is problematic for structural stability.

비교예5와 비교예6은 실리카 플라워의 첨가량이 청구범위를 벗어난 것으로 청구범위보다 적게 첨가하면 건조강도와 1000℃에서의 소성강도가 약하고, 청구범위를 초과하면 유동성 저하와 내식성이 저하되었다. 비교예7,8,9는 산화방지제의 첨가량이 청구범위를 벗어난 것으로 적게 비교예 7,8과 같이 적게 첨가되면 내산화성이 떨어지고, 비교예 9와 같이 과도하게 첨가되면 내식성이 저하된다. In Comparative Example 5 and Comparative Example 6, the addition amount of silica flower was outside the claims, and when the amount of the silica flower was added less than the claims, the dry strength and the plastic strength at 1000 ° C. were weak. In Comparative Examples 7, 8 and 9, the addition amount of the antioxidant is out of the claims, and if less is added as in Comparative Example 7, 8, the oxidation resistance is lowered, and when added excessively as in Comparative Example 9, the corrosion resistance is lowered.

비교예10은 청구범위에 포함되지 않는 알루미나시멘트를 결합제로 첨가한 것으로 내식성이 현저히 저하됨을 알 수 있다. 비교예11은 경화지연제 구연산을 첨가하지 않은 것으로 혼련물이 10분 이내에 급결 되었으며, 비교예12는 구연산의 첨가량이 청구범위를 초과한 것으로 혼련물의 유동도가 현저히 저하되어 시편의 제조가 불가능 하였다.  Comparative Example 10 shows that the corrosion resistance is remarkably lowered by adding an alumina cement not included in the claims as a binder. Comparative Example 11 did not add the curing retardant citric acid, the kneaded product was quickly quenched within 10 minutes, Comparative Example 12 was the addition of citric acid exceeded the claims, the flow rate of the kneaded material was significantly reduced, it was impossible to prepare the specimen. .

비교예13과 비교예14는 분산제인 헥사메타인산소다의 첨가량이 첨구범위를 벗어난 것으로 유동성이 저하되어 시편의 제조가 불가능하였다.  In Comparative Example 13 and Comparative Example 14, the addition amount of sodium hexametaphosphate as a dispersant was out of the attached range, and the fluidity was lowered, thereby making it impossible to prepare the specimen.

이상에서 설명한 본 발명은 통상 마그네시아질 유입재의 결합제로서 사용되는 알루미나시멘트를 사용하지 않고 초미분 하소 알루미나와 초미분의 실리카플라워를 결합제로 사용하여 마그네시아-스피넬-카본질 유입재의 강도, 내스폴링성, 내 침식 및 내침윤성을 향상시켰다. The present invention described above uses the ultra finely calcined alumina and the ultrafine silica flower as a binder, without using the alumina cement normally used as the binder of the magnesia inflow material, and the strength, spalling resistance, and the resistance of the magnesia-spinel-carbon inflow material. Erosion resistance and invasion resistance were improved.

상술한 바와 같은 본 발명은 마그네시아-스피넬-카본계의 유입재에 대한 것으로 슬래그와 용강에 대한 내식성 및 내침윤성이 우수한 흑연을 함유하며, 결합제로서 통상의 알루미나시멘트 대신에 초미분 알루미나와 실리카플라워를 사용하고, 분산제와 경화지연제로 헥사메타인산소다와 구연산을 첨가하여 제강 래들 슬래그라인용 유입재의 내화조성물을 제조함으로써 강도저하 없이 내식성을 개선시키는 효과가 있었다.As described above, the present invention relates to an inflow material of magnesia-spinel-carbon, which contains graphite having excellent corrosion resistance and infiltration resistance to slag and molten steel, and has ultrafine powdered alumina and silica flower instead of ordinary alumina cement as a binder. In addition, by adding sodium hexametaphosphate and citric acid as a dispersant and a curing retardant to prepare a fire-resistant composition of the inlet for steelmaking ladle slag, there was an effect of improving the corrosion resistance without deterioration in strength.

Claims (6)

마그네시아 크링커 58-72중량%, 스피넬 크링커 분말 20-25중량%, 입상의 인조흑연 분쇄물 또는 코크스 3-7중량%, 초미분 하소알루미나 5-10중량%를 기본조성으로 하고, 이에 외삽으로 초미분 실리카플라워, B4C, SiC, 헥사메타인산소다, 구연산 혼합물을 상기 기본조성의 1/10중량% 초과하지 않도록 첨가(0중량% 제외)하여 혼합된 것을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.58-72% by weight magnesia clinker, 20-25% by weight spinel clinker powder, 3-7% by weight granular artificial graphite pulverized or coke, 5-10% by weight ultrafine calcined alumina, and then extrapolated Refractory of basic inflow material for ladle slag, characterized in that the finely divided silica flower, B4C, SiC, sodium hexametaphosphate, citric acid mixture is added so as not to exceed 1/10% by weight of the basic composition (except 0% by weight). Composition. 제1항에 있어서, 상기 초미분 실리카플라워의 사용량은 1.0 - 3.0중량%임을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.The refractory composition of the basic inlet for ladle slag, characterized in that the amount of the ultra-fine silica flower is 1.0 to 3.0% by weight. 제1항에 있어서, 상기 B4C의 사용량은 0.5-2중량%임을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.The fire resistant composition according to claim 1, wherein the amount of B4C is 0.5-2% by weight. 제1항에 있어서, 상기 SiC의 사용량은 1-3중량%임을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.The refractory composition of the basic inlet for ladle slag, characterized in that the amount of SiC used 1-3% by weight. 제1항에 있어서, 상기 헥사메타인산소다의 사용량은 0.1-0.4중량%임을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.The fire resistant composition according to claim 1, wherein the amount of hexamethaphosphate used is 0.1-0.4% by weight. 제1항에 있어서, 상기 구연산의 사용량은 0.02-0.04중량%임을 특징으로 하는 래들 슬래그라인용 염기성 유입재의 내화조성물.The refractory composition of claim 1, wherein the amount of citric acid used is 0.02-0.04% by weight.
KR1020040111843A 2004-12-24 2004-12-24 Batch compositions of carbon contained basic castable refractories for ladle slag line KR101157045B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040111843A KR101157045B1 (en) 2004-12-24 2004-12-24 Batch compositions of carbon contained basic castable refractories for ladle slag line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040111843A KR101157045B1 (en) 2004-12-24 2004-12-24 Batch compositions of carbon contained basic castable refractories for ladle slag line

Publications (2)

Publication Number Publication Date
KR20060073022A KR20060073022A (en) 2006-06-28
KR101157045B1 true KR101157045B1 (en) 2012-06-21

Family

ID=37166151

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040111843A KR101157045B1 (en) 2004-12-24 2004-12-24 Batch compositions of carbon contained basic castable refractories for ladle slag line

Country Status (1)

Country Link
KR (1) KR101157045B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090929A1 (en) * 2015-11-25 2017-06-01 주식회사 포스코 Refractory composition and well block for steel casting manufactured therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230219B (en) * 2021-12-02 2023-09-19 电子科技大学长三角研究院(湖州) Preparation method and application of steel slag composite excitant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279369A (en) * 1997-03-31 1998-10-20 Kawasaki Steel Corp Monolithic refractory material for blast furnace main trough
KR100299459B1 (en) * 1998-12-19 2001-09-12 홍상복 Mlagnesia-Carbon Based Castable Having Superior Anti-Oxidation
KR20030052343A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Composition of basic castables with self flowability
KR100508521B1 (en) * 2002-12-20 2005-08-17 주식회사 포스렉 A castable refractories composition containing carbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279369A (en) * 1997-03-31 1998-10-20 Kawasaki Steel Corp Monolithic refractory material for blast furnace main trough
KR100299459B1 (en) * 1998-12-19 2001-09-12 홍상복 Mlagnesia-Carbon Based Castable Having Superior Anti-Oxidation
KR20030052343A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Composition of basic castables with self flowability
KR100508521B1 (en) * 2002-12-20 2005-08-17 주식회사 포스렉 A castable refractories composition containing carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090929A1 (en) * 2015-11-25 2017-06-01 주식회사 포스코 Refractory composition and well block for steel casting manufactured therefrom

Also Published As

Publication number Publication date
KR20060073022A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
KR101166569B1 (en) Mud material
EP3255024B1 (en) Heat-insulating monolithic refractory material
CA1037503A (en) Carbon composition and shaped article made therefrom
KR100734516B1 (en) Magnesia-spinel-carbon contained basic castable compositions for repairing of converter
KR101157045B1 (en) Batch compositions of carbon contained basic castable refractories for ladle slag line
CN108383534B (en) Steel ladle castable containing graphene and use method
KR100674621B1 (en) Alumina-magnesia castables for ladle
KR100508521B1 (en) A castable refractories composition containing carbon
KR101449184B1 (en) Batch Composition for Blast Furnace Tap Hole
KR100723130B1 (en) Basic Castables
JP2562767B2 (en) Pouring refractories
KR101070479B1 (en) Refractory Composition of a Flowing Material for Use of Steel Manufacture Ladle
KR101149372B1 (en) Refractory composite of castable for repairing of ladle slag line
JPH026373A (en) Cast amorphous refractory
KR100264980B1 (en) Castable refractory material
JPH09301780A (en) Lightweight monolithic refractory
JPH04130066A (en) Magnesia-olivine monolithic refractory material
JP3014775B2 (en) Pouring refractory
JPH0158156B2 (en)
JPH08175877A (en) Castable refractory
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JPH0124748B2 (en)
KR100723129B1 (en) Basic castables for tundish dam block

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150612

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190612

Year of fee payment: 8