KR101125749B1 - magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same - Google Patents

magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same Download PDF

Info

Publication number
KR101125749B1
KR101125749B1 KR1020090128838A KR20090128838A KR101125749B1 KR 101125749 B1 KR101125749 B1 KR 101125749B1 KR 1020090128838 A KR1020090128838 A KR 1020090128838A KR 20090128838 A KR20090128838 A KR 20090128838A KR 101125749 B1 KR101125749 B1 KR 101125749B1
Authority
KR
South Korea
Prior art keywords
vehicle
electric vehicle
magnetic field
operating
door
Prior art date
Application number
KR1020090128838A
Other languages
Korean (ko)
Other versions
KR20110072065A (en
Inventor
조동호
서인수
유병역
설동균
윤 정
강대준
윤대훈
김중귀
김철현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090128838A priority Critical patent/KR101125749B1/en
Publication of KR20110072065A publication Critical patent/KR20110072065A/en
Application granted granted Critical
Publication of KR101125749B1 publication Critical patent/KR101125749B1/en

Links

Images

Classifications

    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B17/00Screening
    • G12B17/02Screening from electric or magnetic fields, e.g. radio waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명은 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치 및 그 작동방법에 관한 것으로, 본 발명은 전기자동차의 양측면부에 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 차량의 하부에 설치된 집전장치와 급전도로에 매설된 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법에 있어서, (a) 차량의 도어의 개폐 여부를 실시간으로 감지하는 단계와; (b) 차량의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와; (c) 차량의 도어가 폐쇄된 것을 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법을 제공한다.The present invention relates to a magnetic field shielding apparatus for an electric vehicle of a non-contact magnetic induction charging method and a method of operating the same. The present invention relates to a shielding member installed on both sides of an electric vehicle so as to be movable up and down, and the shielding member to be moved up and down. In the method of operating a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging type to shield electromagnetic waves and magnetic fields generated between the current collector installed in the lower portion of the vehicle and the power feeding device embedded in the feeder road (a) detecting in real time whether the door of the vehicle is opened or closed; (b) if it is detected that the door of the vehicle is open, operating the driving means to move the shielding member downward to shield both sides of the current collector; (c) when it is detected that the door of the vehicle is closed, providing a method of operating a magnetic field shield for an electric vehicle of a non-contact magnetic induction charging method comprising the step of operating the driving means to raise the shield member. do.

자기 유도 충전, 전기자동차, 집전장치, 자기장, 차폐장치, 도어 연동, 상하이동 Magnetic Induction Charging, Electric Vehicle, Current Collector, Magnetic Field, Shielding Device, Door Interlocking, Shanghai East

Description

비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법{magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same}Magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same}

본 발명은 비접촉 자기 유도 충전 방식의 전기자동차에 관한 것으로, 더욱 상세하게는 비접촉 자기 유도 충전 방식의 전기자동차의 측면부에 상하로 이동 가능하게 설치되어, 도어가 개방되고 집전장치에 충전이 이루어질 때에는 차폐부재가 차량의 양측면 하측으로 이동하여 집전장치와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지하고, 도어가 폐쇄되고 주행시에는 차폐부재가 상측으로 이동하여 외부 물체와의 충돌 또는 간섭을 방지할 수 있도록 한 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치 및 그 작동방법에 관한 것이다. The present invention relates to an electric vehicle of a non-contact magnetic induction charging method, and more particularly, is installed to be movable up and down on the side portion of the non-contact magnetic induction charging electric vehicle, the door is opened and shielded when the charge to the current collector is made The member moves to the lower side of both sides of the vehicle to prevent leakage of electromagnetic waves and magnetic fields generated between the current collector and the power feeding device to the outside, and the door is closed and the shielding member moves upwards to prevent collision or interference with external objects. The present invention relates to a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging type, and a method of operating the same.

일반적으로 비접촉 자기 유도 방식의 전기자동차의 집전장치는 급전도로에서 발생하는 자기장의 힘을 전기에너지로 변환시키는 트랜지스터의 원리가 적용된다. 이 때, 급전도로에 흐르는 고압전류가 발생시키는 자기장이 오른나사의 법칙에 의해 흐르는데, 차량의 하부에 설치된 집전장치가 급전도로와 수평한 평면형상이기 때문에 집전장치와 급전도로 사이의 공극에서 전자파 및 자기장이 외부로 누출되는 현상이 발생하게 된다. In general, the current collector of a non-contact magnetic induction type electric vehicle applies a principle of a transistor that converts a force of a magnetic field generated in a feeder road into electrical energy. At this time, the magnetic field generated by the high-voltage current flowing in the feed road flows according to the law of the right-handed screw. Since the current collector installed in the lower part of the vehicle is in a flat plane parallel to the feed road, electromagnetic waves and The magnetic field leaks to the outside.

이렇게 누출된 전자파 및 자기장은 도로변에 있는 승객들의 건강에 유해한 영향을 미칠 뿐만 아니라, 누출된 자기장으로 인하여 집전 효율이 저하되는 문제를 유발한다. The leaked electromagnetic waves and magnetic fields not only have a detrimental effect on the health of passengers on the roadside, but also cause a problem that current collection efficiency is lowered due to the leaked magnetic fields.

본 발명은 상기와 같은 종래의 문제를 해결하기 위한 것으로, 본 발명의 목적은 도어의 개방 작동과 연동하여 집전장치에 충전이 이루어질 때 차폐부재가 차량의 양측면 하측으로 이동하여 집전장치와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지함으로써 집전 효율을 향상시킴과 더불어 전자파 및 자기장이 자동차 인근의 사람들에게 미치는 영향을 최소화할 수 있으며, 도어가 폐쇄될 때 상측으로 이동하여 주행중 외부 물체와의 충돌 또는 간섭을 방지할 수 있도록 한 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치 및 그 작동방법을 제공함에 있다.The present invention is to solve the conventional problems as described above, an object of the present invention when the charge is made to the current collector in conjunction with the opening operation of the door between the current collector and the power supply device by moving the shield member to the lower side of both sides of the vehicle By preventing leakage of electromagnetic waves and magnetic fields to the outside, the efficiency of current collection can be improved, and the effects of electromagnetic waves and magnetic fields on people near the vehicle can be minimized. The present invention provides a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method and a method of operating the same to prevent collision or interference of the vehicle.

상기와 같은 목적을 달성하기 위한 본 발명의 한 범주에 따르면, 급전도로에 매설된 급전장치의 자기장에 의해 유기 전력을 생성하는 집전장치가 차체 하부에 설치된 비접촉 자기 유도 충전 방식의 전기자동차에 있어서, 상기 전기자동차의 양측면 차체 프레임에 각각 설치되며, 상하 수직 방향으로의 이동력을 발생시키는 구동수단과; 상기 구동수단에 결합되어 상하로 이동하며, 하측으로 이동했을 때 전기자동차의 집전장치의 양측면을 차폐하여 집전장치와 급전도로 사이에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 차단하는 차폐부재와; 상기 전기자동차의 도어의 개폐 작동과 연동하여 상기 구동수단을 작동시키는 컨트롤러를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐 장치가 제공된다.According to one category of the present invention for achieving the above object, in a non-contact magnetic induction charging type electric vehicle provided with a current collector that generates organic power by the magnetic field of the power supply device embedded in the feed road, Driving means installed on both side vehicle body frames of the electric vehicle and generating a moving force in a vertical direction; A shielding member coupled to the driving means and moving upward and downward, and shielding both sides of the current collector of the electric vehicle when it moves downward to block leakage of electromagnetic waves and magnetic fields generated between the current collector and the power supply road to the outside; There is provided a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging type, comprising a controller configured to operate the driving means in association with the opening and closing operation of the door of the electric vehicle.

여기서, 상기 차폐부재는 금속재로 된 복수개의 차폐플레이트가 상호 이격되어 적층된 구조로 이루어진 것이 바람직하다. Here, the shielding member is preferably made of a structure in which a plurality of shielding plates made of a metal material are spaced apart from each other.

본 발명의 다른 한 범주에 따르면, 전기자동차의 양측면부에 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 차량의 하부에 설치된 집전장치와 급전도로에 매설된 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법에 있어서, (a) 차량의 도어의 개폐 여부를 실시간으로 감지하는 단계와; (b) 차량의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와; (c) 차량의 도어가 폐쇄된 것을 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법이 제공된다.According to another category of the present invention, a current collector that is configured to include a shielding member that is installed to move up and down on both side surfaces of the electric vehicle, and a driving means for moving the shielding member up and down, A method of operating a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method that shields electromagnetic waves and magnetic fields generated between feeding devices embedded in a feeding road, the method comprising: (a) detecting in real time whether a door of a vehicle is opened or closed; ; (b) if it is detected that the door of the vehicle is open, operating the driving means to move the shielding member downward to shield both sides of the current collector; (c) when it is detected that the door of the vehicle is closed, there is provided a method of operating a magnetic field shield device for an electric vehicle of a non-contact magnetic induction charging method comprising the step of operating the drive means to raise the shield member. do.

본 발명에 따르면, 자동차의 도어 개폐 동작을 감지하여, 승객을 탑승시키기 위하여 도어가 개방되어 있을 경우에 전기자동차의 측면 프레임에 설치된 차폐부재가 자동으로 하측으로 이동하여 급전도로와 집전장치 사이에서 발생하는 자기장 및 전자파를 차폐시키게 되므로 전자파 및 자기장 누출에 따른 집전 효율의 저하가 방지됨과 더불어, 자동차의 인근에서 위치한 승객에 미치는 악영향을 최소화할 수 있 는 이점이 있으며, 주행을 위해 도어가 폐쇄될 경우에는 차폐부재가 자동으로 상측으로 이동하여 노면 또는 노면 상의 다른 물체와의 충돌 및 간섭이 최소화되므로 안전성을 향상시킬 수 있는 이점이 있다. According to the present invention, by detecting the door opening and closing operation of the vehicle, when the door is open for passengers, the shielding member installed on the side frame of the electric vehicle automatically moves to the lower side to occur between the feeder and the current collector Since the shielding of the magnetic field and electromagnetic waves prevents the deterioration of current collection efficiency due to electromagnetic and magnetic field leakage, it also has the advantage of minimizing the adverse effects on passengers located in the vicinity of the vehicle. In this case, the shielding member is automatically moved upward, thereby minimizing collision and interference with the road surface or other objects on the road surface, thereby improving safety.

이하, 첨부된 도면을 참조하여 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치 및 그 작동방법에 대한 바람직한 실시예를 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the magnetic field shielding device for an electric vehicle of the non-contact magnetic induction charging method and its operation method.

먼저, 도 1 내지 도 3을 참조하여 본 발명에 따른 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 구성에 대해 설명한다. First, a configuration of a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method according to the present invention will be described with reference to FIGS. 1 to 3.

도 1을 참조하면, 급전도로(1)에 페라이트코어(2) 및 이 페라이트코어(2)에 권선된 1차 코일(3)로 이루어진 급전장치가 매설되고, 전기자동차의 차체 하부에 유기 전력을 생성하는 집전장치(5)가 설치된다. 상기 집전장치(5)는 급전도로(1)와 일정 간격을 유지하면서 상기 급전장치에 의해 생성된 자기장에 의해 유기 전력을 생성하여 차량의 모터(미도시) 또는 축전지(미도시)에 전력을 공급한다. 도면에 도시하지는 않았으나, 상기 집전장치(5)는 편평한 판상의 페라이트코어에 2차 코일이 감겨진 구조로 이루어진다. Referring to FIG. 1, a power feeding device including a ferrite core 2 and a primary coil 3 wound around the ferrite core 2 is embedded in a feed road 1, and organic power is applied to a lower portion of a vehicle body of an electric vehicle. The current collector 5 to be generated is installed. The current collector 5 generates organic power by a magnetic field generated by the power supply device while maintaining a predetermined distance from the power supply road 1 to supply power to a motor (not shown) or a storage battery (not shown) of the vehicle. do. Although not shown in the drawing, the current collector 5 has a structure in which a secondary coil is wound around a flat plate-like ferrite core.

그리고, 도 1 및 도 2에 도시된 것과 같이, 상기 전기자동차의 양측면 차체 프레임(4)에 공압 또는 유압에 의해 상하 방향으로 수직운동하는 피스톤(21)을 구비한 액츄에이터(20)가 설치되고, 이 액츄에이터(20)의 피스톤(21)에 상기 집전장치(5)의 양측면 외측부를 차폐하는 차폐부재(10)가 결합된다. 따라서, 상기 차폐부 재(10)는 액츄에이터(20)의 피스톤(21)과 함께 수직 이동하여, 차가 정지하여 집전장치에 충전이 이루어질 때 액츄에이터(20)의 작용에 의해 차량의 양측면 하측으로 이동하여 집전장치(5)와 급전장치 간에 발생하는 전자파 및 자기장이 외부로 누출되는 것을 방지하고, 충전이 이루어지는 않는 주행시에는 상측으로 이동하여 외부 물체와의 충돌 또는 간섭을 방지한다. 1 and 2, an actuator 20 having a piston 21 vertically moved upward and downward by pneumatic or hydraulic pressure is installed on both side body frames 4 of the electric vehicle. The piston 21 of the actuator 20 is coupled to the shield member 10 for shielding the outer side portions of both sides of the current collector (5). Accordingly, the shield member 10 moves vertically together with the piston 21 of the actuator 20, and moves downwards on both sides of the vehicle by the action of the actuator 20 when the vehicle is stopped and the charging is performed on the current collector. The electromagnetic wave and the magnetic field generated between the current collector 5 and the power feeding device are prevented from leaking to the outside, and when the vehicle is not charged, it moves upward to prevent collision or interference with external objects.

상기 액츄에이터(20)는 전기자동차의 컨트롤러(미도시)에 연결되며, 상기 컨트롤러(미도시)는 전기자동차의 도어(미도시)의 개폐 작동과 연동하여 상기 액츄에이터(20)에 공압 또는 유압을 인가한다. The actuator 20 is connected to a controller (not shown) of the electric vehicle, and the controller (not shown) applies pneumatic or hydraulic pressure to the actuator 20 in conjunction with the opening and closing operation of the door (not shown) of the electric vehicle. do.

상기 차폐부재(10)는 도 3에 도시된 것처럼, 자기장 차폐 기능을 갖는 복수개(이 실시예에서 3개)의 얇은 금속판재로 된 차폐플레이트(11)들이 상호 이격되어 적층된 구조로 이루어진다. 여기서, 상기 차폐플레이트(11)들은 상하단부가 각각 직각으로 밴딩된 'ㄷ'자형의 금속 판재로 이루어져, 볼트 또는 너트와 같은 체결부재에 의해 상호 결합된다. 상기와 같이 차폐부재(10)가 복수개의 금속 플레이트로 이루어지면, 하나의 금속판재를 두껍게 제작하여 차폐부재를 구성할 때보다 하중이 작아지기 때문에 액츄에이터(20)의 용량이 작은 것을 사용할 수 있으며, 차량의 전기소모량을 저감시킬 수 있을 뿐만 아니라, 전기장 및 자기장 차폐효과도 더욱 향상되는 이점을 얻을 수 있다. As shown in FIG. 3, the shielding member 10 has a structure in which shielding plates 11 made of a plurality of thin metal plates (three in this embodiment) having a magnetic field shielding function are stacked apart from each other. Here, the shielding plate 11 is made of a metal plate of the '' 'upper and lower ends bent at right angles, respectively, are coupled to each other by a fastening member such as a bolt or nut. When the shielding member 10 is made of a plurality of metal plates as described above, since the load is smaller than when the shielding member is manufactured by making one metal plate thick, the actuator 20 may have a smaller capacity. In addition to reducing the amount of electricity consumed by the vehicle, the electric and magnetic field shielding effects can be further improved.

그리고, 상기 차폐부재(10)의 각 차폐플레이트(11) 사이에 차폐플레이트(11)의 강도를 보강하기 위한 보강재(40)가 설치되는 것이 바람직하다. 이 실시예에서 상기 보강재(40)는 상기 차폐플레이트(11)들과 마찬가지로 'ㄷ'자형으로 밴딩된 금 속판재로 이루어지나, 이에 한정하지 않으며 다양한 형태로 이루어질 수 있다. In addition, it is preferable that a reinforcing material 40 for reinforcing the strength of the shielding plate 11 is provided between the shielding plates 11 of the shielding member 10. In this embodiment, the reinforcing material 40 is made of a metal plate bent in the '' 'like the shielding plate 11, but is not limited thereto and may be formed in various forms.

또한, 상기 차폐부재(10)의 하단부에는 차폐부재(10)가 노면 또는 노면 상의 물체에 부딪혀 직접적인 충격을 받지 않도록 하여 주는 완충용 댐퍼(30)가 장착된다. 상기 완충용 댐퍼(30)는 외부의 물체와 충돌했을 때 순간적으로 변형되면서 충격을 흡수할 수 있는 고무 등의 수지재로 이루어질 수 있지만, 이와 다르게 'U'자형으로 밴딩된 금속판재에 고무 등의 유연한 수지재가 덮힌 구조로 이루어질 수도 있다. In addition, the lower end of the shielding member 10 is equipped with a damping damper 30 to prevent the shielding member 10 from hitting the road surface or an object on the road surface to be directly impacted. The damper damper 30 may be made of a resin material such as rubber that can absorb a shock while being instantaneously deformed when it collides with an external object. It may be made of a structure covered with a flexible resin material.

상기 차폐부재(10)는 차량의 전륜(6)과 후륜(7)의 외측에 이격되게 설치되되, 전륜(6)과 후륜(7)의 방향 전환시 전륜(6)과 후륜(7)이 닿지 않을 정도의 충분한 거리를 유지하는 것이 바람직하다. The shielding member 10 is installed on the outside of the front wheel 6 and the rear wheel 7 of the vehicle, the front wheel 6 and the rear wheel 7 does not touch when the direction of the front wheel 6 and the rear wheel 7 is switched. It is desirable to keep enough distance.

그리고, 전자파 및 자기장 차폐 효과를 더욱 높이기 위하여 상기 차폐부재(10)의 전단부와 후단부는 차량으로 내측으로 절곡되게 형성되는 것이 바람직하다. In addition, the front end and the rear end of the shield member 10 is preferably formed to be bent inward to the vehicle in order to further enhance the electromagnetic and magnetic field shielding effect.

다음으로, 도 4와 도 5a 및 도 5b를 참조하여, 상술한 바와 같이 구성된 비접촉 자기 유도 충전 방식의 전기자동차의 차폐장치의 작동방법의 일 실시예에 대해 설명한다. Next, with reference to FIGS. 4, 5A and 5B, an embodiment of a method of operating a shielding device of an electric vehicle of a non-contact magnetic induction charging type configured as described above will be described.

차량의 운행 중 상기 액츄에이터(20)(도 2참조)를 구동시키는 컨트롤러(미도시)는 차량의 도어(미도시)의 개폐를 실시간으로 감지한다(단계 S1). A controller (not shown) for driving the actuator 20 (see FIG. 2) while the vehicle is running detects the opening / closing of the door (not shown) of the vehicle in real time (step S1).

차량이 급전장치가 설치된 정류장 또는 충전소에 정지하고, 승객을 탑승 또는 하차시키기 위하여 도어를 개방하면(단계 S2), 컨트롤러(미도시)가 이 도어 개 방을 감지하여 액츄에이터(20)(도 2참조)에 공압 또는 유압을 인가하여 도 5a에 도시한 것과 같이 차폐부재(10)를 차량의 양측면 하부로 하강시켜 집전장치(5)와 급전장치 간에 발생하는 자기장 및 전자파를 차폐시킨다(단계 S3). When the vehicle stops at the stop or charging station where the power supply is installed, and the door is opened to board or unload the passenger (step S2), the controller (not shown) detects the opening of the door and the actuator 20 (see Fig. 2). ) By applying pneumatic or hydraulic pressure to lower the shielding member 10 below both sides of the vehicle as shown in FIG. 5A to shield magnetic fields and electromagnetic waves generated between the current collector 5 and the power feeding device (step S3).

집전장치(5)의 충전이 이루어는 도중 또는 충전이 모두 완료되고, 차량의 도어가 폐쇄되고(단계 S4), 브레이크 작동 신호가 오프되면(단계 S5), 컨트롤러(미도시)는 차량이 주중인 것으로 판단하여 액츄에이터(20)를 작동시켜 도 5b에 도시된 것과 같이 차폐부재(10)를 다시 상승시킨다(단계 S6). When the current collector 5 is being charged or when the charging is completed, the door of the vehicle is closed (step S4), and the brake operation signal is turned off (step S5), the controller (not shown) indicates that the vehicle is in the main state. It is determined that the actuator 20 is operated to raise the shielding member 10 again as shown in FIG. 5B (step S6).

한편, 전술한 실시예에서는 차폐부재(10)를 상하로 승강시키는 구동수단으로서 유압 또는 공압에 의해 동작하는 액츄에이터(20)가 적용되었지만, 이와 다른 다양한 공지의 선형운동시스템을 이용하여 차량의 주행 속도에 따라 차폐부재(10)를 승강운동시킬 수 있을 것이다. Meanwhile, in the above-described embodiment, the actuator 20 operated by hydraulic pressure or pneumatic pressure is applied as a driving means for elevating the shield member 10 up and down, but the traveling speed of the vehicle using various other known linear motion systems. According to the shield member 10 will be able to move up and down.

또한, 전술한 실시예에서는 차량이 정지하고, 도어가 개방되면 바로 자동으로 차폐부재(10)가 하강하였으나, 도 6에 다른 실시예로 나타낸 것과 같이 차량이 정지하고, 도어가 개방된 후(단계 S2), 충전이 시작되는 것으로 감지되면(S2-1), 컨트롤러(미도시)가 충전이 시작되는 것을 감지하였을 때 차폐부재(10)를 하강시킬 수도 있을 것이다. In addition, in the above-described embodiment, the vehicle is stopped and the shield member 10 is automatically lowered as soon as the door is opened, but as shown in another embodiment in FIG. 6, after the vehicle is stopped and the door is opened (step) S2) If it is detected that the charging is started (S2-1), the controller (not shown) may lower the shield member 10 when the controller detects that charging is started.

상술한 바와 같은 본 발명에 따르면, 승객의 탑승 및 하차를 위해 도어가 개방되고 집전장치의 충전이 이루어질 때 컨트롤러가 구동수단을 작동시켜 차폐부재(10)를 하강시킴으로써 전자파 및 자기장을 차폐시키고, 자기장 누출에 따른 집전 효율 저하를 방지함과 동시에 전자파에 의해 차량의 외부에서 대기하고 있는 승 객에 미치는 악영향을 최소화할 수 있다. 또한, 도어가 폐쇄되고 차량이 주행하는 것으로 감지될 때에는 차폐부재(10)가 액츄에이터(20)의 작용에 의해 자동으로 상승하여 노면 또는 노면 상의 물체와의 충돌이 방지되므로 주행중 안전성을 향상시킬 수 있는 이점이 있다. According to the present invention as described above, when the door is opened for passengers boarding and getting off and the charging of the current collector is made, the controller operates the driving means to lower the shielding member 10 to shield the electromagnetic wave and magnetic field, It is possible to prevent the deterioration of current collection efficiency due to leakage and to minimize the adverse effect on passengers waiting outside of the vehicle by electromagnetic waves. In addition, when the door is closed and the vehicle is detected to be traveling, the shield member 10 is automatically raised by the action of the actuator 20 to prevent collision with the road surface or the object on the road surface, thereby improving safety while driving. There is an advantage.

전술한 실시예는 단지 본 발명의 이해를 돕기 위한 예시 목적으로 제시된 것이로 본 발명은 이에 한정되지 아니하며, 첨부된 특허청구범위에 기재된 범위 내에서 다양한 변경 및 실시가 가능할 것이다. The foregoing embodiments are presented for purposes of illustration only for understanding of the present invention, and the present invention is not limited thereto, and various changes and implementations may be made within the scope of the appended claims.

도 1은 본 발명의 일 실시예에 따른 자기장 차폐장치가 적용된 비접촉 자기 유도 충전 방식의 전기자동차의 정면에서 본 요부 단면도이다. 1 is a cross-sectional view illustrating main parts of a non-contact magnetic induction charging type electric vehicle to which a magnetic shielding device according to an embodiment of the present invention is applied.

도 2는 도 1의 자기장 차폐장치가 적용된 비접촉 자기 유도 충전 방식의 전기자동차의 일부분을 나타낸 사시도이다.FIG. 2 is a perspective view illustrating a part of an electric vehicle of a non-contact magnetic induction charging method to which the magnetic field shield of FIG. 1 is applied.

도 3은 도 1의 자기장 차폐장치의 사시도이다. 3 is a perspective view of the magnetic field shield of FIG. 1.

도 4는 본 발명에 따른 자기장 차폐장치의 작동방법의 일 실시예를 나타낸 순서도이다. Figure 4 is a flow chart showing an embodiment of a method of operating a magnetic shielding device according to the present invention.

도 5a와 도 5b는 각각 도 1의 자기장 차폐장치가 충전시에 차량의 하측으로 이동된 상태와, 주행시에 차량의 상측으로 이동된 상태를 나타내는 측면도이다. 5A and 5B are side views illustrating a state in which the magnetic field shield of FIG. 1 is moved to the lower side of the vehicle during charging, and a state in which the magnetic field shield is moved to the upper side of the vehicle during driving.

도 6은 본 발명에 따른 자기장 차폐장치의 작동방법의 다른 실시예를 나타낸 순서도이다. 6 is a flow chart showing another embodiment of a method of operating a magnetic shielding device according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 급전도로 2 : 페라이트코어1: feeding road 2: ferrite core

3 : 1차 코일 4 : 하부 프레임3: primary coil 4: lower frame

5 : 집전장치 10 : 차폐부재5: current collector 10: shielding member

11 : 차폐플레이트 20 : 액츄에이터11 shielding plate 20 actuator

21 : 피스톤 30 : 완충용 댐퍼21: piston 30: damping damper

40 : 보강재40: reinforcement

Claims (8)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 전기자동차의 양측면부에 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 차량의 하부에 설치된 집전장치와 급전도로에 매설된 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법에 있어서, A shielding member installed on both sides of the electric vehicle so as to be movable up and down, and a driving means for moving the shielding member up and down, and generated between a current collector installed at a lower portion of the vehicle and a power feeding device embedded in a feeder road. In a method of operating a magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method for shielding electromagnetic waves and magnetic fields, (a) 차량의 도어의 개폐 여부를 실시간으로 감지하는 단계와;(a) detecting in real time whether the door of the vehicle is opened or closed; (b) 차량의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와;(b) if it is detected that the door of the vehicle is open, operating the driving means to move the shielding member downward to shield both sides of the current collector; (c) 차량의 도어가 폐쇄된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법.and (c) operating the driving means to raise the shielding member when the door of the vehicle is closed, thereby operating the magnetic field shielding device for the electric vehicle of the non-contact magnetic induction charging method. 제6항에 있어서, 상기 (b) 단계에서는 차량의 도어가 개방된 후, 충전이 이루어지는 것으로 감지되면 차폐부재를 하측으로 이동시키는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법.The magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method according to claim 6, wherein in the step (b), after the door of the vehicle is opened, when the charging is detected, the shielding member is moved downward. How it works. 제6항에 있어서, 상기 (c) 단계에서는 차량의 도어가 폐쇄된 후, 브레이크 작동 신호가 없는 것으로 감지되면 차폐부재를 상승시키는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법.The magnetic field shielding device for an electric vehicle of a non-contact magnetic induction charging method according to claim 6, wherein in the step (c), after the door of the vehicle is closed, the shielding member is raised when it is detected that there is no brake operation signal. How it works.
KR1020090128838A 2009-12-22 2009-12-22 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same KR101125749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090128838A KR101125749B1 (en) 2009-12-22 2009-12-22 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090128838A KR101125749B1 (en) 2009-12-22 2009-12-22 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same

Publications (2)

Publication Number Publication Date
KR20110072065A KR20110072065A (en) 2011-06-29
KR101125749B1 true KR101125749B1 (en) 2012-03-27

Family

ID=44403040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128838A KR101125749B1 (en) 2009-12-22 2009-12-22 magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same

Country Status (1)

Country Link
KR (1) KR101125749B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141342A1 (en) * 2011-04-11 2012-10-18 한국과학기술원 Magnetic field screening device
JP6614344B2 (en) * 2016-05-25 2019-12-04 日産自動車株式会社 Non-contact power receiving device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054424A (en) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd Power-receiving device, power-transmitting device and vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054424A (en) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd Power-receiving device, power-transmitting device and vehicle

Also Published As

Publication number Publication date
KR20110072065A (en) 2011-06-29

Similar Documents

Publication Publication Date Title
CN107415764B (en) Vehicle with a steering wheel
KR100944113B1 (en) Power supply system and method for electric vehicle
KR101150738B1 (en) Non-contact type power feeder system for mobile object
KR101614597B1 (en) Contactless charging of an electrical energy store of a motor vehicle
JP2015512137A (en) Magnetic field shield for electromagnetic field and vehicle incorporating magnetic field shield
US20120306262A1 (en) Shield device for resonance type contactless power transmission system
JP2017512453A (en) Inductive power transfer pad, system for inductive power transfer, and method of operating an inductive power transfer pad
CN105191065B (en) Power receiving device, contactless power supply system and cap unit
US20160197492A1 (en) Contactless power transmission device
KR20160037978A (en) Contactless power feeding system, and contactless power feeding method
KR101125749B1 (en) magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same
CN104417378A (en) Vehicle
JP2015008547A (en) Non-contact power charger
WO2015178284A1 (en) Wireless power supply system and wireless power transmission system
WO2014132115A2 (en) Power transmitter, power receiver, and power transfer system
CN103889775A (en) Secondary transformer unit for mounting on a vehicle having an electric drive, and vehicle having an electric drive
KR20110072074A (en) Magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle and method for operating the same
JP2016226073A (en) Wireless power transmission system
CN1511109A (en) Movable body system
CN206693799U (en) A kind of automotive safety opening structure
KR20110072069A (en) Magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle
CN108952272A (en) A kind of intelligent parking platform with wireless charging type AGV trolley
JP2011091882A (en) Induction type vehicle power feed device
KR20110041784A (en) Magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle
KR20110041774A (en) Magnetic field shielding device for non-contact electromagnetic inductive charging electric vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110824

Effective date: 20111206

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160525

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee