KR101138866B1 - Genetic polymorphisms associated with myocardial infarction and uses thereof - Google Patents

Genetic polymorphisms associated with myocardial infarction and uses thereof Download PDF

Info

Publication number
KR101138866B1
KR101138866B1 KR1020050047195A KR20050047195A KR101138866B1 KR 101138866 B1 KR101138866 B1 KR 101138866B1 KR 1020050047195 A KR1020050047195 A KR 1020050047195A KR 20050047195 A KR20050047195 A KR 20050047195A KR 101138866 B1 KR101138866 B1 KR 101138866B1
Authority
KR
South Korea
Prior art keywords
dna
primer
polynucleotide
artificial sequence
allele
Prior art date
Application number
KR1020050047195A
Other languages
Korean (ko)
Other versions
KR20060125252A (en
Inventor
김병철
이연수
김민선
손옥경
이문수
김기은
송옥렬
전효정
박경희
안태진
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050047195A priority Critical patent/KR101138866B1/en
Priority to US11/430,939 priority patent/US20060257913A1/en
Priority to PCT/KR2006/001812 priority patent/WO2006121312A1/en
Priority to JP2008511059A priority patent/JP2008545377A/en
Priority to EP06768483.7A priority patent/EP1880026B1/en
Publication of KR20060125252A publication Critical patent/KR20060125252A/en
Application granted granted Critical
Publication of KR101138866B1 publication Critical patent/KR101138866B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 심근 경색에 관련된 유전자 다형성에 관한 것이다. 보다 상세하게, 본 발명은 심근 경색에 연관된 단일염기다형성을 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드, 그에 혼성화하는 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드, 상기 폴리펩티드에 결합하는 항체, 상기 폴리뉴클레오티드를 포함하는 마이크로어레이 및 키트, 심근 경색의 진단 방법, 단일염기다형성 검출 방법, 및 심근 경색 치료용 약제의 스크리닝 방법에 관한 것이다. The present invention relates to gene polymorphisms associated with myocardial infarction. More specifically, the present invention includes a polynucleotide comprising a single nucleotide polymorphism associated with myocardial infarction or a complementary polynucleotide thereof, a polynucleotide hybridizing thereto, a polypeptide encoded by the antibody, an antibody binding to the polypeptide, and the polynucleotide. The present invention relates to a microarray and a kit, a diagnostic method for myocardial infarction, a monobasic polymorphism detection method, and a method for screening a medicament for treating myocardial infarction.

Description

심근 경색에 관련된 유전자 다형성 및 그의 용도{Genetic polymorphisms associated with myocardial infarction and uses thereof} Genetic polymorphisms associated with myocardial infarction and uses according to myocardial infarction

본 발명은 심근 경색에 관련된 유전자 다형성 및 그의 용도에 관한 것이다. The present invention relates to gene polymorphisms associated with myocardial infarction and uses thereof.

인간 유전체 염기서열 중에 99.9%가 동일하다. 하지만, 인류 집단내에서 일부분 0.1%의 차이에 의해 개인간에 모습이나, 행동, 그리고 질환 감수성에 차이가 생기는 것이다. 즉, 3백만개 정도의 염기서열에서 서로 다른 것에 의해 개인간의 차이, 또는 일정 집단이나 인종, 민족간에 차이가 발생하게 된다. 인종간에 피부 색깔과 같은 표현형의 차이와 함께 질환 분포의 차이와 연관지을 수 있다. 30억개 인간 유전체 염기서열 중에서 대략 1.0kb마다 서로 다른 염기가 올 수 있다. 이는 총 3백만개가 되며, 이를 단일 염기 다형성(Single Nucleotide Polymorphism, SNP)이라고 부른다. 즉 전체 염기서열을 분석하지 않아도 다형성을 보이는 이들 3백만개 염기서열을 분석한다면, 개인간이나 집단간의 차이, 또는 질환군과 정상인의 차이를 알 수 있을 것이다. 99.9% of human genome sequences are identical. However, a partial 0.1% difference in the human population can lead to differences in appearance, behavior, and disease susceptibility among individuals. In other words, the differences between individuals, or between groups, races, and ethnic groups, may occur due to differences in about three million sequences. Differences in disease distribution can be associated with differences in phenotypes such as skin color among races. Of the 3 billion human genome sequences, approximately 1.0 kb may come from different bases. This totals 3 million and is called Single Nucleotide Polymorphism (SNP). In other words, if you analyze the 3 million nucleotide sequences showing polymorphism without analyzing the entire nucleotide sequence, you will find the difference between individuals or groups, or between the disease group and normal people.

유전학의 최고 목표는 인체 질환과 같은 표현형의 차이를 DNA 상의 차이와 연결하는 것이다. 이 목표 달성에 가장 좋은 도구는 모든 유전체에 존재하는 다형 성을 가진 마커(polymorphic marker)이다. 현재까지 개인을 구별하거나 유전질환 가계에서 관련 유전자 발굴에 주로 사용된 다양성 마커는 microsatellite marker였으나, DNA 칩이 개발된 이후 단일염기다형성에 관심이 모아지고 있다. 단일염기다형성은 그 빈도가 높고, 안정하며 유전체 전체에 골고루 잘 분포되어 있어 자동화로 대단위 발굴이 가능하다. SNP는 DNA 칩 기술, 초고속 염기서열 분석 기술 및 첨단의 생명공학 기술과 접목되어 개인의 질병 예측 및 의약품에 대한 개인 차이를 규명하여 치료에 혁명을 가져오는 등 21세기 예측의학이라는 새로운 분야로 나아가는데 기여할 것이다. The primary goal of genetics is to link differences in phenotypes such as human diseases with differences in DNA. The best tool to achieve this goal is a polymorphic marker that exists in all genomes. To date, the diversity marker used to distinguish individuals or to find related genes in genetically-differentiated families has been a microsatellite marker, but since the development of the DNA chip, interest in single nucleotide polymorphism has increased. Single nucleotide polymorphism is high in frequency, stable, and evenly distributed throughout the genome. SNP combines DNA chip technology, high-speed sequencing technology, and advanced biotechnology to advance into the new field of predictive medicine in the 21st century by identifying individual disease predictions and individual differences in medicine and revolutionizing treatment. Will contribute.

단일염기다형성은 인구집단내에서 일정한 빈도로 분포하는 유전형에 대한 분석이다. 따라서 유전형에 따라 인구집단을 구분할 수 있으며, 이 때 유전형에 따라 질환군이 유의하게 분포하게 되면, 해당 유전형과 질환을 연관지을 수 있다. 대부분의 단일염기다형성 연구의 경우 단일 유전형(single genotype) 또는 몇 개의 유전형이 질환군과 대조군에서 유의하게 다른 분포를 가지면, 어떤 유전형을 가지느냐에 따라 질환빈도에 차이가 나는 것을 분석할 수 있다. Monobasic polymorphism is an analysis of genotypes distributed at a constant frequency within a population. Therefore, the population can be classified according to genotype, and when the disease group is significantly distributed according to the genotype, the genotype and the disease can be related. For most monobasic polymorphism studies, if a single genotype or several genotypes have significantly different distributions in a disease group and a control group, it can be analyzed that the disease frequency varies depending on the genotype.

인간 유전체에 존재하는 3백여만개의 SNP 중에서 약 1/6에 해당하는 510,000여개의 변이는 유전자 내에 존재한다. 이들 유전자내의 변이는 유전자의 발현 양이나 단백질의 기능과 바로 직접 연결되기 때문에 그 분포를 아는 것이 매우 중요하다. 만일 질환과 관련되어 있다고 생각되는 유전형이 유전자의 발현이나 기능의 변이를 유발할 수 있다면, 그 유전자 또는 단백질은 질병의 원인 유전자일 가능성이 많다. 이 경우 해당 유전자는 질환 치료의 좋은 목표 유전자가 된다. 물론 해 당하는 단일염기다형성을 분석함으로써 질환감수성을 분석할 수도 있다.Of the more than 3 million SNPs in the human genome, about 1/6 of the 510,000 mutations are in the gene. It is very important to know their distribution because mutations in these genes are directly linked to the amount of gene expression or the function of the protein. If a genotype that is thought to be associated with a disease can cause a change in the expression or function of a gene, the gene or protein is likely the cause of the disease. In this case, the gene is a good target gene for disease treatment. Of course, disease susceptibility can also be analyzed by analyzing the corresponding monobasic polymorphism.

프로모터와 같은 전사조절부위 염기서열에 있는 SNP들은 발현되는 유전자의 양을 조절할 수 있다. 또한 아주 드물게 RNA 스플라이싱(splicing)에 영향을 주는 엑손-인트론 바운더리에 있는 염기서열들이나, 경우에 따라 3'-UTR에 분포하여 RNA 안정성이나 번역 효율에 영향을 주는 경우가 있다. 단일염기다형성이 인코딩 부위나 전사 및 번역 조절부위에 존재하여 직접 단백질에 영향을 주지 않는 경우에도 질환과 관련되어 있는 SNP를 발견할 수 있다. 즉, 질환 감수성을 결정할 수 있는 유용한 지표로 사용될 수 있다. 이 경우에는 아직 발견하지 못하였으나, 유전자 발현이나 단백질에 영향을 직접 줄 수 있거나, 그러한 염기서열부위와 연관되어 같이 유전되는 경우라고 할 수 있다.
해플로타입(haplotype)은 SNP에 비해 정보량이 많고 연관 비평형(linkage disequilibrium) 정보를 포함하고 있기 때문에 해플로타입에 의한 유전자 분석이 더욱 강력한 결과를 보인다. 특히 해당 유전자에 여러 개의 SNP가 밀집되어 있는 유전자의 경우 인접한 SNP들의 정보를 결합한 해플로타입을 이용한 유전자 분석이 유전자 기능과 질병과의 연관성을 밝히는데 효과적이다. 예컨대, FLAP(Five Lipo-oxygenase Activation Peptide)의 경우 SNP보다는 해플로타입이 심장 마비에 유전적 소인의 예후 판단에 더욱 강력한 마커로 밝혀져 이 유전자의 기능이 심장 마비에 중요한 요인으로 보고 되었다(Helgadotiir et al., Nat Genet. 2004 Mar; 36(3):233-9). 이를 토대로 추후 이 연구를 수행했던 deCode genetics사는 이 효소에 대한 저해제를 심장마비에 대한 신약으로 개발중인데 임상 2상을 진행중에 있다.
SNPs in a transcriptional regulatory sequence, such as a promoter, can regulate the amount of gene expressed. Very rarely, sequences in exon-intron boundaries that affect RNA splicing or, in some cases, 3'-UTR, affect RNA stability or translation efficiency. SNPs associated with disease can be found even when monobasic polymorphisms are present at the encoding site or transcriptional and translational regulatory sites and do not directly affect the protein. That is, it can be used as a useful index for determining disease susceptibility. In this case, it has not been found yet, but it may be directly affected by gene expression or protein, or it may be inherited in association with such a nucleotide sequence.
Haplotypes have more information than SNPs and contain linkage disequilibrium information, so genetic analysis by Haplotypes is more powerful. In particular, in the case of genes in which several SNPs are concentrated in the gene, genetic analysis using a haplotype combining information of adjacent SNPs is effective to reveal the association between gene function and disease. For example, in the case of Five Lipo-oxygenase Activation Peptides (FLAPs), haplotypes were found to be more potent markers for the prognosis of genetic predisposition to heart failure than SNPs. al., Nat Genet. 2004 Mar; 36 (3): 233-9). Based on these findings, deCode genetics, which conducted this study, is developing a new drug for heart attack, which is currently in Phase II clinical trials.

한편, 심혈관 질환은 전세계적으로 산업화된 국가들에서 주요 사망 원인이고, 우리나라에서도 1970년대부터 주요 사망 원인이 되고 있다. 통계청에 따르면, 2003년 한해 동안 우리나라 전체 사망자(24만 6천명)의 9.1%인 2만 2천명(10만명당 사망률 9087명)이 심장질환 및 고혈압으로 사망하여 암(1위) 및 뇌혈관 질환(2위)에 이어 사망원인 순위 3위를 기록하였다. On the other hand, cardiovascular disease is a leading cause of death in industrialized countries around the world, and has been a leading cause of death in Korea since the 1970s. According to the National Statistical Office, 22,000 people (9087 deaths per 100,000 people), 9.1% of all Korean deaths (246,000) during 2003, died of heart disease and hypertension, leading to cancer (first place) and cerebrovascular disease ( Second place) followed by third place of death cause.

심혈관 질환 중에 중요한 부분을 차지하는 관상동맥질환은 대개 동맥경화에 의해서 심장에 혈액을 공급하는 관상동맥이 막히거나, 좁아져서 발생한다. 동맥경화에 의해 관상동맥이 완전히 막히는 것을 심근경색, 좁아지는 것을 협심증이라고 한다. 관상동맥질환의 원인으로는 고지혈증(고콜레스테롤혈증), 고혈압, 흡연, 당뇨, 유전, 비만, 운동부족, 스트레스 및 여성의 폐경 등이 알려져 있다. 여러 가 지 위험 요인을 복합적으로 가질수록 병의 위험도 증가한다. Coronary artery disease, which is an important part of cardiovascular disease, is usually caused by blockage or narrowing of coronary arteries that supply blood to the heart by arteriosclerosis. The complete blockage of coronary arteries by atherosclerosis is called angina pectoris and narrowing. The causes of coronary artery disease are hyperlipidemia (hypercholesterolemia), hypertension, smoking, diabetes, heredity, obesity, lack of exercise, stress and menopause of women. The combination of risk factors increases the risk of illness.

종래 심혈관 질환, 특히 심근 경색을 비롯한 복잡한 질병을 진단 혹은 조기 예측하는데 가장 큰 문제점은 이들 질환은 어느 정도 진행되어야 물리적인 방법을 사용하여 진단해 낼 수 있다는 것이다. 현재 심혈관 질환의 경우 조영 장비를 이용하여 심장 내부 및 관상동맥을 X-선 및 초음파 촬영하여 진단을 하고 있지만, 이는 발병 후에야 진단이 가능하다. The biggest problem in the diagnosis or early prediction of conventional cardiovascular diseases, especially complex diseases including myocardial infarction, is that these diseases must be advanced to some extent to be diagnosed using physical methods. Currently, cardiovascular disease is diagnosed by X-ray and ultrasound imaging of the inside of the heart and coronary artery using an imaging device, but this can only be diagnosed after onset.

본 발명자들은 심근 경색과 관련된 SNP를 발굴하기 위하여 연구를 계속한 결과, 심근 경색의 발병 확률 및 유전적 감수성을 예측할 수 있는 심근 경색 관련 SNP를 확인함으로써 본 발명을 완성하였다. The present inventors continued the study to discover SNPs related to myocardial infarction, and thus, the present invention was completed by identifying SNPs related to myocardial infarction that can predict the incidence probability and genetic sensitivity of myocardial infarction.

본 발명의 목적은 심근 경색과 관련된 SNP를 제공하는 것이다. It is an object of the present invention to provide an SNP associated with myocardial infarction.

본 발명의 다른 목적은 상기 SNP를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드와 특이적으로 혼성화하는 폴리뉴클레오티드를 제공하는 것이다. Another object of the present invention is to provide a polynucleotide that specifically hybridizes with the polynucleotide comprising the SNP or its complementary polynucleotide.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드를 제공하는 것이다. Another object of the present invention is to provide a polypeptide encoded by the polynucleotide.

본 발명의 또 다른 목적은 상기 폴리펩티드에 특이적으로 결합하는 항체를 제공하는 것이다. Another object of the present invention is to provide an antibody that specifically binds to the polypeptide.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 단일염기다형성 검출용 마이크로어레이를 제공하는 것이다. Still another object of the present invention is to provide a microarray for detecting monobasic polymorphism comprising the polynucleotide.

본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 단일염기다형성 검출용 키트를 제공하는 것이다. Still another object of the present invention is to provide a kit for detecting monobasic polymorphism comprising the polynucleotide.

본 발명의 또 다른 목적은 심근 경색 발병의 변경된 위험도를 갖는 대상을 확인하는 방법을 제공하는 것이다. It is another object of the present invention to provide a method for identifying a subject having an altered risk of developing myocardial infarction.

본 발명의 또 다른 목적은 핵산 분자 내의 단일염기다형성(SNP)을 검출하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for detecting monobasic polymorphism (SNP) in a nucleic acid molecule.

본 발명의 또 다른 목적은 심근 경색 치료용 약제의 스크리닝 방법을 제공하는 것이다. Still another object of the present invention is to provide a method for screening a medicament for treating myocardial infarction.

본 발명의 또 다른 목적은 유전자 발현 조절 방법을 제공하는 것이다. Another object of the present invention is to provide a method for regulating gene expression.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드를 제공한다. In order to achieve the object of the present invention, the present invention is a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, a polynucleotide comprising 8 or more consecutive nucleotides each containing the 101 st base or a complementary poly Provide nucleotides.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드와 특이적으로 혼성화하는 폴리뉴클레오티드를 제공한다. In order to achieve another object of the present invention, the present invention provides a polynucleotide that specifically hybridizes with the polynucleotide or its complementary polynucleotide.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드를 제공한다. In order to achieve another object of the present invention, the present invention provides a polypeptide encoded by the polynucleotide.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리펩티드에 특이적으로 결합하는 항체를 제공한다. In order to achieve another object of the present invention, the present invention provides an antibody that specifically binds to the polypeptide.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 그의 cDNA를 포함하는 단일염기다형성 검출용 마이크로어레이를 제공한다. In order to achieve another object of the present invention, the present invention provides a microarray for detecting monobasic polymorphism comprising the polynucleotide, a polypeptide encoded by the same or cDNA thereof.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 그의 cDNA를 포함하는 단일염기다형성 검출용 키트를 제공한다. In order to achieve another object of the present invention, the present invention provides a kit for detecting monobasic polymorphism comprising the polynucleotide, a polypeptide encoded by the same or cDNA thereof.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 a) 진단 대상으로부터 핵산 시료를 분리하는 단계; 및 b) 서열번호 1 내지 60으로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드의 각 101번째 염기인 다형성 부위의 대립 유전자형을 결정하는 단계;를 포함하는 심근 경색 발병의 변경된 위험도를 갖는 대상을 확인하는 방법을 제공한다. In order to achieve another object of the present invention, the present invention comprises the steps of: a) separating the nucleic acid sample from the diagnostic subject; And b) determining an allele of the polymorphic site, each 101 base of one or more polynucleotides selected from the group consisting of SEQ ID NOs: 1 to 60; and a method having a changed risk of developing a myocardial infarction. To provide.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 a) 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드와 엄격한 혼성화 조건 하에서 특이적으로 혼성화하는 시약을 핵산 분자를 포함하는 시험 샘플과 접촉시키는 단계; 및 b) 혼성화된 이중 가닥의 형성을 검출하는 단계;를 포함하는 핵산 분자 내의 단일염기다형성(SNP)을 검출하는 방법을 제공한다. In order to achieve another object of the present invention, the present invention is a) a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, a polynucleoside comprising at least 8 contiguous nucleotides each comprising the 101 st base Contacting a test sample comprising nucleic acid molecules with a reagent that specifically hybridizes under stringent hybridization conditions with the teat or its complementary polynucleotides; And b) detecting the formation of hybridized double strands; and a single nucleotide polymorphism (SNP) within a nucleic acid molecule.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 a) 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드를 결합 복합체 형성의 적합한 조건 하에서 후보 물질과 접촉시키는 단계; 및 b) 상기 폴리펩티드 및 상기 후보 물질간의 결합 복합체의 형성을 검출하는 단계;를 포함하는 심근 경색 치료용 약제의 스크리닝 방법을 제공한다. In order to achieve another object of the present invention, the present invention is a) a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, a polynucleoside comprising at least 8 contiguous nucleotides each comprising the 101 st base Contacting the polypeptide encoded by the tit or its complementary polynucleotide with a candidate substance under suitable conditions of binding complex formation; And b) detecting the formation of a binding complex between the polypeptide and the candidate substance. It provides a method for screening a medicament for treating myocardial infarction.

본 발명의 또 다른 목적을 달성하기 위하여, 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드에 특이적인 안티센스 뉴클레오티드 또는 Si RNA를 상기 폴리뉴클레오티드와 결합시키는 단계를 포함하는 유전자 발현 조절 방법을 제공한다. In order to achieve another object of the present invention, in a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, a polynucleotide comprising 8 or more consecutive nucleotides each including the 101 st base, or a complement thereof It provides a method for regulating gene expression comprising binding an antisense nucleotide or Si RNA specific for a polynucleotide with the polynucleotide.

본 발명의 또 다른 목적을 달성하기 위하여, 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드에 특이적인 안티센스 뉴클레오티드 또는 Si RNA를 상기 폴리뉴클레오티드와 결합시키는 단계를 포함하는 유전자 발현 조절 방법을 제공한다. In order to achieve another object of the present invention, in a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, a polynucleotide comprising 8 or more consecutive nucleotides each including the 101 st base, or a complement thereof It provides a method for regulating gene expression comprising binding an antisense nucleotide or Si RNA specific for a polynucleotide with the polynucleotide.

이하 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일면은 심근 경색과 관련된 SNP에 관한 것이다. One aspect of the invention relates to SNPs associated with myocardial infarction.

본 발명에 따른 심근 경색 관련 SNP는 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드를 포함하는 것을 특징으로 한다. Myocardial infarction-related SNPs according to the present invention, in the polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, comprises a polynucleotide comprising 8 or more contiguous nucleotides comprising each 101th base or a complementary polynucleotide thereof Characterized in that.

상기 서열번호 1 내지 60의 폴리뉴클레오티드 서열을 포함하는 폴리뉴클레오티드는 다형성 서열이다. 다형성 서열(polymorphic sequence)이란 폴리뉴클레오티드 서열 중에 SNP를 나타내는 다형성 부위(polymorphic site)를 포함하는 서열을 말한다. 상기 폴리뉴클레오티드는 DNA 또는 RNA가 될 수 있다. The polynucleotide comprising the polynucleotide sequence of SEQ ID NOS: 1 to 60 is a polymorphic sequence. A polymorphic sequence refers to a sequence comprising a polymorphic site representing SNP in a polynucleotide sequence. The polynucleotide can be DNA or RNA.

본 발명에 있어서, SNP(단일 염기 다형성; single nucleotide polymorphism)는 개인과 개인간의 DNA에 존재하는 한 염기쌍(single base-pair variation)의 차이로 DNA 서열 다형성(polymorphism) 중에서 가장 많이 존재하는 형태(약 1개/1kb)를 말한다. In the present invention, SNP (single nucleotide polymorphism) is the most present form of DNA sequence polymorphism (polymorphism) due to the difference in single base-pair variation in the DNA between the individual and the individual (about 1 / 1kb).

본 발명의 일 실시예에서는 심혈관 질환, 특히 심근 경색과의 관련성이 매우 큰 SNP를 개발하기 위하여 일련의 선별 과정을 거쳤다. 즉, 심근 경색 환자들 및 정상인들의 혈액으로부터 DNA를 분리 및 증폭하고, 상기 DNA 중 SNP 부위의 서열을 분석한 다음, 심근 경색 환자들에서의 출현 빈도 및 정상인들 사이에서의 출현 빈도가 현저히 다른 SNP 및 그들의 유전자형을 확인하였다. 본 발명의 실시예에서 확인된 60개의 SNP 및 그들의 유전자형을 표 1 및 표 2에 나타내었다. In one embodiment of the present invention, a series of screening procedures were performed to develop SNPs that are highly related to cardiovascular disease, especially myocardial infarction. In other words, DNA is isolated and amplified from the blood of myocardial infarction patients and normal people, and the sequence of the SNP site in the DNA is analyzed. And their genotypes. The 60 SNPs and their genotypes identified in the examples of the present invention are shown in Tables 1 and 2.

<표 1>TABLE 1

서열번호SEQ ID NO: alias_idalias_id cas_numcas_num con_numcon_num 대립인자 AAllele A 대립인자 aAllele a cas_AAcas_AA cas_Aacas_Aa cas_aacas_aa con_AAcon_AA con_Aacon_Aa con_aacon_aa GTX p-valGTX p-val allele_ORallele_OR 1One MI_0042MI_0042 213213 184184 AA GG 22 4444 167167 1010 4949 125125 0.007770.00777 0.5500.550 22 MI_0050MI_0050 220220 190190 TT GG 88 5757 155155 22 3535 153153 0.03530.0353 1.741.74 33 MI_0056MI_0056 218218 185185 TT GG 77 5858 153153 1One 3131 153153 0.006690.00669 2.022.02 44 MI_0070MI_0070 220220 187187 AA GG 1010 5454 156156 99 6868 110110 0.03010.0301 0.6770.677 55 MI_0100MI_0100 216216 189189 CC TT 159159 5454 33 124124 5555 1010 0.03970.0397 1.531.53 66 MI_0127MI_0127 217217 190190 CC TT 127127 7979 1111 126126 6262 22 0.03470.0347 0.6930.693 77 MI_0159MI_0159 221221 191191 AA GG 22 3939 180180 22 1717 172172 0.02210.0221 1.851.85 88 MI_0177MI_0177 218218 190190 AA GG 00 1212 206206 00 2222 168168 0.03120.0312 0.4610.461 99 MI_0232MI_0232 215215 189189 CC TT 4343 109109 6363 5353 9898 3838 0.04500.0450 0.7080.708 1010 MI_0235MI_0235 216216 189189 AA GG 55 6363 148148 22 3333 154154 0.008650.00865 1.871.87 1111 MI_0292MI_0292 212212 189189 TT GG 1616 102102 9494 55 6464 120120 0.0002550.000255 1.901.90 1212 MI_0294MI_0294 221221 191191 AA GG 138138 7777 66 100100 7676 1515 0.020.02 1.521.52 1313 MI_0299MI_0299 220220 191191 AA GG 3636 110110 7474 6161 8585 4545 0.0006290.000629 0.5960.596 1414 MI_0354MI_0354 222222 190190 AA GG 9898 101101 2323 6262 9696 3232 0.0270.027 1.471.47 1515 MI_0370MI_0370 222222 191191 AA GG 4444 119119 5959 7373 8383 3535 0.0001550.000155 0.5840.584 1616 MI_0374MI_0374 219219 187187 AA GG 55 4848 166166 1One 2525 161161 0.0230.023 1.961.96 1717 MI_0393MI_0393 222222 189189 CC TT 5050 125125 4747 3131 8282 7676 0.0001510.000151 1.671.67 1818 MI_0433MI_0433 222222 191191 AA GG 6161 106106 5555 7272 8686 3333 0.04440.0444 0.6980.698 1919 MI_0464MI_0464 222222 189189 AA GG 2727 9595 100100 3131 9696 6262 0.03630.0363 0.7030.703 2020 MI_0493MI_0493 221221 191191 AA GG 8585 102102 3434 6161 8282 4848 0.04220.0422 1.401.40

<표 1(계속)>Table 1 (continued)

서열번호SEQ ID NO: allele_OR_LBallele_OR_LB allele_OR_UBallele_OR_UB con_HWX_p-valcon_HWX_p-val gene_namegene_name SNP_functionSNP_function AA_changeAA_change AA_positionAA_position 1One 0.3690.369 0.820.82 0.09180.0918 intergenicintergenic intergenicintergenic n/an / a n/an / a 22 1.151.15 2.642.64 1.001.00 LOC144678LOC144678 intronintron nullnull nullnull 33 1.301.30 3.133.13 0.6410.641 LOC144678LOC144678 mrna-utrmrna-utr nullnull nullnull 44 0.4790.479 0.9580.958 0.8100.810 FLJ11117FLJ11117 mrna-utrmrna-utr nullnull nullnull 55 1.061.06 2.232.23 0.2490.249 intergenicintergenic intergenicintergenic n/an / a n/an / a 66 0.490.49 0.980.98 0.04020.0402 intergenicintergenic intergenicintergenic n/an / a n/an / a 77 1.081.08 3.183.18 0.09880.0988 intergenicintergenic intergenicintergenic n/an / a n/an / a 88 0.2250.225 0.9440.944 0.4760.476 intergenicintergenic intergenicintergenic n/an / a n/an / a 99 0.5360.536 0.9340.934 0.6650.665 DUSP10DUSP10 locus-regionlocus-region nullnull nullnull 1010 1.231.23 2.862.86 0.3920.392 KIAA1573KIAA1573 mrna-utrmrna-utr nullnull nullnull 1111 1.371.37 2.632.63 0.2410.241 DSCR1DSCR1 intronintron nullnull nullnull 1212 1.101.10 2.102.10 1One intergenicintergenic intergenicintergenic n/an / a n/an / a 1313 0.4520.452 0.7860.786 0.1440.144 intergenicintergenic intergenicintergenic n/an / a n/an / a 1414 1.111.11 1.951.95 0.6620.662 KIAA1363KIAA1363 intronintron nullnull nullnull 1515 0.4420.442 0.770.77 0.1760.176 MANBAMANBA mrna-utrmrna-utr nullnull nullnull 1616 1.211.21 3.173.17 0.9840.984 PAPSS1PAPSS1 coding-synoncoding-synon KK 1212 1717 1.261.26 2.212.21 0.2810.281 MANBAMANBA intronintron nullnull nullnull 1818 0.5290.529 0.920.92 0.450.45 intergenicintergenic intergenicintergenic n/an / a n/an / a 1919 0.5290.529 0.9340.934 0.6560.656 intergenicintergenic intergenicintergenic n/an / a n/an / a 2020 1.061.06 1.841.84 0.05880.0588 FLJ40288FLJ40288 mrna-utrmrna-utr nullnull nullnull

<표 1(계속)>Table 1 (continued)

서열번호SEQ ID NO: alias_idalias_id cas_numcas_num con_numcon_num 대립인자 AAllele A 대립인자 aAllele a cas_AAcas_AA cas_Aacas_Aa cas_aacas_aa con_AAcon_AA con_Aacon_Aa con_aacon_aa GTX p-valGTX p-val allele_ORallele_OR 2121 MI_0495MI_0495 221221 191191 AA GG 136136 6868 1717 9090 8484 1717 0.0110.011 1.491.49 2222 MI_0507MI_0507 222222 191191 TT GG 88 6060 154154 88 7272 111111 0.04980.0498 0.690.69 2323 MI_0526MI_0526 221221 191191 CC AA 2323 9797 101101 3333 9191 6767 0.03750.0375 0.6850.685 2424 MI_0577MI_0577 215215 185185 AA GG 139139 6464 1212 134134 5050 1One 0.007820.00782 0.6360.636 2525 MI_0606MI_0606 222222 190190 CC GG 142142 6868 1212 136136 5353 1One 0.008090.00809 0.6470.647 2626 MI_0720MI_0720 221221 190190 AA GG 1212 7373 136136 2121 7373 9696 0.02990.0299 0.6480.648 2727 MI_1005MI_1005 221221 189189 CC AA 1616 6666 139139 1212 9292 8585 0.0004180.000418 0.6430.643 2828 MI_1022MI_1022 221221 190190 AA GG 55 6262 154154 22 3535 153153 0.03970.0397 1.71.7 2929 MI_1028MI_1028 220220 190190 TT GG 193193 2727 00 181181 99 00 0.008210.00821 0.3710.371 3030 MI_1029MI_1029 221221 190190 CC TT 4646 124124 5151 6060 9292 3838 0.04680.0468 0.7570.757 3131 MI_1036MI_1036 219219 191191 CC TT 1414 102102 103103 2929 9090 7272 0.008320.00832 0.6670.667 3232 MI_1039MI_1039 217217 189189 AA GG 154154 5959 44 159159 2727 33 0.004150.00415 0.5240.524 3333 MI_1051MI_1051 222222 191191 AA GG 131131 8585 66 9595 8080 1616 0.01720.0172 1.481.48 3434 MI_1065MI_1065 219219 189189 AA GG 1One 3636 182182 1One 5050 138138 0.01930.0193 0.5960.596 3535 MI_1070MI_1070 216216 185185 TT GG 2828 107107 8181 4141 9393 5151 0.01890.0189 0.6750.675 3636 MI_1071MI_1071 222222 190190 TT GG 22 3939 181181 44 5151 135135 0.03840.0384 0.5830.583 3737 MI_1076MI_1076 215215 190190 TT GG 9797 9696 2222 108108 7272 1010 0.03030.0303 0.6620.662 3838 MI_1096MI_1096 221221 191191 AA GG 00 66 215215 00 1515 176176 0.02350.0235 0.3370.337 3939 MI_1112MI_1112 222222 191191 AA GG 115115 9494 1313 123123 6262 66 0.02830.0283 0.6490.649 4040 MI_1130MI_1130 222222 190190 CC GG 155155 6464 33 150150 4040 00 0.03590.0359 0.6290.629

<표 1(계속)>Table 1 (continued)

서열번호SEQ ID NO: allele_OR_LBallele_OR_LB allele_OR_UBallele_OR_UB con_HWX_p-valcon_HWX_p-val gene_namegene_name SNP_functionSNP_function AA_changeAA_change AA_positionAA_position 2121 1.091.09 2.032.03 0.7410.741 intergenicintergenic intergenicintergenic n/an / a n/an / a 2222 0.490.49 0.9720.972 0.5370.537 GNA12GNA12 intronintron nullnull nullnull 2323 0.5150.515 0.9110.911 0.7750.775 intergenicintergenic intergenicintergenic n/an / a n/an / a 2424 0.4370.437 0.9250.925 0.1350.135 ALOX5APALOX5AP intronintron nullnull nullnull 2525 0.4490.449 0.9340.934 0.07950.0795 ALOX5APALOX5AP intronintron nullnull nullnull 2626 0.4730.473 0.8870.887 0.1650.165 LGALS2LGALS2 intronintron nullnull nullnull 2727 0.4700.470 0.880.88 0.05710.0571 intergenicintergenic intergenicintergenic n/an / a n/an / a 2828 1.121.12 2.582.58 1One ANK3ANK3 mrna-utrmrna-utr nullnull nullnull 2929 0.1720.172 0.7990.799 1One HIP1HIP1 intronintron nullnull nullnull 3030 0.5750.575 0.9970.997 0.7760.776 intergenicintergenic intergenicintergenic n/an / a n/an / a 3131 0.4990.499 0.8920.892 0.8830.883 intergenicintergenic intergenicintergenic n/an / a n/an / a 3232 0.3370.337 0.8150.815 0.150.15 intergenicintergenic intergenicintergenic n/an / a n/an / a 3333 1.081.08 2.032.03 0.8650.865 intergenicintergenic intergenicintergenic n/an / a n/an / a 3434 0.3820.382 0.9280.928 0.2120.212 intergenicintergenic intergenicintergenic n/an / a n/an / a 3535 0.5090.509 0.8950.895 1One THHTHH intronintron nullnull nullnull 3636 0.3840.384 0.8880.888 1One MAP2K4MAP2K4 intronintron nullnull nullnull 3737 0.4860.486 0.9020.902 0.6920.692 intergenicintergenic intergenicintergenic n/an / a n/an / a 3838 0.1290.129 0.8770.877 1One intergenicintergenic intergenicintergenic n/an / a n/an / a 3939 0.4670.467 0.9010.901 0.8150.815 RGS7RGS7 intronintron nullnull nullnull 4040 0.4150.415 0.9520.952 0.230.23 RBL2RBL2 mrna-utrmrna-utr nullnull nullnull

<표 1(계속)>Table 1 (continued)

서열번호SEQ ID NO: alias_idalias_id cas_numcas_num con_numcon_num 대립인자 AAllele A 대립인자 aAllele a cas_AAcas_AA cas_Aacas_Aa cas_aacas_aa con_AAcon_AA con_Aacon_Aa con_aacon_aa GTX p-valGTX p-val allele_ORallele_OR 4141 MI_1145MI_1145 221221 191191 AA GG 2323 9999 9999 3434 9393 6464 0.02170.0217 0.670.67 4242 MI_1169MI_1169 212212 186186 AA GG 33 3737 172172 00 1919 167167 0.02070.0207 2.102.10 4343 MI_1175MI_1175 222222 187187 AA GG 00 2626 196196 1One 3636 150150 0.03150.0315 0.550.55 4444 MI_1186MI_1186 219219 188188 AA GG 149149 6464 66 9797 7373 1818 0.0004350.000435 1.941.94 4545 MI_1206MI_1206 222222 190190 AA GG 8080 113113 2929 5757 9090 4343 0.0350.035 1.381.38 4646 MI_1209MI_1209 218218 190190 TT GG 1616 7777 125125 1616 8989 8585 0.03740.0374 0.7130.713 4747 MI_1221MI_1221 219219 190190 AA GG 22 4040 177177 00 1818 172172 0.009550.00955 2.252.25 4848 MI_1247MI_1247 215215 186186 CC TT 5454 101101 6060 6767 8585 3434 0.01930.0193 0.6610.661 4949 MI_1261MI_1261 222222 189189 CC TT 171171 5050 1One 165165 2222 22 0.005130.00513 0.5570.557 5050 MI_1264MI_1264 222222 190190 CC TT 1414 5555 153153 22 4646 142142 0.01820.0182 1.521.52 5151 MI_1272MI_1272 221221 188188 AA GG 2626 106106 8989 3838 9191 5959 0.03320.0332 0.6960.696 5252 MI_1273MI_1273 221221 188188 CC AA 188188 3030 33 136136 4545 77 0.005470.00547 2.102.10 5353 MI_1329MI_1329 220220 189189 CC GG 7171 115115 3434 9393 7474 2222 0.002550.00255 0.6370.637 5454 MI_1363MI_1363 221221 190190 TT AA 103103 102102 1616 6767 9797 2626 0.01990.0199 1.481.48 5555 MI_1377MI_1377 222222 190190 CC TT 8686 108108 2828 100100 7272 1818 0.01810.0181 0.6780.678 5656 MI_1503MI_1503 216216 187187 AA GG 00 3030 186186 22 4242 143143 0.01530.0153 0.5320.532

<표 1(계속)>Table 1 (continued)

서열번호SEQ ID NO: allele_OR_LBallele_OR_LB allele_OR_UBallele_OR_UB con_HWX_p-valcon_HWX_p-val gene_namegene_name SNP_functionSNP_function AA_changeAA_change AA_positionAA_position 4141 0.5040.504 0.890.89 1One intergenicintergenic intergenicintergenic n/an / a n/an / a 4242 1.201.20 3.673.67 1One SIPA1L1SIPA1L1 intronintron nullnull nullnull 4343 0.3270.327 0.9240.924 0.4130.413 intergenicintergenic intergenicintergenic n/an / a n/an / a 4444 1.391.39 2.712.71 0.380.38 intergenicintergenic intergenicintergenic n/an / a n/an / a 4545 1.041.04 1.821.82 0.4760.476 CSMD1CSMD1 intronintron nullnull nullnull 4646 0.5250.525 0.9690.969 0.3160.316 intergenicintergenic intergenicintergenic n/an / a n/an / a 4747 1.271.27 3.963.96 1One LOC387895LOC387895 intronintron nullnull nullnull 4848 0.4990.499 0.8740.874 0.4490.449 intergenicintergenic intergenicintergenic n/an / a n/an / a 4949 0.340.34 0.9110.911 0.2120.212 intergenicintergenic intergenicintergenic n/an / a n/an / a 5050 1.041.04 2.222.22 0.7460.746 MST1RMST1R coding-nonsynoncoding-nonsynon GG 13351335 5151 0.5250.525 0.9230.923 0.7690.769 SLC8A1SLC8A1 intronintron nullnull nullnull 5252 1.351.35 3.263.26 0.09190.0919 intergenicintergenic intergenicintergenic n/an / a n/an / a 5353 0.4780.478 0.8510.851 0.1680.168 NFKB1NFKB1 intronintron nullnull nullnull 5454 1.111.11 1.981.98 0.3610.361 intergenicintergenic intergenicintergenic n/an / a n/an / a 5555 0.5050.505 0.910.91 0.3690.369 NFKB1NFKB1 intronintron nullnull nullnull 5656 0.3280.328 0.8620.862 1One CYBACYBA coding-nonsynoncoding-nonsynon HH 7272

표 1과 2에서, 칼럼 '서열번호'는 본 명세서에 첨부된 각 SNP를 포함하는 폴리뉴클레오티드 서열의 번호를 의미한다. In Tables 1 and 2, the column 'SEQ ID NO' refers to the number of the polynucleotide sequence comprising each SNP attached to this specification.

칼럼 'alias_id'는 본 발명자들이 임의로 명명한 SNP의 번호를 의미한다. The column 'alias_id' means a number of SNPs named by the present inventors arbitrarily.

칼럼 'cas_num' 및 'con_num'은 각각 해당 SNP 부위를 갖는 환자군 및 정상 인군의 수를 나타낸다. The columns 'cas_num' and 'con_num' represent the number of patient groups and normal human groups each having a corresponding SNP site.

대립인자 A 및 대립인자 a는 시쿼넘(Sequenom)사의 균질적 MassEXTEND 기법에 의하여 서열분석을 하는 과정에서 질량이 작은 대립인자를 A 및 질량이 큰 대립인자를 a로 임의적으로 실험의 편의상 명명한 것이다.Allele A and allele a are randomly named alleles of small mass and alleles of a for convenience of experiments during sequencing by Sequenom's homogeneous MassEXTEND technique. .

칼럼 'cas_AA', 'cas_Aa' 및 'cas_aa'는 각각 AA, Aa 및 aa의 유전자형을 갖는 환자의 수를 나타내고, 칼럼 'con_AA', 'con_Aa' 및 'con_aa'는 각각 AA, Aa 및 aa의 유전자형을 갖는 정상인의 수를 나타낸다. Columns 'cas_AA', 'cas_Aa' and 'cas_aa' represent the number of patients with genotypes AA, Aa and aa, respectively, and columns 'con_AA', 'con_Aa' and 'con_aa' are genotypes of AA, Aa and aa, respectively The number of normal persons having

칼럼 'GTX_p-val'는 상기 유전자형에 대한 피셔의 정확성 검증(Fisher's exact test)의 결과인 p-value를 의미한다. p-value≤ 0.05인 경우 질병군과 정상군의 유전자형이 같지 않다 즉, 유의하다고 판단하였다. The column 'GTX_p-val' refers to a p-value that is the result of Fisher's exact test for the genotype. If p-value ≤ 0.05, the genotypes of the disease group and the normal group were not the same.

칼럼 'allele_OR'은 유전자형을 기준으로 정상인군 중에서 해당 SNP를 가질 확률에 대한 환자군 중에서 해당 SNP를 가질 확률인 오즈비(odds ratio)를 나타낸다. 칼럼 'allele_OR_LB' 및 'allele_OR_UB'는 각각 해당 오즈비가 어떤 구간에 존재할 확률에 대한 95% 신뢰구간의 하한 및 상한을 의미한다. 상기 오즈비가 1을 초과하는 경우 A가 심근 경색의 위험인자이고, 1 미만인 경우 a가 심근 경색의 위험인자이다. 또한, 신뢰구간이 1을 포함하는 경우에는 해당 유전자형이 조사된 실험군에서 질병과의 연관성이 유의하다고 판단할 수 없다. The column 'allele_OR' represents the odds ratio, which is the probability of having the SNP among the patient group with respect to the probability of having the SNP among the normal group based on the genotype. The columns 'allele_OR_LB' and 'allele_OR_UB' mean lower and upper bounds of the 95% confidence interval for the probability that the corresponding odds ratio exists in a certain interval. When the odds ratio is greater than 1, A is a risk factor of myocardial infarction, and if it is less than 1, a is a risk factor of myocardial infarction. In addition, when the confidence interval includes 1, the association with the disease in the experimental group irradiated with the genotype cannot be determined to be significant.

칼럼 'con_HWX_p-val'은 정상군에서 하아디-와인버그 평형 여부를 나타내는 것이다. 검정에서 p-value가 0.05 이하인 경우 하디-와인버그 평형(Hardy-Weinberg Equilibrium)으로 판단하였다.The column 'con_HWX_p-val' represents the Hardy-Wineberg equilibrium in the normal group. The p-value of 0.05 or less in the assay was determined by Hardy-Weinberg Equilibrium.

칼럼 'gene_name'은 해당 SNP가 속한 유전자의 명칭이다.The column 'gene_name' is the name of the gene to which the SNP belongs.

칼럼 'SNP_function'은 상기 유전자 내에서 상기 각 단일 SNP가 수행하는 역할을 의미한다. The column 'SNP_function' means the role played by each single SNP in the gene.

칼럼 'AA_change'는 SNP에 의한 아미노산이 변화 여부를 나타내는 것이다. Column 'AA_change' indicates whether the amino acid is changed by the SNP.

칼럼 'AA_position'는 SNP 부위에 의해 코딩되는 아미노산의 폴리펩티드 상 위치를 나타내는 것이다. Column 'AA_position' indicates the position on the polypeptide of the amino acid encoded by the SNP site.

<표 2> TABLE 2

서열번호SEQ ID NO: alias_idalias_id 대립인자 AAllele A 대립인자 aAllele a gene_namegene_name SNP_functionSNP_function AA_changeAA_change AA_positionAA_position cas_acas_a 5757 MI_1111MI_1111 AA GG polymerase iotapolymerase iota intronintron nullnull nullnull 0.2870.287 5858 MI_1248MI_1248 CC TT polymerase iotapolymerase iota exonexon Thr->AlaThr-> Ala 706706 0.7150.715 5959 MI_2143MI_2143 TT GG polymerase iotapolymerase iota intronintron nullnull nullnull 0.2850.285 6060 MI_2144MI_2144 TT GG polymerase iotapolymerase iota intronintron nullnull nullnull 0.3220.322

<표 2(계속)> Table 2 (continued)

서열번호SEQ ID NO: con_acon_a DeltaDelta chi_valuechi_value chi_exact_Pvaluechi_exact_Pvalue OROR OR_LBOR_LB OR_UBOR_UB con_HWcon_HW 5757 0.2150.215 0.0720.072 7.5617.561 0.02280.0228 1.471.47 1.1131.113 1.9371.937 HWEHWE 5858 0.7880.788 0.0750.075 8.0438.043 0.01790.0179 1.51.5 1.1311.131 1.9781.978 HWEHWE 5959 0.2170.217 0.0680.068 6.8296.829 0.03290.0329 1.491.49 1.0941.094 1.9041.904 HWEHWE 6060 0.2420.242 0.80.8 8.8168.816 0.01220.0122 1.491.49 1.1371.137 1.9491.949 HWEHWE

칼럼 'cas_a', 'con_a' 및 'Delta'는 각각 환자군에서의 a 대립인자의 빈도, 정상인군에서의 a 대립인자의 빈도 및 상기 cas_a와 con_a의 차이의 절대값을 나타내는 것이다. 여기서 cas_a는 환자군에서 (aa 유전자형의 빈도 × 2 + Aa 유전형의 빈도)/(질병군의 샘플 수 × 2)이고, con_a는 정상군에서 (aa 유전자형의 빈도 × 2 + Aa 유전자형의 빈도)/(정상군의 샘플 수 × 2)이다. The columns 'cas_a', 'con_a' and 'Delta' represent the frequency of the allele in the patient group, the frequency of the allele in the normal group, and the absolute value of the difference between the cas_a and con_a, respectively. Where cas_a is (frequency of aaa genotype × 2 + frequency of Aa genotype) / (number of samples in disease group × 2) in the patient group and con_a is (frequency of aaa genotype × 2 + frequency of Aa genotype) / (normal in normal group) Number of samples in the group x 2).

칼럼 'Chi-value'는 카이 스퀘어 검정의 결과 값으로 p-value 계산의 기준이 되는 값이다. 칼럼 'chi-exact-p-value'는 p-value of Fisher's exact test of chi-square test를 나타내는 것으로, 유전자형 수의 값이 5 보다 작은 값이 포함되는 경우 일반 카이제곱 검정 결과가 부정확할 수 있으므로, Fisher's exact test를 통해 보다 정확한 통계적 유의성 (p-value)을 검정하는데 사용되는 변수이다. p-value≤ 0.05인 경우 질병군과 정상군의 유전자형이 같지 않다 즉, 유의하다고 판단하였다. The column 'Chi-value' is the value of the chi-square test and is the value for the p-value calculation. The column 'chi-exact-p-value' represents the p-value of Fisher's exact test of chi-square test, and if the value of the genotype number contains a value less than 5, the general chi-square test results may be inaccurate. This is a variable used to test more accurate statistical significance (p-value) through Fisher's exact test. If p-value ≤ 0.05, the genotypes of the disease group and the normal group were not the same.

칼럼 'OR'은 질병군과 정상군에 대하여 특정 유전자형이 한 쪽에 특이적으로 많이 발견되는지를 알려주는 비로서 (특정 유전자형을 가진 질병군의 수)*(특정 유전자형을 가지지 않은 정상군의 수)/(특정 유전자형을 가지지 않은 질병군의 수)*(특정 유전자형을 가진 정상군의 수)를 계산 하여 얻는다. 칼럼 'OR_LB', 'OR_UB'는 유의 수준 5%에서의 OR의 신뢰구간의 최소값과 최대값을 각각 나타낸다.
표 3의 4개의 SNP는 모두 AGT 유전자 내에 위치한다.
The column 'OR' is a ratio that indicates whether a specific genotype is specifically detected on one side for a disease group and a normal group. It is obtained by calculating the number of disease groups without a specific genotype) * (the number of normal groups with a specific genotype). The columns 'OR_LB' and 'OR_UB' represent the minimum and maximum values of the confidence interval of OR at the significance level of 5%, respectively.
All four SNPs in Table 3 are located in the AGT gene.

또한, 본 발명은 특정 해플로타입(haplotype)을 포함한다. 즉, 본 발명에 따른 심근 경색 진단용 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에 있어서, 상기 폴리뉴클레오티드는 서열번호 57 내지 60으로 구성되는 것이 바람직하다. 서로에 대한 연관비평형(linkage disequlibrium; LD)을 표 3에 나타내었다. 표 3에 나타낸 바와 같이, 상기 4개의 SNP는 강한 LD 블락을 구성하였다. In addition, the present invention includes specific haplotypes. That is, in the myocardial infarction diagnostic polynucleotide or a complementary polynucleotide thereof, the polynucleotide is preferably composed of SEQ ID NOs: 57 to 60. Linkage disequlibrium (LD) relative to each other is shown in Table 3. As shown in Table 3, the four SNPs constituted a strong LD block.

<표 3>TABLE 3

MI_2144MI_2144 MI_1111MI_1111 MI_2143MI_2143 MI_1248MI_1248 MI_2144MI_2144 00 1One 1One 0.98980.9898 MI_1111MI_1111 1One 00 1One 0.99510.9951 MI_2143MI_2143 1One 1One 00 1One MI_1248MI_1248 0.98980.9898 0.99510.9951 1One 00

보다 바람직하게, 상기 해플로타입을 구성하는 서열번호 57 내지 60의 폴리뉴클레오티드 중 SNP 부위인 101번째 염기가 각각의 위험 대립인자일 수 있다. 즉, 하기 표 4의 해플로타입 번호 1 또는 2일 수 있다. More preferably, the 101 st base, which is the SNP region of the polynucleotides SEQ ID NOs: 57 to 60 constituting the haplotype, may be each risk allele. That is, it may be Haplotype No. 1 or 2 in Table 4.

<표 4>TABLE 4

해플로타입 번호Haplotype type number MI_2144MI_2144 MI_1111MI_1111 MI_2143MI_2143 MI_1248MI_1248 Hap.scoreHap.score p.valp.val Hap.Freq total_freqHap.Freq total_freq 1One 1One 1One 1One 22 -3.06506-3.06506 0.002180.00218 71.60%71.60% 22 22 22 22 1One 2.714132.71413 0.006640.00664 25.00%25.00% 33 22 1One 1One 22 0.736510.73651 0.461420.46142 3%3%

표 4에서, 각 SNP 칼럼의 번호 '1' 또는 '2'는 대립인자(allele)의 번호를 의미한다. 예를들어 칼럼1은 4개의 SNP으로 구성되는 haplotype이며 각 위치에 '1', '1', '1', '2'의 대립인자(allele)로 구성되는 haplotype이다. 칼럼'Hap.score'는 특정 haplotype이 정상군과 질병군을 얼마나 잘 구분해 주는지를 나타내 주는 척도이며, 칼럼 'p.val'의 값이 0.05 이하 일 때 유의하다고 판단한다. In Table 4, the number '1' or '2' of each SNP column means the number of alleles. For example, column 1 is a haplotype consisting of four SNPs and a haplotype consisting of alleles of '1', '1', '1', and '2' at each position. The column 'Hap.score' is a measure of how well a particular haplotype distinguishes between a normal group and a disease group, and is judged to be significant when the value of the column 'p.val' is 0.05 or less.

서열번호 57 내지 60의 SNP의 심근 경색과 관련된 습관적 또는 환경적 요인과의 연관성을 조사하였다. 그 결과를 표 5에 나타내었다. 표 5에 나타낸 바와 같이 남성 및 비흡연자의 경우에서 심근 경색 발병에 더 유의한 관계를 보였다. 이는 표 5에서 남성 및 비흡연자 경우, 오즈비가 증가한 것으로부터 알 수 있다. The association of habitual or environmental factors associated with myocardial infarction of the SNPs of SEQ ID NOS: 57-60 was investigated. The results are shown in Table 5. As shown in Table 5, the male and non-smokers showed a more significant relationship with the development of myocardial infarction. This can be seen from the increase in the odds ratio for male and non-smokers in Table 5.

<표 5>TABLE 5

groupgroup alias_idalias_id 서열번호SEQ ID NO: OROR OR_LBOR_LB OR_UBOR_UB Chi_squ_PvalueChi_squ_Pvalue 남성male MI_1111MI_1111 5757 1.38161.3816 1.00671.0067 1.89611.8961 0.09390.0939 MI_1248MI_1248 5858 1.43531.4353 1.04271.0427 1.97571.9757 0.06740.0674 MI_2143MI_2143 5959 1.35131.3513 0.980.98 1.85871.8587 0.1120.112 MI_2144MI_2144 6060 1.47051.4705 1.081.08 22 0.05470.0547 남성 흡연자Male smoker MI_1111MI_1111 5757 1.84721.8472 1.01381.0138 3.36573.3657 0.1610.161 MI_1248MI_1248 5858 1.87521.8752 1.0291.029 3.41733.4173 0.1660.166 MI_2143MI_2143 5959 1.81811.8181 1.0331.033 3.17463.1746 0.1220.122 MI_2144MI_2144 6060 1.85181.8518 1.01411.0141 3.35573.3557 0.1320.132 남성 비흡연자Male non-smoker MI_1111MI_1111 5757 2.28652.2865 1.20051.2005 4.35464.3546 0.02310.0231 MI_1248MI_1248 5858 2.39762.3976 1.24921.2492 4.60184.6018 0.0240.024 MI_2143MI_2143 5959 2.27272.2727 1.20041.2004 4.34784.3478 0.02420.0242 MI_2144MI_2144 6060 2.56412.5641 1.34581.3458 4.76194.7619 0.01070.0107

본 발명에 따른 SNP를 구성하는 각 단일 SNP의 폴리뉴클레오티드는 8개 이상의 연속 뉴클레오티드인 것이 바람직하고, 8 내지 70개의 연속 뉴클레오티드인 것이 보다 바람직하다. The polynucleotide of each single SNP constituting the SNP according to the present invention is preferably 8 or more contiguous nucleotides, more preferably 8 to 70 contiguous nucleotides.

본 발명의 다른 일면은 본 발명에 따른 서열번호 1 내지 60의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드와 특이적으로 혼성화하는 폴리뉴클레오티드에 관한 것이다. 상기 폴리뉴클레오티드는 대립인자 특이적이다. Another aspect of the present invention relates to a polynucleotide that specifically hybridizes with the polynucleotide of SEQ ID NOS: 1-60 or the complementary polynucleotide thereof according to the present invention. The polynucleotide is allele specific.

상기 폴리뉴클레오티드는 8개 이상의 연속 뉴클레오티드인 것이 바람직하고, 8 내지 70개의 연속 뉴클레오티드인 것이 보다 바람직하다. The polynucleotide is preferably 8 or more contiguous nucleotides, more preferably 8 to 70 contiguous nucleotides.

상기 대립인자 특이적(allele-specific) 폴리뉴클레오티드란 각 대립인자에 특이적으로 혼성화하는 것을 의미한다. 즉, 서열번호 1 내지 60의 각 다형성 서열 중의 다형성 부위의 염기를 특이적으로 구별할 수 있도록 혼성화하는 것을 말한다. 여기서, 혼성화란 엄격한 조건, 예를 들면 1M 이하의 염 농도 및 25 ℃ 이상의 온도하에서 보통 수행된다. 예를 들면, 5×SSPE(750 mM NaCl, 50 mM Na Phosphate, 5 mM EDTA, pH 7.4) 및 25~30℃의 조건이 대립인자 특이적 프로브 혼성화에 적합 할 수 있다. The allele-specific polynucleotide means to hybridize specifically to each allele. That is, it means hybridizing so that the base of the polymorphic site in each polymorphic sequence of SEQ ID NO: 1-60 can be distinguished specifically. Here, hybridization is usually carried out under stringent conditions, for example salt concentrations of 1 M or less and temperatures of 25 ° C. or higher. For example, conditions of 5 × SSPE (750 mM NaCl, 50 mM Na Phosphate, 5 mM EDTA, pH 7.4) and 25-30 ° C. may be suitable for allele specific probe hybridization.

본 발명에 있어서 상기 대립인자 특이적 폴리뉴클레오티드는 프라이머일 수 있다. 여기서 프라이머(primer)란 적절한 버퍼 중의 적절한 조건(예를 들면, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA, RNA 폴리머라제 또는 역전사 효소와 같은 중합제) 및 적당한 온도 하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고클레오티드를 말한다. 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 통상 15 내지 30 뉴클레오티드이다. 짧은 프라이머 분자는 일반적으로 주형과 안정한 혼성체를 형성하기 위해서는 더 낮은 온도를 필요로 한다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화할 정도로 충분히 상보적이어야 한다. 상기 프라이머는 그 3′말단이 서열번호 1 내지 60의 다형성 부위와 정렬하는 것이 바람직하다. 상기 프라이머는 다형성 부위를 포함하는 표적 DNA에 혼성화하고, 상기 프라이머가 완전한 상동성을 보이는 대립인자 형태의 증폭을 개시한다. 이 프라이머는 반대편에 혼성화하는 제2 프라이머와 쌍을 이루어 사용된다. 증폭에 의하여 두개의 프라이머로부터 산물이 증폭되고, 이는 특정 대립인자 형태가 존재한다는 것을 의미한다. 본 발명의 프라이머에는 리가제 연쇄 반응(ligase chain reaction : LCR)에서 사용되는 폴리뉴클레오티드 단편을 포함한다. 예컨대, 상기 프라이머는 표 6의 서열번호 87 내지 서열번호 344의 폴리뉴클레오티드일 수 있다. In the present invention, the allele specific polynucleotide may be a primer. Here primers are the starting point for template-directed DNA synthesis under appropriate conditions (e.g. four different nucleoside triphosphates and polymerizers such as DNA, RNA polymerase or reverse transcriptase) in appropriate buffers and at appropriate temperatures. Refers to single-stranded oligonucleotides that can act. The appropriate length of the primer may vary depending on the purpose of use, but is usually 15 to 30 nucleotides. Short primer molecules generally require lower temperatures to form stable hybrids with the template. The primer sequence need not be completely complementary to the template, but should be sufficiently complementary to hybridize with the template. Preferably, the primer 3 'end is aligned with the polymorphic site of SEQ ID NO: 1 to 60. The primer hybridizes to the target DNA comprising the polymorphic site and initiates amplification of allelic forms in which the primer exhibits complete homology. This primer is used in pairs with a second primer that hybridizes to the other side. By amplification the product is amplified from two primers, which means that a specific allele form is present. Primers of the invention include polynucleotide fragments used in a ligase chain reaction (LCR). For example, the primer may be a polynucleotide of SEQ ID NO: 87 to SEQ ID NO: 344 of Table 6.

본 발명에 있어서, 상기 대립인자 특이적 폴리뉴클레오티드는 프로브일 수 있다. 본 발명에서 프로브(probe)란 혼성화 프로브를 의미하는 것으로, 핵산의 상 보성 가닥에 서열 특이적으로 결합할 수 있는 올리고뉴클레오티드를 의미한다. 이러한 프로브에는 Nielsen 등, Science 254, 1497-1500 (1991)에 기재된 펩티드 핵산을 포함한다. 본 발명의 프로브는 대립인자 특이적 프로브로서, 같은 종의 두 구성원으로부터 유래한 핵산 단편 중에 다형성 부위가 존재하여, 한 구성원으로부터 유래한 DNA 단편에는 혼성화하나, 다른 구성원으로부터 유래한 단편에는 혼성화하지 않는다. 이 경우 혼성화 조건은 대립인자간의 혼성화 강도에 있어서 유의한 차이를 보여, 대립인자 중 하나에만 혼성화하도록 충분히 엄격해야 한다. 이러한 본 발명의 프로브는 중앙부위(즉, 15 개의 뉴클레오티드로 된 프로브이면 7번 위치가, 16 개의 뉴클레오티드로 된 프로브이면 8 또는 9번 위치)가 상기 서열의 다형성 부위와 정렬하는 것이 바람직하다. 이렇게 함으로써 다른 대립인자성 형태 간에 좋은 혼성화 차이를 유발할 수 있다. 본 발명의 상기 프로브는 대립인자을 검출하기 위한 진단 방법 등에 사용될 수 있다. 상기 진단 방법에는 서던 블롯팅 등과 같은 핵산의 혼성화에 근거한 검출방법들이 포함되며, 마이크로어레이를 이용한 방법에서 마이크로어레이의 기판에 미리 결합된 형태로 제공될 수도 있다. In the present invention, the allele specific polynucleotide may be a probe. Probe (probe) in the present invention means a hybridization probe, it means an oligonucleotide capable of sequence-specific binding to the complementary strand of the nucleic acid. Such probes include peptide nucleic acids described in Nielsen et al., Science 254, 1497-1500 (1991). Probes of the present invention are allele-specific probes in which polymorphic sites exist in nucleic acid fragments derived from two members of the same species, hybridizing to DNA fragments derived from one member, but not to fragments derived from other members. . In this case, the hybridization conditions show a significant difference in the hybridization strength between alleles, and should be severe enough to hybridize to only one of the alleles. In the probe of the present invention, the central region (that is, position 7 when the probe is 15 nucleotides and position 8 or 9 when the probe is 16 nucleotides) is preferably aligned with the polymorphic site of the sequence. This can lead to good hybridization differences between different allelic forms. The probe of the present invention can be used for diagnostic methods for detecting alleles. The diagnostic method includes detection methods based on hybridization of nucleic acids such as Southern blotting, or the like, and may be provided in a form that is pre-coupled to a substrate of the microarray in a method using a microarray.

본 발명의 다른 일면은 서열번호 1 내지 60의 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드에 관한 것이다. Another aspect of the invention relates to a polypeptide encoded by a polynucleotide of SEQ ID NOs: 1-60.

특히, 유전자 CYBA 내에 위치하는 MI_1503을 포함하는 서열번호 56의 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드는 해당 아미노산이 변한다. 또한, 유전자 MST1R 내에 위치하는 MI_1264을 포함하는 서열번호 50의 폴리뉴클레오티드 및 유전자 polymerase iota 내에 위치하는 MI_1248를 포함하는 서열번호 58의 폴리뉴 클레오티드에 의해 인코딩되는 폴리펩티드는 해당 아미노산이 변한다. 상기 3개의 아미노산 변화 위치는 각각 CYBA 단백질의 72번째 아미노산, MST1R 단백질의 1335번째 아미노산 및 polymerase iota 단백질의 706번째 아미노산이다. In particular, a polypeptide encoded by a polynucleotide of SEQ ID NO: 56 comprising MI_1503 located within the gene CYBA varies in its amino acid. In addition, the polypeptide encoded by the polynucleotide of SEQ ID NO: 50 including MI_1264 located in the gene MST1R and the polynucleotide of SEQ ID NO: 58 including MI_1248 located in the gene polymerase iota changes the corresponding amino acid. The three amino acid change positions are 72th amino acid of CYBA protein, 1335th amino acid of MST1R protein and 706th amino acid of polymerase iota protein, respectively.

본 발명의 다른 일면은 상기 폴리펩티드에 특이적으로 결합하는 항체에 관한 것이다. 상기 항체는 모노클로날 항체인 것이 바람직하다. Another aspect of the invention relates to an antibody that specifically binds to the polypeptide. It is preferable that the said antibody is a monoclonal antibody.

본 발명의 다른 일면은 본 발명에 따른 서열번호 1 내지 60의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드 또는 그들과 혼성화하는 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 그의 cDNA를 포함하는 마이크로어레이에 관한 것이다. Another aspect of the invention relates to a microarray comprising a polynucleotide of SEQ ID NOs: 1 to 60 according to the invention or a complementary polynucleotide thereof or a polynucleotide hybridizing with them, a polypeptide encoded by it or a cDNA thereof.

본 발명에 따른 마이크로어레이는 본 발명에 따른 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드를 프로브 또는 그들과 혼성화하는 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 그의 cDNA를 이용하여 본 분야의 당업자에게 알려져 있는 통상적인 방법에 의해 제조될 수 있다. Microarrays according to the present invention are conventional methods known to those skilled in the art using polynucleotides according to the present invention or polynucleotides which hybridize with a probe or their complementary polynucleotides, polypeptides encoded by them or cDNAs thereof. It can be prepared by.

예컨대, 상기 폴리뉴클레오티드는 아미노-실란(amino-silane), 폴리-L-라이신(poly-L-lysine) 및 알데히드(aldehyde)로 이루어진 군에서 선택되는 활성기가 코팅된 기판 상에 고정될 수 있다. 또한, 상기 기판은 실리콘 웨이퍼, 유리, 석영, 금속 및 플라스틱으로 이루어진 군에서 선택될 수 있다. 상기 폴리뉴클레오티드를 기판에 고정화시키는 방법으로는 파이조일렉트릭(piezoelectric) 방식을 이용한 마이크로피펫팅(micropipetting) 법, 핀(pin) 형태의 스폿터(spotter)를 이용한 방법 등을 사용할 수 있다. For example, the polynucleotide may be immobilized on a substrate coated with an active group selected from the group consisting of amino-silane, poly-L-lysine, and aldehyde. In addition, the substrate may be selected from the group consisting of silicon wafer, glass, quartz, metal and plastic. As a method of immobilizing the polynucleotide on a substrate, a micropipetting method using a piezoelectric method, a method using a pin type spotter, or the like can be used.

본 발명의 또 다른 일면은 본 발명에 따른 서열번호 1 내지 60의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드 또는 그들과 혼성화하는 폴리뉴클레오티드, 그에 의해 인코딩되는 폴리펩티드 또는 그의 cDNA를 포함하는 키트에 관한 것이다. Another aspect of the present invention relates to a kit comprising a polynucleotide of SEQ ID NOs: 1 to 60 according to the present invention or a complementary polynucleotide thereof or a polynucleotide hybridizing thereto, a polypeptide encoded by the same, or a cDNA thereof.

본 발명에 따른 키트는 본 발명에 따른 폴리뉴클레오티드 이외에 진단 대상로부터 해당 SNP를 포함하는 DNA를 분리 및 증폭하는데 사용되는 프라이머 세트를 추가로 포함할 수 있다. 상기 적절한 프라이머 세트는 본 발명의 서열을 참조하여 당업자는 용이하게 설계할 수 있을 것이다. 예컨대, 상기 프라이머 세트로서 표 6에 도시된 것을 이용할 수 있다. 또한, 본 발명에 따른 키트는 중합 반응에 필요한 시약, 예컨대 dNTP, 각 종의 중합효소 및 발색제 등을 추가로 포함할 수 있다. The kit according to the present invention may further comprise a primer set used to separate and amplify DNA containing the SNP from the diagnostic subject in addition to the polynucleotide according to the present invention. Such suitable primer sets will be readily apparent to those skilled in the art with reference to the sequences of the present invention. For example, those shown in Table 6 may be used as the primer set. In addition, the kit according to the present invention may further include reagents required for the polymerization reaction, such as dNTP, polymerases and coloring agents of various species.

본 발명의 또 다른 일면은 본 발명에 따른 SNP를 이용하여 심근 경색 발병의 변경된 위험도를 갖는 대상을 확인하는 방법에 관한 것이다. Another aspect of the present invention relates to a method for identifying a subject having an altered risk of developing myocardial infarction using the SNP according to the present invention.

상기 본 발명에 따른 심근 경색의 진단 방법은 a) 진단 대상으로부터 핵산 시료를 분리하는 단계; 및 b) 서열번호 1 내지 60으로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드의 각 101번째 염기인 다형성 부위의 대립 유전자형을 결정하는 단계;를 포함한다. The diagnostic method of myocardial infarction according to the present invention comprises the steps of: a) separating the nucleic acid sample from the diagnostic object; And b) determining an allele of the polymorphic site, each 101 base of one or more polynucleotides selected from the group consisting of SEQ ID NOs: 1-60.

본 발명의 방법에 있어서, 진단 대상로부터 DNA를 분리하는 방법은 당업계에 알려진 방법을 통하여 이루어질 수 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 정제하거나 PCR과 같은 증폭 방법을 사용하여 특정한 영역을 특이적으로 증폭하고 이를 분리함으로써 이루어질 수 있다. 본 발명에 있어서, DNA란 DNA 뿐만 아니라 mRNA로부터 합성되는 cDNA도 포함하는 의미이다. 진단 대상로부터 핵산을 얻는 단계는 예를 들면, PCR 증폭법, 리가제 연쇄 반응(LCR)(Wu 및 Wallace, Genomics 4, 560(1989), Landegren 등, Science 241, 1077(1988)), 전사증폭(transcription amplification) (Kwoh 등, Proc. Natl. Acad. Sci. USA 86, 1173(1989)) 및 자가유지 서열 복제 (Guatelli 등, Proc. Natl. Acad. Sci. USA 87, 1874(1990)) 및 핵산에 근거한 서열 증폭 (NASBA)이 사용될 수 있다.In the method of the present invention, the method of separating DNA from a diagnosis subject can be made through a method known in the art. For example, it can be done by directly purifying DNA from tissue or cells or by specifically amplifying and isolating specific regions using amplification methods such as PCR. In the present invention, DNA is meant to include not only DNA but also cDNA synthesized from mRNA. The step of obtaining nucleic acid from the diagnostic target is, for example, PCR amplification, ligase chain reaction (LCR) (Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)), transcription amplification transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)) and self-sustaining sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA 87, 1874 (1990)) and Nucleic acid based sequence amplification (NASBA) can be used.

분리된 DNA의 염기서열의 결정은 당업계에 알려진 다양한 방법에 의하여 이루어질 수 있다. 예를 들면, 디데옥시 법에 의하여 직접적인 핵산의 뉴클레오티드 서열의 결정을 통하여 이루어지거나 SNP 부위의 서열을 포함하는 프로브 또는 그에 상보적인 프로브를 상기 DNA와 혼성화시키고 그로부터 얻어지는 혼성화 정도를 측정함으로써 다형성 부위의 뉴클레오티드 서열을 결정하는 방법 등이 이용될 수 있다. 혼성화의 정도는 예를 들면, 검출가능한 표지를 표적 DNA에 표지하여, 혼성화된 표적 DNA 만을 특이적으로 검출함으로써 이루어질 수 있으나, 그외 전기적 신호 검출방법 등이 사용될 수 있다. Determination of the nucleotide sequence of the isolated DNA can be made by various methods known in the art. For example, a nucleotide of a polymorphic site is determined by the dideoxy method by hybridizing the probe or complementary probes comprising the sequence of the SNP site or through the determination of the nucleotide sequence of the nucleic acid with the DNA and measuring the degree of hybridization obtained therefrom. Methods for determining sequences may be used. The degree of hybridization may be achieved by, for example, labeling a detectable label on the target DNA to specifically detect only the hybridized target DNA, but other electrical signal detection methods may be used.

구체적으로, 대립인자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립인자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법(oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택 되는 방법에 의해 수행될 수 있다. Specifically, allele-specific probe hybridization, allele-specific amplification, sequencing, 5 'nuclease digestion, In the method selected from the group consisting of molecular beacon assay, oligonucleotide ligation assay, size analysis and single-stranded conformation polymorphism. Can be performed by

본 발명에 따른 심근 경색을 진단하는 방법은 c) 상기 서열번호 1 내지 60으로 구성된 군에서 선택되는 하나 이상의 폴리뉴클레오티드의 다형성 부위의 대립 유전자형이 위험 대립인자를 포함하는 경우, 상기 대상을 심근 경색 발병의 증가된 위험도를 갖는 것으로 판정하는 단계를 추가적으로 포함할 수 있다. The method for diagnosing myocardial infarction according to the present invention c) if the allele of the polymorphic site of one or more polynucleotides selected from the group consisting of SEQ ID NOs: 1 to 60 includes a risk allele, the subject develops myocardial infarction The method may further include determining that the increased risk of P is.

본 발명에 있어서, 위험 대립인자(risk allele)는 기준 대립인자를 A로 하여 질병군에서의 A의 빈도가 정상군에서의 A의 빈도 보다 큰 경우에는 A를 위험 대립인자로 하고, 그 반대의 경우에는 a를 위험 대립인자로 하였다. 위험 대립인자를 많이 가질수록 심근 경색 발병 가능성이 높음을 의미한다.In the present invention, the risk allele is A when the frequency of A in the disease group is greater than the frequency of A in the normal group, with the reference allele as A, and vice versa. Has a as the risk allele. The more risk alleles, the greater the likelihood of developing myocardial infarction.

본 발명에 따른 심근 경색을 진단하는 방법에 있어서, 상기 변경된 위험도는 증가된 위험도 또는 감소된 위험도일 수 있다. 어느 한 SNP의 대립유전자형의 빈도가 질병군에서보다 정상군에서 큰 경우 상기 변경된 위험도는 감소된 위험도일 수 있고, 다른 한 SNP의 대립유전자형의 빈도가 정산군에서보다 질병군에서 큰 경우 상기 변경된 위험도는 증가된 위험도일 수 있다. In the method for diagnosing myocardial infarction according to the present invention, the altered risk may be increased risk or reduced risk. The altered risk may be a reduced risk if the frequency of the allele of one SNP is greater in the normal group than in the disease group, and the altered risk is increased if the frequency of the allele of one SNP is greater in the disease group than in the settlement group. May be a risk.

본 발명에 따른 심근 경색을 진단하는 방법에 있어서, 상기 진단 대상의 유형이 남성 및 비흡연자이고, 상기 대상에 대해 다형성 부위의 대립 유전자형을 결정하는 폴리뉴클레오티드가 서열번호 57 내지 60으로 구성된 군에서 선택되는 것이 바람직하다. In the method for diagnosing myocardial infarction according to the present invention, the type of the diagnosis target is male and non-smoker, and the polynucleotide for determining the allele of the polymorphic site for the subject is selected from the group consisting of SEQ ID NOs: 57 to 60 It is preferable to be.

또한, 본 발명에 따른 심근 경색을 진단하는 방법에 있어서, 본 발명에 따른 해플로타입을 이용하는 것이 바람직하다. 즉, 상기 폴리뉴클레오티드가 서열번호 57 내지 60으로 구성된 것이 바람직하다. In addition, in the method for diagnosing myocardial infarction according to the present invention, it is preferable to use the haplotype according to the present invention. That is, the polynucleotide is preferably composed of SEQ ID NO: 57 to 60.

본 발명의 다른 일면은 a) 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드와 엄격한 혼성화 조건 하에서 특이적으로 혼성화하는 시약을 핵산 분자를 포함하는 시험 샘플과 접촉시키는 단계; 및 b) 혼성화된 이중 가닥의 형성을 검출하는 단계;를 포함하는 핵산 분자 내의 단일염기다형성(SNP)을 검출하는 방법에 관한 것이다. Another aspect of the present invention is a) a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, comprising a polynucleotide comprising 8 or more consecutive nucleotides comprising each 101th base or a complementary polynucleotide thereof; Contacting a reagent that specifically hybridizes under stringent hybridization conditions with a test sample comprising nucleic acid molecules; And b) detecting the formation of hybridized double strands; and a method for detecting a single nucleotide polymorphism (SNP) in a nucleic acid molecule.

상기 b) 단계는 대립인자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립인자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법(oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행될 수 있다.Step b) includes allele-specific probe hybridization, allele-specific amplification, sequencing, 5 'nuclease digestion. ), Molecular beacon assay, oligonucleotide ligation assay, size analysis, and single-stranded conformation polymorphism. It may be carried out by the method.

본 발명의 다른 일면은 a) 서열번호 1 내지 60으로 구성된 군에서 선택되는 폴리뉴클레오티드에 있어서, 각 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티트 또는 그의 상보적 폴리뉴클레오티드에 의해 인코딩되는 폴리펩티드를 결합 복합체 형성의 적합한 조건 하에서 후보 물질과 접촉시키는 단계; 및 b) 상기 폴리펩티드 및 상기 후보 물질간의 결합 복합체의 형성을 검출하는 단계;를 포함하는 심근 경색 치료용 약제의 스크리닝 방법에 관한 것 이다. Another aspect of the invention is a) a polynucleotide selected from the group consisting of SEQ ID NOs: 1 to 60, comprising a polynucleotide comprising 8 or more consecutive nucleotides comprising each 101th base or a complementary polynucleotide thereof Contacting the polypeptide encoded by the candidate substance under suitable conditions of binding complex formation; And b) detecting the formation of the binding complex between the polypeptide and the candidate substance.

상기 b) 단계는 면역침전법(coimmunoprecipitation), 방사능면역분석법(RIA), 효소면역분석법(ELISA), 면역조직화학, 웨스턴 블롯(Western Blotting) 또는 유세포 분석법(FACS)으로 수행될 수 있다.Step b) may be performed by immunoprecipitation, radioimmunoassay (RIA), enzyme immunoassay (ELISA), immunohistochemistry, Western blotting or flow cytometry (FACS).

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실시예 1Example 1

본 발명에 따른 SNP의 선별Screening of SNPs According to the Invention

본 실시예에서는 한국인 중 심혈관 질환 환자로 판명되어 치료 중인 환자군과 아직 심혈관 질환 증상이 없는 정상인의 혈액으로부터 DNA를 분리하고, 특정한 SNP의 출현 빈도를 분석하였다. 본 실시예에 선택된 SNP는 공개된 데이터베이스(NCBI dbSNP:http://www.ncbi.nlm.nih.gov/SNP/) 또는 Sequenom 사의 realsnp.com (http:://www.realsnp.com/)으로부터 선택하였으며, 선택된 SNP 주변의 서열을 이용한 프라이머를 이용하여 시료 중의 SNP 서열을 분석하였다. In this example, DNA was isolated from blood of a Korean patient who was found to be a cardiovascular disease patient and a normal patient without cardiovascular disease symptoms, and the frequency of occurrence of a specific SNP was analyzed. The SNPs selected in this example are published databases (NCBI dbSNP: http://www.ncbi.nlm.nih.gov/SNP/) or realsnp.com (http: //: //www.realsnp.com/) of Sequenom. SNP sequences in the samples were analyzed using primers using sequences around the selected SNP.

1-1. DNA 시료의 준비1-1. Preparation of DNA Samples

심근경색 환자로 판명되어 치료 중인 한국인 남성 환자군(221 명)과 아직 심근경색 증상이 없는 한국인 남성 정상인(192 명)의 혈액으로부터 DNA를 추출하였다. 염색체 DNA 추출은 공지의 추출 방법(Molecular cloning : A Laboratory Manual, p 392, Sambrook, Fritsch and Maniatis, 2nd edition, Cold Spring Harbor Press, 1989)과 상업용 키트(Gentra system, D-50K)의 설명서에 따라 이루어졌다. 추출된 DNA 중 순도 기준이 UV 측정비율(260/280nm)로 최소 1.7 이상 되는 것만을 선별하여 사용하였다. DNA was extracted from the blood of Korean male patients (221 patients) who were identified as being treated with myocardial infarction (221) and normal Korean males who had no symptoms of myocardial infarction (192). Chromosome DNA extraction was performed according to known extraction methods (Molecular cloning: A Laboratory Manual, p 392, Sambrook, Fritsch and Maniatis, 2nd edition, Cold Spring Harbor Press, 1989) and the instructions of the commercial kit (Gentra system, D-50K). Was done. Among the extracted DNA, the purity standard was selected and used only at least 1.7 in the UV measurement ratio (260 / 280nm).

1-2. 표적 DNA의 증폭1-2. Amplification of Target DNA

분석하고자 하는 SNP가 포함된 일정한 DNA 영역인 표적 DNA를 PCR을 이용하여 증폭하였다. PCR 방법은 통상적인 방법으로 진행하였으며, 그 조건은 다음과 같았다. 먼저, 표적 게놈 DNA를 2.5 ng/ml로 준비하였다. 다음으로 다음의 PCR 반응액을 준비하였다. Target DNA, which is a constant DNA region containing the SNP to be analyzed, was amplified by PCR. PCR method proceeded in a conventional manner, the conditions were as follows. First, target genomic DNA was prepared at 2.5 ng / ml. Next, the following PCR reaction solution was prepared.

물(HPLC 급) 3.14㎕3.14 µl of water (HPLC grade)

10x 버퍼 0.5㎕0.5 μl 10x buffer

MgCl2 25 mM 0.2㎕0.2 μl MgCl 2 25 mM

dNTP 믹스(GIBCO)(25 mM/각) 0.04㎕0.04 μl dNTP Mix (GIBCO) (25 mM / each)

Taq pol(HotStart)(5U/㎕) 0.02㎕Taq pol (HotStart) (5U / μl) 0.02μl

전위/후위 프라이머 믹스 (10μM) 0.1㎕0.1 μl transposition / back end primer mix (10 μM)

DNA 1.00㎕1.00 μl DNA

총 반응 부피 5.00㎕5.00 μl total reaction volume

여기서, 상기 전위(forward) 및 후위(reverse) 프라이머는 SNP의 상류와 하류로부터, 적당한 위치에서 선택하였다. 상기 프라이머 세트를 표 6에 정리하였다. Here, the forward and reverse primers were selected at appropriate positions from upstream and downstream of the SNP. The primer sets are summarized in Table 6.

PCR의 열 순환은, 95℃에서 15분 동안 유지하고, 95℃에서 30초, 56℃에서 30초, 72℃에서 1분을 45회 반복하고, 72℃에서 3분 동안 유지한 후, 4℃에 보관하였다. 그 결과, 200개 뉴클레오티드 이하의 길이를 가진 표적 DNA 단편을 얻었다. Thermal cycling of PCR was maintained at 95 ° C. for 15 minutes, repeated 45 seconds at 95 ° C., 30 seconds at 56 ° C., 1 minute at 72 ° C., and held at 72 ° C. for 3 minutes, followed by 4 ° C. Stored in. As a result, a target DNA fragment having a length of 200 nucleotides or less was obtained.

1-3. 증폭된 표적 DNA 중의 SNP 부위 서열의 분석1-3. Analysis of SNP Site Sequences in Amplified Target DNA

표적 DNA 단편 중의 SNP의 분석은 시쿼넘 (Sequenom)사의 균질적 MassEXTEND (homogeneous Mass Extend: 이하 hME라고도 한다) 기법을 이용하였다. 상기 MassEXTEND 기법의 원리는 다음과 같다. 먼저, 표적 DNA 단편 중의 SNP 바로 전까지의 염기에 상보적인 프라이머(연장용 프라이머(extension primer)라고도 한다.)를 제작한다. 다음으로, 상기 프라이머를 표적 DNA 단편에 혼성화시키고, DNA 중합 반응을 일으킨다. 이 때, 반응액 중에 대상 SNP 대립인자 중 제1 대립인자 염기(예를 들면, A 대립인자)에 상보적인 염기가 첨가된 후 반응이 멈추도록 하는 시약(Termination mix; 예를 들면, ddTTP)을 포함시킨다. 그 결과, 표적 DNA 단편에 제1 대립인자(예를 들면, A 대립인자)가 존재하는 경우에는, 상기 제1 대립인자에 상보적인 염기(예를 들면, T) 하나만이 첨가된 산물이 얻어진다. 반면, 표적 DNA 단편에 제2 대립인자(예를 들면, G 대립인자)가 존재하는 경우에는, 상기 제2 대립인자에 상보적인 염기(예를 들면, C)가 첨가된 가장 근접한 제1 대립인자 염기 (예를 들면, A)까지 연장된 산물을 얻게 된다. 이렇게 얻어진 상기 프라이머로부터 연장된 산물의 길이를 질량 분석을 통하여 결정함으로써, 표적 DNA에 존재하는 대립인자의 종류를 결정할 수 있다. 구체적인 실험조건은 다음과 같았다. The analysis of SNPs in the target DNA fragments was carried out using a homogeneous Mass Extend (hME) technique from Sequenom. The principle of the MassEXTEND technique is as follows. First, a primer (also called extension primer) complementary to the base immediately before the SNP in the target DNA fragment is prepared. Next, the primer is hybridized to the target DNA fragment, and a DNA polymerization reaction is caused. At this time, a reagent (Termination mix; for example, ddTTP) to stop the reaction after the base complementary to the first allele base (for example, A allele) among the target SNP alleles is added to the reaction solution. Include it. As a result, when a first allele (eg, A allele) is present in the target DNA fragment, a product is obtained in which only one base (eg, T) complementary to the first allele is added. . On the other hand, if a second allele (eg, G allele) is present in the target DNA fragment, the closest first allele added with a base (eg, C) complementary to the second allele A product extending to the base (eg A) is obtained. By determining the length of the product extended from the primer thus obtained by mass spectrometry, it is possible to determine the type of allele present in the target DNA. Specific experimental conditions were as follows.

먼저, 상기 PCR 산물로부터 결합되지 않는 dNTP를 제거하였다. 이를 위하여 순수 1.53㎕, hME 버퍼 0.17㎕, SAP(shrimp alkaline phosphatase) 0.30㎕를 1.5 ml 튜브에 넣고 혼합하여 SAP 효소 용액을 준비하였다. 상기 튜브를 5,000 rpm에서 10초 동안 원심분리하였다. 그 후, PCR(Polymerase Chain Reaction) 산물을 상기 SAP 용액 튜브에 넣고, 밀봉한 다음 37 ℃에서 20분, 85 ℃에서 5분 동안 유지한 후, 4 ℃에 보관하였다. First, unbound dNTPs were removed from the PCR product. To this end, 1.53 μl of pure water, 0.17 μl of hME buffer, and 0.30 μl of SAP (shrimp alkaline phosphatase) were added to a 1.5 ml tube to prepare a SAP enzyme solution. The tube was centrifuged at 5,000 rpm for 10 seconds. After that, the PCR (Polymerase Chain Reaction) product was placed in the SAP solution tube, sealed, and kept at 37 ° C. for 20 minutes and 85 ° C. for 5 minutes, and then stored at 4 ° C.

다음으로, 상기 표적 DNA 산물을 주형으로 하여 균질적 연장 반응을 실시하였다. 반응액은 다음과 같았다.Next, a homogeneous extension reaction was performed using the target DNA product as a template. The reaction solution was as follows.

물(나노급 순수) 1.728㎕1.728 μl of water (nano-grade pure water)

hME 연장 믹스 (2.25 mM d/ddNTPs를 포함하는 10x버퍼) 0.200㎕0.200 μl hME extension mix (10 × buffer with 2.25 mM d / ddNTPs)

연장 프라이머 (각 100μM) 0.054㎕0.054 μL extension primer (100 μM each)

Thermosequenase(32U/㎕) 0.018㎕0.018 μl Thermosequenase (32U / μl)

총부피 2.00㎕Total volume 2.00 μl

상기 반응액을 잘 혼합한 후, 스핀다운 원심분리하였다. 상기 반응액이 든 튜브 또는 플레이트를 잘 밀봉한 다음, 94℃에서 2분 동안 유지한 다음, 94 ℃에서 5초, 52 ℃에서 5초, 72 ℃에서 5초를 40회 반복 한 다음, 4 ℃에 보관하였다. 이렇게 얻어진 균질적 연장 반응 산물로부터 레진(SpectroCLEAN, Sequenom사 #10053)을 사용하여 염들을 제거하였다. 연장 반응에 사용된 연장 프라이머를 표 6에 나타내었다. The reaction solution was mixed well, followed by spin down centrifugation. Seal the tube or plate containing the reaction solution well, hold for 2 minutes at 94 ℃, then repeat 5 seconds at 94 ℃, 5 seconds at 52 ℃, 5 seconds at 72 ℃ 40 times, and then 4 ℃ Stored in. The salts were removed from the homogeneous extended reaction product thus obtained using Resin (SpectroCLEAN, Sequenom company # 10053). The extension primers used for the extension reaction are shown in Table 6.

<표 6>TABLE 6

SNP 포함 뉴클레오티드
(서열 번호)
SNP-containing nucleotides
(SEQ ID NO)
표적 DNA 증폭용 프라이머(서열번호)Target DNA Amplification Primer (SEQ ID NO :) 연장 프라이머
(서열번호)
Extension primer
(SEQ ID NO)
전위 프라이머Potential primer 후위 프라이머Back primer 1One 6161 6262 6363 22 6464 6565 6666 33 6767 6868 6969 44 7070 7171 7272 55 7373 7474 7575 66 7676 7777 7878 77 7979 8080 8181 88 8282 8383 8484 99 8585 8686 8787 1010 8888 8989 9090 1111 9191 9292 9393 1212 9494 9595 9696 1313 9797 9898 9999 1414 100100 101101 102102 1515 103103 104104 105105 1616 106106 107107 108108 1717 109109 110110 111111 1818 112112 113113 114114 1919 115115 116116 117117 2020 118118 119119 120120

<표 6(계속)>Table 6 (continued)

SNP 포함 뉴클레오티드
(서열 번호)
SNP-containing nucleotides
(SEQ ID NO)
표적 DNA 증폭용 프라이머(서열번호)Target DNA Amplification Primer (SEQ ID NO :) 연장 프라이머
(서열번호)
Extension primer
(SEQ ID NO)
전위 프라이머Potential primer 후위 프라이머Back primer 2121 121121 122122 123123 2222 124124 125125 126126 2323 127127 128128 129129 2424 130130 131131 132132 2525 133133 134134 135135 2626 136136 137137 138138 2727 139139 140140 141141 2828 142142 143143 144144 2929 145145 146146 147147 3030 148148 149149 150150 3131 151151 152152 153153 3232 154154 155155 156156 3333 157157 158158 159159 3434 160160 161161 162162 3535 163163 164164 165165 3636 166166 167167 168168 3737 169169 170170 171171 3838 172172 173173 174174 3939 175175 176176 177177 4040 178178 179179 180180

<표 6(계속)>Table 6 (continued)

SNP 포함 뉴클레오티드
(서열 번호)
SNP-containing nucleotides
(SEQ ID NO)
표적 DNA 증폭용 프라이머(서열번호)Target DNA Amplification Primer (SEQ ID NO :) 연장 프라이머
(서열번호)
Extension primer
(SEQ ID NO)
전위 프라이머Potential primer 후위 프라이머Back primer 4141 181181 182182 183183 4242 184184 185185 186186 4343 187187 188188 189189 4444 190190 191191 192192 4545 193193 194194 195195 4646 196196 197197 198198 4747 199199 200200 201201 4848 202202 203203 204204 4949 205205 206206 207207 5050 208208 209209 210210 5151 211211 212212 213213 5252 214214 215215 216216 5353 217217 218218 219219 5454 220220 221221 222222 5555 223223 224224 225225 5656 226226 227227 228228 5757 229229 230230 231231 5858 232232 233233 234234 5959 235235 236236 237237 6060 238238 239239 240240

반응 산물을 질량 분석 방법 중 MALDI-TOF(Matrix Assisted Laser Desorption and Ionization-Time of Flight)를 이용하여 다형성 부위의 서열을 분석하였다. 상기 MALDI-TOF는 분석하고자 하는 물질이 레이저 빔을 받으면, 이온화된 매트릭스(3-Hydorxypicolinic acid)와 함께 비행하여 진공상태에서 반대편에 있는 검출기까지 날아가는 데 걸린 시간을 계산하여 질량을 분석해내는 원리에 의하여 작동한다. 질량이 작은 물질은 검출기에 빨리 도달하게 되는데, 이렇게 얻어지는 질량의 차이와 이미 알고 있는 SNP의 서열을 근거로 하여 표적 DNA의 SNP 서열을 결정할 수 있는 것이다. The reaction product was analyzed by the sequence Assisted Laser Desorption and Ionization-Time of Flight (MALDI-TOF) in the mass spectrometry. The MALDI-TOF is based on the principle of mass analysis by calculating the time taken to fly with an ionized matrix (3-Hydorxypicolinic acid) to fly to the opposite detector under vacuum when the material to be analyzed receives a laser beam. Works. The smaller mass reaches the detector quickly, and the SNP sequence of the target DNA can be determined based on the difference in mass and the known sequence of the SNP.

1-4. 본 발명에 따른 SNP의 선별1-4. Screening of SNPs According to the Invention

심근경색 환자로 판명되어 치료 중인 한국인 남성 환자군(221 명)과 아직 심근경색 증상이 없는 한국인 남성 정상인군(192 명) 사이의 대립인자 빈도를 비교하 였다. 상기 빈도를 기초로 해서, 관련성 검사(association test)인 피셔의 정확성 검증(Fisher's exact test)를 수행하였다. We compared the frequency of alleles between the Korean male patients (221) who were diagnosed as being treated with myocardial infarction and the normal Korean male group (192) who did not have myocardial infarction. Based on the frequency, Fisher's exact test, an association test, was performed.

유효성의 크기(effect size)는 대립인자 오즈비(odds ratio) 및 그의 95% 신뢰구간을 사용하여 추정하였다. 보고된 대립인자가 환자군에 비해 정상인군에서 더 높은 빈도로 나타나는 경우 상기 대립인자는 심근 경색의 감소된 위험도와 관련성이 있고 나머지 대립인자가 심근 경색의 위험 대립인자이다. 반대로, 보고된 대립인자가 정상인군에 비해 환자군에서 더 높은 빈도로 나타나는 경우 상기 대립인자는 심근 경색의 위험 대립인자이다. Effect size was estimated using the allele odds ratio and its 95% confidence interval. If the reported allele is more frequent in the normal group than in the patient group, the allele is associated with a reduced risk of myocardial infarction and the remaining allele is the risk allele of myocardial infarction. Conversely, if the reported allele appears to be higher in the patient group than in the normal group, the allele is a risk allele of myocardial infarction.

SNP가 대립인자 관련성 검사에서 p-value ≤ 0.05인 경우, 상기 SNP는 현저한 유전적 마커라고 간주하였다. If the SNP was p-value <0.05 in the allele relevance test, the SNP was considered to be a significant genetic marker.

상기의 결과를 표 1 및 표 2에 나타내었다. 표 1 및 표 2에 나타낸 바와 같이, 심근 경색에 관련된 SNP 60개를 확인하였다. The results are shown in Table 1 and Table 2. As shown in Table 1 and Table 2, 60 SNPs related to myocardial infarction were identified.

1-5. 본 발명에 따른 해플로타입의 선별1-5. Selection of haplotype according to the present invention

DNA repair 관련 유전자인 polymerase iota 유전자에 대해서는 4개의 SNP가 표2와 같이 유의하게 나왔고 연관비평형(linkage disequilibrium; LD)을 조사하였다. 그 결과, 서열번호 57 내지 60의 4개의 SNP는 높은 연관비평형을 나타내, 강한 LD 블락을 구성하였다. 그 결과를 표 3에 나타내었다. For the polymerase iota gene, a DNA repair-related gene, four SNPs were shown in Table 2 and linkage disequilibrium (LD) was examined. As a result, four SNPs of SEQ ID NOs: 57 to 60 showed high associative equilibrium, constituting a strong LD block. The results are shown in Table 3.

1-6. 본 발명에 따른 SNP의 환경적 또는 습관적 요인 의존도 조사1-6. Investigation of environmental or habitual factor dependence of SNP according to the present invention

심근경색 환자로 판명되어 치료 중인 한국인 남성 환자군(221 명)과 아직 심근경색 증상이 없는 한국인 남성 정상인군(192 명) 각각을 심근 경색과 관련된 환 경적 또는 습관적 요인의 위험도를 기준으로 서브그룹으로 분류하고, 대립인자 빈도를 비교하였다. 즉, 서열번호 57 내지 60의 SNP의 심근 경색과 관련된 습관적 또는 환경적 요인, 특히 성별 및 흡연 여부와의 연관성을 조사하였다. Each group of Korean male patients (221) who were identified as being treated with myocardial infarction and a normal Korean male group (192) who did not yet have myocardial infarction were divided into subgroups based on the risk of environmental or habitual factors associated with myocardial infarction. And allele frequencies were compared. That is, the association between habitual or environmental factors related to myocardial infarction of SNPs SEQ ID NOS: 57-60, in particular gender and smoking status, was investigated.

상기 결과를 표 4에 나타내었다. 표 4에 나타낸 바와 같이, 서열번호 57 내지 60의 SNP는 각각 남성인 동시에 비흡연자의 경우에서 심근 경색 발병에 더 유의한 연관을 보였다. The results are shown in Table 4. As shown in Table 4, the SNPs of SEQ ID NOs: 57-60 were more significantly associated with the development of myocardial infarction in the case of males and non-smokers, respectively.

실시예 2Example 2

본 발명에 따른 SNP가 고정된 마이크로어레이의 제작Fabrication of SNP-Finished Microarrays According to the Present Invention

상기에서 선별된 SNP를 기판 상에 고정하여 마이크로어레이를 제작하였다. 즉, 서열번호 1 내지 60으로 구성된 폴리뉴클레오티드에서 각 101번째 염기를 포함하는 20개의 연속 뉴클레오티드로 구성되는 폴리뉴클레오티드들(각 SNP는 상기 20개 중 11번째에 위치 함)을 기판상에 고정하였다. The SNPs selected above were fixed on a substrate to prepare a microarray. That is, polynucleotides consisting of 20 contiguous nucleotides each containing 101 bases in the polynucleotides consisting of SEQ ID NOs: 1 to 60 (each SNP is positioned on the 11th of the 20) were immobilized on a substrate.

먼저, 상기 각 폴리뉴클레오티드의 N-말단을 아민기로 치환한 다음 실릴화 슬라이드(Telechem 사)에 스팟팅하였으며, 이 때 상기 스팟팅 버퍼는 2×SSC(pH 7.0)를 사용하였다. 스팟팅 후 건조기에 두어 결합을 유도한 후 0.2% SDS로 2분간, 3차 증류수로 2분간 세척하여 결합되지 않는 올리고를 제거하였다. 상기 슬라이드를 95℃에서 2분간 처리하여 변성을 유도한 후, 블로킹 용액(1.0g NaBH4, PBS(pH 7.4) 300 mL, EtOH 100 mL)으로 15분간, 0.2% SDS 용액으로 1분간, 3차 증류수로 2분간 각각 세척하고 상온에서 건조시켜 마이크로어레이를 제작하였다. First, the N-terminus of each polynucleotide was substituted with an amine group and then spotted on a silylation slide (Telechem), wherein the spotting buffer was 2 × SSC (pH 7.0). After spotting, the mixture was placed in a dryer to induce binding, followed by washing with 0.2% SDS for 2 minutes and tertiary distilled water for 2 minutes to remove unbound oligos. The slides were treated at 95 ° C. for 2 minutes to induce denaturation, followed by 15 minutes with blocking solution (1.0 g NaBH 4 , PBS (pH 7.4) 300 mL, EtOH 100 mL), 1 minute with 0.2% SDS solution, 3rd Each was washed with distilled water for 2 minutes and dried at room temperature to prepare a microarray.

실시예 3Example 3

본 발명에 따른 마이크로어레이를 이용한 심근 경색 진단Myocardial infarction diagnosis using microarray according to the present invention

상기 실시예 1의 1-1 단계 및 1-2 단계에 설명되어 있는 방법을 이용하여 심근 경색 발병 또는 발병 가능성을 진단하고자 하는 대상의 혈액으로부터 표적 DNA를 분리하고, 형광 표지 시켰다. UniHyb 혼성화 용액(TeleChem 사) 하에서 상기 실시예 2에서 제조된 마이크로어레이와 형광 표지된 표적 DNA의 혼성화를 42℃에서 4시간 동안 수행하였다. 2×SSC로 실온에서 5분간 두 번 세척한 후 공기 중에서 건조시켰다. 건조 후 슬라이드를 스캔어레이 5000(ScanArray 5000; GSI Lumonics 사)으로 스캔하고 스캔 결과를 퀀트어레이(QuantArray)(GSI Lumonics 사)와 ImaGene 소프트웨어(BioDiscover 사)로 분석하여 상기 대상이 본 발명에 따른 SNP를 갖고 있는지를 확인함으로써, 심근 경색의 발병 가능성 및 심근 경색에 대한 감수성을 측정하였다. Target DNA was isolated and fluorescently labeled from the blood of a subject to diagnose the onset or possibility of developing myocardial infarction using the method described in steps 1-1 and 1-2 of Example 1. Hybridization of the microarray prepared in Example 2 and the fluorescently labeled target DNA under UniHyb hybridization solution (TeleChem) was performed at 42 ° C. for 4 hours. It was washed twice with 2 x SSC for 5 minutes at room temperature and then dried in air. After drying, the slides were scanned with ScanArray 5000 (GSI Lumonics) and the scan results were analyzed with QuantArray (GSI Lumonics) and ImaGene software (BioDiscover) to determine the SNP according to the present invention. The presence of myocardial infarction and the susceptibility to myocardial infarction were measured by confirming whether they had.

본 발명에 따른 심근 경색 관련 SNP 및 해플로타입은 심근 경색의 진단, 치료 및 유전자 지문 분석과 같은 심근 경색과 관련된 용도로 사용될 수 있다. 또한, 본 발명의 SNP를 포함하는 마이크로어레이 및 키트에 의하면, 심근 경색을 효과적으로 진단할 수 있다. 또한, 본 발명의 심근 경색과 관련된 SNP를 분석하는 방법에 의하면, 심근 경색의 존재 또는 위험의 유무를 효과적으로 진단할 수 있다. Myocardial infarction related SNPs and haplotypes according to the present invention can be used for applications related to myocardial infarction such as diagnosis, treatment and gene fingerprint analysis of myocardial infarction. In addition, according to the microarray and kit including the SNP of the present invention, myocardial infarction can be effectively diagnosed. In addition, according to the method for analyzing the SNP associated with myocardial infarction of the present invention, it is possible to effectively diagnose the presence or risk of myocardial infarction.

<110> Samsung Electronics Co., Ltd <120> Genetic polymorphisms associated with myocardial infarction and uses thereof <130> PN061465 <160> 240 <170> KopatentIn 1.71 <210> 1 <211> 200 <212> DNA <213> Homo sapiens <400> 1 aagaatggaa ggacagcttg ctacttctgg gtgttcatca tgagcagtta aggctcacca 60 tatggtctcc actgatattt gggggaagga gacttgttac yacctaataa tgagatgaaa 120 gatcctgatt ccctacttgg tttactatga caccgccctg gcatgatggt tcaggaaact 180 ctttacattt acagattgtc 200 <210> 2 <211> 200 <212> DNA <213> Homo sapiens <400> 2 tactgctgtc tttggaacac tgttactcat cctacaaggc ctcaatcaag aatcttagga 60 ggtcattggt gcctacctgc ccatggcaga gaccaccaac mccttctgag agctgccaca 120 gtgctgcttt ctaacatgtc tacactagct cctcacagtg tgcggtgatt gttgggtgaa 180 agctctgttt ctcatagtga 200 <210> 3 <211> 200 <212> DNA <213> Homo sapiens <400> 3 tgatttgatt ttatccagtg ttgcaaactg ggtttcgtaa gtgactcttt tgtaaggagt 60 ttcagtgcac cccgtctgca acccatgcat atcttattta mccccaagct tctaaggtag 120 aatcctactt ttttcaagtg ctattgatta gttgcctgtt tagacttttg ttatatgatt 180 taaaatttta aaaatgataa 200 <210> 4 <211> 200 <212> DNA <213> Homo sapiens <400> 4 gtgtttctaa agcaactccc caccaacctc ttgggctgtg gtgaccaagg gctaaaaatt 60 aagtggggac cctggtgtct gacttttgct ccacttctga yaccttcttt ctctcccgtt 120 tcactaggac tggaaaatac aggctttttt cccaatcctt gtttctctca aaccaagacc 180 tcatctacat aaaacatcta 200 <210> 5 <211> 200 <212> DNA <213> Homo sapiens <400> 5 ccactgaaaa tatcctctgg tcatttattt ggctcaacgg acctatatgg ccattccctc 60 ttccacagtt gtaaagactt tgcctaattt ctggcaacta yagaagtagt ggtaaggata 120 atgtaaaatt tctttttgtc ttggaaatta tcaaaccact tttgaagatt gtattatcta 180 gtaatcagaa acttactttg 200 <210> 6 <211> 166 <212> DNA <213> Homo sapiens <400> 6 taagggcttg agtatgcaaa tatggaggct ttctcaaatc acgtttcgtt taatttaaca 60 ccttcataaa taggatggac ttaagagatc atcccaacct ycttactgta cagatcaaga 120 gatgggggtc cggaaagctg ctgatgttca tgctgtgagt ttaaca 166 <210> 7 <211> 200 <212> DNA <213> Homo sapiens <400> 7 tttgccaacc attcttcacc ctgttgggag agaatacaga aatctgtatt caagcataag 60 gtgctataca cttgtttgat gcctgcctct agggcaatga rgaggtaaga caatctcccc 120 attacatgct ttcgcagagg acagtctgta aagttacaga actccattcc ttcttacgta 180 ccttatacca taatatacca 200 <210> 8 <211> 152 <212> DNA <213> Homo sapiens <400> 8 aaggggcggc gctggccgga ctctctcggg tggactcccg gagcggcggc ggcggcggcg 60 gtggcagact gcgagtcacg tgcgacagag gaggcggagc rcggcggccg ggtgggtgga 120 gaaaacaaag cccccagctg tcagcagagg aa 152 <210> 9 <211> 200 <212> DNA <213> Homo sapiens <400> 9 attatataaa tgaaactggt ttaggatgtg tctttttttc ccctctcttt taccttaact 60 caggttcaag cctttcttaa gctctggtaa cttgcatata yaacaaagtt gaaataaaac 120 agatttttat atagggaaag agagatgagg aagggaacat atccagtttt ctcactgtga 180 aacagagtta gcaaggaagt 200 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <400> 10 gattatgtta acagaaattc tcagcctgtg tgatttgtca tattttaata tttcaagcca 60 ccattgcagc ttcttttagg tttggtttgt ctgaggcacc rcagcgagtg catgagcaca 120 cagactttga atttgtataa gtgaatggct cttccactta ctttgtggct ttgggctcat 180 cacttaactc attgatataa a 201 <210> 11 <211> 200 <212> DNA <213> Homo sapiens <400> 11 tgtgcagcaa tagtaactgg aacaacattt ctgcgatggg cagaagtggc aaggattgta 60 actcattaga ctcagaaggc gaggtcacct gagtaagcag kgtccttagt ggaacagtgg 120 gtgtaagagg aaggagagat gggtgggtgt ggggcttctt gccatctaca tatgtagggt 180 ctgcctttta cttgcacatc 200 <210> 12 <211> 166 <212> DNA <213> Homo sapiens <400> 12 gatgatactt agcttctgcg tcttcagtaa actcatctgt acaatggcct gttaaaccta 60 gctatttgaa aacatcagct aaaactaagt gatttttttg rtattcattt aggtctttta 120 tttcttgata tgcttgaaat ctaattgtct tttaaatgca ctaata 166 <210> 13 <211> 151 <212> DNA <213> Homo sapiens <400> 13 gattacaggc gtgagccacg gcacctggag agaaaaaagc ttctttaatg acgacctcaa 60 cataatttac atggagaagt ttcttaggtg gaaaaccgat ytgtatggtc ctcagaatgt 120 aacctacagg ttcttgccct cagaaaaatg c 151 <210> 14 <211> 200 <212> DNA <213> Homo sapiens <400> 14 taaggaagag ggacagctat gacctaatgc ttgcttggac cactataagc atgccaggga 60 aaatattcag gctaaattgt cggctctaag aacatgaagt rtattgattt ctttattaca 120 gctagcagat atttaagaat gttagcacag gtctttgaat aaattttgct tttaagagaa 180 gttactattt attcctaatt 200 <210> 15 <211> 200 <212> DNA <213> Homo sapiens <400> 15 tggacaatgg gaataaagca tttctaaagc accgactgga gaggaaggca acagagacaa 60 ggagagaagc cgagagacat gtctgcgtgc tgccacgcat ytgagcgatt gctctgtgaa 120 gagttgtaca ctgaacactt tcaggggagg ctgtttaccc aggcaatgtc ctcaaacaag 180 cctgtgccgg ggtgtcctgg 200 <210> 16 <211> 200 <212> DNA <213> Homo sapiens <400> 16 agaggcggcg gctccggaac gagctgctcc cacagcccct ccgctcctcg ccgtctcgcc 60 ttcgtcccca gcttacccag ttctgcgcgt tattgctcag yttgactttc ttgcacaggc 120 tcccggggat ctccatgacc gcggagcgcg ctgagcagcc ggggttctct gcgccgggan 180 ggtagcaaga ggagggcagg 200 <210> 17 <211> 200 <212> DNA <213> Homo sapiens <400> 17 ttagcagtcc cgcaaagctt gaggtttact catttttact ttctttagtc tctgggcaag 60 gaactaagag gtagtataga attctagacg atggaaactt yagaatggac aggattttaa 120 aaattatata ttccattctc ctgggttaca ggtggtctta cagctaaact atttgagact 180 gttgaagcca ttcgattttt 200 <210> 18 <211> 200 <212> DNA <213> Homo sapiens <400> 18 ttatgaggaa cagatgagat agtgaggttg agtgccagca cagtagccag tactcaatca 60 aatataactg taaaacaaag gggcagttcc taaggcccaa ratggagttt tagtcaaaag 120 gaaataaggc aaaaggccag ttacaagatg gagcaggccc tgcagtggag ttgaaaaccc 180 aggtcaccat gatgactgtg 200 <210> 19 <211> 200 <212> DNA <213> Homo sapiens <400> 19 ttaggaaatt ttcaatggag aaaataagtt ccaaaagtca ttctttctca gattaagatg 60 tcttgggttt cagtttactt ctttaaagaa agattcagag ytagtactga ggacccagac 120 tttcttgatg tgggaaatag ataattttct gttctgttga cattttttct ctctcttctc 180 tcattttcaa agtacagttc 200 <210> 20 <211> 200 <212> DNA <213> Homo sapiens <400> 20 taccatcctc acatcttgta tagactcctt ttatcagggc ctggtggtcc cagttcttcc 60 tagagaaacc catagcaaca ttcttgatgg tcagtggtcc rtggactggg ggggtcccca 120 tggccatctg tccttcctct tggctccctt ctgaggggca ggcagggtcc taaaaggaca 180 gagccctgtg gacctggcag 200 <210> 21 <211> 173 <212> DNA <213> Homo sapiens <400> 21 aaacattgtt tacataagta aacaagccag ggctgctgtg aaagttatta tggaagatac 60 aatttatata ttttctggaa aatatatcgc ctcatatata yagacaaaac ctttgcttta 120 acatgtttgt gcaactaatt acttactttc caatgagtac aatttcccac tag 173 <210> 22 <211> 200 <212> DNA <213> Homo sapiens <400> 22 gaggtgggca ctggtggctt ccagcctagg gctgtgactc tgctgttagg ggcacgctgc 60 tacacaggca ccaacctctc tagcacaggg gttcctccaa ktgtgctgtg ggggcccccg 120 agaccctttc aggggttccc ccaggttcct tgaaaggctc cnctgattag atcaggccca 180 ccaagatcac ctccctttgg 200 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <400> 23 agagtcataa gaagggtttt ctctctccta aggaggaacc aaagggggaa aaaaagtctc 60 tttgcttcta gacgttgttt ctgtagatgt aaaggctgtt macttctgca gtcatcttgc 120 tgagaataaa ttcagaatga agatggcaaa atggagcaag aaataagtta atgacccgga 180 aggcctcctt ctgaagttgt t 201 <210> 24 <211> 200 <212> DNA <213> Homo sapiens <400> 24 caccatttat ttcctatttt ctctcctgag ttaaatagga aacatgtctc gcattacttg 60 aaaaatcaag tcaaactatg ctcttactag gagttatggt yctttttatg tcttagatga 120 tgcttgatct agatgaatgc ggacttgctg tagctagata aatacaatgg gagtttgaag 180 gtgtttcgta gccctggaaa 200 <210> 25 <211> 200 <212> DNA <213> Homo sapiens <400> 25 agaactgtgg agcgattcct gatttttgag caggaagagt gacaattcaa aacagtattt 60 gactagattc acggctccgt agcatcccct tgggtgggag sgggaaggct gactaggacc 120 tctgattctt ctttccctga gctttgaagg ctctgaaaat acagctgggg ggacttgccc 180 agttttctta ttaagcaatt 200 <210> 26 <211> 200 <212> DNA <213> Homo sapiens <400> 26 agcacagttc caagatgcgc tgacatgttc tgcaggcgag agagcctttc gctggactgt 60 gactcacgga ggtggtgagg ccgctggttc taaccaagag ratgccagcg agaccactca 120 gcctcccctg gtggctgccc tggtttaatg ctcatgaaat gccagcctgt ggccattctg 180 ctgggtaaag agggtggtgt 200 <210> 27 <211> 125 <212> DNA <213> Homo sapiens <400> 27 cccagcagga acccttctgg aagggaatat ttgcagagat ttcccagatc tatgtgccct 60 tctgcttcct ctatgcttac tgctctcacc tgggccaccc mtgaaggtgg gcttgctgtt 120 tcagc 125 <210> 28 <211> 200 <212> DNA <213> Homo sapiens <400> 28 tggcgcgtgt gcaattagca atgcagtgta tatacaagaa gccatgctgt taacagttta 60 tctcaagtaa tttggtgtca tttacaaaag gaagaaattc ytgccatcag aagggacaga 120 aggagatgga atgatcaaat cacagagaaa cactaaaatt actaaatcta caacagctcg 180 ccttattttt cttggaccca 200 <210> 29 <211> 200 <212> DNA <213> Homo sapiens <400> 29 gagacaacgg ggatcaggca gaggggtggg cacataggag gcaacgtaaa ccagaactga 60 ggctgggcca ggccagggtg tcagaggctg aggcggggag kcgggctgcc cttgggctgg 120 attgcaaggc gaagaagcag gagggagagg ctgagagtgt ggaggggagg gggcttgtag 180 cgtgtgattg gagggaggac 200 <210> 30 <211> 200 <212> DNA <213> Homo sapiens <400> 30 ctacccacaa aagtttcttt gtacttattt acnagtcctg atgtttttgt tagaaaaaca 60 ttgccacctn tttttaccca gccaggtctc agcctaagtg ycactgggtc cagtttctct 120 catcttctga gcagttggcc taaagtgacc ctatgttttc cttttttctt tctcctcttc 180 ctcttccaca ccagtgcaaa 200 <210> 31 <211> 200 <212> DNA <213> Homo sapiens <400> 31 tttttaggct taaaaagata ttttaatgta actctatcca attctcaatt ttaggcctgc 60 cagaattgaa actcaagctt aactataatc atcaccaagc rttacttttg aagccctccc 120 gtaaatatga ggctgttaag gatgcaatac tataccgcgt gtctcttagg ttagttggaa 180 aaatgagtta gaaaatgagg 200 <210> 32 <211> 200 <212> DNA <213> Homo sapiens <400> 32 aaagctgagt aagcacctat agtaacaggt aacaaagtat tctagggatc agctgctgtg 60 agttagttca caagtgcttt aagtacgtgt taatcaaaga ygatgtattt ttcatttctg 120 acaataaaca tctggggcat cctacatttt tcctgggcaa tttgccttta tcattatatt 180 ttaatctctg atgcaatctt 200 <210> 33 <211> 200 <212> DNA <213> Homo sapiens <400> 33 ccacttccct ctcacacaga atagatttcc atagggtgag aattcaagag aaacttttta 60 attgtacagc aaagtgttta ctttgccacc aacctgccct rtagcttaag catatggcta 120 ccttttctat caacagctgg gcttctgtag gtttggcact cggtatacca tcccagcgca 180 gtcaaaaacc tgcaggtgac 200 <210> 34 <211> 200 <212> DNA <213> Homo sapiens <400> 34 atgttgttca gagggctatt cagagaatgg aaacccaagg ctcacctttc ttgagtctaa 60 gtacccactc agccaagtat atttagcaaa atagaaaaac yaaactgctt tggtgactgg 120 actttgccaa tgtctgaaag aaagaagtaa cagaaaggag agtctaaagt tgatcctgta 180 cagtataaaa catttcccca 200 <210> 35 <211> 200 <212> DNA <213> Homo sapiens <400> 35 tggatgtact catagagagg gctggagcgc actgggacac tggcaaactg atgagtgccg 60 ggctccagaa gccgcccatg gcccttccct tcttgggatt ktatctcccc gacttggcgg 120 tgcctctgtt cctccttctg ctggcggcgg atgtgttctt cccgtaattt cctttcccgt 180 tcctggcgac gtttctgctc 200 <210> 36 <211> 200 <212> DNA <213> Homo sapiens <400> 36 gggaataaat tagttttcct tgacagtata tactgcctgt ttctgtccat cctcttattt 60 gcttcttttt ctttgctctt ccactccagt ccttaagcga ktttagtttt attcgttcct 120 cttgtccctt ttcatgataa caatgtgtca tagtctgctt taaagttttt catacttacc 180 gatgttagtt ttattgctag 200 <210> 37 <211> 200 <212> DNA <213> Homo sapiens <400> 37 tggggacaga gcctgtgggg agtcttgatg tagtcttgtc cttgaaatcc attcacggct 60 ctgctgagat ctcgggaaag agtctcttta taaatatggg kttttgtttt ttcaaatttt 120 ggaaaagtca cctctggttt taaaacaatt acttcccgct ccaaacagat tagtcacttc 180 ccaagaacca tgcttctctc 200 <210> 38 <211> 200 <212> DNA <213> Homo sapiens <400> 38 attatagaca agcagagagg gaatggatcc gagggtgacc tggctgaatt aaaagtactg 60 catctaagtg tgtgcaggtt gtagtccaca gtaatggtgc yattcggagc tgtgtgtacc 120 tgcactactg catcaggtga ccttatccag cataacggta caacagaaat ttaacttgaa 180 acaggtttat tgacttgctt 200 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <400> 39 gtgacaaacc tgagactaga aaactactac atatgacatc ctacacactg actcccttct 60 tcagctctgt ctgataaagg gatgagagat cgtttcttat yattacacat acacgccact 120 tccgttcctt ccatctaaac ctagttcaga aacaccgcta agaattccca cccccaaaaa 180 aatggggatg ggggaagaga a 201 <210> 40 <211> 200 <212> DNA <213> Homo sapiens <400> 40 actgaggtta gtctcttgta ttaaactctt cacaaaatct gtttagcagc agcctttaat 60 gcatctagat tatggagctt ttttccttaa tccagctgat sagttacagc ctgttagtaa 120 catgagggga cattttggtg agaaatggga cttaactcct tccagtgtcc ttagaacatt 180 ttaattcatc ccaactgtct 200 <210> 41 <211> 200 <212> DNA <213> Homo sapiens <400> 41 cgagactcaa gataatgtac taaagacctt tagcacaatg tctgacatct ggtgttcaat 60 aagtggtgat attgctcaat ttcattccaa ttcaaactta yaaacatcca tgggaagtct 120 gctttataga caagcaatag gggagcacag taattatttg ggaggggaaa tctcagcagt 180 tcttccaagt gacacattct 200 <210> 42 <211> 200 <212> DNA <213> Homo sapiens <400> 42 atttgctgac tttgccaagc gatgagccac acaggattgg gaagcctgaa tgtcatcagt 60 caaggcccag agtgctgaac ctatgaggcc tggggagacc rctgtgaatt cctgcatcgt 120 cactgagatc atcatatcct gtgaaaaaca tctgccagcc actgtctgtg ttgtagaaag 180 ctgctgatgg gaaaacttgg 200 <210> 43 <211> 200 <212> DNA <213> Homo sapiens <400> 43 cataaaccct caataaacct aagctactat tattaagtac tgtgtgtcca cacaaaaaaa 60 aggtctggaa agatatagcc accaggagta gttatgagga rtgaggcaga gaggctgatg 120 gaggacttcc attttctatt ttgtatacta cttttctagt gtttacaaat gagcttgtat 180 tgtttttatc atcagcaaaa 200 <210> 44 <211> 200 <212> DNA <213> Homo sapiens <400> 44 atagcaggcc agggctctgt aggcttgttt tgctgctgtg cctgttgcca aatgcttgaa 60 aatcctgaag tacaaacata acagtctgaa ttaaatttca ytgattttat ctttctcttc 120 cttttctcac tgtggtgcag ttgttaatgg aattctagcc aaaaggatgt gggaggagag 180 gaaggagcca caaagggaga 200 <210> 45 <211> 200 <212> DNA <213> Homo sapiens <400> 45 ttagtcatga tgttctggtt tttatttata cattcatctg aaagagcaaa gtggtagagc 60 taaaatcagt aagcttggct ctgtttccaa actcataaaa rtgcaatatc gtggcagaaa 120 gattcttgtc ctatttctta ttttacctgg gcttttggga tttcacatgg acatagttgc 180 aaaataatac tccccaaact 200 <210> 46 <211> 200 <212> DNA <213> Homo sapiens <400> 46 ctaaccaagc ttgcccatat ttcacatgtt gagtttgttc attttaactg tcaattggcc 60 taattttccc atttctagca ttttaatttc tccagagctt kcatactaca ttgaacacca 120 attcagtgac ctggaacaat tccactcgca tttgttcctt ttagaccatt tcactgggag 180 tatgtttcca atccacttat 200 <210> 47 <211> 200 <212> DNA <213> Homo sapiens <400> 47 cagagacctg gtcctaaatc tgtgtgactt ttgcgaaatc cttttgcctc acagagctct 60 aggttcttat ctgtcaaaca ggaaccagac catcagatcc rtagagatcc aaccaatgaa 120 ggagacttcg aaaacttcac attgccgtgt caatgtgagg ttgctggatg gttatgacaa 180 gaaatcacat taaattcact 200 <210> 48 <211> 200 <212> DNA <213> Homo sapiens <400> 48 gcaggaggaa gggtgcctga ttcacagggg agatgcctga tggcgggtgg ggggctgctg 60 ttggcatccc cactggaacg tttgtcctaa tgggggcctg rctccctcat cagtggcttg 120 tcccaaaaca acaaccagtg ttcccaaacc tatacttcct ctttggattt ttgtttttca 180 tctagttgga gggaataaaa 200 <210> 49 <211> 200 <212> DNA <213> Homo sapiens <400> 49 tcattagttt attgcatccc caaggctttg ataacaaatg aagcaaatat tttcaaattt 60 ttctggttac ccaataagaa aaatcatgtg actttccaca yctgccatca ttggaagtga 120 caaaactcta gatacttggg tcattgttat catttgtcta tcttccttgg tatgctctat 180 tcttcgttgt ggagtaataa 200 <210> 50 <211> 200 <212> DNA <213> Homo sapiens <400> 50 ccagggtcgg cgcctgcccc agcctgagta ttgccctgat tctctgtacc aagtgatgca 60 gcaatgctgg gaggcagacc cagcagtgcg acccaccttc rgagtactag tgggggaggt 120 ggagcagata gtgtctgcac tgcttgggga ccattatgtg cagctgccag caacctacat 180 gaacttgggc cccagcacct 200 <210> 51 <211> 200 <212> DNA <213> Homo sapiens <400> 51 tctgacattc tctggttata aaactagagt atcaaaatgc atgagagtgc ctgctcagat 60 aaccatcaga tgaatatgaa gcttgctcat ccctgggagt rcagaaatca gctcctttta 120 cctcttgaag aagtggatac agcatcctct actgctcaat tgcataaacc agcacttgtc 180 cttggtgagc cgttgtttgc 200 <210> 52 <211> 200 <212> DNA <213> Homo sapiens <400> 52 atagaatttt tggtatactg aacaaaggga ttaaaaaggt cagttttatg tagggacttt 60 ctttgctggg gagggaaggt ctcatcccca agaattattt mtttattttc ccttcccaga 120 gtttttacat ggaagtatga aatattacct tcctactata taattaatag aaaaaataaa 180 cagagcccag attatactat 200 <210> 53 <211> 200 <212> DNA <213> Homo sapiens <400> 53 gcatagtact cagactcatt gaaagtttat agaatttggc ctgtgtggaa aactctgtgc 60 tccaagtaca acaactaact gaattctcta atttaaacaa stttgaaggg aagtgaaagg 120 ttataaaatg atacagactc ataccgcaga atcaccttaa aatgcagctg ttggagaaaa 180 aaaaaaagga agctttatgc 200 <210> 54 <211> 176 <212> DNA <213> Homo sapiens <400> 54 ttttcctggg cttcatgggc catttaaatt gtgaaccccc agggacacag tgcttagccc 60 aagccatcag tgcttgaaaa taggcatttc tgtcatcgag wttctgtatg ttgagatata 120 ttttgagata ggcttaaggg tgaggacatt tggctggagt cagcaataag ttgcaa 176 <210> 55 <211> 201 <212> DNA <213> Homo sapiens <400> 55 cacaagacta gattgcagga agatgtgaaa gcatttggct aattctgaca tttggctaat 60 aacatcctca cagtatgtcc caagtatctt ctgcccttcc yaccacggtg agcagtcatg 120 acagtgaggg tggcataggt gggatgtgtg gctggcagaa gccagtgggc aagagttgtc 180 cacagaatag tccatgagct t 201 <210> 56 <211> 200 <212> DNA <213> Homo sapiens <400> 56 tagagggggt gcgggacggg gactcacagg agatgcagga cggcccgaac atagtaattc 60 ctggtaaagg gcccgaacag cttcaccacg gcggtcatgt rcttctgtcc cctgggggag 120 ggaggaaggc gagacggcgc ggctgggcct ctcccactcg ggactccttt gctgccctgc 180 tgaccacccc agggcaccca 200 <210> 57 <211> 201 <212> DNA <213> Homo sapiens <400> 57 gttcacttgc tgctaccctc ttgtgcccac tttggcttaa taaatcccaa tccagcctag 60 ctgatttact gaagaacaaa gggatgacta gtttttgcta ygccaaggtg agtctaggat 120 cttaaaactt ttctaagggt gccaaggagt tagaatcagg ggacctaagt tttttctcct 180 gaaggcattt ctgagtagta g 201 <210> 58 <211> 201 <212> DNA <213> Homo sapiens <400> 58 tgttgatgag aaaattactt tcccttctga cattgatcct caagttttct atgaactacc 60 agaagcagta caaaaggaac tgctggcaga gtggaagaga rcaggatcag atttccacat 120 tggacataaa taagcatatt cagcaaaaag gtctgaaaag caagggaata ccattatttt 180 cggattagcg gtttattaag c 201 <210> 59 <211> 201 <212> DNA <213> Homo sapiens <400> 59 atgtgcatgt agccctttca gtaaggagtg tatggggagc ttgggccctc tgtggccttc 60 catttatttg catgtagcct cctagtcaac tagggttgta mggggagcct atgtagtccc 120 tctttggttc tctcatttcc aaatctcctg gtgacatatc tggctggtcc actgatctgt 180 ccttcacccg aaccacgact g 201 <210> 60 <211> 201 <212> DNA <213> Homo sapiens <400> 60 gcacgtgggc ctccacgatt ccttggcatg cgtgtcactc tgggcaacag gctggtcggc 60 cacgactgcg caggcgagag gcacagagcg actggagact ktagtccccc ggtttccctg 120 gagaccaggc ggaagcggcc ggaagtagcg ctgcggttgg cagcggcggg atggagaagc 180 tgggggtgga gccggaggag g 201 <210> 61 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 acgttggatg ccaagtaggg aatcaggatc 30 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens <400> 62 acgttggatg ggtctccact gatatttggg 30 <210> 63 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 ggatctttca tctcattatt aggt 24 <210> 64 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 acgttggatg gttagaaagc agcactgtgg 30 <210> 65 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 acgttggatg tcttaggagg tcattggtgc 30 <210> 66 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tggcagctct cagaagg 17 <210> 67 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acgttggatg gtaggattct accttagaag c 31 <210> 68 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 acgttggatg taaggagttt cagtgcaccc 30 <210> 69 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 accttagaag cttgggg 17 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 acgttggatg ttccagtcct agtgaaacgg 30 <210> 71 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 acgttggatg accctggtgt ctgacttttg 30 <210> 72 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 aacgggagag aaagaaggt 19 <210> 73 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 acgttggatg cacagttgta aagactttgc c 31 <210> 74 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 acgttggatg gtggtttgat aatttccaag 30 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 tgcctaattt ctggcaacta 20 <210> 76 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 acgttggatg gatggactta agagatcatc c 31 <210> 77 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 acgttggatg tgaacatcag cagctttccg 30 <210> 78 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 agagatcatc ccaacct 17 <210> 79 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 acgttggatg acacttgttt gatgcctgcc 30 <210> 80 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 acgttggatg tttacagact gtcctctgcg 30 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 ctgcctctag ggcaatga 18 <210> 82 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 acgttggatg agactgcgag tcacgtgcga 30 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 acgttggatg gctttgtttt ctccacccac 30 <210> 84 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 gacagaggag gcggagc 17 <210> 85 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 acgttggatg aagcctttct taagctctgg 30 <210> 86 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 acgttggatg cttcctcatc tctctttccc 30 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 agctctggta acttgcatat a 21 <210> 88 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 acgttggatg tttcaagcca ccattgcagc 30 <210> 89 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 acgttggatg tcaaagtctg tgtgctcatg 30 <210> 90 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 ggtttgtctg aggcacc 17 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 acgttggatg ctcattagac tcagaaggcg 30 <210> 92 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 acgttggatg ccatctctcc ttcctcttac 30 <210> 93 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 aggtcacctg agtaagcag 19 <210> 94 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acgttggatg aatggcctgt taaacctagc 30 <210> 95 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acgttggatg gcatatcaag aaataaaaga cc 32 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 gctaaaacta agtgattttt ttg 23 <210> 97 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 acgttggatg tttctgaggg caagaacctg 30 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 acgttggatg tggagaagtt tcttaggtgg 30 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 ttacattctg aggaccatac a 21 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 acgttggatg tcaggctaaa ttgtcggctc 30 <210> 101 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 acgttggatg caaagacctg tgctaacatt c 31 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 gtcggctcta agaacatgaa gt 22 <210> 103 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 acgttggatg cagtgtacaa ctcttcacag 30 <210> 104 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 acgttggatg acagagacaa ggagagaagc 30 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 cttcacagag caatcgctca 20 <210> 106 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 acgttggatg ctccgcggtc atggagatc 29 <210> 107 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 acgttggatg ttacccagtt ctgcgcgtta 30 <210> 108 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 ctgtgcaaga aagtcaa 17 <210> 109 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 acgttggatg ggcaaggaac taagaggtag 30 <210> 110 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 110 acgttggatg acctgtaacc caggagaatg 30 <210> 111 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 tctagacgat ggaaactt 18 <210> 112 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 acgttggatg acagtagcca gtactcaatc 30 <210> 113 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 acgttggatg tggccttttg ccttatttcc 30 <210> 114 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 cagttcctaa ggcccaa 17 <210> 115 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 acgttggatg tcaagaaagt ctgggtcctc 30 <210> 116 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 acgttggatg ctcagattaa gatgtcttgg g 31 <210> 117 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 ctgggtcctc agtacta 17 <210> 118 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 acgttggatg ctagagaaac ccatagcaac 30 <210> 119 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 acgttggatg caagaggaag gacagatggc 30 <210> 120 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 ttgatggtca gtggtcc 17 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 acgttggatg gtgggaaatt gtactcattg g 31 <210> 122 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 122 acgttggatg tctggaaaat atatcgcctc 30 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 ttaaagcaaa ggttttgtct 20 <210> 124 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 124 acgttggatg acaggcacca acctctctag 30 <210> 125 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 125 acgttggatg ggagcctttc aaggaacctg 30 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tagcacaggg gttcctccaa 20 <210> 127 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 acgttggatg gcttctagac gttgtttctg 30 <210> 128 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 128 acgttggatg tgctccattt tgccatcttc 30 <210> 129 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 129 tgtagatgta aaggctgtt 19 <210> 130 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 acgttggatg acagcaagtc cgcattcatc 30 <210> 131 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 131 acgttggatg caaactatgc tcttactagg 30 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 agcatcatct aagacataaa aag 23 <210> 133 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 133 acgttggatg gaatcagagg tcctagtcag 30 <210> 134 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 134 acgttggatg ttgactagat tcacggctcc 30 <210> 135 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 tcctagtcag ccttccc 17 <210> 136 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 136 acgttggatg gtgaggccgc tggttctaac 30 <210> 137 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 137 acgttggatg tgagcattaa accagggcag 30 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 ccgctggttc taaccaagag 20 <210> 139 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 139 acgttggatg tctatgtgcc cttctgcttc 30 <210> 140 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 140 acgttggatg gctgaaacag caagccca 28 <210> 141 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 141 ctctcacctg ggccaccc 18 <210> 142 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 acgttggatg atctccttct gtcccttctg 30 <210> 143 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 143 acgttggatg gaagccatgc tgttaacagt 30 <210> 144 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 tgtcccttct gatggca 17 <210> 145 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 acgttggatg acgtaaacca gaactgaggc 30 <210> 146 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 146 acgttggatg ttcttcgcct tgcaatccag 30 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 tcagaggctg aggcggggag 20 <210> 148 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 acgttggatg tcactttagg ccaactgctc 30 <210> 149 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 149 acgttggatg tttttaccca gccaggtctc 30 <210> 150 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 150 agaaactgga cccagtg 17 <210> 151 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 acgttggatg cctcatattt acgggagggc 30 <210> 152 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 152 acgttggatg aggcctgcca gaattgaaac 30 <210> 153 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 gagggcttca aaagtaa 17 <210> 154 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 acgttggatg aatgtaggat gccccagatg 30 <210> 155 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 155 acgttggatg cagctgctgt gagttagttc 30 <210> 156 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 ttgtcagaaa tgaaaaatac atc 23 <210> 157 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 acgttggatg tgtttacttt gccaccaacc 30 <210> 158 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 158 acgttggatg agtgccaaac ctacagaagc 30 <210> 159 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 tgccaccaac ctgccct 17 <210> 160 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 acgttggatg cattggcaaa gtccagtcac 30 <210> 161 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 161 acgttggatg agtctaagta cccactcagc 30 <210> 162 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 agtcaccaaa gcagttt 17 <210> 163 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 acgttggatg atgagtgccg ggctccagaa 30 <210> 164 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 164 acgttggatg agaaggagga acagaggcac 30 <210> 165 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 cttcccttct tgggatt 17 <210> 166 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 acgttggatg tctttgctct tccactccag 30 <210> 167 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 167 acgttggatg gaaaagggac aagaggaacg 30 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 ccactccagt ccttaagcga 20 <210> 169 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 acgttggatg tgagatctcg ggaaagagtc 30 <210> 170 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 170 acgttggatg aaaccagagg tgacttttcc 30 <210> 171 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 aaagagtctc tttataaata tggg 24 <210> 172 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 acgttggatg tggataaggt cacctgatgc 30 <210> 173 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 173 acgttggatg agtgtgtgca ggttgtagtc 30 <210> 174 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 tacacacagc tccgaat 17 <210> 175 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 175 acgttggatg ggtttagatg gaaggaacgg 30 <210> 176 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 176 acgttggatg cagctctgtc tgataaaggg 30 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 aagtggcgtg tatgtgtaat 20 <210> 178 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 acgttggatg ccctcatgtt actaacaggc 30 <210> 179 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 179 acgttggatg gcagcagcct ttaatgcatc 30 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 gttactaaca ggctgtaact 20 <210> 181 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 acgttggatg gtctataaag cagacttccc 30 <210> 182 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 182 acgttggatg gcacaatgtc tgacatctgg 30 <210> 183 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 183 agacttccca tggatgttt 19 <210> 184 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 184 acgttggatg aatgtcatca gtcaaggccc 30 <210> 185 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 185 acgttggatg tgatctcagt gacgatgcag 30 <210> 186 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 186 tgaggcctgg ggagacc 17 <210> 187 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 187 acgttggatg ggaaagatat agccaccagg 30 <210> 188 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 188 acgttggatg aatggaagtc ctccatcagc 30 <210> 189 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 189 caggagtagt tatgagga 18 <210> 190 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 190 acgttggatg cacagtgaga aaaggaagag 30 <210> 191 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 191 acgttggatg tgcctgttgc caaatgcttg 30 <210> 192 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 192 aaggaagaga aagataaaat ca 22 <210> 193 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 193 acgttggatg gtaagcttgg ctctgtttcc 30 <210> 194 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 194 acgttggatg tgaaatccca aaagcccagg 30 <210> 195 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 195 gctctgtttc caaactcata aaa 23 <210> 196 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 196 acgttggatg gtcaattggc ctaattttcc c 31 <210> 197 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 197 acgttggatg gagtggaatt gttccaggtc 30 <210> 198 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 198 cattttaatt tctccagagc tt 22 <210> 199 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 199 acgttggatg caaacaggaa ccagaccatc 30 <210> 200 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 200 acgttggatg agcaacctca cattgacacg 30 <210> 201 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 201 accagaccat cagatcc 17 <210> 202 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 202 acgttggatg aggtttggga acactggttg 30 <210> 203 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 203 acgttggatg ggaacgtttg tcctaatggg 30 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 204 acaagccact gatgagggag 20 <210> 205 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 205 acgttggatg ttttctggtt acccaataag 30 <210> 206 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 206 acgttggatg caatgaccca agtatctaga g 31 <210> 207 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 207 atcatgtgac tttccaca 18 <210> 208 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 208 acgttggatg agtgcagaca ctatctgctc 30 <210> 209 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 209 acgttggatg aagtgatgca gcaatgctgg 30 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 210 cacctccccc actagtactc 20 <210> 211 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 211 acgttggatg agagtgcctg ctcagataac 30 <210> 212 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 212 acgttggatg tcaagaggta aaaggagctg 30 <210> 213 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 213 tgctcatccc tgggagt 17 <210> 214 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 214 acgttggatg gtagggactt tctttgctgg 30 <210> 215 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 215 acgttggatg tgtaaaaact ctgggaaggg 30 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 216 ctcatcccca agaattattt 20 <210> 217 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 217 acgttggatg ctgcggtatg agtctgtatc 30 <210> 218 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 218 acgttggatg ctctgtgctc caagtacaac 30 <210> 219 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 219 aacctttcac ttcccttcaa a 21 <210> 220 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 220 acgttggatg ttagcccaag ccatcagtgc 30 <210> 221 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 221 acgttggatg ctcaccctta agcctatctc 30 <210> 222 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 222 gcatttctgt catcgag 17 <210> 223 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 223 acgttggatg acatcctcac agtatgtccc 30 <210> 224 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 224 acgttggatg tcactgtcat gactgctcac 30 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 225 caagtatctt ctgcccttcc 20 <210> 226 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 226 acgttggatg aacagcttca ccacggcgg 29 <210> 227 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 227 acgttggatg aaaggagtcc cgagtgggag 30 <210> 228 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 228 cttcaccacg gcggtcatgt 20 <210> 229 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 229 acgttggatg taactccttg gcacccttag 30 <210> 230 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 230 acgttggatg ctgaagaaca aagggatgac 30 <210> 231 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 231 cctagactca ccttggc 17 <210> 232 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 232 acgttggatg gcttttcaga cctttttgct g 31 <210> 233 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 233 acgttggatg aaaaggaact gctggcagag 30 <210> 234 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 234 tgtggaaatc tgatcctg 18 <210> 235 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 235 acgttggatg tgagagaacc aaagagggac 30 <210> 236 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 236 acgttggatg ttgcatgtag cctcctagtc 30 <210> 237 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 237 gactacatag gctcccc 17 <210> 238 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 238 acgttggatg atgcgtgtca ctctgggcaa 30 <210> 239 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 239 acgttggatg tggtctccag ggaaaccgg 29 <210> 240 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 240 cagagcgact ggagact 17 <110> Samsung Electronics Co., Ltd <120> Genetic polymorphisms associated with myocardial infarction and          uses according <130> PN061465 <160> 240 <170> KopatentIn 1.71 <210> 1 <211> 200 <212> DNA <213> Homo sapiens <400> 1 aagaatggaa ggacagcttg ctacttctgg gtgttcatca tgagcagtta aggctcacca 60 tatggtctcc actgatattt gggggaagga gacttgttac yacctaataa tgagatgaaa 120 gatcctgatt ccctacttgg tttactatga caccgccctg gcatgatggt tcaggaaact 180 ctttacattt acagattgtc 200 <210> 2 <211> 200 <212> DNA <213> Homo sapiens <400> 2 tactgctgtc tttggaacac tgttactcat cctacaaggc ctcaatcaag aatcttagga 60 ggtcattggt gcctacctgc ccatggcaga gaccaccaac mccttctgag agctgccaca 120 gtgctgcttt ctaacatgtc tacactagct cctcacagtg tgcggtgatt gttgggtgaa 180 agctctgttt ctcatagtga 200 <210> 3 <211> 200 <212> DNA <213> Homo sapiens <400> 3 tgatttgatt ttatccagtg ttgcaaactg ggtttcgtaa gtgactcttt tgtaaggagt 60 ttcagtgcac cccgtctgca acccatgcat atcttattta mccccaagct tctaaggtag 120 aatcctactt ttttcaagtg ctattgatta gttgcctgtt tagacttttg ttatatgatt 180 taaaatttta aaaatgataa 200 <210> 4 <211> 200 <212> DNA <213> Homo sapiens <400> 4 gtgtttctaa agcaactccc caccaacctc ttgggctgtg gtgaccaagg gctaaaaatt 60 aagtggggac cctggtgtct gacttttgct ccacttctga yaccttcttt ctctcccgtt 120 tcactaggac tggaaaatac aggctttttt cccaatcctt gtttctctca aaccaagacc 180 tcatctacat aaaacatcta 200 <210> 5 <211> 200 <212> DNA <213> Homo sapiens <400> 5 ccactgaaaa tatcctctgg tcatttattt ggctcaacgg acctatatgg ccattccctc 60 ttccacagtt gtaaagactt tgcctaattt ctggcaacta yagaagtagt ggtaaggata 120 atgtaaaatt tctttttgtc ttggaaatta tcaaaccact tttgaagatt gtattatcta 180 gtaatcagaa acttactttg 200 <210> 6 <211> 166 <212> DNA <213> Homo sapiens <400> 6 taagggcttg agtatgcaaa tatggaggct ttctcaaatc acgtttcgtt taatttaaca 60 ccttcataaa taggatggac ttaagagatc atcccaacct ycttactgta cagatcaaga 120 gatgggggtc cggaaagctg ctgatgttca tgctgtgagt ttaaca 166 <210> 7 <211> 200 <212> DNA <213> Homo sapiens <400> 7 tttgccaacc attcttcacc ctgttgggag agaatacaga aatctgtatt caagcataag 60 gtgctataca cttgtttgat gcctgcctct agggcaatga rgaggtaaga caatctcccc 120 attacatgct ttcgcagagg acagtctgta aagttacaga actccattcc ttcttacgta 180 ccttatacca taatatacca 200 <210> 8 <211> 152 <212> DNA <213> Homo sapiens <400> 8 aaggggcggc gctggccgga ctctctcggg tggactcccg gagcggcggc ggcggcggcg 60 gtggcagact gcgagtcacg tgcgacagag gaggcggagc rcggcggccg ggtgggtgga 120 gaaaacaaag cccccagctg tcagcagagg aa 152 <210> 9 <211> 200 <212> DNA <213> Homo sapiens <400> 9 attatataaa tgaaactggt ttaggatgtg tctttttttc ccctctcttt taccttaact 60 caggttcaag cctttcttaa gctctggtaa cttgcatata yaacaaagtt gaaataaaac 120 agatttttat atagggaaag agagatgagg aagggaacat atccagtttt ctcactgtga 180 aacagagtta gcaaggaagt 200 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <400> 10 gattatgtta acagaaattc tcagcctgtg tgatttgtca tattttaata tttcaagcca 60 ccattgcagc ttcttttagg tttggtttgt ctgaggcacc rcagcgagtg catgagcaca 120 cagactttga atttgtataa gtgaatggct cttccactta ctttgtggct ttgggctcat 180 cacttaactc attgatataa a 201 <210> 11 <211> 200 <212> DNA <213> Homo sapiens <400> 11 tgtgcagcaa tagtaactgg aacaacattt ctgcgatggg cagaagtggc aaggattgta 60 actcattaga ctcagaaggc gaggtcacct gagtaagcag kgtccttagt ggaacagtgg 120 gtgtaagagg aaggagagat gggtgggtgt ggggcttctt gccatctaca tatgtagggt 180 ctgcctttta cttgcacatc 200 <210> 12 <211> 166 <212> DNA <213> Homo sapiens <400> 12 gatgatactt agcttctgcg tcttcagtaa actcatctgt acaatggcct gttaaaccta 60 gctatttgaa aacatcagct aaaactaagt gatttttttg rtattcattt aggtctttta 120 tttcttgata tgcttgaaat ctaattgtct tttaaatgca ctaata 166 <210> 13 <211> 151 <212> DNA <213> Homo sapiens <400> 13 gattacaggc gtgagccacg gcacctggag agaaaaaagc ttctttaatg acgacctcaa 60 cataatttac atggagaagt ttcttaggtg gaaaaccgat ytgtatggtc ctcagaatgt 120 aacctacagg ttcttgccct cagaaaaatg c 151 <210> 14 <211> 200 <212> DNA <213> Homo sapiens <400> 14 taaggaagag ggacagctat gacctaatgc ttgcttggac cactataagc atgccaggga 60 aaatattcag gctaaattgt cggctctaag aacatgaagt rtattgattt ctttattaca 120 gctagcagat atttaagaat gttagcacag gtctttgaat aaattttgct tttaagagaa 180 gttactattt attcctaatt 200 <210> 15 <211> 200 <212> DNA <213> Homo sapiens <400> 15 tggacaatgg gaataaagca tttctaaagc accgactgga gaggaaggca acagagacaa 60 ggagagaagc cgagagacat gtctgcgtgc tgccacgcat ytgagcgatt gctctgtgaa 120 gagttgtaca ctgaacactt tcaggggagg ctgtttaccc aggcaatgtc ctcaaacaag 180 cctgtgccgg ggtgtcctgg 200 <210> 16 <211> 200 <212> DNA <213> Homo sapiens <400> 16 agaggcggcg gctccggaac gagctgctcc cacagcccct ccgctcctcg ccgtctcgcc 60 ttcgtcccca gcttacccag ttctgcgcgt tattgctcag yttgactttc ttgcacaggc 120 tcccggggat ctccatgacc gcggagcgcg ctgagcagcc ggggttctct gcgccgggan 180 ggtagcaaga ggagggcagg 200 <210> 17 <211> 200 <212> DNA <213> Homo sapiens <400> 17 ttagcagtcc cgcaaagctt gaggtttact catttttact ttctttagtc tctgggcaag 60 gaactaagag gtagtataga attctagacg atggaaactt yagaatggac aggattttaa 120 aaattatata ttccattctc ctgggttaca ggtggtctta cagctaaact atttgagact 180 gttgaagcca ttcgattttt 200 <210> 18 <211> 200 <212> DNA <213> Homo sapiens <400> 18 ttatgaggaa cagatgagat agtgaggttg agtgccagca cagtagccag tactcaatca 60 aatataactg taaaacaaag gggcagttcc taaggcccaa ratggagttt tagtcaaaag 120 gaaataaggc aaaaggccag ttacaagatg gagcaggccc tgcagtggag ttgaaaaccc 180 aggtcaccat gatgactgtg 200 <210> 19 <211> 200 <212> DNA <213> Homo sapiens <400> 19 ttaggaaatt ttcaatggag aaaataagtt ccaaaagtca ttctttctca gattaagatg 60 tcttgggttt cagtttactt ctttaaagaa agattcagag ytagtactga ggacccagac 120 tttcttgatg tgggaaatag ataattttct gttctgttga cattttttct ctctcttctc 180 tcattttcaa agtacagttc 200 <210> 20 <211> 200 <212> DNA <213> Homo sapiens <400> 20 taccatcctc acatcttgta tagactcctt ttatcagggc ctggtggtcc cagttcttcc 60 tagagaaacc catagcaaca ttcttgatgg tcagtggtcc rtggactggg ggggtcccca 120 tggccatctg tccttcctct tggctccctt ctgaggggca ggcagggtcc taaaaggaca 180 gagccctgtg gacctggcag 200 <210> 21 <211> 173 <212> DNA <213> Homo sapiens <400> 21 aaacattgtt tacataagta aacaagccag ggctgctgtg aaagttatta tggaagatac 60 aatttatata ttttctggaa aatatatcgc ctcatatata yagacaaaac ctttgcttta 120 acatgtttgt gcaactaatt acttactttc caatgagtac aatttcccac tag 173 <210> 22 <211> 200 <212> DNA <213> Homo sapiens <400> 22 gaggtgggca ctggtggctt ccagcctagg gctgtgactc tgctgttagg ggcacgctgc 60 tacacaggca ccaacctctc tagcacaggg gttcctccaa ktgtgctgtg ggggcccccg 120 agaccctttc aggggttccc ccaggttcct tgaaaggctc cnctgattag atcaggccca 180 ccaagatcac ctccctttgg 200 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <400> 23 agagtcataa gaagggtttt ctctctccta aggaggaacc aaagggggaa aaaaagtctc 60 tttgcttcta gacgttgttt ctgtagatgt aaaggctgtt macttctgca gtcatcttgc 120 tgagaataaa ttcagaatga agatggcaaa atggagcaag aaataagtta atgacccgga 180 aggcctcctt ctgaagttgt t 201 <210> 24 <211> 200 <212> DNA <213> Homo sapiens <400> 24 caccatttat ttcctatttt ctctcctgag ttaaatagga aacatgtctc gcattacttg 60 aaaaatcaag tcaaactatg ctcttactag gagttatggt yctttttatg tcttagatga 120 tgcttgatct agatgaatgc ggacttgctg tagctagata aatacaatgg gagtttgaag 180 gtgtttcgta gccctggaaa 200 <210> 25 <211> 200 <212> DNA <213> Homo sapiens <400> 25 agaactgtgg agcgattcct gatttttgag caggaagagt gacaattcaa aacagtattt 60 gactagattc acggctccgt agcatcccct tgggtgggag sgggaaggct gactaggacc 120 tctgattctt ctttccctga gctttgaagg ctctgaaaat acagctgggg ggacttgccc 180 agttttctta ttaagcaatt 200 <210> 26 <211> 200 <212> DNA <213> Homo sapiens <400> 26 agcacagttc caagatgcgc tgacatgttc tgcaggcgag agagcctttc gctggactgt 60 gactcacgga ggtggtgagg ccgctggttc taaccaagag ratgccagcg agaccactca 120 gcctcccctg gtggctgccc tggtttaatg ctcatgaaat gccagcctgt ggccattctg 180 ctgggtaaag agggtggtgt 200 <210> 27 <211> 125 <212> DNA <213> Homo sapiens <400> 27 cccagcagga acccttctgg aagggaatat ttgcagagat ttcccagatc tatgtgccct 60 tctgcttcct ctatgcttac tgctctcacc tgggccaccc mtgaaggtgg gcttgctgtt 120 tcagc 125 <210> 28 <211> 200 <212> DNA <213> Homo sapiens <400> 28 tggcgcgtgt gcaattagca atgcagtgta tatacaagaa gccatgctgt taacagttta 60 tctcaagtaa tttggtgtca tttacaaaag gaagaaattc ytgccatcag aagggacaga 120 aggagatgga atgatcaaat cacagagaaa cactaaaatt actaaatcta caacagctcg 180 ccttattttt cttggaccca 200 <210> 29 <211> 200 <212> DNA <213> Homo sapiens <400> 29 gagacaacgg ggatcaggca gaggggtggg cacataggag gcaacgtaaa ccagaactga 60 ggctgggcca ggccagggtg tcagaggctg aggcggggag kcgggctgcc cttgggctgg 120 attgcaaggc gaagaagcag gagggagagg ctgagagtgt ggaggggagg gggcttgtag 180 cgtgtgattg gagggaggac 200 <210> 30 <211> 200 <212> DNA <213> Homo sapiens <400> 30 ctacccacaa aagtttcttt gtacttattt acnagtcctg atgtttttgt tagaaaaaca 60 ttgccacctn tttttaccca gccaggtctc agcctaagtg ycactgggtc cagtttctct 120 catcttctga gcagttggcc taaagtgacc ctatgttttc cttttttctt tctcctcttc 180 ctcttccaca ccagtgcaaa 200 <210> 31 <211> 200 <212> DNA <213> Homo sapiens <400> 31 tttttaggct taaaaagata ttttaatgta actctatcca attctcaatt ttaggcctgc 60 cagaattgaa actcaagctt aactataatc atcaccaagc rttacttttg aagccctccc 120 gtaaatatga ggctgttaag gatgcaatac tataccgcgt gtctcttagg ttagttggaa 180 aaatgagtta gaaaatgagg 200 <210> 32 <211> 200 <212> DNA <213> Homo sapiens <400> 32 aaagctgagt aagcacctat agtaacaggt aacaaagtat tctagggatc agctgctgtg 60 agttagttca caagtgcttt aagtacgtgt taatcaaaga ygatgtattt ttcatttctg 120 acaataaaca tctggggcat cctacatttt tcctgggcaa tttgccttta tcattatatt 180 ttaatctctg atgcaatctt 200 <210> 33 <211> 200 <212> DNA <213> Homo sapiens <400> 33 ccacttccct ctcacacaga atagatttcc atagggtgag aattcaagag aaacttttta 60 attgtacagc aaagtgttta ctttgccacc aacctgccct rtagcttaag catatggcta 120 ccttttctat caacagctgg gcttctgtag gtttggcact cggtatacca tcccagcgca 180 gtcaaaaacc tgcaggtgac 200 <210> 34 <211> 200 <212> DNA <213> Homo sapiens <400> 34 atgttgttca gagggctatt cagagaatgg aaacccaagg ctcacctttc ttgagtctaa 60 gtacccactc agccaagtat atttagcaaa atagaaaaac yaaactgctt tggtgactgg 120 actttgccaa tgtctgaaag aaagaagtaa cagaaaggag agtctaaagt tgatcctgta 180 cagtataaaa catttcccca 200 <210> 35 <211> 200 <212> DNA <213> Homo sapiens <400> 35 tggatgtact catagagagg gctggagcgc actgggacac tggcaaactg atgagtgccg 60 ggctccagaa gccgcccatg gcccttccct tcttgggatt ktatctcccc gacttggcgg 120 tgcctctgtt cctccttctg ctggcggcgg atgtgttctt cccgtaattt cctttcccgt 180 tcctggcgac gtttctgctc 200 <210> 36 <211> 200 <212> DNA <213> Homo sapiens <400> 36 gggaataaat tagttttcct tgacagtata tactgcctgt ttctgtccat cctcttattt 60 gcttcttttt ctttgctctt ccactccagt ccttaagcga ktttagtttt attcgttcct 120 cttgtccctt ttcatgataa caatgtgtca tagtctgctt taaagttttt catacttacc 180 gatgttagtt ttattgctag 200 <210> 37 <211> 200 <212> DNA <213> Homo sapiens <400> 37 tggggacaga gcctgtgggg agtcttgatg tagtcttgtc cttgaaatcc attcacggct 60 ctgctgagat ctcgggaaag agtctcttta taaatatggg kttttgtttt ttcaaatttt 120 ggaaaagtca cctctggttt taaaacaatt acttcccgct ccaaacagat tagtcacttc 180 ccaagaacca tgcttctctc 200 <210> 38 <211> 200 <212> DNA <213> Homo sapiens <400> 38 attatagaca agcagagagg gaatggatcc gagggtgacc tggctgaatt aaaagtactg 60 catctaagtg tgtgcaggtt gtagtccaca gtaatggtgc yattcggagc tgtgtgtacc 120 tgcactactg catcaggtga ccttatccag cataacggta caacagaaat ttaacttgaa 180 acaggtttat tgacttgctt 200 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <400> 39 gtgacaaacc tgagactaga aaactactac atatgacatc ctacacactg actcccttct 60 tcagctctgt ctgataaagg gatgagagat cgtttcttat yattacacat acacgccact 120 tccgttcctt ccatctaaac ctagttcaga aacaccgcta agaattccca cccccaaaaa 180 aatggggatg ggggaagaga a 201 <210> 40 <211> 200 <212> DNA <213> Homo sapiens <400> 40 actgaggtta gtctcttgta ttaaactctt cacaaaatct gtttagcagc agcctttaat 60 gcatctagat tatggagctt ttttccttaa tccagctgat sagttacagc ctgttagtaa 120 catgagggga cattttggtg agaaatggga cttaactcct tccagtgtcc ttagaacatt 180 ttaattcatc ccaactgtct 200 <210> 41 <211> 200 <212> DNA <213> Homo sapiens <400> 41 cgagactcaa gataatgtac taaagacctt tagcacaatg tctgacatct ggtgttcaat 60 aagtggtgat attgctcaat ttcattccaa ttcaaactta yaaacatcca tgggaagtct 120 gctttataga caagcaatag gggagcacag taattatttg ggaggggaaa tctcagcagt 180 tcttccaagt gacacattct 200 <210> 42 <211> 200 <212> DNA <213> Homo sapiens <400> 42 atttgctgac tttgccaagc gatgagccac acaggattgg gaagcctgaa tgtcatcagt 60 caaggcccag agtgctgaac ctatgaggcc tggggagacc rctgtgaatt cctgcatcgt 120 cactgagatc atcatatcct gtgaaaaaca tctgccagcc actgtctgtg ttgtagaaag 180 ctgctgatgg gaaaacttgg 200 <210> 43 <211> 200 <212> DNA <213> Homo sapiens <400> 43 cataaaccct caataaacct aagctactat tattaagtac tgtgtgtcca cacaaaaaaa 60 aggtctggaa agatatagcc accaggagta gttatgagga rtgaggcaga gaggctgatg 120 gaggacttcc attttctatt ttgtatacta cttttctagt gtttacaaat gagcttgtat 180 tgtttttatc atcagcaaaa 200 <210> 44 <211> 200 <212> DNA <213> Homo sapiens <400> 44 atagcaggcc agggctctgt aggcttgttt tgctgctgtg cctgttgcca aatgcttgaa 60 aatcctgaag tacaaacata acagtctgaa ttaaatttca ytgattttat ctttctcttc 120 cttttctcac tgtggtgcag ttgttaatgg aattctagcc aaaaggatgt gggaggagag 180 gaaggagcca caaagggaga 200 <210> 45 <211> 200 <212> DNA <213> Homo sapiens <400> 45 ttagtcatga tgttctggtt tttatttata cattcatctg aaagagcaaa gtggtagagc 60 taaaatcagt aagcttggct ctgtttccaa actcataaaa rtgcaatatc gtggcagaaa 120 gattcttgtc ctatttctta ttttacctgg gcttttggga tttcacatgg acatagttgc 180 aaaataatac tccccaaact 200 <210> 46 <211> 200 <212> DNA <213> Homo sapiens <400> 46 ctaaccaagc ttgcccatat ttcacatgtt gagtttgttc attttaactg tcaattggcc 60 taattttccc atttctagca ttttaatttc tccagagctt kcatactaca ttgaacacca 120 attcagtgac ctggaacaat tccactcgca tttgttcctt ttagaccatt tcactgggag 180 tatgtttcca atccacttat 200 <210> 47 <211> 200 <212> DNA <213> Homo sapiens <400> 47 cagagacctg gtcctaaatc tgtgtgactt ttgcgaaatc cttttgcctc acagagctct 60 aggttcttat ctgtcaaaca ggaaccagac catcagatcc rtagagatcc aaccaatgaa 120 ggagacttcg aaaacttcac attgccgtgt caatgtgagg ttgctggatg gttatgacaa 180 gaaatcacat taaattcact 200 <210> 48 <211> 200 <212> DNA <213> Homo sapiens <400> 48 gcaggaggaa gggtgcctga ttcacagggg agatgcctga tggcgggtgg ggggctgctg 60 ttggcatccc cactggaacg tttgtcctaa tgggggcctg rctccctcat cagtggcttg 120 tcccaaaaca acaaccagtg ttcccaaacc tatacttcct ctttggattt ttgtttttca 180 tctagttgga gggaataaaa 200 <210> 49 <211> 200 <212> DNA <213> Homo sapiens <400> 49 tcattagttt attgcatccc caaggctttg ataacaaatg aagcaaatat tttcaaattt 60 ttctggttac ccaataagaa aaatcatgtg actttccaca yctgccatca ttggaagtga 120 caaaactcta gatacttggg tcattgttat catttgtcta tcttccttgg tatgctctat 180 tcttcgttgt ggagtaataa 200 <210> 50 <211> 200 <212> DNA <213> Homo sapiens <400> 50 ccagggtcgg cgcctgcccc agcctgagta ttgccctgat tctctgtacc aagtgatgca 60 gcaatgctgg gaggcagacc cagcagtgcg acccaccttc rgagtactag tgggggaggt 120 ggagcagata gtgtctgcac tgcttgggga ccattatgtg cagctgccag caacctacat 180 gaacttgggc cccagcacct 200 <210> 51 <211> 200 <212> DNA <213> Homo sapiens <400> 51 tctgacattc tctggttata aaactagagt atcaaaatgc atgagagtgc ctgctcagat 60 aaccatcaga tgaatatgaa gcttgctcat ccctgggagt rcagaaatca gctcctttta 120 cctcttgaag aagtggatac agcatcctct actgctcaat tgcataaacc agcacttgtc 180 cttggtgagc cgttgtttgc 200 <210> 52 <211> 200 <212> DNA <213> Homo sapiens <400> 52 atagaatttt tggtatactg aacaaaggga ttaaaaaggt cagttttatg tagggacttt 60 ctttgctggg gagggaaggt ctcatcccca agaattattt mtttattttc ccttcccaga 120 gtttttacat ggaagtatga aatattacct tcctactata taattaatag aaaaaataaa 180 cagagcccag attatactat 200 <210> 53 <211> 200 <212> DNA <213> Homo sapiens <400> 53 gcatagtact cagactcatt gaaagtttat agaatttggc ctgtgtggaa aactctgtgc 60 tccaagtaca acaactaact gaattctcta atttaaacaa stttgaaggg aagtgaaagg 120 ttataaaatg atacagactc ataccgcaga atcaccttaa aatgcagctg ttggagaaaa 180 aaaaaaagga agctttatgc 200 <210> 54 <211> 176 <212> DNA <213> Homo sapiens <400> 54 ttttcctggg cttcatgggc catttaaatt gtgaaccccc agggacacag tgcttagccc 60 aagccatcag tgcttgaaaa taggcatttc tgtcatcgag wttctgtatg ttgagatata 120 ttttgagata ggcttaaggg tgaggacatt tggctggagt cagcaataag ttgcaa 176 <210> 55 <211> 201 <212> DNA <213> Homo sapiens <400> 55 cacaagacta gattgcagga agatgtgaaa gcatttggct aattctgaca tttggctaat 60 aacatcctca cagtatgtcc caagtatctt ctgcccttcc yaccacggtg agcagtcatg 120 acagtgaggg tggcataggt gggatgtgtg gctggcagaa gccagtgggc aagagttgtc 180 cacagaatag tccatgagct t 201 <210> 56 <211> 200 <212> DNA <213> Homo sapiens <400> 56 tagagggggt gcgggacggg gactcacagg agatgcagga cggcccgaac atagtaattc 60 ctggtaaagg gcccgaacag cttcaccacg gcggtcatgt rcttctgtcc cctgggggag 120 ggaggaaggc gagacggcgc ggctgggcct ctcccactcg ggactccttt gctgccctgc 180 tgaccacccc agggcaccca 200 <210> 57 <211> 201 <212> DNA <213> Homo sapiens <400> 57 gttcacttgc tgctaccctc ttgtgcccac tttggcttaa taaatcccaa tccagcctag 60 ctgatttact gaagaacaaa gggatgacta gtttttgcta ygccaaggtg agtctaggat 120 cttaaaactt ttctaagggt gccaaggagt tagaatcagg ggacctaagt tttttctcct 180 gaaggcattt ctgagtagta g 201 <210> 58 <211> 201 <212> DNA <213> Homo sapiens <400> 58 tgttgatgag aaaattactt tcccttctga cattgatcct caagttttct atgaactacc 60 agaagcagta caaaaggaac tgctggcaga gtggaagaga rcaggatcag atttccacat 120 tggacataaa taagcatatt cagcaaaaag gtctgaaaag caagggaata ccattatttt 180 cggattagcg gtttattaag c 201 <210> 59 <211> 201 <212> DNA <213> Homo sapiens <400> 59 atgtgcatgt agccctttca gtaaggagtg tatggggagc ttgggccctc tgtggccttc 60 catttatttg catgtagcct cctagtcaac tagggttgta mggggagcct atgtagtccc 120 tctttggttc tctcatttcc aaatctcctg gtgacatatc tggctggtcc actgatctgt 180 ccttcacccg aaccacgact g 201 <210> 60 <211> 201 <212> DNA <213> Homo sapiens <400> 60 gcacgtgggc ctccacgatt ccttggcatg cgtgtcactc tgggcaacag gctggtcggc 60 cacgactgcg caggcgagag gcacagagcg actggagact ktagtccccc ggtttccctg 120 gagaccaggc ggaagcggcc ggaagtagcg ctgcggttgg cagcggcggg atggagaagc 180 tgggggtgga gccggaggag g 201 <210> 61 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 acgttggatg ccaagtaggg aatcaggatc 30 <210> 62 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens <400> 62 acgttggatg ggtctccact gatatttggg 30 <210> 63 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 ggatctttca tctcattatt aggt 24 <210> 64 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 acgttggatg gttagaaagc agcactgtgg 30 <210> 65 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 acgttggatg tcttaggagg tcattggtgc 30 <210> 66 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 tggcagctct cagaagg 17 <210> 67 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 acgttggatg gtaggattct accttagaag c 31 <210> 68 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 acgttggatg taaggagttt cagtgcaccc 30 <210> 69 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 accttagaag cttgggg 17 <210> 70 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 acgttggatg ttccagtcct agtgaaacgg 30 <210> 71 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 acgttggatg accctggtgt ctgacttttg 30 <210> 72 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 aacgggagag aaagaaggt 19 <210> 73 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 acgttggatg cacagttgta aagactttgc c 31 <210> 74 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 acgttggatg gtggtttgat aatttccaag 30 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 tgcctaattt ctggcaacta 20 <210> 76 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 acgttggatg gatggactta agagatcatc c 31 <210> 77 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 acgttggatg tgaacatcag cagctttccg 30 <210> 78 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 agagatcatc ccaacct 17 <210> 79 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 acgttggatg acacttgttt gatgcctgcc 30 <210> 80 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 acgttggatg tttacagact gtcctctgcg 30 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 ctgcctctag ggcaatga 18 <210> 82 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 acgttggatg agactgcgag tcacgtgcga 30 <210> 83 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 acgttggatg gctttgtttt ctccacccac 30 <210> 84 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 gacagaggag gcggagc 17 <210> 85 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 acgttggatg aagcctttct taagctctgg 30 <210> 86 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 acgttggatg cttcctcatc tctctttccc 30 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 agctctggta acttgcatat a 21 <210> 88 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 acgttggatg tttcaagcca ccattgcagc 30 <210> 89 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 acgttggatg tcaaagtctg tgtgctcatg 30 <210> 90 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 ggtttgtctg aggcacc 17 <210> 91 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 acgttggatg ctcattagac tcagaaggcg 30 <210> 92 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 acgttggatg ccatctctcc ttcctcttac 30 <210> 93 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 aggtcacctg agtaagcag 19 <210> 94 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 acgttggatg aatggcctgt taaacctagc 30 <210> 95 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 acgttggatg gcatatcaag aaataaaaga cc 32 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 gctaaaacta agtgattttt ttg 23 <210> 97 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 acgttggatg tttctgaggg caagaacctg 30 <210> 98 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 acgttggatg tggagaagtt tcttaggtgg 30 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 ttacattctg aggaccatac a 21 <210> 100 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 acgttggatg tcaggctaaa ttgtcggctc 30 <210> 101 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 acgttggatg caaagacctg tgctaacatt c 31 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 gtcggctcta agaacatgaa gt 22 <210> 103 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 acgttggatg cagtgtacaa ctcttcacag 30 <210> 104 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 acgttggatg acagagacaa ggagagaagc 30 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 cttcacagag caatcgctca 20 <210> 106 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 acgttggatg ctccgcggtc atggagatc 29 <210> 107 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 acgttggatg ttacccagtt ctgcgcgtta 30 <210> 108 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 ctgtgcaaga aagtcaa 17 <210> 109 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 acgttggatg ggcaaggaac taagaggtag 30 <210> 110 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 110 acgttggatg acctgtaacc caggagaatg 30 <210> 111 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 tctagacgat ggaaactt 18 <210> 112 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 acgttggatg acagtagcca gtactcaatc 30 <210> 113 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 acgttggatg tggccttttg ccttatttcc 30 <210> 114 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 cagttcctaa ggcccaa 17 <210> 115 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 acgttggatg tcaagaaagt ctgggtcctc 30 <210> 116 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 acgttggatg ctcagattaa gatgtcttgg g 31 <210> 117 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 ctgggtcctc agtacta 17 <210> 118 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 acgttggatg ctagagaaac ccatagcaac 30 <210> 119 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 acgttggatg caagaggaag gacagatggc 30 <210> 120 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 ttgatggtca gtggtcc 17 <210> 121 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 acgttggatg gtgggaaatt gtactcattg g 31 <210> 122 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 122 acgttggatg tctggaaaat atatcgcctc 30 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 ttaaagcaaa ggttttgtct 20 <210> 124 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 124 acgttggatg acaggcacca acctctctag 30 <210> 125 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 125 acgttggatg ggagcctttc aaggaacctg 30 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tagcacaggg gttcctccaa 20 <210> 127 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 acgttggatg gcttctagac gttgtttctg 30 <210> 128 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 128 acgttggatg tgctccattt tgccatcttc 30 <210> 129 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 129 tgtagatgta aaggctgtt 19 <210> 130 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 acgttggatg acagcaagtc cgcattcatc 30 <210> 131 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 131 acgttggatg caaactatgc tcttactagg 30 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 agcatcatct aagacataaa aag 23 <210> 133 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <133> 133 acgttggatg gaatcagagg tcctagtcag 30 <210> 134 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 134 acgttggatg ttgactagat tcacggctcc 30 <210> 135 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 tcctagtcag ccttccc 17 <210> 136 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 136 acgttggatg gtgaggccgc tggttctaac 30 <210> 137 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 137 acgttggatg tgagcattaa accagggcag 30 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 ccgctggttc taaccaagag 20 <139> <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 139 acgttggatg tctatgtgcc cttctgcttc 30 <210> 140 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 140 acgttggatg gctgaaacag caagccca 28 <210> 141 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 141 ctctcacctg ggccaccc 18 <210> 142 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 acgttggatg atctccttct gtcccttctg 30 <210> 143 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 143 acgttggatg gaagccatgc tgttaacagt 30 <210> 144 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 tgtcccttct gatggca 17 <210> 145 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 acgttggatg acgtaaacca gaactgaggc 30 <210> 146 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 146 acgttggatg ttcttcgcct tgcaatccag 30 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 tcagaggctg aggcggggag 20 <210> 148 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 acgttggatg tcactttagg ccaactgctc 30 <210> 149 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 149 acgttggatg tttttaccca gccaggtctc 30 <210> 150 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 150 agaaactgga cccagtg 17 <210> 151 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 acgttggatg cctcatattt acgggagggc 30 <210> 152 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 152 acgttggatg aggcctgcca gaattgaaac 30 <210> 153 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 gagggcttca aaagtaa 17 <210> 154 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 acgttggatg aatgtaggat gccccagatg 30 <210> 155 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 155 acgttggatg cagctgctgt gagttagttc 30 <210> 156 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 ttgtcagaaa tgaaaaatac atc 23 <210> 157 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 acgttggatg tgtttacttt gccaccaacc 30 <210> 158 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 158 acgttggatg agtgccaaac ctacagaagc 30 <210> 159 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 tgccaccaac ctgccct 17 <210> 160 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 acgttggatg cattggcaaa gtccagtcac 30 <210> 161 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 161 acgttggatg agtctaagta cccactcagc 30 <210> 162 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 agtcaccaaa gcagttt 17 <210> 163 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 acgttggatg atgagtgccg ggctccagaa 30 <210> 164 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 164 acgttggatg agaaggagga acagaggcac 30 <210> 165 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 cttcccttct tgggatt 17 <210> 166 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 acgttggatg tctttgctct tccactccag 30 <210> 167 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 167 acgttggatg gaaaagggac aagaggaacg 30 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 ccactccagt ccttaagcga 20 <210> 169 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 acgttggatg tgagatctcg ggaaagagtc 30 <210> 170 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 170 acgttggatg aaaccagagg tgacttttcc 30 <210> 171 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 aaagagtctc tttataaata tggg 24 <210> 172 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 acgttggatg tggataaggt cacctgatgc 30 <210> 173 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 173 acgttggatg agtgtgtgca ggttgtagtc 30 <210> 174 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 tacacacagc tccgaat 17 <175> 175 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 175 acgttggatg ggtttagatg gaaggaacgg 30 <210> 176 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 176 acgttggatg cagctctgtc tgataaaggg 30 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 aagtggcgtg tatgtgtaat 20 <210> 178 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 acgttggatg ccctcatgtt actaacaggc 30 <210> 179 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 179 acgttggatg gcagcagcct ttaatgcatc 30 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 gttactaaca ggctgtaact 20 <210> 181 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 acgttggatg gtctataaag cagacttccc 30 <210> 182 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 182 acgttggatg gcacaatgtc tgacatctgg 30 <210> 183 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 183 agacttccca tggatgttt 19 <210> 184 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 184 acgttggatg aatgtcatca gtcaaggccc 30 <210> 185 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 185 acgttggatg tgatctcagt gacgatgcag 30 <210> 186 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 186 tgaggcctgg ggagacc 17 <210> 187 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 187 acgttggatg ggaaagatat agccaccagg 30 <210> 188 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 188 acgttggatg aatggaagtc ctccatcagc 30 <210> 189 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 189 caggagtagt tatgagga 18 <210> 190 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 190 acgttggatg cacagtgaga aaaggaagag 30 <210> 191 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 191 acgttggatg tgcctgttgc caaatgcttg 30 <210> 192 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 192 aaggaagaga aagataaaat ca 22 <210> 193 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 193 acgttggatg gtaagcttgg ctctgtttcc 30 <210> 194 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 194 acgttggatg tgaaatccca aaagcccagg 30 <210> 195 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 195 gctctgtttc caaactcata aaa 23 <210> 196 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 196 acgttggatg gtcaattggc ctaattttcc c 31 <210> 197 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 197 acgttggatg gagtggaatt gttccaggtc 30 <210> 198 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 198 cattttaatt tctccagagc tt 22 <210> 199 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 199 acgttggatg caaacaggaa ccagaccatc 30 <210> 200 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 200 acgttggatg agcaacctca cattgacacg 30 <210> 201 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 201 accagaccat cagatcc 17 <210> 202 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 202 acgttggatg aggtttggga acactggttg 30 <210> 203 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 203 acgttggatg ggaacgtttg tcctaatggg 30 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 204 acaagccact gatgagggag 20 <210> 205 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 205 acgttggatg ttttctggtt acccaataag 30 <206> 206 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 206 acgttggatg caatgaccca agtatctaga g 31 <210> 207 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 207 atcatgtgac tttccaca 18 <210> 208 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 208 acgttggatg agtgcagaca ctatctgctc 30 <210> 209 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 209 acgttggatg aagtgatgca gcaatgctgg 30 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 210 cacctccccc actagtactc 20 <210> 211 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 211 acgttggatg agagtgcctg ctcagataac 30 <210> 212 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 212 acgttggatg tcaagaggta aaaggagctg 30 <210> 213 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 213 tgctcatccc tgggagt 17 <210> 214 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 214 acgttggatg gtagggactt tctttgctgg 30 <210> 215 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 215 acgttggatg tgtaaaaact ctgggaaggg 30 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 216 ctcatcccca agaattattt 20 <210> 217 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 217 acgttggatg ctgcggtatg agtctgtatc 30 <210> 218 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 218 acgttggatg ctctgtgctc caagtacaac 30 <210> 219 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 219 aacctttcac ttcccttcaa a 21 <210> 220 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 220 acgttggatg ttagcccaag ccatcagtgc 30 <210> 221 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 221 acgttggatg ctcaccctta agcctatctc 30 <210> 222 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 222 gcatttctgt catcgag 17 <210> 223 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 223 acgttggatg acatcctcac agtatgtccc 30 <210> 224 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 224 acgttggatg tcactgtcat gactgctcac 30 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 225 caagtatctt ctgcccttcc 20 <210> 226 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 226 acgttggatg aacagcttca ccacggcgg 29 <210> 227 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 227 acgttggatg aaaggagtcc cgagtgggag 30 <210> 228 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 228 cttcaccacg gcggtcatgt 20 <210> 229 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 229 acgttggatg taactccttg gcacccttag 30 <210> 230 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 230 acgttggatg ctgaagaaca aagggatgac 30 <210> 231 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 231 cctagactca ccttggc 17 <210> 232 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 232 acgttggatg gcttttcaga cctttttgct g 31 <210> 233 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 233 acgttggatg aaaaggaact gctggcagag 30 <210> 234 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 234 tgtggaaatc tgatcctg 18 <210> 235 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 235 acgttggatg tgagagaacc aaagagggac 30 <210> 236 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 236 acgttggatg ttgcatgtag cctcctagtc 30 <210> 237 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 237 gactacatag gctcccc 17 <210> 238 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 238 acgttggatg atgcgtgtca ctctgggcaa 30 <210> 239 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 239 acgttggatg tggtctccag ggaaaccgg 29 <210> 240 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 240 cagagcgact ggagact 17  

Claims (25)

서열번호 57의 폴리뉴클레오티드에 있어서, 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드;The polynucleotide of SEQ ID NO: 57, comprising: a polynucleotide comprising 8 or more consecutive nucleotides comprising the 101 st base or a complementary polynucleotide thereof; 서열번호 58의 폴리뉴클레오티드에 있어서, 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드;A polynucleotide of SEQ ID NO: 58, comprising: a polynucleotide comprising 8 or more consecutive nucleotides comprising the 101 st base or a complementary polynucleotide thereof; 서열번호 59의 폴리뉴클레오티드에 있어서, 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드; 및The polynucleotide of SEQ ID NO: 59, comprising: a polynucleotide comprising 8 or more contiguous nucleotides comprising the 101 st base or a complementary polynucleotide thereof; And 서열번호 60의 폴리뉴클레오티드에 있어서, 101번째 염기를 포함하는 8개 이상의 연속 뉴클레오티드를 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드;를 포함하는 폴리뉴클레오티드 세트. The polynucleotide set forth in SEQ ID NO: 60, comprising a polynucleotide comprising 8 or more contiguous nucleotides comprising the 101 st base or a complementary polynucleotide thereof. 삭제delete 제1항에 있어서, 남성 및 비흡연자의 심근 경색 진단용인 것을 특징으로 하는 폴리뉴클레오티드 세트.The polynucleotide set according to claim 1, which is used for diagnosing myocardial infarction of males and non-smokers. 제1항에 있어서, 상기 8개 이상의 연속 뉴클레오티드는 8 내지 70개의 연속 뉴클레오티드인 것을 특징으로 하는 폴리뉴클레오티드 세트. The polynucleotide set of claim 1, wherein the eight or more contiguous nucleotides are 8 to 70 contiguous nucleotides. 삭제delete 삭제delete 제1항에 있어서, 대립인자 특이적 프로브인 것을 특징으로 하는 폴리뉴클레오티드 세트.The polynucleotide set of claim 1, wherein the polynucleotide set is an allele specific probe. 제1항에 있어서, 대립인자 특이적 프라이머인 것을 특징으로 하는 폴리뉴클레오티드 세트.The polynucleotide set of claim 1, wherein the polynucleotide set is an allele specific primer. 삭제delete 삭제delete 삭제delete 제1항, 제3항 또는 제4항의 폴리뉴클레오티드 세트를 포함하는 단일염기다형성 검출용 마이크로어레이. A microarray for detecting monobasic polymorphism comprising the polynucleotide set of claim 1. 제1항, 제3항 또는 제4항의 폴리뉴클레오티드 세트를 포함하는 단일염기다형성 검출용 키트. A kit for detecting monobasic polymorphism comprising the polynucleotide set of claim 1, 3 or 4. a) 진단 대상으로부터 분리된 핵산 시료를 제공하는 단계; 및 a) providing a nucleic acid sample isolated from the diagnostic subject; And b) 서열번호 57 내지 60으로 구성된 폴리뉴클레오티드 세트의 각 101번째 염기인 다형성 부위의 대립 유전자형을 결정하는 단계;를 포함하는 심근 경색 발병의 변경된 위험도를 갖는 대상을 확인하기 위한 데이터를 얻는 방법. b) determining an allele of the polymorphic site, each 101 base of the polynucleotide set consisting of SEQ ID NOS: 57-60; and obtaining data for identifying a subject having an altered risk of developing myocardial infarction. 제 14항에 있어서, 15. The method of claim 14, 상기 b) 단계는 대립인자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립인자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법(oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행되는 것을 특징으로 하는 방법.Step b) includes allele-specific probe hybridization, allele-specific amplification, sequencing, 5 'nuclease digestion. ), Molecular beacon assay, oligonucleotide ligation assay, size analysis, and single-stranded conformation polymorphism. Method carried out by the method. 제 14항에 있어서, 15. The method of claim 14, 상기 변경된 위험도는 증가된 위험도인 것을 특징으로 하는 방법. The altered risk is increased risk. 제 14항에 있어서, 15. The method of claim 14, 상기 변경된 위험도는 감소된 위험도인 것을 특징으로 하는 방법.And said altered risk is a reduced risk. 제 14항에 있어서, 15. The method of claim 14, c) 상기 서열번호 57 내지 60으로 구성된 폴리뉴클레오티드 세트의 다형성 부위의 대립 유전자형이 위험 대립인자를 포함하는지를 판정하는 단계를 추가적으로 포함하는 방법. c) determining whether the allele of the polymorphic site of the polynucleotide set consisting of SEQ ID NOS: 57-60 comprises a risk allele. 삭제delete 삭제delete a) 제1항, 제3항, 또는 제4항의 폴리뉴클레오티드 세트와 엄격한 혼성화 조건 하에서 특이적으로 혼성화하는 시약을 핵산 분자를 포함하는 시험 샘플과 접촉시키는 단계; 및 a) contacting a test sample comprising nucleic acid molecules with a reagent that specifically hybridizes under stringent hybridization conditions with the polynucleotide set of claim 1, 3, or 4; And b) 혼성화된 이중 가닥의 형성을 검출하는 단계;를 포함하는 핵산 분자 내의 단일염기다형성(SNP)을 검출하는 방법. b) detecting the formation of hybridized double strands. 제 21항에 있어서, 22. The method of claim 21, 상기 b) 단계는 대립인자 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립인자 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법(oligonucleotide ligation assay), 크기 분석법(size analysis) 및 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism)으로 구성된 군에서 선택되는 방법에 의해 수행되는 것을 특징으로 하는 방법.Step b) includes allele-specific probe hybridization, allele-specific amplification, sequencing, 5 'nuclease digestion. ), Molecular beacon assay, oligonucleotide ligation assay, size analysis, and single-stranded conformation polymorphism. Method carried out by the method. 삭제delete 삭제delete 삭제delete
KR1020050047195A 2005-05-13 2005-06-02 Genetic polymorphisms associated with myocardial infarction and uses thereof KR101138866B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020050047195A KR101138866B1 (en) 2005-06-02 2005-06-02 Genetic polymorphisms associated with myocardial infarction and uses thereof
US11/430,939 US20060257913A1 (en) 2005-05-13 2006-05-10 Genetic polymorphisms associated with myocardial infarction and uses thereof
PCT/KR2006/001812 WO2006121312A1 (en) 2005-05-13 2006-05-15 Genetic polymorphisms associated with myocardial infarction and uses thererof
JP2008511059A JP2008545377A (en) 2005-05-13 2006-05-15 Genetic polymorphisms associated with myocardial infarction and their use
EP06768483.7A EP1880026B1 (en) 2005-05-13 2006-05-15 Genetic polymorphisms associated with myocardial infarction and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050047195A KR101138866B1 (en) 2005-06-02 2005-06-02 Genetic polymorphisms associated with myocardial infarction and uses thereof

Publications (2)

Publication Number Publication Date
KR20060125252A KR20060125252A (en) 2006-12-06
KR101138866B1 true KR101138866B1 (en) 2012-05-14

Family

ID=37729681

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050047195A KR101138866B1 (en) 2005-05-13 2005-06-02 Genetic polymorphisms associated with myocardial infarction and uses thereof

Country Status (1)

Country Link
KR (1) KR101138866B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J Hum Genet, Vol. 48, No. 9, pp476-479 *

Also Published As

Publication number Publication date
KR20060125252A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US10889865B2 (en) Thyroid tumors identified
KR101206029B1 (en) Multiple SNP for diagnosing colorectal cancer, microarray and kit comprising the same, and method for diagnosing colorectal cancer using the same
US20030190640A1 (en) Genes expressed in prostate cancer
EP1883711A1 (en) Methods and compositions for diagnosing cardiovascular disease
KR100754398B1 (en) Multiple SNP for diagnosing cardiovascular disease microarray and kit comprising the same and method for diagnosing cardiovascular disease using the same
KR101138862B1 (en) A polynucleotide associated with a breast cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a breast cancer using the same
KR101138863B1 (en) A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
US20030166026A1 (en) Identification of specific biomarkers for breast cancer cells
KR20060117691A (en) Snp for diagnosing cardiovascular disease according to types of subjects, microarray and kit comprising the same, and method for diagnosing cardiovascular disease using the same
KR100908125B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
KR101138866B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
KR100790871B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
KR101148825B1 (en) A protein associated with a colon cancer, a polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the same
EP1880026B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
KR102409336B1 (en) SNP markers for Immunoglobulin A (IgA) nephropathy and IgA vasculitis diagnosis and diagnosis method using the same
KR100912469B1 (en) SNP for diagnosing schizophrenia, microarray and kit comprising the same
WO2006137644A2 (en) Genetic polymorphisms associated with myocardial infarction and uses therof
KR100912470B1 (en) SNP for diagnosing schizophrenia, microarray and kit comprising the same
KR100912472B1 (en) SNP and microsatellite for diagnosing schizophrenia, microarray and kit comprising the same
JP2008502341A (en) Human obesity susceptibility gene encoding voltage-gated potassium channel and use thereof
WO2006127609A2 (en) Polymorphism in the macrophage migration inhibitory factor (mif) gene as marker for prostate cancer
KR20060091683A (en) A method for diagnosing type ii diabetes mellitus using multilocus marker, polynucleotide comprising a marker associeated with type ii diabetes mellitus and microarray having immobilized the polynucleotide set

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150313

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee