KR101135515B1 - Method for manufacture of sialon - Google Patents

Method for manufacture of sialon Download PDF

Info

Publication number
KR101135515B1
KR101135515B1 KR1020090113066A KR20090113066A KR101135515B1 KR 101135515 B1 KR101135515 B1 KR 101135515B1 KR 1020090113066 A KR1020090113066 A KR 1020090113066A KR 20090113066 A KR20090113066 A KR 20090113066A KR 101135515 B1 KR101135515 B1 KR 101135515B1
Authority
KR
South Korea
Prior art keywords
sialon
weight
parts
feldspar
aluminum
Prior art date
Application number
KR1020090113066A
Other languages
Korean (ko)
Other versions
KR20110056652A (en
Inventor
최도문
김성환
김정곤
Original Assignee
조선내화 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선내화 주식회사 filed Critical 조선내화 주식회사
Priority to KR1020090113066A priority Critical patent/KR101135515B1/en
Publication of KR20110056652A publication Critical patent/KR20110056652A/en
Application granted granted Critical
Publication of KR101135515B1 publication Critical patent/KR101135515B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 사용상의 제약이 따르는 납석을 알루미늄과 실리콘을 적절히 배합, 저 에너지 공법인 SHS법을 이용하여 사이알론으로 합성시켜 고기능성 내화재료를 얻기 위한 것이다.The present invention is to obtain a high functional refractory material by appropriately blending leadstone with restrictions on use, by combining aluminum and silicon with sialon using SHS method which is a low energy method.

이에 따른 구성은 납석 60~80중량부, 알루미늄 금속분말 20~40중량부, 실리콘 금속분말 또는 실리콘 금속 10~30 중량부 배합하여 질소분위기에서 SHS공법을 이용하여 순도 50~90%의 사이알론을 얻음을 특징으로 하는 사이알론의 제조방법으로 이루어진다. The composition is composed of 60 to 80 parts by weight of feldspar, 20 to 40 parts by weight of aluminum metal powder, 10 to 30 parts by weight of silicon metal powder or silicon metal, and a sialon having a purity of 50 to 90% using SHS in a nitrogen atmosphere. It consists of the method of manufacturing sialon characterized by the obtained.

사이알론, 납석, 알루미나 Sialon, feldspar, alumina

Description

사이알론의 제조방법{Method for manufacture of sialon}Method for manufacture of sialon

본 발명은 자전연소합성법(SHS법: Self-propagating High-temperature Synthesis)을 이용하여 납석과 알루미늄 분말, 질소가스를 반응시켜 산질화물(β-SiAlON)을 합성하고, 이 원료를 이용하여 내열특성이 우수한 내화재료로 활용하는 기술에 관한 것이다.The present invention synthesizes an oxynitride (β-SiAlON) by reacting feldspar with aluminum powder and nitrogen gas using a self-propagating high-temperature synthesis (SHS method). The present invention relates to a technology used as an excellent refractory material.

현재 내화재료로 사용되고 있는 납석은 알루미나와 실리카의 비가 1:4로서 실리카의 함유량이 높으며 고온에서 팽창하는 특징을 가지고 있으며, 가격이 저렴하고 국내매장량이 상당함에도 불구하고 내화재료로서 사용상의 제약을 받고 있다.Pyrite is currently used as a refractory material, the ratio of alumina and silica is 1: 4, which has a high content of silica and expands at high temperatures. have.

반면에 AlN, SiAlON, AlON 등의 질화물 및 산질화물 등은 우수한 고온특성을 바탕으로 내화재료로서 각광받고 있는 재료들이다. 특히 사이알론은 내열충격성, 내산화성, 용융금속에 대한 안정성 등의 우수한 열간 특성을 가지고 있으며 또한 내화물에 적용하였을 때 내침식성, 내산화성, 내부식성 등이 우수한 것으로 보고되어 왔다.(G.P. Shvoikin. N.V. Lukin, and L.b.Khoroshavin, " SIALONS-PROMISING REFRACTORY AND CERAMIC MATERIRALS", refractorios and Industrial Ceramics, Vol.44.No. 1.52-58(2003))On the other hand, nitrides and oxynitrides such as AlN, SiAlON, and AlON are spotlighted as refractory materials based on excellent high temperature characteristics. In particular, sialon has excellent hot properties such as thermal shock resistance, oxidation resistance, and stability to molten metal, and has been reported to be excellent in erosion resistance, oxidation resistance, and corrosion resistance when applied to refractory materials (GP Shvoikin. NV). Lukin, and LbKhoroshavin, "SIALONS-PROMISING REFRACTORY AND CERAMIC MATERIRALS", refractorios and Industrial Ceramics, Vol. 44.No. 1.52-58 (2003))

따라서 카올린이나 납석과 같은 점토질 재료를 사이알론으로 합성하는 연구가 종종 이루어져 왔다.Therefore, studies on synthesizing clay materials such as kaolin and feldspar into sialon have been frequently conducted.

아래는 이러한 연구에 대한 참고문헌이다.Below are references to these studies.

1. "하동카올린으로부터 β-Sialon의 합성". 이홍림, 이명직, 한국세라믹학회, Vol.21.No.1(1984)1. "Synthesis of β-Sialon from Hadong kaolin". Lee Hong-rim, Lee Myung-jik, The Korean Ceramic Society, Vol. 21.No.1 (1984)

2. "완도납석으로부터 β-Sialon의 합성" 이홍림, 신현곤, 한국세라믹학회, Vol.212.No.1(1984)2. "Synthesis of β-Sialon from Sustained Rock" Hong-Lim Lee, Hyun-Kon Shin, The Korean Ceramic Society, Vol. 212.No.1 (1984)

3. "Al분말의 점화열을 이용한 Sialon 분말 제조에 관한 연구" 박정현, 전방세, 이은창, 한국세라믹학회. Vol.23. No.3. 1-6(1986)3. "Study on the manufacture of Sialon powder using ignition heat of Al powder" Park, Jung-Hyun, Jeon-Seon Lee, Eun-Chang Lee, The Korean Ceramic Society. Vol. 23. No.3. 1-6 (1986)

4. "한국산 천연원료로부터 β-Sialon의 합성 및 그 특성", 임현진, 이홍림, 한국세라믹학회, Vol.26. No.3. 402-408(1989)4. "Synthesis and Characterization of β-Sialon from Korean Natural Raw Materials", Hyun-Jin Lim, Hong-Lim Lee, The Korean Ceramic Society, Vol. No.3. 402-408 (1989)

상기 문헌을 살펴보면, 종래의 사이알론은 합성방법으로 납석을 이용한 경우, 카본 또는 알루미늄 금속을 환원제를 사용하여 질소분위기에서 1300~1500℃의 고온으로 직접 점화하여 사이알론을 제조하는 것으로 보고되어 왔으며, 또한 SHS공법을 사용하여 사이알론을 제조하는 경우, 원재료로서 규소, 알루미늄 분말을 사용하여 제조하는 것으로 보고되고 있으나, 납석을 SHS공정을 통하여 사이알론을 합성한 사례는 없다.Looking at the above literature, conventional sialon has been reported to produce sialon by directly igniting carbon or aluminum metal at a high temperature of 1300-1500 ° C. in a nitrogen atmosphere using a reducing agent in the case of using feldspar as a synthesis method. In addition, when the sialon is manufactured using the SHS method, it is reported that silicon and aluminum powder are used as raw materials, but there is no case of synthesizing sialon through the SHS process.

또한 SHS공법을 사용하여 사이알론을 제조하는 경우, 원재료로서 규소, 알루미늄 분말을 사용하여 제조하는 것으로 보고되고 있으며, 납석을 활용한 사례는 없다(한국등록특허 10-0483929호"규소계 산업 폐기물을 내화물 분말로 제조하는 방법).In addition, in the case of producing sialon using the SHS method, it is reported that silicon and aluminum powder are used as raw materials, and there is no case of using pitrite (Korea Patent No. 10-0483929). Method of making refractory powder).

따라서 본 발명은 내화재료로 사용하기 위한 사이알론을 납석을 이용하여 합성코자 하였으며, 그 방법으로서 초기 투자비용이 저렴하고 공정이 간단하며 에너지 절약형 합성기술인 SHS법을 이용하여 합성을 시도하였다.Therefore, the present invention intends to synthesize sialon for use as a refractory material using leadstone. As the method, the initial investment cost is low, the process is simple, and the synthesis is attempted using the SHS method which is an energy-saving synthesis technology.

본 발명은 상기한 바와 같이 사용상의 제약이 따르는 납석을 알루미늄과 실리콘 금속분말을 적절히 배합, 저 에너지 공법인 SHS법을 이용하여 사이알론으로 합성시켜 고기능성 내화재료로서 사용하고자 하는데 그 목적이 있다.The present invention is intended to use as a high-functional refractory material by combining a feldspar having the restrictions of use as described above, by appropriately mixing aluminum and silicon metal powder into sialon using the SHS method, which is a low energy method.

내화재료로서 상용화, 실용화하기 위해서는 납석이 SHS공법에 의하여 사이알론으로 합성되어야 하며 또한 사이알론의 순도가 높고, 대량합성이 가능한 조건을 찾는 것이 본 발명의 주된 기술적 과제이다.In order to commercialize and commercialize it as a refractory material, it is a main technical problem of the present invention to find conditions in which feldspar should be synthesized into sialon by the SHS method, and that sialon has high purity and is capable of mass synthesis.

상기 목적 달성을 위한 본 발명은 납석 60~80중량부, 알루미늄 금속분말 20~40중량부 배합하여 질소분위기에서 SHS공법을 이용하여 순도 50~90%의 사이알론을 제조하는 방법으로 이루어진다.The present invention for achieving the above object consists of a 60-80 parts by weight of feldspar, 20-40 parts by weight of aluminum metal powder to prepare a sialon having a purity of 50-90% using the SHS method in a nitrogen atmosphere.

또한 본 발명은 상기한 배합구성에 실리콘 금속분말 또는 실리콘 금속을 10~30중량부를 추가로 배합하여 제조할 수 있다.In addition, the present invention can be prepared by further blending 10 to 30 parts by weight of the silicon metal powder or silicon metal in the above-described compounding structure.

상기한 조성으로 배합함에 있어, 알루미늄이 20중량부 이하이고, 납석이 80중량부 이상 배합일 경우는 점화가 되지 않아 열 전파가 이루어지 않으며, 알루미늄 40중량부 이상, 납석 60중량부 이하로 혼련할 경우 합성은 되지만 사이알론이 아닌 AlON이 합성되는 결과를 가져오게 된다.In blending with the above-mentioned composition, when aluminum is 20 parts by weight or less, and feldspar is 80 parts by weight or more, ignition does not occur and heat propagation does not occur, and the mixture is kneaded at 40 parts by weight or more and 60 parts by weight or less of aluminum. Doing so will result in the synthesis, but will result in the synthesis of AlON rather than sialon.

본 발명은 미반응한 알루미나를 반응시켜 사이알론의 순도를 높이기 위해 실리콘 금속분말 또는 실리콘 금속을 10~30중량부를 추가로 배합하여 사용함이 바람직하다In the present invention, in order to increase the purity of sialon by reacting unreacted alumina, it is preferable to further use 10-30 parts by weight of silicon metal powder or silicon metal.

납석을 사이알론으로 합성하기 위하여 기존에 시도되었던 방법은 고온 소성로에서 직접 질화시키는 공정이었으며 이러한 방법은 비싼 설비 투자와 고 에너지서비, 대량합성의 어려움을 안고 있어, 본 발명에서는 이를 해결하기 위하여 SHS공정을 이용하여 합성 조건을 수립한 것으로, 그 결과 사이알론은 SHS공정을 통하여 성공하였으며 Si 첨가의 효과로서 고순도의 사이알론을 합성할 수 있었다.The existing attempt to synthesize feldspar into sialon has been a process of nitriding directly in a high-temperature kiln, and this method has high cost of equipment investment, high energy service, and difficulty in mass synthesis. As a result, the sialon was succeeded through the SHS process and the high purity sialon could be synthesized as an effect of Si addition.

이는 그 동안 사용상의 제약이 따른 납석이 기존 내화재료의 한계를 극복할 수 있는 사이알론으로 합성되어 고부가가치화될 수 있는데 의의가 있다 할 수 있다.This can be meaningful because it can be synthesized into sialon, which can overcome the limitations of the existing refractory materials, due to the restrictions of use, and thus can be highly added.

이하 실시예에 따라 본 발명을 설명한다.The present invention will be described according to the following examples.

(실시예 1)(Example 1)

하기 (표 1)은 국내산 천연 납석과 알루미늄 분말에 대한 배합구성을 나타낸 것이다.Table 1 shows the composition of the domestic natural feldspar and aluminum powder.

원료
(중량부)
Raw material
(Parts by weight)
본 발명 실시예         Inventive Example 비교발명        Comparative invention
A      A B     B C     C D     D E    E 납석  Feldspar 75      75 70     70 65     65 80     80 60   60 알루미늄  aluminum 25      25 30     30 35     35 20     20 40   40 비고   Remarks -      - -      - 사이알론 순도60%60% purity of sialon 전파않됨 Not propagated AlON합성AlON Synthesis

상기 (표 1)에서 알 수 있는 바와 같이 알루미늄 함량이 20중량부인 비교발명D에서는 점화는 일어나나 열이 전파되지 않으며, 나머지 배합의 경우는 열이 전파되어 합성이 이루어졌다. 합성된 배합을 도 1과 같이 XRD분석한 결과, 전 배합에서 사이알론 피크를 확인 할 수 있었으며 주로 두가지 상의 사이알론(Si6Al10O21N4, Si3Al3O3N5)이 형성됨을 알 수 있었다. 불순물로는 미반응 알루미나와 석출된 Si가 확인되었으며 비교발명인 E 배합의 경우 사이알론의 함량이 줄고 AlON피크가 난다.As can be seen in Table 1, in Comparative Invention D having an aluminum content of 20 parts by weight, ignition occurs but heat is not propagated, and in the remaining formulations, heat is propagated and synthesis was performed. By XRD analysis as also the synthesis formulation 1 results, we were able to determine the sialon peak among the entire formulation mainly two kinds between on the sialon (Si 6 Al 10 O 21 N 4, Si 3 Al 3 O 3 N 5) is formed And it was found. As impurities, unreacted alumina and precipitated Si were identified, and in the case of the comparative E formulation, the content of sialon decreased and the AlON peak appeared.

C 배합의 경우 질소 함유량이 높은 Si3Al3O3N5 상이 주를 이루며 가장 높은 순도를 가진다. 이 때의 순도는 약 60%이다. In the case of C blend, the Si 3 Al 3 O 3 N 5 phase with high nitrogen content is mainly used and has the highest purity. The purity at this time is about 60%.

따라서 알루미늄 분말의 함량이 적어도 20중량부 이상은 되어야 열이 전파하여 합성이 이루어짐을 확인할 수 있었으며 또한 40중량부 이상이 되면 사이알론이 아닌 AlON이 합성됨을 알 수 있다.Therefore, when the content of aluminum powder is at least 20 parts by weight or more, it can be confirmed that the heat propagates and the synthesis is made. Also, when the content of the aluminum powder is 40 parts by weight or more, AlON is synthesized, not sialon.

(실시예 2)(Example 2)

원재료의 입도는 합성을 하는데 있어서 중요한 요소이며, 따라서 입도별 합성시험을 실시하였다.The particle size of raw materials is an important factor in the synthesis, and therefore, synthetic tests for each particle size were conducted.

시험은 0.3mm, 0.5mm, 1mm 입도의 납석 및 알루미늄 분말을 이용하여 진행하였으며 그 결과 0.5mm 이하의 입도에서 반응이 되며 그 이상의 입도에서는 점화는 되나 열이 전파되지 않고 반응이 중단되는 결과를 가져 왔다.The test was carried out using 0.3mm, 0.5mm, 1mm particle size of feldspar and aluminum powder. As a result, it was reacted at the particle size of 0.5mm or less. come.

(실시예 3)(Example 3)

상기 실시예 1을 통하여 합성된 합성물 중 가장 좋은 결과를 보인 C 배합은 사이알론의 함량이 60% 정도이며, 나머지는 알루미나와 소량의 Si 등으로 이루어져 있다. 따라서 미반응한 알루미나를 반응시켜 사이알론의 순도를 높이는 기술이 필요하며 그 해결방안으로 Si 금속분말을 C 배합에 추가하여 (표 2)와 같이 합성시험을 진행하였다.The C formulation showing the best result of the synthesized compound through Example 1 has a content of sialon of about 60%, and the rest is composed of alumina and a small amount of Si. Therefore, a technique is needed to increase the purity of sialon by reacting unreacted alumina. As a solution, a Si test was performed as shown in Table 2 by adding Si metal powder to C blend.

(표 2)(Table 2)

원료(중량부)     Raw material (parts by weight) F       F G        G H         H 납석      Feldspar 65       65 65        65 65         65 알루미늄     aluminum 35       35 35        35 35         35 금속 Si      Metal Si 15       15 20        20 25         25

상기 (표 2) 배합으로 합성된 합성물을 XRD 분석한 결과 도 2와 같이 C 배합보다 Si를 첨가한 F, G, H 배합의 합성물에서 알루미나의 함량이 현저히 감소되는 것을 확인할 수 있었으며, G 배합의 경우 알루미나가 거의 발견되지 않았다. 분석결과 G 배합의 경우 약 80% 순도의 사이알론이 합성된 것을 확인할 수 있었다.As a result of XRD analysis of the composite synthesized by the formulation (Table 2), it was confirmed that the content of alumina was significantly reduced in the composite of F, G, and H blended with Si rather than the C blend as shown in FIG. Almost no alumina was found. As a result of the analysis, it was confirmed that about 80% purity of sialon was synthesized in the G formulation.

도 1은 납석과 알루미늄 함량변화에 따른 합성물의 XRD 분석 결과.1 is an XRD analysis of the composite according to the change in the content of feldspar and aluminum.

도 2는 실리콘 금속분말 추가 배합에 따른 합성물의 XRD분석 결과.Figure 2 is an XRD analysis of the composite according to the silicon metal powder further blending.

Claims (4)

납석 60~80중량부 및 알루미늄 20~40중량부를 배합하여 질소분위기에서 SHS공법을 이용하여 순도 50~90%의 사이알론을 수득하는 것을 특징으로 하는 사이알론의 제조방법.A method for producing sialon, comprising 60 to 80 parts by weight of feldspar and 20 to 40 parts by weight of aluminum to obtain a sialon having a purity of 50 to 90% by using the SHS method in a nitrogen atmosphere. 제 1항에 있어서,The method of claim 1, 상기 납석 및 알루미늄의 평균 입도가 0.5mm 이하로 이루어짐을 특징으로 하는 사이알론의 제조방법.Said feldspar and a method for producing a sialon, characterized in that the average particle size of aluminum is made 0.5 mm or less. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 납석 및 알루미늄에 실리콘 금속분말 또는 실리콘 금속이 10~30 중량부 추가 배합하여서 됨을 특징으로 하는 사이알론의 제조방법.Method for producing a sialon, characterized in that the addition of 10 to 30 parts by weight of silicon metal powder or silicon metal to the tin and aluminum. 제 3항에 있어서,The method of claim 3, 실리콘 금속분말 또는 실리콘 금속이 산업폐기물에 포함하여서 됨을 특징으로 하는 사이알론의 제조방법.Method for producing sialon, characterized in that the silicon metal powder or silicon metal contained in industrial waste.
KR1020090113066A 2009-11-23 2009-11-23 Method for manufacture of sialon KR101135515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090113066A KR101135515B1 (en) 2009-11-23 2009-11-23 Method for manufacture of sialon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090113066A KR101135515B1 (en) 2009-11-23 2009-11-23 Method for manufacture of sialon

Publications (2)

Publication Number Publication Date
KR20110056652A KR20110056652A (en) 2011-05-31
KR101135515B1 true KR101135515B1 (en) 2012-04-13

Family

ID=44364983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090113066A KR101135515B1 (en) 2009-11-23 2009-11-23 Method for manufacture of sialon

Country Status (1)

Country Link
KR (1) KR101135515B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970703290A (en) * 1994-06-03 1997-07-03 Ceramic Production Process
KR19980077569A (en) * 1997-04-21 1998-11-16 장기중 Synthesis of sialon from natural silica powder and Al powder compact using microwave (2.45GHz)
KR100483929B1 (en) 2001-11-10 2005-04-15 학교법인 한마학원 A method for making silicon-based industrial wastes into a fire-resistance powder
JP2005194154A (en) 2004-01-09 2005-07-21 Ismanj:Kk Sialon sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970703290A (en) * 1994-06-03 1997-07-03 Ceramic Production Process
KR19980077569A (en) * 1997-04-21 1998-11-16 장기중 Synthesis of sialon from natural silica powder and Al powder compact using microwave (2.45GHz)
KR100483929B1 (en) 2001-11-10 2005-04-15 학교법인 한마학원 A method for making silicon-based industrial wastes into a fire-resistance powder
JP2005194154A (en) 2004-01-09 2005-07-21 Ismanj:Kk Sialon sintered compact

Also Published As

Publication number Publication date
KR20110056652A (en) 2011-05-31

Similar Documents

Publication Publication Date Title
CN103664153A (en) High temperature creep resistant mullite-cordierite product and preparation method thereof
CN100432022C (en) Oxide ceramics multiple phase refractory material
EP3564201A1 (en) Brick for blast furnace hearths and blast furnace hearth using same, and method for producing brick for blast furnace hearths
KR101135515B1 (en) Method for manufacture of sialon
ES2537284T3 (en) Procedure for manufacturing a refractory material based on magnesia or magnesia-spinel, as well as a refractory material based on magnesia or magnesia-spinel
PT762997E (en) CERAMIC PRODUCTION PROCESS
Karakuş et al. Synthesizing high α-phase Si3N4 powders containing sintering additives
CN1176872C (en) Prepn of beta-sialon
Shi et al. Effect of spodumene additions on the sintering and densification of aluminum titanate
KR101723270B1 (en) Manufacturing method of ceramics sintered body
CN1298676C (en) Method for preparing beta-'Sailong' ceramic powder
WO1990013525A1 (en) PROCESS FOR PRODUCING β-SIALON SINTER
RU2490232C1 (en) METHOD OF OBTAINING FIRE-PROOF MATERIAL BASED ON SILICON BETA-NITRIDE β-Si3N4
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
Rouquié et al. Influence of nitrogen overpressure on the nitridation, densification and formation of β-SiAlONs produced by silicothermal reduction
JP2019142727A (en) Castable refractory for blast furnace trough
JPS6343346B2 (en)
JP4319866B2 (en) Method for producing inorganic fibrous refractory insulation
JPS59174572A (en) Manufacture of minute cordierite-silicon nitride sintered body
JPH0196062A (en) Mullite-based sintered body and production thereof
JP2541150B2 (en) Aluminum nitride sintered body
JP2536448B2 (en) Aluminum nitride sintered body
CN100439287C (en) Method for preparing alpha/beta multi-phase sialon ceramic powder utilizing waste resistant material and slag
CN1330607C (en) Prepn process of conductive TiN/O'-Sialon ceramic material with titanium-containing furnace slag
JP2023119264A (en) Silicon nitride powder and method for producing silicon nitride powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170404

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 8