KR101150707B1 - KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification - Google Patents

KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification Download PDF

Info

Publication number
KR101150707B1
KR101150707B1 KR1020090053519A KR20090053519A KR101150707B1 KR 101150707 B1 KR101150707 B1 KR 101150707B1 KR 1020090053519 A KR1020090053519 A KR 1020090053519A KR 20090053519 A KR20090053519 A KR 20090053519A KR 101150707 B1 KR101150707 B1 KR 101150707B1
Authority
KR
South Korea
Prior art keywords
kir
seq
pcr
primer
gene
Prior art date
Application number
KR1020090053519A
Other languages
Korean (ko)
Other versions
KR20100135067A (en
Inventor
한병돈
박한정
오용택
윤소연
Original Assignee
(주)예비티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)예비티 filed Critical (주)예비티
Priority to KR1020090053519A priority Critical patent/KR101150707B1/en
Publication of KR20100135067A publication Critical patent/KR20100135067A/en
Application granted granted Critical
Publication of KR101150707B1 publication Critical patent/KR101150707B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads

Abstract

본 발명은 사람의 자연 살해 세포의 면역 글로불린 유사 수용체 (Killer cell immunoglobulin-like receptor, 이하 KIR)의 유전형을 동정하는 방법에 관한 것이다. 상기 방법은 모든 KIR 타입에 공통적인 서열을 프라이머로 이용하여 다수의 서로 다른 KIR 주형유전자를 동시에 증폭시키는 다중 유전자 동시 증폭 단계(1차 PCR), 각각의 KIR 타입에 특이적인 서열을 프라이머로 이용한 유전자 증폭단계(2차 PCR), 및 이렇게 증폭된 KIR 유전자를 비드어레이 등으로 분석함으로써 피검자의 KIR 유전형을 동정하는 단계를 포함한다. The present invention relates to a method for identifying the genotype of an immunoglobulin-like receptor (KIR) of human killer cells. The method uses a sequence common to all KIR types as a primer to simultaneously amplify a number of different KIR template genes simultaneously (a first PCR), a gene using a sequence specific to each KIR type as a primer Amplifying (secondary PCR), and identifying the KIR genotype of the subject by analyzing the amplified KIR gene by bead array and the like.

면역 글로불린 유사 수용체, KIR (killer cell immunoglobulin- like receptor), 다중 유전자 동시 증폭방법, 비드어레이(bead array), SBS 프라이머 Immunoglobulin-like receptor, killer cell immunoglobulin-like receptor, multiple gene co-amplification, bead array, SBS primer

Description

다중유전자 증폭 기술을 이용한 자연살해세포수용체 유전형 동정 방법{KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification}Killer cell immunoglobulin-like receptor (KIR) typing method using TotalPlex PCR amplification}

본 발명은 사람의 자연 살해 세포의 면역 글로불린 유사 수용체 (Killer cell immunoglobulin-like receptor, 이하 KIR)의 유전형을 다중 유전자 증폭 기술을 이용하여 동정하는 방법에 관한 것이다. 보다 구체적으로 본 발명은 종래 전기영동 및 프로브 교잡반응 등을 각각 따로 수행하던 분석 방법과 달리, 하나의 튜브에서 여러 개의 프로브를 동시에 교잡 반응시켜 한 번의 반응으로 다중 증폭하고, 이렇게 교잡 반응이 진행된 프로브를 비드어레이어 등을 이용하여 한 번에 분석하는 유전형 동정방법이다. The present invention relates to a method for identifying genotypes of Killer cell immunoglobulin-like receptors (KIR) of human killer cells using multiple gene amplification techniques. More specifically, the present invention is different from the conventional method of performing electrophoresis and probe hybridization separately, multiple hybridization of multiple probes in one tube at the same time to amplify multiple times in one reaction, and thus the hybridization reaction probe Is a genotyping method that analyzes at a time using bead layers and the like.

자연 살해 세포(NK cell)는 림프구 전구체로부터 유래되어 골수에서 발달되는 단핵 세포이다. 사전 면역화 또는 활성화의 필요 없이 몇 가지 유형의 종양 세포에 결합하고 이들을 살해하는 능력을 갖고 있다. 자연 살해 세포의 표면에 위치한 면역 글로블린 유사 수용체(Killer cell immunogloblin-like receptor, KIR)는 자연 살해 세포의 역할을 억제하면서, 이들이 건강한 세포를 공격하지 못하도록 하 는 역할을 수행한다. KIR는 HLA(Human Leukocyte antigen)과 상호작용을 통해 자가 세포를 인식하며, 매우 복잡한 조합으로 이루어져 있다. KIR는 19번 염색체의 Leukocyte receptor complex(LRC) 의 100~200 kb 부위에 위치하며 총 15개의 참 유전자(true gene)와 2개의 유사 유전자(pseudo gene)로 구성되어 있다. KIR 유전자는 4개~9개의 exon을 가지고 있는 4-16 kb 정도의 길이를 가지고 있으며, 어떤 도메인(domain)을 가지고 있느냐에 따라 크게 3가지 타입으로 구분할 수 있다. 타입 1은, 도메인 1과, 도메인 2로 구성된 단백질로, 타입 2는 도메인 5과, 도메인 4로 구성된 단백질, 타입 3은 도메인 0, 1, 2의 세 가지로 구성된 단백질로 구분된다. 이러한 KIR 유전자의 다양성은 총 17개의 유전자와, 119 종류의 대립유전자가 보고되어 있다. 각각의 17개의 유전자들의 조합에 의해 2개의 A haplotype 과 17개의 B haplotype으로 나뉘며, 또 다시 KIR 유전자들의 조합으로 총 34개의 haplotype으로 구분된다. 아울러, KIR에 대한 명명법은 세포외 도메인의 수(각각 2개 그리고 3개의 세포외 lg-도메인을 갖는 KIR2D 및 KIR3D) 및 세포질의 꼬리가 긴지(Long)(KIR2DL 또는 KIR3DL) 또는 짧은지(Short)(KIR2DS 또는 KIR3DS) 여부에 따른다. Natural killer cells (NK cells) are mononuclear cells derived from lymphocyte precursors and developing in the bone marrow. It has the ability to bind to and kill some types of tumor cells without the need for prior immunization or activation. Killer cell immunogloblin-like receptors (KIR) located on the surface of natural killer cells suppress the role of natural killer cells and prevent them from attacking healthy cells. KIR recognizes autologous cells through interaction with the Human Leukocyte antigen (HLA) and is a very complex combination. KIR is located in the 100-200 kb region of Leukocyte receptor complex (LRC) of chromosome 19 and consists of a total of 15 true genes and two pseudo genes. The KIR gene has a length of about 4-16 kb with 4 to 9 exons, and can be classified into three types according to which domain. Type 1 is divided into a protein consisting of domain 1 and domain 2, type 2 is divided into a protein consisting of domain 5, domain 4, type 3 is composed of three proteins consisting of domains 0, 1, 2. The diversity of these KIR genes has been reported with 17 genes and 119 alleles. Each of the 17 genes is divided into 2 A haplotypes and 17 B haplotypes, and the KIR genes are further divided into 34 haplotypes. In addition, the nomenclature for KIR is the number of extracellular domains (KIR2D and KIR3D having two and each of the other three cell lg- domain) and the tail of the cytoplasmic is long (L ong) (KIR2DL or KIR3DL) or short paper (S hort) (KIR2DS or KIR3DS).

이러한 복잡한 구조 및 특성을 가지는 KIR는 이를 분석하여 골수 이식, 장기 이식 시에 자가 면역 반응의 발생을 기존에 수행하던 HLA 타입만을 보던 것과 같이 이러한 KIR 유전형을 확인함에 따라 미리 어느 정도 정확한 예측이 가능하다는 점, 미비하긴 하지만 암 관련 질환의 유전적 전이와의 관련성을 통해(간암 바이러스와 KIR 유전형과의 상관성 등-Lopez-Vazquez AJ et al. Infect Dis. 2005 Jul 1;192(1):162-5)를 질환의 가능성을 통찰하고 미리 발병의 예측을 할 수 있다는 점들이 최근 발표되면서, KIR 유전형 분석의 중요성이 더욱더 강조되고 있는 현실이다. KIR, which has such complex structure and characteristics, analyzes it and confirms this KIR genotype, as shown only in the HLA type, which previously performed autoimmune response during bone marrow transplantation and organ transplantation. In spite of its inadequate association with the genetic metastasis of cancer-related diseases (such as the correlation between liver cancer virus and KIR genotype-Lopez-Vazquez AJ et al. Infect Dis. 2005 Jul 1; 192 (1): 162-5 The importance of KIR genotyping is becoming more and more emphasized in recent years, as it is possible to understand the possibility of disease and predict the onset of disease.

KIR와 질병의 연계성은 아직까지 그 시장이 형성되지 않았으나 향후 시장은 조직 적합성 시장 보다 클 것으로 사료된다. 그러나 현재는 이식에서 활용가능성이 더 크고, 현재는 위에서 언급한 것처럼 면역반응을 확인하기 위한 HLA 타입을 확인하는 분야에서 점차적으로 중요성이 커지고 있다.The link between KIR and disease has not yet been established, but the future market is expected to be larger than the tissue compatibility market. However, it is now more likely to be used in transplantation, and as mentioned above, it is increasingly important in the field of identifying HLA types for identifying immune responses.

KIR 유전형의 동정 방법은 아직까지 활성화되지 않은 개발단계 수준이다. 초기에는 항체를 이용한 ELISA 방법이 주를 이루다가, 현재는 PCR-SSP(sequence specific primer)나 PCR-SSOP(sequence specific oligonucleotide probe)를 이용한 실험법이 시장에서 가장 널리 사용되고 있다(참조: Tissue Antigens, 70:415-422, 2007; Exp. Gerontol., 39:1223-1232, 2004; Tissue Antigens, 56:313-326, 2000). 그러나 ELISA 방식과 PCR-SSP, PCR-SSOP 방식 모두, 다중 분석은 어려워서 각각의 타입별로, 따로따로 실험을 해야 한다는 단점이 있기 때문에, 손이 많이 가는 어려운 작업이다. 따라서 국내에서 KIR 유전형의 분석은 일부 대학병원에서만 소규모로 이루어지고 있고, 유전자를 다중 증폭하여 분석하는 방법을 이용한 키트의 개발은 진행되고 있지 않다. 비드를 이용한 연구 개발은 일부 외국회사(one lambda etc.)에서만 진행되고 있는 것으로 알려져 있으며. 이러한 기술은 아직 초기 단계라고 할 수 있다. The identification of KIR genotypes is at a developmental level that has not yet been activated. Initially, ELISA methods using antibodies were mainly used, but currently, methods using PCR-SSP (sequence specific primer) or PCR-SSOP (sequence specific oligonucleotide probe) are the most widely used in the market (Tissue Antigens, 70). : 415-422, 2007; Exp. Gerontol., 39: 1223-1232, 2004; Tissue Antigens, 56: 313-326, 2000). However, in both ELISA, PCR-SSP, and PCR-SSOP methods, multiple analyzes are difficult, and each type requires a separate experiment. Therefore, in Korea, KIR genotyping is carried out on a small scale only in some university hospitals, and development of a kit using a method of multi-amplifying and analyzing genes is not in progress. Research and development using beads is known to be carried out only by some foreign companies (one lambda etc.). This technology is still in its infancy.

비드어레이를 이용한 분석법은 그 사용법이 매우 간단하고 재현성이 우수하 므로, 기존의 마이크로 어레이를 대체하는 방법이 될 수 있으리라 생각한다. 특히, 기존의 마이크로 어레이는 대량의 유전자를 한 번에 분석하여 그중에 의미 있는 몇 가지를 찾아내는데 적합한 방법이었다고 한다면, 비드어레이는 그 분석 개수의 한계가 있어(총 100가지만 분석 가능) 다량의 유전자를 한꺼번에 스크리닝하기 위한 방법으로는 적합하지 않지만, 의미 있는 몇 가지를 쉽고 빠르고 정확하게 분석하는데 최적화된 방법이라고 할 수 있다.As the method using bead array is very simple to use and excellent in reproducibility, it may be a method to replace the existing micro array. In particular, if the existing microarrays were suitable for analyzing a large number of genes at once and finding some meaningful ones, bead arrays have a limited number of analyzes (total 100 can be analyzed). It is not suitable for screening all at once, but it is optimized for easy, quick and accurate analysis of several meaningful ones.

본 발명의 목적은 KIR의 유전형을 다중 유전자 증폭 기술을 이용하여 간편하게 동정하는 방법을 제공하는 것에 있다. 보다 구체적으로 한 튜브 내에서 일차 PCR을 통해서 전체 KIR 유전형 16개를 모두 증폭해 내고, 증폭된 16개의 유전형을 다시 한 튜브 내에서 이차 라벨링 PCR을 수행한 후, 비드어레이 등으로 증폭 산물을 분석하여, 신속하고 정확하게 KIR 유전형을 동정하는 방법을 제공하는 것이다. An object of the present invention is to provide a method for easily identifying the genotype of KIR using multiple gene amplification techniques. More specifically, amplify all 16 KIR genotypes through primary PCR in one tube, perform secondary labeling PCR on the amplified 16 genotypes in another tube, and analyze the amplification products by bead array. To provide a method for identifying KIR genotypes quickly and accurately.

상기한 목적을 달성하기 위하여, 본 발명은 피검자의 KIR 유전자의 유전형을 동정하는 방법으로서,In order to achieve the above object, the present invention provides a method for identifying the genotype of the KIR gene of a subject,

(i) KIR 유전자의 엑손(exon) 4 및 엑손 5에 위치하는 공통 염기서열을 1차 PCR용 프라이머(primer)로 준비하여, 상기 프라이머 혼합물을 1차 PCR용 프라이머로 사용하고, 피검자의 지놈 DNA를 주형으로 하여 1차 PCR을 수행함으로써 KIR 유전자의 엑손(exon) 4 및 엑손 5 부위를 증폭하는 단계;(i) A common base sequence located at exon 4 and exon 5 of the KIR gene was prepared as a primer for primary PCR, and the primer mixture was used as a primer for primary PCR. Amplifying exon 4 and exon 5 sites of the KIR gene by performing a primary PCR using as a template;

(ii) 특정 KIR 타입에 특이적인 서열을 2차 PCR용 프라이머로 준비하여, 상기 프라이머 혼합물을 2차 PCR용 프라이머로 사용하고, 상기 증폭된 PCR 산물을 주형으로 하여 2차 PCR을 수행하는 단계; 및(ii) preparing a sequence specific for a specific KIR type as a primer for secondary PCR, using the primer mixture as a primer for secondary PCR, and performing secondary PCR using the amplified PCR product as a template; And

(iii) 상기 PCR 반응에 의하여 수득한 증폭 산물을 분석하여 KIR 유전자의 유전형을 동정하는 단계를 포함하는 KIR 유전자의 유전형 동정 방법을 제공한다.(iii) analyzing the amplification products obtained by the PCR reaction to identify the genotype of the KIR gene provides a method for genotyping the KIR gene.

상기 (i)단계의 1차 PCR용 프라이머(primer)는, 이에 제한되는 것은 아니나, 바람직하게는 서열번호 1부터 서열번호 8까지의 프라이머로 구성된 프라이머 혼합물이다. 본 발명자들은 PCR 반응을 한번에 수행하는 다중 유전자 증폭 기술을 이용하기 위하여, 16개의 KIR 유전형 모두에 대해 DNA 서열을 분석하였고, PCR 반응의 프라이머(primer)로 설정하기에 적합한 길이의 공통서열 쌍을 찾게 되었다. 이들 프라이머는 상기 공통서열과 동일하거나 상보적인 서열일 수 있고, 서열번호 1 내지 서열번호 4의 중간에 위치하는 "TTTT" 서열과 같이 효율을 높이기 위해 "벌지(Bulge)" 부분을 갖게 할 수도 있다. 도 3에 나타낸 바와 같이, 2DP1 및 3DS1의 경우 엑손 4에 있는 공통서열로부터 프라이머를 제작하였다. 동정하는 대상의 KIR 유전형을 예측할 수 있는 경우가 아니라면, 16개의 KIR 유전형 모두에 대해 동정이 가능하도록 서열번호 1 내지 서열번호 8까지의 프라이머를 모두 혼합한 혼합물을 사용함이 바람직하다. 다만 PCR 반응의 효율을 위하여 엑손 4 및 엑손 5를 구별하여 반응시킬 필요가 있다. 따라서 엑손 5에 대해서는 서열번호 1과 서열번호 2, 서열번호 1과 서열번호 3 및 서열번호 1과 서열번호 4의 조합으로 이루어진 그룹에서 선택되는 어느 하나 이상의 프라이머 세트 조합을 사용하여 PCR 반응을 수행함이 바람직하고, 엑손 4에 대해서는 서열번호 5와 서열번호 6 및/또는 서열번호 7과 서열번호 8로 이루어진 프라이머 세트 조합을 사용하여 PCR 반응을 수행함이 바람직하다. Primer for the first PCR (primer) of the step (i), but is not limited thereto, preferably a primer mixture consisting of primers from SEQ ID NO: 1 to SEQ ID NO: 8. The inventors analyzed DNA sequences for all 16 KIR genotypes in order to use multiple gene amplification techniques to perform PCR reactions at once, and find common sequence pairs of length suitable to set as primers for PCR reactions. It became. These primers may be sequences identical or complementary to the consensus sequence, and may have a "bulge" portion to increase efficiency, such as a "TTTT" sequence located in the middle of SEQ ID NO: 1 to SEQ ID NO: 4 . As shown in Figure 3, in the case of 2DP1 and 3DS1 primers were prepared from the common sequence in exon 4. Unless the KIR genotype of the subject to be identified can be predicted, it is preferable to use a mixture of all primers of SEQ ID NO: 1 to SEQ ID NO: 8 so as to be able to identify all 16 KIR genotypes. However, for the efficiency of PCR reaction, it is necessary to distinguish and react exon 4 and exon 5. Therefore, for exon 5, PCR reaction is performed using any one or more primer set combinations selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 1 and SEQ ID NO: 3, and combinations of SEQ ID NO: 1 and SEQ ID NO: 4 Preferably, the exon 4 is preferably subjected to a PCR reaction using a primer set consisting of SEQ ID NO: 5 and SEQ ID NO: 6 and / or SEQ ID NO: 7 and SEQ ID NO: 8.

상기 (ii)단계의 2차 PCR용 프라이머는, 이에 제한되는 것은 아니나, 바람직 하게는 서열번호 9부터 서열번호 24까지의 프라이머로 이루어진 그룹에서 선택되는 어느 하나 이상의 프라이머일 수 있다. 본 발명자들은 16개 KIR 유전형에 대해 각각 특이적인 서열 부위를 찾았고, 그 부위를 각각의 유전형을 표지할 수 있는 특이적 프라이머 서열로 삼았다. 상기 서열번호 9부터 서열번호 24까지의 2차 PCR용 프라이머는 한쪽 방향으로만 증폭이 이루어지도록 설계되었으나, 필요에 따라서는 쌍방향의 증폭이 가능하도록 설정할 수 있다.The primer for secondary PCR in step (ii) is not limited thereto, but may be any one or more primers selected from the group consisting of primers SEQ ID NO: 9 to SEQ ID NO: 24. We found sequence sites that were specific for each of the 16 KIR genotypes and made that site a specific primer sequence capable of labeling each genotype. The secondary PCR primers SEQ ID NO: 9 to SEQ ID NO: 24 is designed to be amplified only in one direction, but can be set to enable bidirectional amplification as necessary.

상기 동정 방법에서 PCR 반응에 의하여 수득한 증폭산물을 분석하는 단계는, 이에 제한되는 것은 아니나, 비드어레이나 마이크로어레이를 이용한 프로브-타겟의 상호 교잡반응 (northern blot, southern blot, allele specific primer PCR 등에 이용 가능) 방법으로 수행함이 바람직하다. 더욱 바람직하게는 상기 분석 단계는 유전자 증폭산물을 비오틴-dNTP(dATP, dGTP, dTTP 또는 dCTP)로 표지하는 단계; 상기 표지된 유전자 증폭산물을 KIR 유전형 타입 각각에 특이적으로 결합하는 비드에 결합시키는 단계; 및 비드어레이 분석기를 이용하여 결과를 분석하는 단계를 포함할 수 있다.The step of analyzing the amplification product obtained by the PCR reaction in the identification method, but is not limited to this, the hybridization reaction of the probe-target using bead array or microarray (northern blot, southern blot, allele specific primer PCR, etc. Preferably). More preferably, the analyzing step comprises labeling the gene amplification product with biotin-dNTP (dATP, dGTP, dTTP or dCTP); Binding the labeled gene amplification products to beads that specifically bind to each of the KIR genotype types; And analyzing the results using the bead array analyzer.

본 발명에서 사용된 기술은 크게 두 가지로, 원하는 유전자를 동시에 증폭하는 다중 증폭기술 (TotalPlex)과 다중 증폭된 유전자의 타입을 정확히 판별하는 기술(ASPE, bead array)이다. 본 발명에 따른 분석은 하나의 튜브에서 모든 반응이 가능하고, 다중 유전자 증폭 등의 기술을 이용하기 때문에 시약 및 시간, 노동력, 샘플의 절약 측면에서 매우 유리하다. 또한 비드어레이 시스템은 현재 96 웰 타입의 포맷으로 구성되어 있고, 한 개의 샘플을 분석하는데 약 1분 정도 밖에 소요되지 않으므로, 대량 분석에도 매우 유리하다는 장점이 있다. 멀티플렉스 기술을 이용하면, 시간은 하루로 단축가능하며, 아울러 분석을 위한 유전자의 양 또한 전체 합하여 100 ng 정도면 가능하고 또한 각종 시약 및 노동력을 고려할 때 기존 방법의 20% 미만이면 그 분석이 가능하리라 예상된다. 추가로, 본 발명에 따른 동정방법은 KIR 뿐 아니라, 각종 유전병의 검사 및 맞춤의학을 위한 약물 유전체학 등에 응용될 수 있으리라 기대된다.There are two main techniques used in the present invention, a multi-amplification technique (TotalPlex) for simultaneously amplifying a desired gene and a technique for accurately determining the type of a multi-amplified gene (ASPE, bead array). The assay according to the present invention is very advantageous in terms of saving reagents, time, labor, and samples since all reactions are possible in one tube, and using techniques such as multiple gene amplification. In addition, the bead array system is currently configured in a 96-well type format, and it takes about one minute to analyze one sample, which is advantageous in mass analysis. Using multiplex technology, time can be reduced to one day, and the amount of genes to be analyzed can be as low as 100 ng in total, and less than 20% of conventional methods can be analyzed considering various reagents and labor. It is expected. In addition, the identification method according to the present invention is expected to be applied not only to KIR, but also to pharmacogenomics for the examination of various genetic diseases and customized medicine.

이하, 구체적인 실시예를 통해 본 발명의 실시를 위한 내용을 기술하도록 한다. 다만, 본 발명의 범위가 하기 실시예들에 의해 제한되는 것은 아니다.Hereinafter, the contents for the implementation of the present invention through specific examples. However, the scope of the present invention is not limited by the following examples.

실시예Example 1.  One. 리퀴드Liquid 비드Bead 어레이를 이용한  With array KIRKIR 유전형 분석 Genotyping

리퀴드 비드 어레이를 이용한 KIR 유전형 분석 키트의 개발은 전체적으로 하기 5단계의 과정으로 진행된다(도 2).The development of a KIR genotyping kit using a liquid bead array is generally a five step process (FIG. 2).

1. 유전자 증폭 (KIR 유전자의 엑손 4 및 엑손 5 부위)1. Gene Amplification (Exon 4 and Exon 5 Sites of the KIR Gene)

2. 활성화 단계2. Activation Step

3. ASPE (Allele specific primer extension) 법을 이용한 증폭된 유전자 산물을 주형으로 한 유전형 분석용 프로브의 표지 (Labeling of ASPE primers with biotin-dCTP)3. Labeling of ASPE primers with biotin-dCTP as a template of amplified gene product using ASPE (Allele specific primer extension) method

4. 표지된 유전형 분석용 프로브와, 비드프로브간의 교잡반응4. Hybridization reaction between labeled genotyping probe and bead probe

5. 비드어레이 분석기를 이용한 결과 분석과 해석5. Analysis and interpretation of results using bead array analyzer

본 실시예는 한 번의 중합효소연쇄반응 만으로 다수의 유전자를 증폭시킬 수 있는 방법으로 주형으로 사용되는 각각의 유전자와 이에 상보적으로 결합할 수 있는 프라이머가 각각 특이적으로 결합할 수 있다. 많은 유전자를 한 번의 중합효소연쇄반응으로 증폭시킬 수 있고 주형 유전자에 대한 프라이머의 특이적인 선택성을 향상시켜 (주)예비티의 SBS primer 제작 기술을 이용하여 KIR 유전형을 분석할 수 있는 기술을 마련하였다. 이러한 분석법으로 인간 세포주 8종을 이용하여 분석시 일치하는 결과를 얻었다(도 4, 실시예 2). In this embodiment, a single polymerase chain reaction can amplify a plurality of genes, and each of the genes used as a template and primers capable of complementarily binding to each of them can specifically bind. Many genes can be amplified by one polymerase chain reaction, and the specific selectivity of the primers for the template genes is improved, and the technology for analyzing KIR genotypes using SBS primer manufacturing technology of YBTI Co., Ltd. has been prepared. . This analysis yielded concordant results when analyzed using eight human cell lines (FIG. 4, Example 2).

본 발명의 다중 유전자 동시 증폭방법은 (i) 2 내지 30개의 목적 유전자로부터 증폭하고자 하는 부위를 각각 선택하는 단계(도 3); ( ii ) 전기 각각 선택된 부위의 5'말단의 염기서열과 상보적으로 결합할 수 있는 염기서열을 결정하고, 상기 결정된 염기서열의 중앙부에 위치한 2 내지 4bp의 염기서열이 5 내지 8bp의 dNTP 염기서열로 치환된, 2 내지 30개의 센스 프라이머를 제작하는 단계; ( iii ) 전기 각 각 선택된 부위의 3'말단의 염기서열과 상보적으로 결합할 수 있는 염기서열을 결정하고, 상기 결정된 염기서열의 중앙부에 위치한 2 내지 4bp의 염기서열이 5 내지 8bp의 dNTP 염기서열로 치환된, 2 내지 30개의 안티센스 프라이머를 제작하는 단계(도 5); ( iv ) 전기 2 내지 30개의 목적 유전자와, 전기 목적유전자에 각각 상응하는 전기 제작된 2 내지 30개의 센스 프라이머 및 안티센스 프라이머를 모두 혼합하고, 전기 혼합물을 이용하여 한 번의 중합효소연쇄반응을 수행하는 단계; 및 (v) 전기 중합효소연쇄반응에 의하여 수득한 증폭산물을 확인하는 단계로 이루어진다. 이때, 중합효소 연쇄 반응 시 온도 및 시간 조건은 특별히 제한되지 않는다. 또한, 수득한 증폭산물의 확인은 특별히 이에 제한되지 않으나, 비드어레이를 이용한 교잡반응 방법으로 수행할 수 있다. 다만, 마이크로어레이 등과 같은 방법도 이용 가능하며, 각 교잡 반응에 사용되는 특정 KIR 유전형 프로브 등을 이용한 서던 블랏팅(southern blotting) 방법, 특정 대립유전자 특이적 프라이머(Allele specific Primer)를 이용한 각 타입의 PCR 법, 증폭된 1차 PCR 산물을 특정 서열과 정확히 맞는 제한효소를 이용한 PCR-RFLP법 등을 통해 한눈에 확인할 수 있다.The multi-gene simultaneous amplification method of the present invention comprises the steps of: (i) selecting each region to be amplified from 2 to 30 target genes (FIG. 3); ( ii ) determine a base sequence capable of complementarily binding to the base sequence at the 5 'end of each of the selected sites, wherein the base sequence of 2 to 4bp located at the center of the determined base sequence is 5 to 8bp of dNTP sequence Preparing 2 to 30 sense primers, substituted with; ( iii ) a base sequence capable of complementarily binding to the base sequence at the 3 'end of each selected site is determined, and the base sequence of 2 to 4bp located at the center of the determined base sequence is 5 to 8bp of dNTP base. Preparing 2 to 30 antisense primers, substituted by sequence (FIG. 5); ( iv ) mixing two to thirty target genes with each of the above-described two to thirty sense primers and antisense primers corresponding to the corresponding target genes, and performing one polymerase chain reaction using the mixture. step; And (v) identifying the amplified product obtained by the electropolymerase chain reaction. At this time, the temperature and time conditions in the polymerase chain reaction are not particularly limited. In addition, the identification of the obtained amplification product is not particularly limited thereto, but may be performed by a hybridization method using a bead array. However, a method such as a microarray may be used, and a method of Southern blotting using a specific KIR genotyping probe used for each hybridization reaction, and each type using a specific allele specific primer PCR and amplified primary PCR products can be identified at a glance through PCR-RFLP using a restriction enzyme that exactly matches a specific sequence.

상기 중합효소연쇄반응에서 사용된 SBS 프라이머(1차 PCR용 프라이머) 및 특이적 프라이머(2차 PCR용 프라이머)의 염기서열은 하기 표 1과 같다.The base sequences of the SBS primer (primary PCR primer) and the specific primer (primary PCR primer) used in the polymerase chain reaction are shown in Table 1 below.

본 발명의 중합효소연쇄반응에서 사용된 프라이머 목록List of primers used in the polymerase chain reaction of the present invention <1st PCR Primer List><1st PCR Primer List> 서열번호SEQ ID NO: 이름name 염기서열(5' to 3')Sequence (5 'to 3') 1One KIR exon 5 FKIR exon 5 F agagcaggggagtTTTTgttctcagctcaggt (서열번호 1)agagcaggggagtTTTTgttctcagctcaggt (SEQ ID NO: 1) 22 KIR exon 5 RKIR exon 5 R cctgtgacagaaacTTTTgcagtgggtcact (서열번호 2)cctgtgacagaaacTTTTgcagtgggtcact (SEQ ID NO: 2) 33 KIR exon 5 R'KIR exon 5 R ' cctgtgacggaaacTTTTgcagtggatcact (서열번호 3)cctgtgacggaaacTTTTgcagtggatcact (SEQ ID NO: 3) 44 2dp1,3dp1 R'2dp1,3dp1 R ' ggaaagagccgaag TTTT tctgtaggtkcctcc (서열번호 4)ggaaagagccgaag TTTT tctgtaggtkcctcc (SEQ ID NO: 4) 55 2DP1 F2DP1 F CAA TGT TGG TCA GAT GTC ATG (서열번호 5)CAA TGT TGG TCA GAT GTC ATG (SEQ ID NO: 5) 66 2DP1 R2DP1 R GTA GGT CCC TGC CAG GTC TTC (서열번호 6)GTA GGT CCC TGC CAG GTC TTC (SEQ ID NO: 6) 77 3DS1 F3DS1 F TGG ATC TCT AAG GAC CCC T (서열번호 7)TGG ATC TCT AAG GAC CCC T (SEQ ID NO: 7) 88 3DS1 R3DS1 R AGC TGA CAA CTG ATA GGG GGT (서열번호 8)AGC TGA CAA CTG ATA GGG GGT (SEQ ID NO: 8) <2nd Labeling Primer List><2nd Labeling Primer List> 서열번호SEQ ID NO: 이름name 염기서열(5' to 3')Sequence (5 'to 3') 99 PCP 2DL1PCP 2DL1 ctacaaacaaacaaacattatcaa CCACTCGTATGGAGAGTCAT (서열번호 9)ctacaaacaaacaaacattatcaa CCACTCGTATGGAGAGTCAT (SEQ ID NO: 9) 1010 PCP 2DL2PCP 2DL2 tgatgtttgattatgatgtagtat GCCCTGCAGAGAACCTACA (서열번호 10)tgatgtttgattatgatgtagtat GCCCTGCAGAGAACCTACA (SEQ ID NO: 10) 1111 PCP 2DL3PCP 2DL3 cttttcatcttttcatctttcaat C CCT GCA GAG AAC CTA CG T (서열번호 11)cttttcatcttttcatctttcaat C CCT GCA GAG AAC CTA CG T (SEQ ID NO: 11) 1212 PCP 2DL4PCP 2DL4 aatctacaaatccaataatctcat CCRGGCCGGGCTGTAAGC (서열번호 12)aatctacaaatccaataatctcat CCRGGCCGGGCTGTAAGC (SEQ ID NO: 12) 1313 PCP 2DL5PCP 2DL5 aatcttactacaaatcctttcttt CCGGCTGGGCTGAGAGT (서열번호 13)aatcttactacaaatcctttcttt CCGGCTGGGCTGAGAGT (SEQ ID NO: 13) 1414 PCP 2DP1PCP 2DP1 tcatttcaatcaatcatcaacaat ATC ATG GTG CTC TCC AGT GA (서열번호 14)tcatttcaatcaatcatcaacaat ATC ATG GTG CTC TCC AGT GA (SEQ ID NO: 14) 1515 PCP 2DS1PCP 2DS1 caattcaaatcacaataatcaatc CAT CTG TAG GTC CCT CCA (서열번호 15)caattcaaatcacaataatcaatc CAT CTG TAG GTC CCT CCA (SEQ ID NO: 15) 1616 PCP 2DS2PCP 2DS2 ttacctttatacctttctttttac TCACGCTCTCTCCTGCCAA (서열번호 16)ttacctttatacctttctttttac TCACGCTCTCTCCTGCCAA (SEQ ID NO: 16) 1717 PCP 2DS3PCP 2DS3 tcatcaatcaatctttttcacttt AGCATCTGTAGGTTCCTCCT (서열번호 17)tcatcaatcaatctttttcacttt AGCATCTGTAGGTTCCTCCT (SEQ ID NO: 17) 1818 PCP 2DS4PCP 2DS4 tacactttctttctttctttcttt TGGAATGTTCCGTKGATGC (서열번호 18)tacactttctttctttctttcttt TGGAATGTTCCGTKGATGC (SEQ ID NO: 18) 1919 PCP 2DS5PCP 2DS5 tcataatctcaacaatctttcttt CCC TCC GTG GGT GGC AGG GT (서열번호 19)tcataatctcaacaatctttcttt CCC TCC GTG GGT GGC AGG GT (SEQ ID NO: 19) 2020 PCP 3DL1PCP 3DL1 tacatcaacaattcattcaataca AGAGAGAAGGTTTCTCATATG (서열번호 20)tacatcaacaattcattcaataca AGAGAGAAGGTTTCTCATATG (SEQ ID NO: 20) 2121 PCP 3DL2PCP 3DL2 atgagtatgttattagtgtatgta TGACCACACGCAGGGCAG (서열번호 21)atgagtatgttattagtgtatgta TGACCACACGCAGGGCAG (SEQ ID NO: 21) 2222 PCP 3DL3PCP 3DL3 tcaaaatctcaaatactcaaatca GGATAGATGGTAAATGTCAAACA (서열번호 22)tcaaaatctcaaatactcaaatca GGATAGATGGTAAATGTCAAACA (SEQ ID NO: 22) 2323 PCP 3DP1PCP 3DP1 caattaactacatacaatacatac TGAGAGAGAAGGTTTCCCAC (서열번호 23)caattaactacatacaatacatac TGAGAGAGAAGGTTTCCCAC (SEQ ID NO: 23) 2424 PCP 3DS1PCP 3DS1 tcaacaatcttttacaatcaaatc AAG GGC ACG CAT CAT GGA (서열번호 24)tcaacaatcttttacaatcaaatc AAG GGC ACG CAT CAT GGA (SEQ ID NO: 24)

본 발명의 다중 유전자 동시 증폭방법을 이용하면, KIR의 16가지 타입을 한 번의 중합효소연쇄반응만으로 증폭시킬 수 있으므로, KIR의 유전형 변형에 의한 질병 및 질환의 진단에 이용될 것이며 유전자 관련 분야의 연구개발의 진보에 이바지할 수 있을 것이다.By using the multi-gene simultaneous amplification method of the present invention, 16 types of KIR can be amplified by only one polymerase chain reaction, and thus it will be used for diagnosis of diseases and diseases caused by genotype modification of KIR, and researches related to genes It can contribute to the progress of development.

실시예Example 2: 인간 세포주의 유전자에서  2: in the gene of a human cell line KIRKIR 유전형 분석 Genotyping

인간 세포주 8종의 지놈 DNA 4㎕(50ng/㎕), 10X 중합효소연쇄반응 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500 mM KCl, 200mM (NH4)2SO4,) 2㎕, 2.5mM dNTP 혼합물(2.5mM dATP, 2.5mM dGTP, 2.5mM dTTP, 2.5mM dCTP) 2㎕, Taq 중합효소(Biotools, Spain) 1.5unit 프라이머의 혼합물(0.5μM)과 SBS 프라이머 혼합물(0.5μM)을 혼합하고, 3차 증류수를 가하여 20㎕로 적정한 다음, 중합효소연쇄반응을 수행한다. 이 과정이 1단계 과정으로 이때 중합효소연쇄반응의 조건은 94℃에서 5분, 94℃에서 20초, 어닐링 온도 57℃ 40초, 72℃에서 2분의 조건하에 35사이클을 수행하고, 반응이 종료된 후, 증폭된 절편을 1.5%(w/v) 아가로스 젤에서 전기영동한다(도 6). 도 6에서 1번 레인(lane)은 음성대조구(negative control)이고 5번부터 13번 레인이 인간 세포주 8종을 증폭한 산물이다. KIR 유전형의 엑손(EXON) 5와 엑손(EXON) 4에서 특이적으로 증폭됨을 확인할 수 있다. 4 μL of genome DNA of 8 human cell lines (50 ng / μL), 10 × polymerase chain reaction buffer (750 mM Tris-HCl, pH 9.0), 20 mM MgCl 2 , 500 mM KCl, 200 mM (NH 4 ) 2 SO 4 ,) 2 μl, 2.5 mM dNTP mixture (2.5 mM dATP, 2.5 mM dGTP, 2.5 mM dTTP, 2.5 mM dCTP) 2 μl, Taq polymerase (Biotools, Spain) 1.5 unit primer mixture (0.5 μM) and SBS primer mixture (0.5) [mu] M) is mixed and the mixture is titrated with 20 mu l of distilled water, followed by polymerase chain reaction. This process is a one-step process, the conditions of the polymerase chain reaction is carried out 35 cycles under the conditions of 5 minutes at 94 ℃, 20 seconds at 94 ℃, annealing temperature 57 ℃ 40 seconds, 72 2 minutes, After termination, the amplified sections are electrophoresed on 1.5% (w / v) agarose gel (FIG. 6). In FIG. 6, lane 1 is negative control and lanes 5 to 13 are amplified by 8 human cell lines. It can be seen that it is specifically amplified in EXON 5 and EXON 4 of the KIR genotype.

2단계 과정은 증폭산물인 EXON5와 EXON4를 각각 2㎕에 활성화 버퍼 0.8㎕, 활성화 효소 0.4㎕에 3차 증류수를 가하여 8㎕의 용액을 37℃에서 1시간, 85℃에서 15분간 반응시켜 활성화시키는 단계이다. 활성화 단계는 2차 PCR의 효율을 높이기 위해 1차 PCR 반응 후 남아있는 프라이머나 dNTP 등을 제거하는 과정이다.In the two-step process, 0.8 µl of activation buffer and 3 µl of distilled water were added to 0.4 µl of activation enzyme EXON5 and EXON4, respectively, and 8 µl of solution was reacted at 37 ° C for 1 hour and 85 ° C for 15 minutes. Step. The activation step is a process of removing primers or dNTPs remaining after the first PCR reaction in order to increase the efficiency of the second PCR.

제 3단계로서 활성화 산물 8㎕를 사용하여 유전자 증폭산물을 표지하는 중합효소연쇄반응을 수행하였다. 유전자 표지 중합효소연쇄반응은 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500 mM KCl, 200mM (NH4)2SO4,) 2㎕, 1mM dAGT 혼합물(1mM dATP, 1mM dGTP, 1mM dTTP) 1㎕, 10μM dCTP를 1㎕, 0.4mM biotin-labeled dCTP 0.25 ㎕와 Taq 중합효소(Biotools, Spain) 1unit, 프라이머의 혼합물(0.5μM)을 혼합하고, 3차 증류수를 가하여 20㎕로 적정한 다음, 중합효소연쇄반응을 수행한다. 중합효소연쇄반응의 조건은 94℃에서 5분, 94℃에서 30초, 어닐링 온도 57℃ 1분, 72℃에서 2분의 조건하에 35사이클을 수행한다. As a third step, a polymerase chain reaction for labeling the gene amplification product was performed using 8 µl of the activation product. The gene-labeled polymerase chain reaction was carried out in a buffer solution (750 mM Tris-HCl (pH 9.0), 20 mM MgCl 2 , 500 mM KCl, 200 mM (NH 4 ) 2 SO 4 ,) 2 μl, 1 mM dAGT mixture (1 mM dATP, 1 mM dGTP, 1 μl of 1 mM dTTP), 1 μl of 10 μM dCTP, 0.25 μl of 0.4mM biotin-labeled dCTP, 1 unit of Taq polymerase (Biotools, Spain) and a mixture of primers (0.5 μM) were added. After titration, polymerase chain reaction is performed. The polymerase chain reaction was carried out for 35 cycles under the conditions of 5 minutes at 94 ° C, 30 seconds at 94 ° C, annealing temperature of 57 ° C for 1 minute, and 72 ° C for 2 minutes.

4단계 과정은 표지된 유전자 증폭산물의 비드 결합 과정으로 유전자 표지 중합효소연쇄반응 산물 20㎕에 2X 하이브리다이제이션 용액 (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100) 21㎕, 16 타입 KIR 유전형에 특이적으로 결합할 비드 혼합물 1㎕을 섞어 반응시킨다. 이 반응 94℃에서 10분, 37℃에서 30분으로 진행한다. 비드에 결합한 반응 산물을 96well filter plate로 옮겨 세척(washing) 버퍼(0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100)로 160㎕씩 세 번 씻어낸다. The 4 step process is the bead binding process of the labeled gene amplification product. 21 μl of 2X hybridization solution (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100) in 20μl of the gene-labeled polymerase chain reaction product. 1 μl of the bead mixture that will specifically bind to type 16 KIR genotype is allowed to react. The reaction proceeds at 94 ° C for 10 minutes and at 37 ° C for 30 minutes. Transfer the reaction product bound to the beads to a 96well filter plate and wash with 160 μl three times with washing buffer (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100).

5단계 과정은 비드와 결합한 반응 산물의 비드어레이 분석기(Luminex Corp., Luminex 100 혹은 Luminex 200, 기타로 BioRad 사의 Bioplex 등)를 이용한 결과 분석과 해석 단계로서 0.2㎕ Streptavidin-PE를 세척용액 100㎕에 희석하여 비드에 결합 유전자 표지 산물에 반응시킨다. 비드어레이 분석기는 각 비드에 결합한 16개 타입의 KIR 유전형을 각각 구분하여 읽고, 각 유전형의 감도를 MFI(mean of fluorescence intensity)로 나타내준다. 이 결과를 각 타입별로 negative (KIR의 타입별 유전형이 없는 것)의 MFI 값의 평균을 구하고 이 평균값에 표준편차의 3배를 더한 값으로 cutoff를 정한다(Mean + 3Stdev). 이를 바탕으로 분석하여 결과를 해석한다(도 1). The 5-step process is a result of analysis and interpretation using a bead array analyzer (Luminex Corp., Luminex 100 or Luminex 200, or BioRad Bioplex, etc.) of the reaction product combined with beads.0.2 μl Streptavidin-PE was added to 100 μl of washing solution. Dilute to react with the gene label product bound to the beads. The bead array analyzer separately reads 16 types of KIR genotypes bound to each bead, and expresses the sensitivity of each genotype as a mean of fluorescence intensity (MFI). The results are averaged for each type of MFI values that are negative (there are no KIR-type genotypes), and the cutoff is determined by adding three times the standard deviation (Mean + 3Stdev). Based on this analysis, the results are interpreted (FIG. 1).

실시예Example 3: 인간 지놈에서  3: in the human genome KIRKIR 유전형 분석 Genotyping

인간 지놈 DNA 2㎕(50ng/㎕) 에서도 실시예1과 같은 한 번의 연쇄반응으로 16가지 타입의 KIR 유전형을 분석할 수 있었으며 이 반응은 10ng이하의 인간 지놈 DNA로도 분석 가능하다.Even in 2 μl (50ng / μl) of human genome DNA, 16 types of KIR genotypes could be analyzed by the same chain reaction as in Example 1, and the reaction could be analyzed even with less than 10ng of human genome DNA.

제 1단계로서 인간 지놈 DNA 4㎕, 10X 중합효소연쇄반응 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500 mM KCl, 200mM (NH4)2SO4,) 2㎕, 2.5mM dNTP 혼합물(2.5mM dATP, 2.5mM dGTP, 2.5mM dTTP, 2.5mM dCTP) 2㎕, Taq 중합효소(Biotools, Spain) 1.5unit 프라이머의 혼합물(0.5μM) 및 SBS 프라이머들 혼합물(0.5μM)을 혼합하고, 3차 증류수를 가하여 20㎕로 적정한 다음, 중합효소연쇄반응을 수행하였다. 이때 중합효소연쇄반응의 조건은 94℃에서 5분, 94℃에서 20초, 어닐링 온도 57℃ 40초, 72℃에서 2분의 조건하에 35사이클을 수행하고, 반응이 종료된 후, 증폭된 절편을 1.5%(w/v) 아가로스 젤에서 전기영동하였다(도 6). 도 6의 1번 레인은 음성대조구이고 2 ~ 5번 레인은 구강 세포에서 얻은 인간 지놈 샘플을 증폭한 산물이다. 이로써 EXON5와 EXON4에서 특이적으로 증폭됨을 확인할 수 있다. 4 μl of human genome DNA, 10 × polymerase chain buffer buffer (750 mM Tris-HCl, pH 9.0), 20 mM MgCl 2 , 500 mM KCl, 200 mM (NH 4 ) 2 SO 4 ,) 2 μl, 2.5 mM Mix 2 μl of dNTP mixture (2.5 mM dATP, 2.5 mM dGTP, 2.5 mM dTTP, 2.5 mM dCTP), a mixture of Taq polymerase (Biotools, Spain) 1.5 unit primer (0.5 μM) and a mixture of SBS primers (0.5 μM) After tertiary distilled water was added, the mixture was titrated with 20 µl, and a polymerase chain reaction was performed. At this time, the conditions of the polymerase chain reaction was carried out for 35 cycles under the conditions of 5 minutes at 94 ℃, 20 seconds at 94 ℃, annealing temperature 57 ℃ 40 seconds, 72 2 minutes, and after the reaction was completed, amplified fragments Was electrophoresed on 1.5% (w / v) agarose gel (FIG. 6). Lane 1 of Figure 6 is a negative control and lanes 2 to 5 are the products of amplified human genome samples obtained from oral cells. As a result, it can be seen that it is specifically amplified in EXON5 and EXON4.

2단계 과정으로 증폭산물인 EXON5와 EXON4를 각각 2㎕에 활성화 버퍼 0.8㎕, 활성화 효소 0.4㎕에 3차 증류수를 가하여 8㎕의 용액을 37℃에서 1시간, 85℃에서 15분간 반응시켜 활성화 단계를 거친다. In the two-step process, the amplification products EXON5 and EXON4 were added to 0.8 µl of activation buffer and 3 µl of distilled water to 0.4 µl of activating enzyme, respectively. Go through.

제 3단계로서 활성화 산물 8㎕를 사용하여 유전자 증폭산물을 표지하는 중합효소연쇄반응을 진행하였다. 유전자 표지 중합효소연쇄반응은 완충용액(750mM Tris-HCl(pH 9.0), 20mM MgCl2, 500 mM KCl, 200mM (NH4)2SO4,) 2㎕, 1mM dAGT 혼합물(1mM dATP, 1mM dGTP, 1mM dTTP) 1㎕, 10μM dCTP를 1㎕, 0.4mM biotin-labeled dCTP 0.25 ㎕와 Taq 중합효소(Biotools, Spain) 1unit, 프라이머의 혼합물(0.5μM)을 혼합하고, 3차 증류수를 가하여 20㎕로 적정한 다음, 중합효소연쇄반응을 수행한다. 중합효소연쇄반응의 조건은 94℃에서 5분, 94℃에서 30초, 어닐링 온도 57℃ 1분, 72℃에서 2분의 조건하에 35사이클을 수행한다. As a third step, a polymerase chain reaction for labeling the gene amplification product was performed using 8 µl of the activated product. The gene-labeled polymerase chain reaction was carried out in a buffer solution (750 mM Tris-HCl (pH 9.0), 20 mM MgCl 2 , 500 mM KCl, 200 mM (NH 4 ) 2 SO 4 ,) 2 μl, 1 mM dAGT mixture (1 mM dATP, 1 mM dGTP, 1 μl of 1 mM dTTP), 1 μl of 10 μM dCTP, 0.25 μl of 0.4mM biotin-labeled dCTP, 1 unit of Taq polymerase (Biotools, Spain) and a mixture of primers (0.5 μM) were added. After titration, polymerase chain reaction is performed. The polymerase chain reaction was carried out for 35 cycles under the conditions of 5 minutes at 94 ° C, 30 seconds at 94 ° C, annealing temperature of 57 ° C for 1 minute, and 72 ° C for 2 minutes.

4단계 과정은 표지된 유전자 증폭산물의 비드 결합 과정으로 유전자 표지 중합효소연쇄반응 산물 20㎕에 2X 하이브리다이제이션 용액 (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100) 21㎕, 16 타입 KIR 유전형에 특이적으로 결합할 비드 혼합물 1㎕을 섞어 반응시킨다. 이 반응 94℃에서 10분, 37℃에서 30분으로 진행한다. 비드에 결합한 반응 산물을 96well filter plate로 옮겨 세척 버퍼(0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100)로 160㎕씩 세 번 씻어낸다. The 4 step process is the bead binding process of the labeled gene amplification product. 21 μl of 2X hybridization solution (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100) in 20μl of the gene-labeled polymerase chain reaction product. 1 μl of the bead mixture that will specifically bind to type 16 KIR genotype is allowed to react. The reaction proceeds at 94 ° C for 10 minutes and at 37 ° C for 30 minutes. Transfer the reaction product bound to the beads to a 96well filter plate and wash three times with 160 μl in wash buffer (0.4M NaCl, 0.2M Tris (pH 8.0), 0.16% TritonX-100).

5단계 과정은 비드와 결합한 반응 산물을 비드어레이 분석기를 이용한 결과 분석과 해석 단계로서 0.2㎕ Streptavidin-PE를 세척용액 100㎕에 희석하여 비드에 결합 유전자 표지 산물에 반응시킨다. 비드어레이 분석기에 의해 각 비드에 결합한 16개 타입의 KIR 유전형을 구분하여 읽혀지고, 각 유전형의 감도를 MFI(mean of fluorescence intensity)로 나타내 준다. 이 결과를 각 타입별로 negative (KIR의 타입별 유전형이 없는 것)의 MFI 값의 평균을 구하고 이 평균값에 표준편차의 3배를 더한 값으로 cutoff를 정한다(Mean + 3Stdev). 이를 바탕으로 분석하여 결과를 해석한다(도 1). The 5-step process is a result of analyzing and interpreting the reaction product bound to the beads using a bead array analyzer. The 0.2 μl Streptavidin-PE is diluted in 100 μl of the washing solution and reacted with the gene label product bound to the beads. The 16 types of KIR genotypes bound to each bead are read by a bead array analyzer, and the sensitivity of each genotype is expressed as mean of fluorescence intensity (MFI). The results are averaged for each type of MFI values that are negative (there are no KIR-type genotypes), and the cutoff is determined by adding three times the standard deviation (Mean + 3Stdev). Based on this analysis, the results are interpreted (FIG. 1).

도 1은 본 발명의 일실시예에 따른 KIR 유전형 분석 결과를 나타낸다.1 shows KIR genotyping results according to an embodiment of the present invention.

도 2는 본 발명에 따른 다중 유전자 동시 증폭방법과 비드어레이를 이용한 KIR 유전형 동정 방법의 절차흐름도이다. Figure 2 is a flow chart of the KIR genotyping method using the multiple gene simultaneous amplification method and bead array in accordance with the present invention.

도 3은 본 발명의 다중 유전자 동시 증폭에 사용된 공통 프라이머의 KIR 서열상의 위치를 정리한 표이다. Figure 3 is a table summarizing the positions on the KIR sequence of the consensus primers used for simultaneous multiplex amplification of the present invention.

도 4는 8개의 인간 세포주를 이용하여 KIR 유형을 분석한 결과를 정리한 표이다. KIR의 하위타입이 있는 것은 POS로, 없는 것은 NEG로 표시하였다.  4 is a table showing the results of analyzing the KIR type using eight human cell lines. The subtypes of KIR are labeled POS and the ones not labeled NEG.

도 5는 본 발명의 2차 PCR에 사용된 KIR 유전형 2DL5와, 2DS2의 ASPE 프라이머의 작성법을 보여주는 예시 그림이다. 5 is an exemplary diagram showing the preparation of the KIR genotype 2DL5 and 2DS2 ASPE primer used in the secondary PCR of the present invention.

도 6은 본 발명의 사용된 프라이머 세트를 이용하여 각 엑손 5와, 엑손4 부위 특이적인 1차 PCR 증폭을 한 이후 전기영동을 통해 확인된 결과 예시이다.6 is an exemplary result confirmed by electrophoresis after each of the exon 5 and exon 4 site-specific primary PCR amplification using the primer set used in the present invention.

<110> YeBT <120> KIR typing method using TotalPlex PCR amplication <160> 24 <170> KopatentIn 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 F <400> 1 agagcagggg agtttttgtt ctcagctcag gt 32 <210> 2 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 R <400> 2 cctgtgacag aaacttttgc agtgggtcac t 31 <210> 3 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 R' <400> 3 cctgtgacgg aaacttttgc agtggatcac t 31 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 2dp1,3dp1 R' <400> 4 ggaaagagcc gaagtttttc tgtaggtkcc tcc 33 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 2DP1 F <400> 5 caatgttggt cagatgtcat g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 2DP1 R <400> 6 gtaggtccct gccaggtctt c 21 <210> 7 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 3DS1 F <400> 7 tggatctcta aggacccct 19 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3DS1 R <400> 8 agctgacaac tgataggggg t 21 <210> 9 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL1 <400> 9 ctacaaacaa acaaacatta tcaaccactc gtatggagag tcat 44 <210> 10 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL2 <400> 10 tgatgtttga ttatgatgta gtatgccctg cagagaacct aca 43 <210> 11 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL3 <400> 11 cttttcatct tttcatcttt caatccctgc agagaaccta cgt 43 <210> 12 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL4 <400> 12 aatctacaaa tccaataatc tcatccrggc cgggctgtaa gc 42 <210> 13 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL5 <400> 13 aatcttacta caaatccttt ctttccggct gggctgagag t 41 <210> 14 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DP1 <400> 14 tcatttcaat caatcatcaa caatatcatg gtgctctcca gtga 44 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS1 <400> 15 caattcaaat cacaataatc aatccatctg taggtccctc ca 42 <210> 16 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS2 <400> 16 ttacctttat acctttcttt ttactcacgc tctctcctgc caa 43 <210> 17 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS3 <400> 17 tcatcaatca atctttttca ctttagcatc tgtaggttcc tcct 44 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS4 <400> 18 tacactttct ttctttcttt cttttggaat gttccgtkga tgc 43 <210> 19 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS5 <400> 19 tcataatctc aacaatcttt ctttccctcc gtgggtggca gggt 44 <210> 20 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL1 <400> 20 tacatcaaca attcattcaa tacaagagag aaggtttctc atatg 45 <210> 21 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL2 <400> 21 atgagtatgt tattagtgta tgtatgacca cacgcagggc ag 42 <210> 22 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL3 <400> 22 tcaaaatctc aaatactcaa atcaggatag atggtaaatg tcaaaca 47 <210> 23 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DP1 <400> 23 caattaacta catacaatac atactgagag agaaggtttc ccac 44 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DS1 <400> 24 tcaacaatct tttacaatca aatcaagggc acgcatcatg ga 42 <110> YeBT <120> KIR typing method using TotalPlex PCR amplication <160> 24 <170> KopatentIn 1.71 <210> 1 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 F <400> 1 agagcagggg agtttttgtt ctcagctcag gt 32 <210> 2 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 R <400> 2 cctgtgacag aaacttttgc agtgggtcac t 31 <210> 3 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> KIR exon 5 R ' <400> 3 cctgtgacgg aaacttttgc agtggatcac t 31 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> 2dp1,3dp1 R ' <400> 4 ggaaagagcc gaagtttttc tgtaggtkcc tcc 33 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 2DP1 F <400> 5 caatgttggt cagatgtcat g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 2DP1 R <400> 6 gtaggtccct gccaggtctt c 21 <210> 7 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 3DS1 F <400> 7 tggatctcta aggacccct 19 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3DS1 R <400> 8 agctgacaac tgataggggg t 21 <210> 9 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL1 <400> 9 ctacaaacaa acaaacatta tcaaccactc gtatggagag tcat 44 <210> 10 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL2 <400> 10 tgatgtttga ttatgatgta gtatgccctg cagagaacct aca 43 <210> 11 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL3 <400> 11 cttttcatct tttcatcttt caatccctgc agagaaccta cgt 43 <210> 12 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL4 <400> 12 aatctacaaa tccaataatc tcatccrggc cgggctgtaa gc 42 <210> 13 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DL5 <400> 13 aatcttacta caaatccttt ctttccggct gggctgagag t 41 <210> 14 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DP1 <400> 14 tcatttcaat caatcatcaa caatatcatg gtgctctcca gtga 44 <210> 15 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS1 <400> 15 caattcaaat cacaataatc aatccatctg taggtccctc ca 42 <210> 16 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS2 <400> 16 ttacctttat acctttcttt ttactcacgc tctctcctgc caa 43 <210> 17 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS3 <400> 17 tcatcaatca atctttttca ctttagcatc tgtaggttcc tcct 44 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS4 <400> 18 tacactttct ttctttcttt cttttggaat gttccgtkga tgc 43 <210> 19 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 2DS5 <400> 19 tcataatctc aacaatcttt ctttccctcc gtgggtggca gggt 44 <210> 20 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL1 <400> 20 tacatcaaca attcattcaa tacaagagag aaggtttctc atatg 45 <210> 21 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL2 <400> 21 atgagtatgt tattagtgta tgtatgacca cacgcagggc ag 42 <210> 22 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DL3 <400> 22 tcaaaatctc aaatactcaa atcaggatag atggtaaatg tcaaaca 47 <210> 23 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DP1 <400> 23 caattaacta catacaatac atactgagag agaaggtttc ccac 44 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PCP 3DS1 <400> 24 tcaacaatct tttacaatca aatcaagggc acgcatcatg ga 42  

Claims (5)

피검자의 KIR 유전자의 유전형을 동정하는 방법으로서,As a method of identifying the genotype of the subject's KIR gene, (i) 서열번호 1과 서열번호 2, 서열번호 1과 서열번호 3, 및 서열번호 1과 서열번호 4의 조합으로 이루어진 그룹에서 선택되는 어느 하나 이상의 프라이머 세트 조합; 또는 서열번호 5와 서열번호 6, 또는 서열번호 7과 서열번호 8로 이루어진 프라이머 세트 조합으로 구성된 프라이머 혼합물을 1차 PCR용 프라이머로 사용하고, 피검자의 지놈 DNA를 주형으로 하여 1차 PCR을 수행함으로써 KIR 유전자의 엑손(exon) 4 및 엑손 5 부위를 증폭하는 단계;(i) any one or more primer set combinations selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 1 and SEQ ID NO: 3, and combinations of SEQ ID NO: 1 and SEQ ID NO: 4; Or by using a primer mixture consisting of a primer set combination consisting of SEQ ID NO: 5 and SEQ ID NO: 6 or SEQ ID NO: 7 and SEQ ID NO: 8 as a primer for primary PCR, and performing primary PCR using the genome DNA of the subject as a template Amplifying exon 4 and exon 5 sites of the KIR gene; (ii) 서열번호 9부터 서열번호 24까지의 프라이머로 이루어진 그룹에서 선택되는 어느 하나 이상의 프라이머를 2차 PCR용 프라이머로 사용하고, 상기 증폭된 PCR 산물을 주형으로 하여 2차 PCR을 수행하는 단계; 및(ii) using at least one primer selected from the group consisting of primers SEQ ID NO: 9 to SEQ ID NO: 24 as a primer for secondary PCR, and performing secondary PCR using the amplified PCR product as a template; And (iii) 상기 PCR 반응에 의하여 수득한 증폭 산물을 분석하여 KIR 유전자의 유전형을 동정하는 단계를 포함하는 KIR 유전자의 유전형 동정 방법.(iii) identifying the genotype of the KIR gene by analyzing the amplification products obtained by the PCR reaction. 제 1항에 있어서, 상기 (ii)의 2차 PCR을 수행하는 단계는 특정 KIR 타입에 특이적인 서열을 2차 PCR용 프라이머로 준비하여, 상기 프라이머 혼합물을 2차 PCR용 프라이머로 사용하고, 상기 증폭된 1차 PCR 산물을 주형으로 하고, 비오틴-dNTP를 이용하여 2차 PCR을 수행하여 유전자 증폭산물을 비오틴-dNTP로 표지하는 단계이고, 상기 (iii) 의 상기 PCR 반응에 의하여 수득한 증폭산물을 분석하는 단계는, 상기 표지된 유전자 증폭산물을 KIR 유전형 타입 각각에 특이적으로 결합하는 비드에 결합시키는 단계; 및 비드어레이 분석기를 이용하여 결과를 분석하는 단계를 포함하는 것을 특징으로 하는 KIR 유전자의 유전형 동정 방법.The method of claim 1, wherein performing the secondary PCR of (ii) comprises preparing a sequence specific to a specific KIR type as a primer for secondary PCR, using the primer mixture as a primer for secondary PCR, The amplified primary PCR product is a template, and the second PCR is performed using biotin-dNTP to label the gene amplification product with biotin-dNTP, and the amplification product obtained by the PCR reaction in the above (iii). Analyzing may include binding the labeled gene amplification products to beads specifically binding to each of the KIR genotypes; And analyzing the result using a bead array analyzer. 삭제delete 삭제delete 삭제delete
KR1020090053519A 2009-06-16 2009-06-16 KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification KR101150707B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090053519A KR101150707B1 (en) 2009-06-16 2009-06-16 KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090053519A KR101150707B1 (en) 2009-06-16 2009-06-16 KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020110083709A Division KR20110101114A (en) 2011-08-22 2011-08-22 Kir (killer cell immunoglobulin-like receptor) typing method using gspe(gene specific primer extension)

Publications (2)

Publication Number Publication Date
KR20100135067A KR20100135067A (en) 2010-12-24
KR101150707B1 true KR101150707B1 (en) 2012-06-08

Family

ID=43509685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090053519A KR101150707B1 (en) 2009-06-16 2009-06-16 KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification

Country Status (1)

Country Link
KR (1) KR101150707B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807387B (en) * 2022-05-11 2023-03-10 深圳市血液中心(深圳市输血医学研究所) KIR genotyping detection primer group and kit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hum. Mutat., Vol.17, No.4, pp.305-316(2001.04.)*
Tissue Antigens, Vol.69, Suppl.1, pp.92-95(2007.04.)*

Also Published As

Publication number Publication date
KR20100135067A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP4708029B2 (en) Nucleic acid amplification primers for PCR-based clonality studies
KR20070011354A (en) Detection of strp, such as fragile x syndrome
CN101878315A (en) Diagnosis kit and chip for bladder cancer using bladder cancer specific methylation marker gene
US9758834B2 (en) Compositions and methods for diagnosing cancer
KR102018122B1 (en) Biomarkers for Individual confirmation of Hanwoo Beef and uses thereof
KR101677517B1 (en) Novel SNP marker for discriminating level of meat quality and Black Coat Color of pig and use thereof
US9175339B2 (en) Method for detection of target nucleic acid
US20090087855A1 (en) Markers of alterations in the y chromosome and uses therefor
AU2008222563A1 (en) Assessment of risk for colorectal cancer
US20100086918A1 (en) Methods for High Sensitivity Detection of Genetic Polymorphisms
KR101890350B1 (en) SNP maker for predicting meat quality of pig and use thereof
KR20100105683A (en) A method of detecting cryptosporidium
KR102235340B1 (en) SNP marker set for predicting growth traits of Korean native chicken and uses thereof
KR101796158B1 (en) SNP markers of NAT9 gene for prediction of pigs litter size and methods for selection of fecund pigs using the same
KR101150707B1 (en) KIR (killer cell immunoglobulin-like receptor) typing method using TotalPlex PCR amplification
KR20200073407A (en) SNP Markers for discriminating quality of pig semen and their uses
US20070231803A1 (en) Multiplex pcr mixtures and kits containing the same
ES2445709T3 (en) Method for the identification by molecular techniques of genetic variants that do not encode D (D-) antigen and encode altered C (C + W) antigen
Boccoz et al. Development and validation of a fully automated platform for extended blood group genotyping
WO2012005393A1 (en) Natural killer cell receptor genotyping method using multiple gene amplification
KR20110101114A (en) Kir (killer cell immunoglobulin-like receptor) typing method using gspe(gene specific primer extension)
US20040209254A1 (en) Diagnostic polymorphisms for the tgf-beta1 promoter
Robbins et al. CD31/PECAM‐1 genotyping and haplotype analyses show population diversity
JPWO2014156513A1 (en) Mutation detection method
KR101532583B1 (en) Multiplex assay kit for analyzing personal genome SNP and method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170523

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180524

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190313

Year of fee payment: 8