KR101091779B1 - A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same - Google Patents

A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same Download PDF

Info

Publication number
KR101091779B1
KR101091779B1 KR1020090066246A KR20090066246A KR101091779B1 KR 101091779 B1 KR101091779 B1 KR 101091779B1 KR 1020090066246 A KR1020090066246 A KR 1020090066246A KR 20090066246 A KR20090066246 A KR 20090066246A KR 101091779 B1 KR101091779 B1 KR 101091779B1
Authority
KR
South Korea
Prior art keywords
conductive film
transparent conductive
film
ito
present
Prior art date
Application number
KR1020090066246A
Other languages
Korean (ko)
Other versions
KR20110008744A (en
Inventor
양계용
정성훈
이풍현
손동욱
Original Assignee
주식회사 이건창호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이건창호 filed Critical 주식회사 이건창호
Priority to KR1020090066246A priority Critical patent/KR101091779B1/en
Publication of KR20110008744A publication Critical patent/KR20110008744A/en
Application granted granted Critical
Publication of KR101091779B1 publication Critical patent/KR101091779B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

투명도전막 제조방법, 이에 의하여 제조된 투명도전막 및 이를 포함하는 염료감응 태양전지가 제공된다.A method for manufacturing a transparent conductive film, a transparent conductive film prepared thereby, and a dye-sensitized solar cell including the same are provided.

본 발명의 일 실시예에 따른 투명도전막 제조방법은 기판상에 주석도핑 산화인듐(ITO)로 이루어진 제 1 도전막을 적층하는 단계; 상기 제 1 도전막상에 적층되며, 후속하는 소결 공정 시 상기 제 1 도전막의 증발을 방지하는 방지막을 적층하는 단계; 및 상기 제 1 도전막을 소결시키는 단계를 포함하는 것을 특징으로 하며, 본 발명에 따라 제조된 투명도전막은 상부에 인듐의 증발을 방지하는 또 다른 방지막을 구비함으로써, 400도 이상의 고온에서 소결됨에도 불구하고, 열적으로 안정하다는 장점이 있다. 더 나아가, 간단히 FTO층 등을 ITO 층상에 적층시킨 후, 후속하는 하나의 소결공정을 통하여 투명 도전막을 제조하므로, 공정 경제성도 우수하다.A transparent conductive film manufacturing method according to an embodiment of the present invention comprises the steps of laminating a first conductive film made of tin-doped indium oxide (ITO) on a substrate; Stacking a protective film stacked on the first conductive film and preventing evaporation of the first conductive film during a subsequent sintering process; And a step of sintering the first conductive film, wherein the transparent conductive film prepared according to the present invention has another prevention film for preventing evaporation of indium thereon, despite being sintered at a high temperature of 400 degrees or more. This has the advantage of being thermally stable. Furthermore, since the FTO layer or the like is simply laminated on the ITO layer, a transparent conductive film is produced through one subsequent sintering process, so that the process economy is also excellent.

Description

투명도전막 제조방법, 이에 의하여 제조된 투명도전막 및 이를 포함하는 염료감응 태양전지{A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same}A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same}

본 발명은 투명도전막 제조방법, 이에 의하여 제조된 투명도전막 및 이를 포함하는 염료감응 태양전지에 관한 것으로, 보다 상세하게는 400도 이상의 고온에서 소결됨에도 불구하고, 열적으로 안정하며, 동시에 얻어진 도전막의 전도성이 우수하고, 더 나아가, 간단히 FTO, 실리카층을 ITO 층상에 적층시킨 후, 후속하는 하나의 소결공정을 통하여 투명 도전막을 제조하므로, 공정 경제성도 우수한 투명도전막 제조방법, 이에 의하여 제조된 투명도전막 및 이를 포함하는 염료감응 태양전지에 관한 것이다. The present invention relates to a method for manufacturing a transparent conductive film, a transparent conductive film prepared thereby, and a dye-sensitized solar cell including the same, and more particularly, despite being sintered at a high temperature of 400 degrees or more, the thermally stable and simultaneously obtained conductive film In addition, since the transparent conductive film is prepared by simply laminating the FTO and silica layers on the ITO layer, and then through one subsequent sintering process, a method for manufacturing a transparent conductive film with excellent process economy, the transparent conductive film produced thereby, and It relates to a dye-sensitized solar cell comprising the same.

일반적으로 투명도전막은 가전기기 및 각종 디스플레이 장치의 정전기 방지막 또는 전자파 차폐막으로 사용되기도 하고, 액정표시장치, 전계발광소자, 플라스마 디스플레이 패널의 전자파 차폐막 또는 전원인가용 투명전극으로 사용될 수도 있으며, 또는 태양전지의 전극으로 사용되는 등 그 활용범위가 매우 넓다. 특히 플 라스마 디스플레이 패널의 전자파 차폐 또는 염료감응 태양전지의 전극으로 사용함에 있어서, 이들 디스플레이 및 태양전지의 대면적화를 위해서는 투명도전막의 전도성이 우수하여야 한다.In general, the transparent conductive film may be used as an antistatic film or an electromagnetic wave shielding film of home appliances and various display devices, or may be used as an electromagnetic wave shielding film of a liquid crystal display, an electroluminescent device, a plasma display panel, or a transparent electrode for applying power, or a solar cell. It is used as an electrode, and its use range is very wide. In particular, when using the electromagnetic shielding of the plasma display panel or the electrode of the dye-sensitized solar cells, the conductivity of the transparent conductive film should be excellent for the large area of these displays and solar cells.

특히, 투명성을 이점으로 하는 염료감응 태양전지는 감광성 염료 분자와 나노 입자의 산화티타늄으로 이루어지는 산화물 반도체를 이용한 광전기화학 태양전지로서, 기존의 실리콘 태양전지에 비해 제조단가가 저렴하고, 투명한 전극으로 인해 건물 외벽 유리창이나 유리 온실 등으로의 응용이 가능하여 많은 연구가 이루어지고 있다.In particular, the dye-sensitized solar cell having the advantage of transparency is a photoelectrochemical solar cell using an oxide semiconductor consisting of photosensitive dye molecules and titanium oxide of nanoparticles, which is cheaper to manufacture than conventional silicon solar cells, It is possible to apply to glass windows or glass greenhouses for building exterior walls, and much research is being done.

이러한 염료감응 태양전지는 다공성의 전이금속산화물(예를 들면, 산화티타늄) 박막으로 구성되는 산화물 반도체 전극을 제조하기 위해 ITO와 같은 투명 전극 페이스트를 기판상에 적층한 후, 400도 이상의 고온에서 열처리하는데, 본 발명자는 400도 이상의 온도에서 ITO(인듐-주석 산화물)를 소결시키는 경우, 인듐의 국소적인 증발이 발생하여, 전극 전체적으로 불균일한 저항성을 갖게 되며, 그 결과 전체 태양전지의 효율이 저감되는 문제가 있었다. The dye-sensitized solar cell is laminated with a transparent electrode paste such as ITO on a substrate to produce an oxide semiconductor electrode composed of a porous transition metal oxide (for example, titanium oxide) thin film, and then heat-treated at a high temperature of 400 degrees or more. In the present invention, when sintering ITO (indium tin oxide) at a temperature of 400 degrees or more, local evaporation of indium occurs, resulting in non-uniform resistance of the entire electrode, resulting in reduced efficiency of the entire solar cell. There was a problem.

대한민국 공개특허공보 10--2005-0080609호(이하 종래기술)는 ITO와 다른 투면도전막을 반복하는 구조를 개시한다. 상기 종래기술은 FTO, TO, ZTO, ATO와 ITO로 이루어진 복합 도전막을 통하여, 우수한 전도성을 달성하고자 하나, ITO가 포함되는 복합막 또한 고온과정에 노출되며, 이 경우 인듐 등이 국소적으로 고온에 노출되어 증발하는 문제가 여전히 있다.Korean Unexamined Patent Publication No. 10-2005-0080609 (hereinafter, referred to as a prior art) discloses a structure in which ITO and another transmissive conductive film are repeated. The prior art is to achieve excellent conductivity through a composite conductive film made of FTO, TO, ZTO, ATO and ITO, the composite film containing ITO is also exposed to a high temperature process, in this case indium is locally exposed to high temperature There is still a problem of exposure and evaporation.

본 발명은 상기 문제를 개선하기 위하여 안출된 것으로서, 본 발명이 해결하고자 하는 과제는 새로운 투명도전막 제조방법을 제공하는 데 있다. The present invention has been made to solve the above problems, the problem to be solved by the present invention is to provide a new method for manufacturing a transparent conductive film.

본 발명이 해결하고자 하는 또 다른 과제는 고온에서 제조되어도 우수한 전도성을 갖는 투명도전막을 제공하는 데 있다. Another object of the present invention is to provide a transparent conductive film having excellent conductivity even when manufactured at a high temperature.

본 발명이 해결하고자 하는 또 다른 과제를 상기 투명도전막을 포함하는 응용장치를 제공하는 데 있다. Another object of the present invention is to provide an application including the transparent conductive film.

상기 과제를 해결하기 위하여 본 발명은 기판상에 주석도핑 산화인듐(ITO)로 이루어진 제 1 도전막을 적층하는 단계; 상기 제 1 도전막상에 적층되며, 후속하는 소결 공정 시 상기 제 1 도전막의 증발을 방지하는 방지막을 적층하는 단계; 및 상기 제 1 도전막을 소결시키는 단계를 포함하는 것을 특징으로 하는 투명도전막 제조방법을 제공한다. In order to solve the above problems, the present invention comprises the steps of laminating a first conductive film made of tin-doped indium oxide (ITO) on the substrate; Stacking a protective film stacked on the first conductive film and preventing evaporation of the first conductive film during a subsequent sintering process; And it provides a transparent conductive film manufacturing method comprising the step of sintering the first conductive film.

본 발명의 일 실시예에서 상기 방지막은 실리카층이며, 본 발명의 또 다른 일 실시예에서는 상기 방지막은 불소-도핑 산화주석(FTO), 산화주석 (SnO2;TO), 및 아연산화주석(ZTO) 중에서 선택된 하나 이상의 물질로 이루어진 제 2 도전막이다. 또한 상기 제 1 도전막 및 제 2 도전막은 스퍼터링법에 의하여 기판상에 적층된다. 본 발명의 일 실시예에서 상기 소결은 상기 제 1 도전막과 제 2 도전막이 적층된 후 동시에 진행된다. 또한, 상기 소결은 400℃ 이상의 온도로 진행된다. In one embodiment of the present invention, the barrier film is a silica layer, and in another embodiment of the present invention, the barrier film is fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc oxide (ZTO). It is a second conductive film made of one or more materials selected from. The first conductive film and the second conductive film are laminated on the substrate by the sputtering method. In one embodiment of the present invention, the sintering is performed at the same time after the first conductive film and the second conductive film are laminated. In addition, the sintering is carried out at a temperature of 400 ℃ or more.

상기 또 다른 과제를 해결하기 위하여, 본 발명은 기판 상에 적층된 투명 도전막으로서, 상기 도전막은 기판상에 적층된 주석도핑 산화인듐(ITO)로 이루어진 제 1 도전막; 및 상기 제 1 도전막 상에 적층되며, 후속하는 소결 공정시 상기 제 1 도전막의 증발을 방지하는 방지막을 포함하며, 여기에서 상기 제 1 도전막은 상기 방지막이 상부에 적층된 후 소결된 것을 특징으로 하는 투명 도전막을 제공한다. In order to solve the another problem, the present invention is a transparent conductive film laminated on a substrate, the conductive film is a first conductive film made of tin-doped indium oxide (ITO) laminated on the substrate; And a protective film laminated on the first conductive film and preventing the evaporation of the first conductive film during a subsequent sintering process, wherein the first conductive film is sintered after the protective film is laminated on the top. A transparent conductive film is provided.

본 발명의 일 실시예에서 상기 방지막은 불소-도핑 산화주석(FTO), 산화주석(SnO2;TO), 및 아연산화주석(ZTO) 중에서 선택된 하나 이상의 물질로 이루어진 제 2 도전막이다. 본 발명의 또 다른 일 실시예에서 상기 방지막은 실리카로 이루어진다. In one embodiment of the present invention, the barrier layer is a second conductive layer made of at least one material selected from fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc oxide (ZTO). In another embodiment of the present invention the barrier film is made of silica.

또한, 상기 소결은 400℃ 이상의 온도에서 진행되며, 상기 방지막 두께는 50 내지 200nm이다. In addition, the sintering is carried out at a temperature of 400 ℃ or more, and the barrier film thickness is 50 to 200nm.

상기 또 다른 과제를 해결하기 위하여 본 발명은 상기 투명 도전막을 포함하는 염료감응 태양전지를 제공한다. The present invention provides a dye-sensitized solar cell comprising the transparent conductive film in order to solve the another problem.

본 발명에 따라 제조된 투명도전막은 상부에 인듐의 증발을 방지하는 또 다른 방지막을 구비함으로써, 400도 이상의 고온에서 소결됨에도 불구하고, 열적으로 안정하다는 장점이 있다. 더 나아가, 간단히 FTO층 등을 ITO 층상에 적층시킨 후, 후속하는 하나의 소결공정을 통하여 투명 도전막을 제조하므로, 공정 경제성도 우수하다.The transparent conductive film prepared according to the present invention has an advantage of being thermally stable even though it is sintered at a high temperature of 400 degrees or more by providing another prevention film on the top to prevent evaporation of indium. Furthermore, since the FTO layer or the like is simply laminated on the ITO layer, a transparent conductive film is produced through one subsequent sintering process, so that the process economy is also excellent.

이하, 본 발명을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되어지는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the drawings. The following embodiments are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the embodiments described below, but may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout.

도 1은 본 발명의 일 실시예에 따른 투명 도전막 제조방법을 설명하는 단계도이다. 1 is a step illustrating a method for manufacturing a transparent conductive film according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 투명 도전막 제조방법은 기판상에 제 1 도전막, 즉, 비록 전도도가 높으나, 높은 온도에서 구성성분 중 일부가 증발함으로써, 최종 도전막의 균열 등이 발생하기 쉬운 주석 도핑 인듐 산화물(Indium-Tin Oxide, ITO)을 포함하거나, 또는 ITO로 이루어진 제 1 도전막이 적층된다. 본 발명자는 상기 제 1 도전막은 고온, 특히 400℃ 이상의 온도에서 인듐 등이 증발하는 문제가 있음을 인식한 후, 이를 억제할 수 있는 보호막층, 즉, 증발 방지막을 상기 제 1 도전막 상에 소결 이전 적층시킨 후, 다시 고온에서 제 1 도전막을 소결시키는 방식의 투명 도전막 제조방법을 제공한다. Referring to FIG. 1, in the method of manufacturing a transparent conductive film according to an embodiment of the present invention, the first conductive film on the substrate, that is, although the conductivity is high, is due to evaporation of a part of the components at a high temperature, so that the crack of the final conductive film A first conductive film made of tin-doped indium oxide (ITO) or easily made of ITO or the like is laminated. The inventors have recognized that the first conductive film has a problem of evaporating indium and the like at a high temperature, particularly at a temperature of 400 ° C. or higher, and then sintering a protective film layer, that is, an evaporation preventing film, on the first conductive film. After the previous lamination, there is provided a method for producing a transparent conductive film by sintering the first conductive film at a high temperature again.

본 발명은 상기 증발 방지막으로 두 가지 종류의 물질을 제공한다. 첫 번째는 실리카이고, 두 번째는 불소-도핑 산화주석(FTO), 산화주석(SnO2; TO), 및 아연산화주석(ZTO) 중에서 선택된 하나 이상의 물질로 이루어진 또 다른 도전 물질이다. The present invention provides two kinds of materials as the anti-evaporation film. The first is silica and the second is another conductive material consisting of one or more materials selected from fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc oxide (ZTO).

만약 실리카로 상기 증발 방지막을 구성하는 경우, 실리카는 비록 전기 전도도는 다른 도전물질에 비하여 떨어지나, 적층된 두께가 얇은 경우, ITO의 전도도는 충분히 유지되며, 이와 동시에 소결 공정에서 발생하는 ITO의 물리적 손상 방지, 전해액에 의한 ITO의 화학적 손상 방지를 달성할 수 있다. 특히 실리카가 가지는 우수한 화학적인 내식저항성은 ITO의 화학적 손상을 매우 효과적으로 방지할 수 있다. If the anti-evaporation film is made of silica, the silica has a lower electrical conductivity than other conductive materials, but when the thickness is thin, the conductivity of the ITO is sufficiently maintained, and at the same time, the physical damage of the ITO in the sintering process is achieved. Prevention, and prevention of chemical damage of ITO by electrolyte solution can be achieved. In particular, the excellent chemical corrosion resistance of silica can prevent the chemical damage of ITO very effectively.

본 발명의 또 다른 일 실시예는 상기 증발 방지막으로 불소-도핑 산화주석(FTO), 산화주석(SnO2; TO), 및 아연산화주석(ZTO) 등과 같은 도전성 물질을 사용한다. 특히 전도성을 갖는 증발 방지막을 상기 제 1 도전막 상에 구비시키는 경우, 고온의 소결과정에 따른 ITO 증발로부터 발생하는 전도도 감소 및 균열 또는 크랙에 의한 도전막의 기계적 특성 저하 등의 문제를 효과적으로 방지할 수 있다. 이를 위하여, 본 발명에서 우수한 전기적 특성을 보이나 상대적으로 고온에 약한 ITO의 국소적 증발을 방지하기 위한 증발방지막, 또는 보호막으로 불소-도핑 산화주석(FTO), 산화주석(SnO2; TO), 및 아연산화주석(ZTO) 중에서 선택된 하나 이상의 물질로 이루어진 제 2 도전막을 개시한다. 특히 FTO의 경우 전도성은 ITO에 비하여 떨어지나, 고온에서 ITO 보다 안정하고, 우수한 투명 특성을 보이기 때문에, ITO의 고온 증발을 억제하는 보호막으로 바람직하다. 하지만, 본 발명은 이에 제한되지 않으며, 투명성과 동시에 고온 안정성, 특히 ITO에 비해서 고온에서 안정한 특성을 보이는 한 어떠한 물질도 제 2 도전막 재료로 사용될 수 있으며, 이 또한 본 발명의 범위에 속한다. Another embodiment of the present invention uses a conductive material such as fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc oxide (ZTO) as the evaporation preventing film. In particular, when the conductive anti-evaporation film is provided on the first conductive film, problems such as a decrease in conductivity resulting from evaporation of ITO due to high temperature sintering process and a decrease in mechanical properties of the conductive film due to cracks or cracks can be effectively prevented. have. To this end, fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc as an anti-evaporation film or protective film for preventing local evaporation of ITO, which exhibits excellent electrical properties in the present invention but is relatively weak at high temperatures. A second conductive film made of at least one material selected from tin oxide (ZTO) is disclosed. In particular, in the case of FTO, the conductivity is lower than that of ITO, but is more stable than ITO at high temperatures, and excellent transparent properties are preferred. Therefore, it is preferable as a protective film that suppresses high temperature evaporation of ITO. However, the present invention is not limited to this, and any material can be used as the second conductive film material as long as it exhibits transparency and high temperature stability, particularly stable at high temperatures compared to ITO, which is also within the scope of the present invention.

본 발명에 따른 투명 도전막 제조방법은 상술한 바와 같인 ITO로 이루어진 제 1 도전막과 상기 제 1 도전막상에 제 2 도전막을 적층한다. 이후, 상기 제 1 도전막과 제 2 도전막을 동시에 소결하게 된다. 즉, 본 발명은 ITO 등의 제 1 도전막과 상기 ITO 상의 FTO 등의 제 2 도전막을 400℃이상의 온도에서 소결하는 경우, ITO 및 FTO의 동시 소결을 꾀할 수 있으며, 더 나아가 공정상에 있어서도 하나의 소결공정만을 시행하므로, 경제성이 우수하다. 상기 소결 단계에서 ITO의 증발은 상부의 FTO 등의 제 2 도전막에 의하여 억제됨은 상술한 바와 같다. In the method for manufacturing a transparent conductive film according to the present invention, a first conductive film made of ITO as described above and a second conductive film are laminated on the first conductive film. Thereafter, the first conductive film and the second conductive film are sintered at the same time. That is, the present invention can achieve simultaneous sintering of ITO and FTO when the first conductive film such as ITO and the second conductive film such as FTO on the ITO are sintered at a temperature of 400 ° C. or higher, and furthermore, in the process. Since only the sintering process of is performed, it is excellent in economy. As described above, evaporation of ITO in the sintering step is suppressed by a second conductive film such as FTO on the upper side.

도 2는 본 발명의 일 실시예에 따라 제조된 투명도전막을 나타낸다. 2 shows a transparent conductive film prepared according to an embodiment of the present invention.

도 2를 참조하면, 본 발명에 따른 투명 도전막은 기판(200) 및 상기 기판상의 제 1 도전막(210) 및 상기 제 1 도전막 상의 증발 방지막(220)으로 이루어진다. 이때, 본 발명에 따른 상기 투명도전막의 증발 방지막은 고온에서 증발하기 쉬운 ITO 등을 외부로 노출시키지 않는 역할을 하여야 한다. 따라서, FTO 등의 전도성 물질 또는 실리카로 이루어진 상기 증발 방지막의 두께(T2)는 50 내지 200nm가 바람직하다. 만약 증발 방지막의 두께(T2)가 과도하게 두꺼운 경우, 투명도전막의 전도성은 상대적으로 떨어지게 되는데, 특히 실리카로 증발 방지막을 사용하는 경우, 두께 증가에 따른 전도도 저하가 두드러진다. 반대로 증발 방지막의 두께가 과도하게 얇은 경우, ITO로 이루어진 제 1 도전성 박막이 국소적으로 노출되어, 증발하는 문제가 있다. 이러한 증발에 따른 전도성 감소, 기계적 물성 저하(예를 들면, 염료 감응 태양전지에서는 전해질에 의한 기판 부식 등)의 문제는 상술한 바와 같다.Referring to FIG. 2, the transparent conductive film according to the present invention includes a substrate 200, a first conductive film 210 on the substrate, and an evaporation preventing film 220 on the first conductive film. At this time, the anti-evaporation film of the transparent conductive film according to the present invention should play a role of not exposing ITO or the like which is easy to evaporate at high temperature. Therefore, the thickness (T2) of the evaporation prevention film made of a conductive material such as FTO or silica is preferably 50 to 200 nm. If the thickness (T2) of the anti-evaporation film is excessively thick, the conductivity of the transparent conductive film is relatively low. In particular, when the evaporation prevention film is used as silica, the conductivity decreases with increasing thickness. On the contrary, when the thickness of the evaporation prevention film is excessively thin, there is a problem that the first conductive thin film made of ITO is locally exposed and evaporates. Problems such as reduced conductivity due to evaporation and lowered mechanical properties (for example, substrate corrosion due to electrolyte in a dye-sensitized solar cell) are as described above.

본 발명은 상술한 투명도전막을 이용한 다양한 응용소자를 개시하며, 이 중 하나는 염료감응 태양전지이다.The present invention discloses various application devices using the above-described transparent conductive film, one of which is a dye-sensitized solar cell.

도 3은 본 발명의 일 실시예에 따른 투명도전막을 포함하는 염료감응 태양전지의 단면도이다.3 is a cross-sectional view of a dye-sensitized solar cell including a transparent conductive film according to an embodiment of the present invention.

도 3을 참조하면, 본 발명의 일 실시예에 따른 염료감응 태양전지는 상호 대향하는 두 기판(제 1 및 제 2 기판 300a, 300b)을 포함하며; 상기 기판 상에는 본 발명에 따른 투명도전막(310)이 구비된다. 상기 투명도전막은 상술한 바와 같이 기판상의 ITO 도전막(제 1 도전막, 310a)과 상기 ITO 도전막 상의 증발방지막 (310b)로 이루어진다. 즉, 본 발명은 단순한 도전막 복합물의 형태가 아닌 별개의 구분되는 다층막 구조의 투명도전막으로 개시하며, 특히 상기 투명 도전막의 상부 에 구비되는 증발 방지막 물질로 상대적으로 고온에서 안정된 또 다른 도전물질 또는 실리카가 개시되며, 이는 상술한 바와 같다. 3, the dye-sensitized solar cell according to an embodiment of the present invention includes two substrates (first and second substrates 300a and 300b) facing each other; The transparent conductive film 310 according to the present invention is provided on the substrate. As described above, the transparent conductive film includes an ITO conductive film (first conductive film 310a) on a substrate and an evaporation preventing film 310b on the ITO conductive film. That is, the present invention discloses a transparent conductive film having a separate multilayered film structure, not a simple conductive film composite, and in particular, another conductive material or silica that is relatively stable at a high temperature with an anti-evaporation film material provided on the transparent conductive film. Is disclosed, as described above.

이후 상기 제 1 및 제 2 기판 사이에는 반도체 전극(330), 상대 전극(340)이 구비되며, 이후 전해질이 기판 사이에 채워진다. 이때 상기 증발 방지막은 하부의 ITO를 전해질액으로부터 보호하는 역할을 수행하며, 이로써 전해질액에 의한 ITO 부식 등의 문제를 효과적으로 방지할 수 있다.Thereafter, a semiconductor electrode 330 and a counter electrode 340 are provided between the first and second substrates, and then an electrolyte is filled between the substrates. At this time, the evaporation prevention film serves to protect the lower ITO from the electrolyte solution, thereby effectively preventing problems such as corrosion of ITO by the electrolyte solution.

도 1은 본 발명의 일 실시예에 따른 투명 도전막 제조방법을 설명하는 단계도이다. 1 is a step illustrating a method for manufacturing a transparent conductive film according to an embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따라 제조된 투명도전막을 나타낸다. 2 shows a transparent conductive film prepared according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 투명도전막을 포함하는 염료감응 태양전지의 단면도이다.3 is a cross-sectional view of a dye-sensitized solar cell including a transparent conductive film according to an embodiment of the present invention.

Claims (12)

기판상에 주석도핑 산화인듐(ITO)로 이루어진 제 1 도전막을 적층하는 단계; Stacking a first conductive film made of tin-doped indium oxide (ITO) on the substrate; 상기 제 1 도전막상에 적층되며, 후속하는 소결 공정 시 상기 제 1 도전막의 증발을 방지하는 방지막을 적층하는 단계; 및Stacking a protective film stacked on the first conductive film and preventing evaporation of the first conductive film during a subsequent sintering process; And 상기 제 1 도전막을 소결시키는 단계를 포함하며, 여기에서 상기 방지막은 불소-도핑 산화주석(FTO), 산화주석 (SnO2;TO), 및 아연산화주석(ZTO) 중에서 선택된 하나 이상의 물질로 이루어진 제 2 도전막이며, 상기 소결은 상기 제 1 도전막과 제 2 도전막이 적층된 후 동시에 진행되는 것을 특징으로 하는 투명도전막 제조방법.Sintering the first conductive layer, wherein the barrier layer is formed of at least one material selected from fluorine-doped tin oxide (FTO), tin oxide (SnO 2; TO), and zinc oxide (ZTO) A conductive film, wherein the sintering is carried out at the same time after the first conductive film and the second conductive film is laminated, characterized in that the transparent conductive film manufacturing method. 삭제delete 삭제delete 제 1항에 있어서, The method of claim 1, 상기 제 1 도전막 및 제 2 도전막은 스퍼터링법에 의하여 기판상에 적층되는 것을 특징으로 하는 투명도전막 제조방법.The first conductive film and the second conductive film are laminated on a substrate by a sputtering method. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090066246A 2009-07-21 2009-07-21 A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same KR101091779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090066246A KR101091779B1 (en) 2009-07-21 2009-07-21 A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090066246A KR101091779B1 (en) 2009-07-21 2009-07-21 A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same

Publications (2)

Publication Number Publication Date
KR20110008744A KR20110008744A (en) 2011-01-27
KR101091779B1 true KR101091779B1 (en) 2011-12-12

Family

ID=43614708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090066246A KR101091779B1 (en) 2009-07-21 2009-07-21 A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same

Country Status (1)

Country Link
KR (1) KR101091779B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022615A (en) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd Substrate provided with transparent conducting film, its manufacture, and transparent touch panel using the substrate
JP2003323818A (en) * 2002-02-26 2003-11-14 Fujikura Ltd Base material for transparent electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022615A (en) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd Substrate provided with transparent conducting film, its manufacture, and transparent touch panel using the substrate
JP2003323818A (en) * 2002-02-26 2003-11-14 Fujikura Ltd Base material for transparent electrode

Also Published As

Publication number Publication date
KR20110008744A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
Zardetto et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties
JP7048785B2 (en) A transparent electrode, a manufacturing method thereof, and an electronic device using the transparent electrode.
KR101352779B1 (en) Transparent electrode for solar cell and method for preparing the same
CN102779944B (en) Transparent conductive thin film
CN104979037B (en) Enhanced transparent conductive film of a kind of heat endurance and its preparation method and application
EP1794766B1 (en) Photoelectrochemical photovoltaic panel and method to manufacture thereof
KR101680928B1 (en) Transparent electrode based on combination of transparent conductive oxides, metals and oxides
US20170317305A1 (en) Systems and methods for transparent organic photovoltaic devices
KR101519888B1 (en) Hybrid transparent electrode and the fabricating method thereof
KR20090070471A (en) Conductive glass for dye sensitive solar cell and method of preparing the same
Li et al. High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure
Doh et al. Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with TiO2 film deposited on indium zinc oxide substrate
JP2010526398A (en) Dye-sensitized solar cell with separation membrane and method thereof
JP4540311B2 (en) Transparent conductive film and method for producing the same
Shin et al. Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability
De Rossi et al. A systematic investigation of permeation barriers for flexible dye‐sensitized solar cells
TWI528095B (en) Electrochromic device and method of manufacturing the same
KR100648273B1 (en) Dye-sensitized solar cell and manufacturing method thereof
KR100734853B1 (en) Dye-sensitized solar cell using conducting metal substrates as an anode and fabrication method thereof
Yin et al. Accurate and fast evaluation of perovskite solar cells with least hysteresis
KR20150105798A (en) Transparent electrode and manufacturing method thereof
KR101091779B1 (en) A method for manufacturing transparent conducting layer, transparent conducting layer manufactured by the same, and dye sensitized solar cell comprising the same
TW201812099A (en) Electrochromic device and manufacturing method thereof
JP2008077924A (en) Photoelectric converter
KR101744200B1 (en) Transparent electrode, praparation method thereof and electrochromic using them

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee