KR101117608B1 - Catalysts for fuel cell and method of preparing, coating the same. - Google Patents

Catalysts for fuel cell and method of preparing, coating the same. Download PDF

Info

Publication number
KR101117608B1
KR101117608B1 KR1020090109976A KR20090109976A KR101117608B1 KR 101117608 B1 KR101117608 B1 KR 101117608B1 KR 1020090109976 A KR1020090109976 A KR 1020090109976A KR 20090109976 A KR20090109976 A KR 20090109976A KR 101117608 B1 KR101117608 B1 KR 101117608B1
Authority
KR
South Korea
Prior art keywords
active material
carrier
catalyst
fuel cell
metal plate
Prior art date
Application number
KR1020090109976A
Other languages
Korean (ko)
Other versions
KR20110053139A (en
Inventor
박병일
차문순
김해리
이경민
임원미
여권구
Original Assignee
오덱(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오덱(주) filed Critical 오덱(주)
Priority to KR1020090109976A priority Critical patent/KR101117608B1/en
Publication of KR20110053139A publication Critical patent/KR20110053139A/en
Application granted granted Critical
Publication of KR101117608B1 publication Critical patent/KR101117608B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 연료전지용 촉매에 관한 것으로, 보다 상세하게는 금속판형 담체의 표면을 전처리하는 제1단계, 상기 전처리된 담체의 표면에 촉매 활성물질을 코팅하는 제2단계 및 상기 촉매 활성물질이 코팅된 담체를 건조 및 소성하는 제3단계를 포함하는 제조방법에 관한 것이다. 또한 본 발명은 Ni, Pd, Pt, Rh, Ce, Al2O3, Zr 및 La으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 촉매 활성물질이 금속판형 담체 표면에 10~200㎛ 두께로 균일하게 코팅된 것을 특징으로 하는 연료전지용 촉매에 관한 것이다. 또한 본 발명은 금속판형 담체의 표면을 열처리하는 열처리 단계, 상기 열처리된 담체의 표면 중 촉매 활성물질을 도포하지 않을 부분을 하우징 처리하는 하우징 처리 단계, 상기 하우징 처리된 담체의 표면에 촉매 활성물질을 10~200㎛ 두께가 되도록 담체 셀의 방향에 따라 도포하는 도포 단계 및 상기 촉매 활성물질이 도포된 담체를 건조 및 소성하는 건조?소성단계를 포함하는 연료전지용 촉매의 코팅방법에 관한 것으로서, 본 발명에 따라 금속판형 담체 표면에 촉매 활성물질을 도포할 시에 금속의 표면이 매끄럽고 자체 흡수율이 낮아 촉매 활성물질이 고르게 분포될 수 없었던 문제점을 해결하고 촉매 활성물질의 점착력을 높일 수 있으며 이에 따라 촉매 활성을 매우 뛰어난 연료전지용 촉매를 제조할 수 있다.The present invention relates to a catalyst for a fuel cell, and more particularly, a first step of pretreating the surface of a metal plate carrier, a second step of coating a catalyst active material on the surface of the pretreated carrier, and the catalyst active material coated It relates to a manufacturing method comprising a third step of drying and firing the carrier. In addition, the present invention is a catalyst active material containing any one or more selected from the group consisting of Ni, Pd, Pt, Rh, Ce, Al 2 O 3 , Zr and La uniformly on the surface of the metal plate carrier with a thickness of 10 ~ 200㎛ It relates to a catalyst for a fuel cell, characterized in that the coating. In another aspect, the present invention is a heat treatment step of heat-treating the surface of the metal plate carrier, a housing treatment step of housing the portion of the surface of the heat-treated carrier that will not apply the catalyst active material, the catalyst active material on the surface of the housing treated carrier The present invention relates to a coating method of a catalyst for a fuel cell comprising a coating step of applying according to a direction of a carrier cell so as to have a thickness of 10 to 200 μm, and a drying and baking step of drying and firing the carrier to which the catalytically active material is applied. Therefore, when the catalyst active material is applied to the surface of the metal plate-like carrier, the surface of the metal is smooth and its self-absorption rate is low, thereby solving the problem that the catalyst active material cannot be evenly distributed, and thus increasing the adhesion of the catalyst active material. It is possible to produce a very excellent fuel cell catalyst.

금속판(metal plate), 연료전지, 열처리, 스프레이 코팅 Metal plate, fuel cell, heat treatment, spray coating

Description

연료전지용 촉매, 이의 제조방법 및 코팅방법{Catalysts for fuel cell and method of preparing, coating the same.} Catalyst for fuel cell, manufacturing method and coating method thereof {Catalysts for fuel cell and method of preparing, coating the same.}

본 발명은 연료전지용 촉매에 관한 것으로, 특히 금속판형 담체에 촉매 활성물질을 효과적으로 분산, 담지하여 촉매활성이 뛰어난 연료전지용 촉매, 이의 제조방법 및 코팅방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a fuel cell, and more particularly, to a catalyst for a fuel cell having excellent catalytic activity by effectively dispersing and supporting a catalyst active material on a metal plate carrier, a method for preparing the same, and a coating method thereof.

연료전지는 연료의 산화에 의해 생기는 화학에너지를 직접 전기에너지로 변환시키는 전지로 일종의 발전장치(發電裝置)라고 할 수 있으며 산화?환원반응을 이용한 점 등에서는 기본적으로 보통의 화학전지와 같지만 닫힌 계(係) 내에서 전지반응을 하는 화학전지와 달리, 반응물이 외부에서 연속적으로 공급되어 반응생성물이 연속적으로 계 외로 제거된다. 가장 전형적인 것으로 수소-산소 연료전지가 있다.A fuel cell is a cell that converts chemical energy generated by the oxidation of fuel directly into electrical energy. It is a kind of power generation device. It is basically the same as a normal chemical cell in terms of oxidation and reduction reactions, but it is a closed system. Unlike chemical cells that perform cell reactions in (iii), the reactants are continuously supplied from the outside, and the reaction products are continuously removed out of the system. Most typical are hydrogen-oxygen fuel cells.

수소 외에 메탄과 천연가스 등의 화석연료를 사용하는 기체연료와 메탄올 및 히드라진과 같은 액체연료를 사용하는 것 등 여러 가지 연료전지가 있으며 이 중 작동온도가 300℃ 정도 이하의 것을 저온형, 그 이상의 것을 고온형이라 한다. In addition to hydrogen, there are various fuel cells such as gaseous fuels using fossil fuels such as methane and natural gas, and liquid fuels such as methanol and hydrazine. It is called high temperature type.

대용량(MW) 발전설비(stationary power generation)등 대용량 발전소급에 적용하기 위한 연료전지로는 제2세대 연료전지인 발전효율을 향상시키거나 귀금속 촉매를 사용하지 않는 고온형의 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC) 및 제3세대 연료전지인 보다 높은 효율로 발전을 하는 고체산화물 연료전지(Solid Oxide Fuel cell)가 있으며 이러한 연료전지로 금속으로 된 판(plate)형 담체가 연구되어지고 있다.As a fuel cell to be applied to a large-capacity power plant such as large capacity (MW) stationary power generation, a high temperature molten carbonate fuel cell (Molten) that improves power generation efficiency, which is a second generation fuel cell, or does not use a precious metal catalyst. Carbonate Fuel Cell (MCFC) and Solid Oxide Fuel Cell, which generate electricity with higher efficiency, which is the third generation fuel cell, and plate carriers made of metal are being studied. .

일반적으로 발전기용 연료전지 담체로는 세라믹과 금속 담체를 사용하는데 세라믹 담체의 경우 강도가 약해 깨질 우려가 있고 형태 변형이 쉽지 않아 연료전지 셀(cell)을 제조하는데 효과적이지 않다. 반면 금속 담체의 경우 열과 충격에 강하고 전기전도도 및 열전달이 좋을 뿐 아니라, 형태 변형도 자유자재로 가능하기 때문에 금속을 담체로 사용하기 위한 지속적인 노력이 이루어지고 있으나, 금속의 경우 표면이 매끈하고 자체 흡수율이 낮아 촉매를 고르게 도포하기 곤란하기 때문에 표면에 슬러리 형태의 촉매 활성물질을 고착시켜 셀을 제조하기가 어려운 점이 있었다.In general, as a fuel cell carrier for a generator, ceramic and metal carriers are used. In the case of a ceramic carrier, strength is weak and there is a risk of breaking, and shape deformation is not easy, and thus it is not effective for manufacturing a fuel cell. On the other hand, since metal carriers are resistant to heat and impact, have good electrical conductivity and heat transfer, and can be freely modified in shape, continuous efforts have been made to use metals as carriers. Because of this low difficulty in applying the catalyst evenly, it was difficult to prepare a cell by fixing a catalyst active material in the form of slurry on the surface.

따라서 본 발명은 금속판형 담체 표면에 촉매 활성물질을 도포할 시에 금속의 표면이 매끄럽고 자체 흡수율이 낮아 촉매 활성물질이 고르게 분포될 수 없었던 문제점을 해결하고, 금속판형 담체에 촉매 활성물질을 효과적으로 분산시켜 담지하여 촉매 활성을 향상시킴으로써 전기전도도 및 열전달이 좋고 또한 형태 변형이 용이한 금속 셀의 이점을 살려 연료전지 셀 제작에 매우 유용하게 적용할 수 있도록, 금속판형 담체에 대해 전처리로서 열처리를 가하고, 스프레이 건을 사용하여 적절한 양의 촉매 활성물질 슬러리를 금속판형 담체의 표면에 균일하게 도포하여 촉매 활성이 뛰어나며 분산성 및 점착력이 뛰어난 연료전지용 촉매, 이의 제조방법 및 코팅방법을 제공하는 것을 목적으로 한다.Therefore, the present invention solves the problem that the surface of the metal was smooth and the self-absorption rate could not be evenly distributed when the catalyst active material was applied to the surface of the metal plate carrier, and the catalyst active material was effectively dispersed in the metal plate carrier. Heat treatment is applied to the metal plate carrier as a pretreatment so that it can be very usefully applied to fuel cell production by taking advantage of the metal cell having good electrical conductivity and heat transfer and easy morphology by improving the catalytic activity. It is an object of the present invention to provide a catalyst for fuel cell having excellent catalyst activity, excellent dispersibility and adhesion, and a method for coating and coating method by uniformly applying an appropriate amount of a catalyst active material slurry onto a surface of a metal plate carrier using a spray gun. .

상기의 목적을 달성하기 위하여, 본 발명은 금속판형 담체의 표면을 전처리하는 제1단계, 상기 전처리된 담체의 표면에 촉매 활성물질을 코팅하는 제2단계 및 상기 촉매 활성물질이 코팅된 담체를 건조 및 소성하는 제3단계를 포함하는 연료전지용 촉매의 제조방법을 제공한다.In order to achieve the above object, the present invention is a first step of pre-treating the surface of the metal plate carrier, the second step of coating the catalyst active material on the surface of the pre-treated carrier and drying the carrier coated with the catalyst active material And it provides a fuel cell catalyst manufacturing method comprising a third step of firing.

또한 본 발명은 Ni, Pd, Pt, Rh, Ce, Al2O3, Zr 및 La으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 촉매 활성물질이 금속판형 담체 표면에 10~200 ㎛ 두께로 균일하게 코팅된 것을 특징으로 하는 연료전지용 촉매를 제공한다.In addition, the present invention is a catalyst active material containing any one or more selected from the group consisting of Ni, Pd, Pt, Rh, Ce, Al 2 O 3 , Zr and La uniformly on the surface of the metal plate carrier to a thickness of 10 ~ 200 ㎛ It provides a catalyst for a fuel cell, characterized in that the coating.

또한 본 발명은 금속판형 담체의 표면을 열처리하는 열처리 단계, 상기 열처리된 담체의 표면 중 촉매 활성물질을 도포하지 않을 부분을 하우징 처리하는 하우징 처리 단계, 상기 하우징 처리된 담체의 표면에 촉매 활성물질을 10~200㎛ 두께가 되도록 담체 셀의 방향에 따라 도포하는 도포 단계 및 상기 촉매 활성물질이 도포된 담체를 건조 및 소성하는 건조?소성단계를 포함하는 연료전지용 촉매의 코팅방법을 제공한다.In another aspect, the present invention is a heat treatment step of heat-treating the surface of the metal plate carrier, a housing treatment step of housing the portion of the surface of the heat-treated carrier that will not apply the catalyst active material, the catalyst active material on the surface of the housing treated carrier It provides a coating method for a fuel cell catalyst comprising a coating step of applying according to the direction of the carrier cell to a thickness of 10 ~ 200㎛ and a drying and baking step of drying and firing the carrier to which the catalytically active material is applied.

본 발명에 따라 금속판형 담체 표면에 촉매 활성물질을 도포할 시에 금속의 표면이 매끄럽고 자체 흡수율이 낮아 촉매 활성물질이 고르게 분포될 수 없었던 문제점을 해결할 수 있고, 촉매 활성물질을 분산성이 높고 점착력이 좋도록 균일하게 도포하여 촉매 활성을 향상시킬 수 있으며, 또한 금속판형 담체에 효과적으로 촉매 활성물질을 담지하여 촉매 활성이 뛰어난 연료전지용 촉매를 제조할 수 있다.When the catalyst active material is applied to the surface of the metal plate carrier according to the present invention, the surface of the metal is smooth and its self-absorption rate is low, so that the catalyst active material cannot be evenly distributed, and the catalyst active material has high dispersibility and adhesion. It is possible to apply the coating uniformly to improve the catalytic activity, and to effectively support the catalyst active material on the metal plate carrier to produce a catalyst for a fuel cell having excellent catalytic activity.

이하 본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 연료전지용 촉매의 제조방법(이하 "본 발명의 제조방법"이라고 한다)은 촉매 활성물질 슬러리를 금속판형 담체의 표면에 일정한 두께로 균일하게 도포하여 분산성을 높이고 촉매 활성을 향상시키며, 점착력을 높여 촉매 활성물질이 쉽게 탈리되지 않고 유지될 수 있도록 코팅하는 것을 특징으로 한다.The production method of the catalyst for a fuel cell of the present invention (hereinafter referred to as "manufacturing method") of the catalyst active material slurry is uniformly applied to the surface of the metal plate carrier to a uniform thickness to increase the dispersibility and improve the catalyst activity, It is characterized by coating to increase the adhesive force so that the catalytically active material can be easily maintained without being detached.

도 1에는 본 발명의 본 발명의 연료전지용 촉매의 제조공정이 개략적으로 도시되어 있다.1 schematically shows a process for producing a catalyst for a fuel cell of the present invention.

보다 상세하게는 본 발명의 제조방법은 금속판형 담체의 표면을 전처리하는 제1단계; 상기 전처리된 담체의 표면에 촉매 활성물질을 코팅하는 제2단계; 및 상기 촉매 활성물질이 코팅된 담체를 건조 및 소성하는 제3단계를 포함한다.More specifically, the manufacturing method of the present invention comprises a first step of pretreating the surface of the metal plate carrier; Coating a catalytically active material on the surface of the pretreated carrier; And a third step of drying and calcining the carrier coated with the catalytically active material.

제1단계의 금속판형 담체의 표면을 전처리하는 공정으로는, 바람직하게는 금속판형 담체의 표면을 열처리하는 공정을 수행할 수 있다. 열처리 공정을 통해 담체 표면에 분포되어 있는 이물질을 제거하고 열로 산화 처리함으로써 촉매 활성물질이 표면에 효과적으로 분포될 수 있다. As a process of pretreating the surface of the metal plate carrier of the first step, preferably, a process of heat-treating the surface of the metal plate carrier may be performed. The catalytically active material can be effectively distributed on the surface by removing foreign matters distributed on the surface of the carrier through the heat treatment process and oxidizing with heat.

상기 열처리는 고온처리가 가능한 장비를 사용하여 이루어지며, 보다 상세하게는 500~600℃에서 1~4시간 동안 하는 것이 바람직하다.The heat treatment is made using a high-temperature processing equipment, more preferably for 1 to 4 hours at 500 ~ 600 ℃.

또한 제1단계의 전처리 공정은 바람직하게는 금속판형 담체의 표면을 열처리한 이후에, 열처리된 담체의 표면 중에서 촉매 활성물질을 도포할 부분과 도포하지 않을 부분을 구별하기 위하여 도포하지 않을 부분을 하우징 처리할 수 있다.In addition, the pretreatment process of the first step is preferably, after heat-treating the surface of the metal plate carrier, the housing which is not to be applied to distinguish between the portion to which the catalytically active material is to be applied and the portion not to be applied. Can be processed.

제2단계인 전처리된 담체 표면에 촉매 활성물질을 코팅하는 단계는 스프레이 건(spray gun)을 사용하여 할 수 있으며, 바람직하게는 노즐의 구경이 0.5~1.5㎜인 스프레이 건을 사용할 수 있다.The second step of coating the catalytically active material on the surface of the pretreated carrier may be performed using a spray gun, and preferably, a spray gun having a nozzle diameter of 0.5 to 1.5 mm.

담체의 표면에 코팅되는 촉매 활성물질은 바람직하게는 니켈(Ni), 팔라 듐(Pd), 플라티늄(Pt), 로듐(Rh), 세륨(Ce), 알루미나(Al2O3), 지르코늄(Zr) 및 란탄(La)으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있으나, 이에 제한되지 않고 다양한 촉매 활성물질을 사용할 수 있다.The catalytically active material coated on the surface of the carrier is preferably nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), cerium (Ce), alumina (Al 2 O 3 ), zirconium (Zr And lanthanum (La) may include any one or more selected from the group consisting of, but is not limited to this can be used a variety of catalytic active material.

촉매 활성물질을 담체 표면에 도포하기 위하여 용매와 밀링하여 슬러리를 제조한다. 용매는 바람직하게는 증류수, 에탄올 및 메탄올 중 어느 하나 이상일 수 있으나 이에 제한되지 않으며, 밀링은 볼이 들어있는 볼 밀링 장치로 수행할 수 있다.A slurry is prepared by milling with a solvent to apply the catalytically active material to the surface of the carrier. The solvent may be preferably any one or more of distilled water, ethanol and methanol, but is not limited thereto. Milling may be performed by a ball milling apparatus containing a ball.

보다 상세하게는 상기 슬러리는 바람직한 예에 해당하는 스프레이의 사이즈가 매우 작고 노즐이 얇기 때문에 이를 고려하여 적절한 점도로 준비한다. 바람직하게는 G3 cup 기준, 7~10초 정도로 코팅하기에 적합한 점도로 준비할 수 있다. More specifically, the slurry is prepared at an appropriate viscosity in consideration of this since the spray size corresponding to the preferred example is very small and the nozzle is thin. Preferably, the G3 cup may be prepared at a viscosity suitable for coating in about 7 to 10 seconds.

노즐의 공기 압력은 스프레이의 스펙을 기준으로 설정하고, 담체 표면에 셀(cell)의 결대로 대략 10cm 정도 위에서 슬러리를 균일하게 도포하여 고르게 분산시키는 것이 바람직하다. 균일하게 도포되지 않을 경우 슬러리가 두껍게 코팅되어 건조 후 촉매 활성물질이 담체 표면에 유지되지 않고 탈리될 우려가 있으며, 또한 과량의 촉매 활성물질이 코팅될 경우 촉매 활성물질과 담체 사이의 상호작용이 가능한 표면적이 감소하게 되므로 코팅 표면의 크랙(crack) 형성의 원인이 되어 코팅이 잘 이루어지지 않는다. The air pressure of the nozzle is set based on the specifications of the spray, and it is preferable to uniformly disperse the slurry by uniformly applying the slurry on the surface of the carrier about 10 cm on the surface of the cell. If it is not uniformly applied, the slurry may be thickly coated, so that the catalytically active material may not be retained on the surface of the carrier after drying and may be detached. Since the surface area is reduced, it causes crack formation on the coating surface, so that coating is not performed well.

바람직하게는 촉매 활성물질이 대략 10~200㎛ 정도의 두께로 균일하게 도포되는 것이 좋으며, 상기 바람직한 스프레이 건의 예로 노즐의 구경이 0.5~1.5㎜인 스프레이 건을 사용할 경우 도포 횟수는 대략 30~50회 정도가 적당하다.Preferably, the catalytically active material is uniformly applied to a thickness of about 10 to 200 μm. For example, when the spray gun having a nozzle diameter of 0.5 to 1.5 mm is used, the number of application is about 30 to 50 times. The degree is adequate.

촉매 활성물질이 상기 범위보다 두껍게 도포될 경우 촉매 활성물질이 담체 표면에서 탈리될 우려가 있으며 담체와의 상호작용이 잘 이루어지지 않아 촉매 활성이 떨어지게 되어 바람직하지 않다. When the catalytically active material is applied thicker than the above range, the catalytically active material may be detached from the surface of the carrier, and the interaction with the carrier is not performed well, resulting in poor catalytic activity.

또한 바람직하게는 촉매 활성물질의 도포 정도는 표면에 수분이 적당히 분포되어 있는 정도가 좋다. In addition, preferably, the degree of application of the catalytically active material is such that the amount of water is properly distributed on the surface.

제3단계인 촉매 활성물질이 코팅된 담체를 건조 및 소성하는 단계는 담체 표면에 물리적으로 흡착되어 있는 촉매 활성물질에 열적 효과(effect)를 부가하여 촉매 활성물질을 담체에 효과적으로 고정시키기 위한 공정으로서, 바람직하게는 40~200℃의 열을 가하여 수분을 제거하는 건조 과정을 거친 후 400~800℃의 고온으로 소성을 한다. Drying and calcining the carrier coated with the catalytically active material as a third step is a process for effectively fixing the catalytically active material to the carrier by adding a thermal effect to the catalytically active material physically adsorbed on the surface of the carrier. Preferably, after the drying process to remove moisture by applying a heat of 40 ~ 200 ℃ is baked at a high temperature of 400 ~ 800 ℃.

본 발명의 연료전지용 촉매(이하 "본 발명의 촉매"라고 한다)는 촉매 활성물질이 금속판형 담체의 표면에 균일한 두께로 코팅된 것을 특징으로 한다.The catalyst for a fuel cell of the present invention (hereinafter referred to as "the catalyst of the present invention") is characterized in that the catalytically active material is coated with a uniform thickness on the surface of the metal plate carrier.

바람직하게는 상기 촉매 활성물질은 Ni, Pd, Pt, Rh, Ce, Al2O3, Zr 및 La으로 이루어진 군에서 선택된 어느 하나 이상을 포함한다.Preferably, the catalytically active material includes at least one selected from the group consisting of Ni, Pd, Pt, Rh, Ce, Al 2 O 3 , Zr, and La.

또한 바람직하게는 상기 촉매 활성물질이 담체 표면에 10~200㎛ 정도의 두께로 균일하게 코팅된 것이 좋다.Also preferably, the catalytically active material may be uniformly coated on the surface of the carrier with a thickness of about 10 to 200 μm.

촉매 활성물질이 상기 범위보다 두껍게 코팅될 경우 촉매 활성물질이 담체 표면에서 탈리될 우려가 있으며 담체와의 상호작용이 잘 이루어지지 않아 촉매 활성이 떨어지게 되어 바람직하지 않다.If the catalytically active material is coated thicker than the above range, there is a concern that the catalytically active material may be detached from the surface of the carrier and the interaction with the carrier is poor, resulting in poor catalytic activity.

본 발명의 촉매는 바람직하게는 본 발명의 제조방법에 의해 제조될 수 있으나, 이는 본 발명의 촉매를 제조하는 방법의 바람직한 예에 불과할 뿐, 본 발명의 촉매는 본 발명의 제조방법으로 제조된 것에 한정되지 않는다.The catalyst of the present invention may preferably be prepared by the method of the present invention, but this is only a preferable example of the method of preparing the catalyst of the present invention, and the catalyst of the present invention is prepared by the method of the present invention. It is not limited.

본 발명의 연료전지용 촉매의 코팅방법은 금속판형 담체의 표면을 열처리하는 열처리 단계; 상기 열처리된 담체의 표면 중 촉매 활성물질을 도포하지 않을 부분을 하우징 처리하는 하우징 처리 단계; 상기 하우징 처리된 담체의 표면에 촉매 활성물질을 10~200㎛ 두께가 되도록 담체 셀의 방향에 따라 도포하는 도포 단계; 및 상기 촉매 활성물질이 도포된 담체를 건조 및 소성하는 건조?소성단계를 포함한다.Coating method of the catalyst for a fuel cell of the present invention comprises a heat treatment step of heat-treating the surface of the metal plate carrier; A housing treatment step of housing-processing a portion of the surface of the heat-treated carrier to which the catalyst active material is not to be applied; An application step of applying a catalytically active material to the surface of the housing-treated carrier in a direction of the carrier cell such that the catalytically active material is 10 to 200 μm thick; And a drying and firing step of drying and firing the carrier to which the catalytically active material is applied.

바람직하게는 상기 도포 단계는 노즐의 구경이 0.5~1.5㎜인 스프레이 건을 사용하여 수행하는 것을 특징으로 한다. Preferably, the applying step is characterized in that carried out using a spray gun having a nozzle diameter of 0.5 ~ 1.5mm.

기타 본 발명의 연료전지용 촉매의 코팅방법에 관한 보다 상세한 사항은 본 발명의 제조방법에서 서술한 사항과 동일하다. Other details of the coating method of the catalyst for fuel cell of the present invention are the same as those described in the manufacturing method of the present invention.

이하 본 발명의 제조방법을 하기 실시예에 의해 더욱 상세히 설명하면 다음과 같다. 다만 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다. Hereinafter, the manufacturing method of the present invention will be described in more detail with reference to the following examples. However, the embodiment is only for helping the understanding of the present invention, the present invention is not limited thereto.

[실시예][Example]

금속으로 된 판형 담체의 표면을 550℃로 2시간 동안 열처리한 후, 담체의 표면 중에서 촉매 활성물질을 도포하지 않을 부분에 하우징 처리를 하였다. 담체의 표면에 도포하기 위한 촉매 활성물질로 니켈을 증류수와 볼 밀링 장치에 넣어 밀링하여 슬러리를 제조하였다. 제조된 슬러리를 노즐의 구경이 1.0㎜인 스프레이 건을 사용하여 하우징 처리된 담체의 표면에 40회 도포하여 촉매 활성물질의 두께가 대략 150㎛ 정도가 되었다. 이후 촉매 활성물질이 도포된 담체를 120℃의 열을 가하여 건조한 후 600℃의 고온으로 소성하여 연료전지용 촉매를 제조하였다. The surface of the plate-shaped carrier made of metal was heat-treated at 550 ° C. for 2 hours, and then a housing treatment was performed on a portion of the surface of the carrier not to which the catalytically active substance was applied. Slurry was prepared by milling nickel into distilled water and a ball milling apparatus as a catalytically active material for coating on the surface of the carrier. The prepared slurry was applied 40 times to the surface of the housing-treated carrier using a spray gun having a nozzle diameter of 1.0 mm, so that the thickness of the catalytically active material was about 150 μm. Thereafter, the carrier coated with the catalytically active material was dried by applying heat of 120 ° C., and then fired at a high temperature of 600 ° C. to prepare a catalyst for a fuel cell.

도 2에 본 발명의 실시예에 따라 금속판형 담체의 표면에 슬러리가 코팅된 모습을 나타내었다.2 shows a slurry coated on the surface of the metal plate carrier according to the embodiment of the present invention.

[시험예 1][Test Example 1]

상기 실시예에 따라 제조된 연료전지용 촉매에 대해 하기와 같은 조건하에 SOFC(Solid Oxide Fuel Cell, 고체산화물 연료전지) 활성 시스템을 이용하여 테스트를 실시하고, 테스트 후의 모습을 도 3에 나타내었다. The fuel cell catalyst prepared according to the embodiment was tested using a SOFC (Solid Oxide Fuel Cell) active system under the following conditions, and the state after the test is shown in FIG. 3.

-테스트 조건-test requirements

CH4 : 3~30vol%(H2 balance)CH 4 : 3 ~ 30vol% (H 2 balance)

H20 : 3~60vol%H 2 0: 3 ~ 60vol%

Temp : 750℃Temp: 750 ℃

Time : 300hrTime: 300hr

도 3에 나타난 바와 같이, 본 발명의 실시예에 따라 제조된 연료전지용 촉매에 대한 장시간의 테스트를 실시한 후에도 촉매 활성물질이 탈리되지 않고 테스트 전의 상태를 유지하고 있는 것을 확인할 수 있었다. 이는 본 발명에 따라 촉매 활성물질과 금속판형 담체 간의 점착력이 매우 향상되었음을 나타내는 결과이다. As shown in FIG. 3, it was confirmed that the catalyst active material was not detached and maintained in the state before the test even after a long time test on the catalyst for fuel cell manufactured according to the embodiment of the present invention. This is a result indicating that the adhesion between the catalytically active material and the metal plate carrier was greatly improved according to the present invention.

[시험예 2][Test Example 2]

상기 실시예에 따라 제조된 촉매의 CH4 내부개질 활성평가를 하기와 같은 조건하에 실시하고, 그 결과를 도 4에 나타내었다. CH 4 internal reforming activity evaluation of the catalyst prepared according to the above example was carried out under the following conditions, and the results are shown in FIG. 4.

-테스트 조건-test requirements

CH4 : 30vol%(H2 balance)CH 4 : 30vol% (H 2 balance)

S/C ratio = 2.5~3S / C ratio = 2.5 ~ 3

Temp : 750℃Temp: 750 ℃

Time : 200hrTime: 200hr

도 4에 나타난 바와 같이, 본 발명의 실시예에 따라 제조된 연료전지용 촉매는 200시간 이상 활성을 유지하고 있으며, 또한 이 경우에도 90% 이상의 높은 전환율(conversion, %)을 보이고 있어 매우 뛰어난 활성을 나타내고 있음을 확인할 수 있었다. 이는 본 발명이 촉매 활성 유지에 효과적으로 적용되고 있음을 나타내는 결과이다. As shown in FIG. 4, the fuel cell catalyst prepared according to the embodiment of the present invention maintains activity for more than 200 hours, and in this case, also shows a high conversion rate (%) of 90% or more, which is very excellent. It was confirmed that it was shown. This is a result indicating that the present invention is effectively applied to maintaining catalyst activity.

도 1은 본 발명의 연료전지용 촉매의 제조공정을 개략적으로 나타낸 것이다.Figure 1 schematically shows a manufacturing process of the catalyst for a fuel cell of the present invention.

도 2는 본 발명의 실시예에 따라 금속판형 담체의 표면에 슬러리가 코팅된 모습을 나타낸 것이다.Figure 2 shows a slurry coated on the surface of the metal plate carrier according to an embodiment of the present invention.

도 3은 본 발명의 시험예 1에 따른 장시간의 활성평가 후에도 촉매 활성물질이 탈리되지 않고 활성평가 전의 상태를 유지하고 있는 모습을 나타낸 것이다.3 shows a state in which the catalytically active substance is not detached and remains in the state before the activity evaluation even after a long time activity evaluation according to Test Example 1 of the present invention.

도 4는 본 발명의 시험예 2에 따른 내부개질 활성평가 결과를 나타낸 것이다.Figure 4 shows the results of the internal reforming activity evaluation according to Test Example 2 of the present invention.

Claims (11)

금속판형 담체의 표면을 전처리하는 제1단계;A first step of pretreating the surface of the metal plate carrier; 상기 전처리된 담체의 표면에 촉매 활성물질을 코팅하는 제2단계; 및Coating a catalytically active material on the surface of the pretreated carrier; And 상기 촉매 활성물질이 코팅된 담체를 건조 및 소성하는 제3단계를 포함하며,Comprising a third step of drying and calcining the carrier coated with the catalytically active material, 상기 제1단계는, (a)금속판형 담체의 표면을 열처리하는 단계를 포함하고,The first step includes (a) heat-treating the surface of the metal plate carrier, 상기 제1단계는 (a)단계 이후에, (b)상기 열처리된 담체의 표면 중 촉매 활성물질을 도포하지 않을 부분을 하우징 처리하는 단계를 더 포함하며,The first step further includes, after step (a), (b) housing a portion of the surface of the heat-treated carrier to which the catalytically active material is not applied. 상기 제2단계는, 노즐의 구경이 0.5~1.5㎜인 스프레이 건을 사용하여 수행하며,The second step is performed using a spray gun having a nozzle diameter of 0.5 to 1.5 mm, 상기 제2단계는, (c)촉매 활성물질 및 용매를 밀링하여 슬러리를 제조하는 단계; 및 (d)제조된 슬러리를 10~200㎛ 두께가 되도록 담체의 표면에 셀의 방향에 따라 도포하는 단계를 포함하는 연료전지용 촉매의 제조방법. The second step, (c) milling the catalyst active material and solvent to prepare a slurry; And (d) applying the prepared slurry to the surface of the carrier in the direction of the cell so as to have a thickness of 10 to 200 μm. 삭제delete 삭제delete 제1항에 있어서, 상기 (a)단계는. The method of claim 1, wherein step (a) is performed. 500~600℃에서 1~4시간 동안 수행하는 연료전지용 촉매의 제조방법.Method for producing a catalyst for a fuel cell to be carried out for 1 to 4 hours at 500 ~ 600 ℃. 제1항에 있어서, The method of claim 1, 상기 촉매 활성물질은 Ni, Pd, Pt, Rh, Ce, Al2O3, Zr 및 La으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 연료전지용 촉매의 제조방법.The catalyst active material is Ni, Pd, Pt, Rh, Ce, Al 2 O 3 , Zr and La comprising a method for producing a catalyst for a fuel cell comprising any one or more selected from the group consisting of. 삭제delete 삭제delete 제1항에 있어서, 상기 제3단계는The method of claim 1, wherein the third step 40~200℃에서 건조하고, 400~800℃에서 소성하는 연료전지용 촉매의 제조방법.A method for producing a fuel cell catalyst which is dried at 40 to 200 ° C. and calcined at 400 to 800 ° C. 삭제delete 삭제delete 삭제delete
KR1020090109976A 2009-11-13 2009-11-13 Catalysts for fuel cell and method of preparing, coating the same. KR101117608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090109976A KR101117608B1 (en) 2009-11-13 2009-11-13 Catalysts for fuel cell and method of preparing, coating the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090109976A KR101117608B1 (en) 2009-11-13 2009-11-13 Catalysts for fuel cell and method of preparing, coating the same.

Publications (2)

Publication Number Publication Date
KR20110053139A KR20110053139A (en) 2011-05-19
KR101117608B1 true KR101117608B1 (en) 2012-03-07

Family

ID=44362894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090109976A KR101117608B1 (en) 2009-11-13 2009-11-13 Catalysts for fuel cell and method of preparing, coating the same.

Country Status (1)

Country Link
KR (1) KR101117608B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375541B1 (en) * 2012-02-02 2014-03-26 희성촉매 주식회사 Tehrmal fixation of catalyst active components on alumina supports

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170234A1 (en) * 2004-02-04 2005-08-04 General Electric Company Solid Oxide Fuel Cell With Internal Reforming, Catalyzed Interconnect For Use Therewith, and Methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170234A1 (en) * 2004-02-04 2005-08-04 General Electric Company Solid Oxide Fuel Cell With Internal Reforming, Catalyzed Interconnect For Use Therewith, and Methods

Also Published As

Publication number Publication date
KR20110053139A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
US7732084B2 (en) Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
US7833934B2 (en) Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
Tabakova et al. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant
CA2511920C (en) Catalyst-containing gas diffusion layer for fuel cells and process for producing it
KR101828175B1 (en) Synthesis method of metal catalyst having carbon shell using metal-aniline complex
WO2000076651A8 (en) Compact, light weight methanol fuel gas autothermal reformer assembly
Huang et al. Hydrogen generation with sodium borohydride solution by Ru catalyst
CN101690892A (en) Method for preparing catalyst for removing CO by selective oxidation
WO2021096013A1 (en) Water electrolysis electrode comprising composite metal oxide catalyst, preparation method for same, and water electrolysis device comprising same water electrolysis electrode
US8575060B2 (en) Method of fabricating fuel reforming catalyst for SOFC power generating system
CN111224113A (en) Ni-N4 monoatomic catalyst anchored by multistage carbon nanostructure and preparation method and application thereof
KR20180078061A (en) Method for manufacturing electrode for fuel cell with high durability
CN109216716B (en) Preparation method of Pt/C catalyst for fuel cell with high Pt loading
WO2014009835A2 (en) Metal nanoparticle-graphene composites and methods for their preparation and use
Yan et al. Improvement of solid oxide fuel cell performance by a core‐shell structured catalyst using low concentration coal bed methane fuel
KR101117608B1 (en) Catalysts for fuel cell and method of preparing, coating the same.
CN112397752B (en) Improved electric symbiosis electrochemical reactor and preparation method thereof
KR101342605B1 (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
CN102125836A (en) Monolithic catalyst for producing hydrogen by hydroboron hydrolysis and preparation method thereof
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
CN109037714A (en) A kind of distributed cobalt-base catalyst and preparation method of fuel cell
CN109921047A (en) One proton exchanging film fuel battery ordered catalyst layer and its preparation and application
JP2000342968A (en) Catalyst and producing method
CN112673125B (en) Metal porous body, steam reformer including the same, and method of manufacturing the metal porous body
WO2021242799A1 (en) Direct hydrocarbon metal supported solid oxide fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150126

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170112

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 9