KR101077959B1 - 행성 착륙선의 비행시험 장치와 그 사용 방법 - Google Patents

행성 착륙선의 비행시험 장치와 그 사용 방법 Download PDF

Info

Publication number
KR101077959B1
KR101077959B1 KR1020090014171A KR20090014171A KR101077959B1 KR 101077959 B1 KR101077959 B1 KR 101077959B1 KR 1020090014171 A KR1020090014171 A KR 1020090014171A KR 20090014171 A KR20090014171 A KR 20090014171A KR 101077959 B1 KR101077959 B1 KR 101077959B1
Authority
KR
South Korea
Prior art keywords
lander
flight test
planetary
planetary lander
guide
Prior art date
Application number
KR1020090014171A
Other languages
English (en)
Other versions
KR20100095064A (ko
Inventor
권세진
안성용
위정현
윤호성
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090014171A priority Critical patent/KR101077959B1/ko
Publication of KR20100095064A publication Critical patent/KR20100095064A/ko
Application granted granted Critical
Publication of KR101077959B1 publication Critical patent/KR101077959B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/303Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated only by free-falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

본 발명은 행성 착륙선의 시스템 성능 평가를 위한 지상 시험에서 사용되는 비행시험 장치에 관한 것으로 시스템의 파손을 방지하면서 추력 발생 장치를 포함한 전체 추진 모듈의 비행 시험을 할 수 있도록 하는 행성 착륙선의 비행시험 장치에 관한 것이다.
보다 구체적으로는 받침부, 행성 착륙선의 상부 이탈을 방지하는 이탈 방지부, 상기 행성 착륙선이 상기 받침부와 상기 이탈 방지부 사이를 이동하는 이동공간을 형성하며 상기 받침부와 이탈 방지부를 연결하도록 형성된 기둥부를 구비한 스탠드 구조물; 상기 행성 착륙선의 상하 이동을 안내하도록 양단이 상하 방향으로 상호 이격되며 상기 스탠드 구조물에 각각 고정 설치되는 적어도 둘 이상의 가이드 로프; 를 포함하는 것을 특징으로 하는 행성 착륙선의 비행시험 장치에 관한 것이다.
착륙선, 스탠드, 비행시험, 비행시험 장치, 시험 스탠드, 비행시험 모듈

Description

행성 착륙선의 비행시험 장치와 그 사용 방법{Apparatus for testing flight of Planet lander, and method using the same}
본 발명은 행성 착륙선의 시스템 성능 평가를 위한 지상 시험에서 사용되는 비행시험 장치에 관한 것으로 시스템의 파손을 방지하면서 추력 발생 장치를 포함한 전체 추진 모듈의 비행 시험을 할 수 있도록 하는 행성 착륙선의 비행시험 장치에 관한 것이다.
행성 착륙선은 우주선의 사령선과 기계선에서 떨어져 행성 표면을 왕복하는 기능을 갖는다. 행성 착륙선이 행성 표면을 향해 진입하는 과정에서 비행 속도 및 고도를 조절하면서 안전하게 착륙할 수 있도록 하기 위해 개발 단계에서 수많은 비행시험이 요구된다.
도 1 은 종래의 제트엔진의 성능시험 장치를 도시한 분리 사시도를 나타낸다.
도 1 을 참조하면 종래의 제트엔진의 성능시험 장치(10)는 상면에 서브 프레 임(도면 미도시)이 설치된 프레임(도면 미도시)과 상기 프레임(도면 미도시)의 후면에 설치되는 조작 패널(도면 미도시)을 구비한다. 상기 서브 프레임(도면 미도시)에는 서포트(21)에 의해 지지되는 한 쌍의 가이드 레일(22)과, 상기 가이드 레일(22)을 따라 슬라이딩 가능하게 설치되며 성능을 측정하기 위한 제트엔진이 장착되는 슬라이딩 부재(30)와, 상기 슬라이딩 부재(30)와 대향되는 측의 서브 프레임(도면 미도시)에 고정된 지지부재(23)에 의해 설치되어 가이드 레일(22)을 따라 가이드 되는 슬라이딩 부재(30)와 접촉되어 슬라이딩 부재(30)의 이송력에 의한 가압에 의해 제트엔진의 추력을 측정하는 추력 측정센서(24)를 구비하여 형성되어 있다.
종래의 제트엔진의 성능시험 장치(10)는 엔진 단품의 시험 장치이며 이와 같은 장치만으로는 전체 행성 착륙선 시스템이 통합된 상태에서 정상적으로 작동하는지 확인할 수 없는 문제점이 있다. 즉, 로켓 엔진만으로 지상 시험한 뒤 행성 착륙선 모듈을 직접 임무 수행에 투입하여 오작동하는 경우 행성 착륙선의 파손 등으로 인한 시간적, 경제적 손실이 크다.
따라서, 행성 착륙선 시스템 전체가 통합된 상태에서 각 구성 요소들이 정상적으로 작동하는지, 각 구성 요소 상호간 간섭은 발생하지 않는지, 각 구성 요소들이 결합된 상태에서 전체 행성 착륙선 시스템이 정상적으로 동작하는지 확인하기 위해 행성 착륙선의 비행시험 장치 개발이 요구된다.
본 발명은 행성 착륙선의 비행시험을 위해 스탠드 구조물에 가이드 로프를 연결한 비행시험 장치로 행성 착륙선을 이탈을 방지하는 비행시험 장치를 제공하고자 한다.
본 발명은 비행시험 장치의 가이드 로프에 상·하단 스토퍼로 행성 착륙선의 이동 구간을 제한하고, 하강시 파손을 방지하기 위한 충격 흡수 장치와 가이드 로프의 장력을 조절하는 장치를 구비한 비행시험 장치를 제공하고자 한다.
본 발명은 행성 착륙선 비행시험 장치의 사용 방법과 소정의 구속 조건을 제외하고 비행 시험을 수행하는 방법을 제공하고자 한다.
본 발명은 받침부(110), 행성 착륙선(200)의 상부 이탈을 방지하는 이탈 방지부(130), 상기 행성 착륙선(200)이 상기 받침부(110)와 상기 이탈 방지부(130) 사이를 이동하는 이동공간을 형성하며 상기 받침부(110)와 이탈 방지부(130)를 연결하도록 형성된 기둥부(120)를 구비한 스탠드 구조물(100); 상기 행성 착륙선(200)의 상하 이동을 안내하도록 양단이 상하 방향으로 상호 이격되며 상기 스탠드 구조물(100)에 각각 고정 설치되는 적어도 둘 이상의 가이드 로프(140); 를 포함하는 것을 특징으로 한다.
본 발명은 상기 행성 착륙선(200)의 이동 구간을 제한하기 위해 상기 각각의 가이드 로프(140) 상측에 설치되는 상단 스토퍼(141)와 상기 각각의 가이드 로프(140) 하측에 설치되는 하단 스토퍼(142)를 더 포함하는 것을 특징으로 한다.
본 발명은 상기 행성 착륙선(200)의 하강시 파손을 방지하기 위해 상기 하단 스토퍼(142)의 상측에 구비되는 충격 흡수 장치(143)를 더 포함하는 것을 특징으로 한다.
본 발명은 상기 가이드 로프(140)는 금속 레일로 형성되는 것을 특징으로 한다.
본 발명은 상기 가이드 로프(140)는 연성(延性)이 있는 소재로 형성되며, 상기 가이드 로프(140)에는 상기 가이드 로프(140)의 장력을 조절하기 위한 장력 조절 장치(144)가 연결되는 것을 특징으로 한다.
한편, 본 발명은 행성 착륙선의 지상시험에서 비행시험 장치를 사용하는 방법에 있어서, (a) 받침부(110)를 지반에 고정한 뒤 기둥부(120)를 연결하고 그 상단에 이탈 방지부(130)를 장착하는 스탠드 구조물(100)의 설치 단계; (b) 상기 스탠드 구조물(100)의 이동 공간에 상기 받침부(110)와 이탈 방지부(130)를 연결하도록 가이드 로프(140)를 고정하여 설치하는 단계; (c) 상기 가이드 로프(140)를 상기 행성 착륙선(200)의 가이드 홀(210)에 통과시킨 뒤 상기 행성 착륙선(200)을 상기 받침부(110) 상단에 안착시키는 단계; (d) 상기 가이드 로프(140) 상측에 상단 스토퍼(141)를 장착하고 상기 가이드 로프(140) 하측에 하단 스토퍼(142)를 장착하는 단계; (e) 상기 하단 스토퍼(142)의 상단에 충격 흡수 장치(143)를 장착한 뒤 상기 하단 스토퍼(142)의 하단에 장력 조절 장치(144)를 장착하는 단계; 및 (f) 상 기 행성 착륙선(200)의 엔진을 점화하여 비행 시험하는 단계; 로 이루어지는 것을 특징으로 한다.
또한, 본 발명은 상기 (f)단계를 수행한 뒤, (g) 상기 (b)단계에서 설치한 상기 가이드 로프(140)를 1 또는 2개만을 남기고 제거하는 단계; (h) 상기 (d)단계에서 설치한 상기 상단 스토퍼(141)를 상방으로 이동시켜 장착하고, 상기 하단 스토퍼(142)를 하방으로 이동시켜 장착하는 단계; (i) 상기 (e)단계에서 설치한 상기 장력 조절 장치(144)를 이용하여 상기 가이드 로프(140)를 늘이는 단계; 중 선택되는 적어도 하나 이상의 단계를 추가로 수행하는 것을 특징으로 한다.
본 발명은 행성 착륙선 전체 시스템의 비행 시험을 위한 장치를 구성함으로써 시스템이 통합된 상태에서 정상적으로 작동하는지 사전에 확인하여 시간적, 경제적 손실을 방지할 수 있는 장점이 있다.
본 발명은 행성 착륙선의 비행 시험에서 초기에는 많은 조건을 제한하여 시험비행을 수행한 뒤 결과에 따라 제한 조건을 제거하면서 다양한 비행 시험을 수행할 수 있는 장점이 있다.
행성 탐사를 하는 방법은 간접적인 방법과 직접적인 방법으로 크게 나누어 질 수 있다. 전자는 행성에 인공위성을 보내 행성 주위를 회전하면서 행성 표면의 사진을 찍거나 별도의 장비를 이용하여 행성에 대한 데이터를 수집하는 것이다. 후자는 인간 또는 탐사로봇이 행성 표면에 직접 내려가 조사하는 것으로 이는 전자에 비해 대량으로 보다 구체적인 정보를 얻을 수 있을 뿐 아니라 행성의 물질을 채취하는 등의 능동적인 탐사가 가능하다는 장점이 있다. 따라서, 후자의 직접적인 탐사 방법에 있어서 행성 착륙선은 필수적으로 요구된다.
일반적으로 로켓은 연료를 태워서 만드는 고압가스를 내뿜어 추진력을 얻는 장치이며 이와 같은 방식의 엔진을 로켓 엔진 이라한다. 로켓 엔진은 크기에 비해 가장 큰 힘을 내는 엔진으로서, 같은 크기의 자동차 엔진보다 3,000배 이상의 힘을 낸다. 로켓은 매우 큰 힘을 내는 만큼 연료가 빨리 연소되므로 짧은 시간동안 많은 연료를 소모하고, 높은 온도를 발생시킨다. 따라서, 로켓 기관은 높은 온도와 높은 압력, 그리고 강한 힘에 견디면서도 가벼워야 하기 때문에 매우 복잡하고 어려운 기술이 필요하다.
로켓의 작동 원리는 작용-반작용의 법칙으로, 물체에 어떤 힘이 가해져서 작용이 생기면 크기는 같지만 방향이 반대인 반작용이 생기는 것을 이용하여 강력한 로켓이 앞으로 나아갈 수 있도록 하는 것이다. 로켓의 연소실에서 추진제가 연소되면 매우 빠르게 팽창하는 가스가 생성되며, 이 팽창 가스의 압력은 로켓 안의 모든 방향으로 균일하게 작용하고, 어떤 한 방향으로 가해지는 압력은 그 반대 방향으로 가해지는 압력과 균형을 이룬다. 하지만 로켓 뒤쪽으로 흐르는 가스는 노즐을 통해 내뿜어져 로켓 앞쪽의 압력과 균형을 이루지 못하게 되어 발생하는 압력차로 로켓이 앞으로 나아간다. 노즐을 통해 내뿜어지는 가스가 뉴턴의 운동 법칙에서 말하는 '작용'에 해당하고, 내뿜어지는 가스의 반대쪽인 진행 방향으로 로켓을 미는 추진력이 '반작용'에 해당한다.
로켓은 추진 방식에 따라 액체 연료에 의한 방법과 고체 연료에 의한 방법 크게 두 가지로 나뉜다. 액체 연료에 의한 추진 방법은, 기체 내에 채워져 있는 연료와 산화제의 연소에 의해서 발생한 가스를 분출하면서 생성되는 가스를 기체 후방으로 고속 분출시켜 그 반동력으로 전진을 하며, 고체 연료에 의한 추진 방법은, 기체 내에 채워져 있는 고체연료의 연소에 의해서 그 추진력을 이용하여 전진하게 된다. 상기 두 가지 추진 방법 중 단위 질량의 추진제로 낼 수 있는 추력을 정의하는 비추력은 고체 연료 로켓보다 액체 연료 로켓이 크고 추력 조절이 용이하므로 우주 산업에서는 액체 연료를 추진제로 사용하는 경우가 많다.
이하, 도면을 참조하여 본 발명의 일실시예에 대하여 상세히 설명한다.
도 2 는 본 발명에 의한 비행시험 장치의 사시도를, 도 3 은 본 발명에 의한 가이드 로프가 가이드 홀을 통과하여 행성 착륙선과 결합된 상태의 사시도를, 도 4 는 본 발명에 의한 가이드 로프에 상·하단 스토퍼, 충격 흡수 장치, 장력 조절 장치를 구비한 상태의 사시도를, 도 5 는 본 발명에 의한 행성 착륙선의 비행시험 장치로 비행시험 수행하는 모습을 나타낸 사시도를 나타낸다.
도 2 를 참조하면 행성 착륙선의 비행시험 장치는 스탠드 구조물(100), 가이드 로프(140)를 포함하며 상기 스탠드 구조물(100)은 받침부(110), 기둥부(120), 이탈 방지부(130)를 구비한다. 상기 가이드 로프(140)는 상단 스토퍼(141), 하단 스토퍼(142), 충격 흡수 장치(143), 장력 조절 장치(144)를 선택적으로 포함할 수 있다. 이하 구체적으로 살펴본다.
도 2 를 참조하면 상기 스탠드 구조물(100)은 비행시험 장치를 위한 뼈대가 되는 구조물이며 도시된 바와 같이 사각기둥 형상일 수 있고 행성 착륙선의 형태나 비행시험 장치의 설계에 따라 그 형태는 원기둥, 삼각기둥 등 다양한 형상일 수 있다. 상기 스탠드 구조물(100)의 재질은 금속 재질 또는 투명하고 뛰어난 기계적 성질(특히 내충격성)·내열성·내한성·전기적 성질을 균형 있게 갖추고, 무독하고 자기소화성(自己消火性)도 있는 엔지니어링 플라스틱인 폴리카보네이트로 이루어지는 것이 바람직하나 그밖에 다양한 엔지니어링 플라스틱 또는 FRP로 이루어질 수 있다. 엔지니어링 플라스틱이란 강철보다도 강하고 알루미늄보다도 전성(展性)이 풍부하며, 금·은보다도 내약품성(耐藥品性)이 강한 고분자 구조의 고기능 수지(樹脂)이다. 이 플라스틱의 성능과 특징은 그 화학구조에 따라 다른데, 주로 폴리아미드·폴리아세틸·폴리카보네이트·PBT(폴리에스테르 樹脂)·변성(變性) PPO(폴리페닐렌옥사이드)의 5종류로 분리된다. 이들의 공통점은 분자량이 수십 ∼ 수백 정도의 저분자(低分子) 물질인 종래의 플라스틱과는 달리, 수십만 ∼ 수백만이나 되는 고분자물질이라는 점이다. 따라서 이 플라스틱은 강도·탄성뿐만 아니라, 내충격성(耐衝擊性)·내마모성(耐磨耗性)·내열성(耐熱性)·내한성(耐寒性)·내약품성·전기절연성(電氣絶緣性) 등이 뛰어나 그 용도도 가정용품·일반잡화는 물론, 카메라·시계부품·항공기 구조재·일렉트로닉스 등 각 분야에 걸쳐 사용할 수 있다. 한편, 섬유강화 플라스틱(FRP:fiber reinforced plastics)은 엔지니어링 플라스틱 을 유리섬유 또는 탄소섬유 등과 혼합시켜, 더욱 강력한 특성을 발휘하도록 개발된 복합재료를 말한다.
도 2 를 참조하면 지반이 튼튼하고 경사지지 않은 장소를 선택하여 상기 받침부(110)를 지반에 고정한다. 상기 받침부(110)에는 후술하게 될 가이드 로프(140)와 연결할 수 있는 체결 구조가 형성되어 있는 것이 바람직하다. 상기 받침부(110)의 각 모서리에서 상방으로 수직으로 연장 형성된 기둥부(120)가 각각 형성될 수 있다. 상기 기둥부(120)의 길이는 비행시험 장치의 설계에 따라 다양할 수 있으며 구조적 강성 유지를 위해 지면과 수평 방향으로 각 기둥부(120)를 연결하는 크로스빔(crossbeam)(도면번호 미부여)이 결합될 수 있다. 또한, 상기 스탠드 구조물(100)의 균형을 맞추기 위해 상기 받침부(110)가 안정되어야 하므로 상기 받침부(110)에서 상기 기둥부(120)의 하단을 연결하는 트러스 구조와 같은 보조 기둥(도면번호 미부여)을 설치할 수 있다. 상기 받침부(110)가 형성된 측과 대향되는 타측에는 행성 착륙선(200)의 상부 이탈을 방지하는 이탈 방지부(130)가 형성될 수 있다. 상기 이탈 방지부(130)에도 상기 받침부(110)와 마찬가지로 후술하게 될 가이드 로프(140)와 연결할 수 있는 체결 구조가 형성되어 있는 것이 바람직하다. 상기 기둥부(120) 와 받침부(110) 및 이탈 방지부(130)의 사이에는 상기 행성 착륙선(200)이 이동할 수 있도록 이동 공간이 형성되는 것이 바람직하다.
도 2 내지 도 4 를 참조하면 상기 가이드 로프(140)는 상기 받침부(110)와 이탈 방지부(130)에 형성되어 있는 체결 구조를 통해 양단이 상하 방향으로 상호 이격 되어 형성되어 있다. 상기 가이드 로프(140)의 수는 상기 스탠드 구조물(100) 의 형상에 따라 다양할 수 있다. 도 3 을 참조하면 상기 가이드 로프(140)는 상기 행성 착륙선(200)에 구비된 가이드 홀(210)을 통과하여 상기 스탠드 구조물(100)에 고정 설치된다. 따라서, 상기 행성 착륙선(200)의 비행 시험시 상기 가이드 로프(140)를 따라 상하로 이동하게 되며 오작동시 행성 착륙선(200)의 이탈로 인한 파손을 방지할 수 있다. 상기 가이드 로프(140)는 금속 레일이거나 와이어 등의 연성(延性)이 있는 재질일 수 있다. 상기 가이드 로프(140)가 금속 레일과 같은 강성을 지닌 재질인 경우 상기 행성 착륙선(200)은 상기 금속 레일을 따라 상하로 이동하게 된다. 이에 비해 비행 시험의 자유도를 높여 와이어 등의 연성(延性)이 있는 재질로 구성된 가이드 로프(140)를 이용하여 비행 시험을 수행할 수 있다. 도 4 를 참조하면 와이어 등의 연성(延性)이 있는 재질로 구성된 가이드 로프(140)를 이용하는 경우 상기 가이드 로프(140)의 장력을 조절하기 위한 장력 조절 장치(144)를 포함할 수 있다. 상기 장력 조절 장치(144)는 상기 가이드 로프(140)와 받침부(110)가 체결되는 부위 상단에 형성되는 것이 바람직하며 상기 가이드 로프(140)를 느슨하게 하여 실제 비행에 보다 가까운 시험을 수행할 수 있다.
도 4 를 참조하면 상기 가이드 로프(140) 상·하측에 상단 스토퍼(141)와 하단 스토퍼(142)가 설치될 수 있다. 상기 상단 스토퍼(141)와 하단 스토퍼(142)는 상기 행성 착륙선(200)의 비행 시험에서 이동 구간을 제한하기 위한 것으로 비행시험 장치의 일부 구간만을 이용하여 단거리 비행시험에 유용하게 활용될 수 있다. 즉, 상기 행성 착륙선(200)은 상기 가이드 로프(140)를 따라 상·하강으로 활강하되 가이드 로프(140)에 설치된 상기 상단 스토퍼(141)와 하단 스토퍼(142)의 사이 구간에서만 이동 가능하다. 따라서, 상기 상단 스토퍼(141)를 상방으로 이동하여 설치하고 상기 하단 스토퍼(142)를 하방으로 이동하여 설치하면 행성 착륙선(200)의 비행시험 구간이 늘어나며, 반대로 상단 스토퍼(141)를 하방으로 이동하여 설치하고 하단 스토퍼(142)를 상방으로 이동하여 설치하면 행성 착륙선(200)의 비행시험 구간은 단축된다. 상기 행성 착륙선(200)의 이동 구간 조절에 의해 제한 조건이 많은 비행시험과 실제 비행과 유사하게 제한 조건을 줄인 비행시험을 수행할 수 있다. 도 4 를 참조하면 상기 하단 스토퍼(142)의 상측에 충격 흡수 장치(143)가 구비될 수 있다. 상술한 바와 같이 상기 행성 착륙선(200)의 이동 구간을 제한하여 상기 상단 스토퍼(141)와 하단 스토퍼(142) 사이의 구간을 이동하게 되는데 비행 시험조건에 따라 상기 행성 착륙선(200)이 하방으로 빠르게 낙하할 때 시스템의 파손을 방지하기 위해 상기 충격 흡수 장치(143)가 설치되는 것이 바람직하다.
도 2 내지 도 5 를 참조하면 행성 착륙선의 비행시험 장치를 사용한 비행시험 방법은 다음과 같다.
(a)단계
먼저, 지반이 튼튼하고 경사지지 않은 장소를 선택하여 받침부(110)를 지반에 고정한다. 상기 받침부(110)의 각 모서리에서 상방으로 연장 형성되도록 기둥부(120)를 연결하고 기둥부(120)의 상단에 이탈 방지부(130)를 장착하여 스탠드 구조물을 설치한다.
(b)단계
(a)단계에서 설치된 상기 스탠드 구조물(100)의 이동 공간에 상기 받침부(110)와 이탈 방지부(130)를 연결하도록 체결하며 상하 방향으로 상호 이격되도록 가이드 로프(140)를 고정하여 설치한다.
(c)단계
(b)단계에서 설치한 상기 가이드 로프(140)를 행성 착륙선(200)의 가이드 홀(210)에 통과시킨 후 상기 행성 착륙선(200)을 상기 받침부(110) 상단에 안착시킨다.
(d)단계
상기 가이드 로프(140)가 이탈 방지부(130)와 체결되는 상측에 상기 상단 스토퍼(141)를 설치하고 상기 가이드 로프(140)가 받침부(110)와 체결되는 하측에 상기 하단 스토퍼(142)를 설치한 후 설정된 비행시험 조건에 따라 상기 행성 착륙선(200)의 이동 구간에 따라 상기 상단 스토퍼(141)와 하단 스토퍼(142)의 위치를 조절해둔다.
(e)단계
(d)단계에서 설치한 상기 하단 스토퍼(142)의 상단에 충격 흡수 장치(143)를 장착하고 하단 스토퍼(142)의 하단에 장력 조절 장치(144)를 장착한다. 상기 가이드 로프(140)가 금속 레일과 같은 강성이 있는 재질인 경우에는 별도의 장력 조절이 불필요하나 와이어와 같은 연성이 있는 재질인 경우에는 (b)단계에서 설치한 가이드 로프(140)를 설정된 비행시험 조건에 따라 상기 장력 조절 장치(144)를 이용하여 장력을 조절해둔다.
(f)단계
비행시험 설정 조건에 따라 추진제 종류 및 추진력의 크기를 조정한 뒤 행성 착륙선(200)의 엔진을 점화하여 비행시험을 수행한다. 비행시험 결과에 따라 예상된 시험 결과가 나오지 않는 경우 시스템을 더욱 구속시켜 비행시험을 수행할 수 있다.
상술한 바와 같이 (f)단계를 수행한 후 만족스러운 시험 결과를 얻었을 때 추가로 후술하는 단계를 선택적으로 추가하여 비행시험을 수행할 수 있다. 시험 결과에 따라 모든 단계를 추가하여 실제 비행과 근접하도록 비행시험을 수행할 수 있다.
(g)단계
상기 (b)단계에서 설치한 상기 가이드 로프(140)를 일부 제거하여 비행 시험을 수행할 수 있다. 상기 가이드 로프(140)는 행성 착륙선(200)의 이탈을 방지하며 이동 방향을 유도하기 위한 것인데 이를 일부 제거함으로써 상기 행성 착륙선(200)의 자유도를 높여 보다 실제 비행에 근접한 비행 시험을 수행할 수 있다. 따라서, 비행시험 결과에 따라 단 하나의 가이드 로프(140)만을 남기고 이를 상기 행성 착륙선(200)의 중심부 상단에 연결하여 최종 단계의 비행 시험을 수행할 수 있다.
(h)단계
상기 (d)단계에서 설치한 상기 상단 스토퍼(141)를 상방으로 이동하여 설치하고 상기 하단 스토퍼(142)를 하방으로 이동하여 설치하여 상기 행성 착륙선(200)의 이동 구간을 늘여 초기 비행 시험보다 장거리의 비행시험을 수행할 수 있다.
(i)단계
상기 (e)단계에서 설치한 상기 장력 조절 장치(144)를 이용하여 상기 가이드 로프(140)를 느슨하게 늘여 비행 시험을 수행할 수 있다. 다만 이는 상술한 바와 같이 상기 가이드 로프(140)가 와이어 등의 연성이 있는 재질인 경우에 해당한다. 상기 가이드 로프(140)는 행성 착륙선(200)의 이탈을 방지하기 위해 이동 구간으로 유도해주는 역할을 하는데 이를 느슨하게 함으로써 실제 비행시험 조건에 보다 근접한 비행 시험을 수행할 수 있다.
도 5 는 상술한 비행시험 장치를 사용하여 행성 착륙선(200)의 비행 시험을 수행하는 모습을 도시하고 있다.
본 발명의 상기한 실시예에 한정하여 기술적 사상을 해석해서는 안된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.
도 1 은 종래의 제트엔진의 성능시험 장치를 도시한 분리 사시도.
도 2 는 본 발명에 의한 비행시험 장치의 사시도.
도 3 은 본 발명에 의한 가이드 로프가 가이드 홀을 통과하여 행성 착륙선과 결합된 상태의 사시도.
도 4 는 본 발명에 의한 가이드 로프에 상·하단 스토퍼, 충격 흡수 장치, 장력 조절 장치를 구비한 상태의 사시도.
도 5 는 본 발명에 의한 행성 착륙선의 비행시험 장치로 비행시험 수행하는 모습을 나타낸 사시도.
<도면의 주요부분에 대한 부호의 설명>
10 : 제트 엔진 성능 시험 장치
21 : 서포트 22 : 가이드 레일
23 : 지지부재 24 : 추력 측정 센서
30 : 슬라이딩 부재 31 : 베어링 수단
32 : 이송 프레임 33 : 엔진 장착부
34 : 가압부
40 : 제트 엔진 41 : 배기 덕트
42 : 흡입 덕트
50 : 제어부
100 : 스탠드 구조물
110 : 받침부 120 : 기둥부
130 : 이탈 방지부 140 : 가이드 로프
141 : 상단 스토퍼 142 : 하단 스토퍼
143 : 충격 흡수 장치 144 : 장력 조절 장치
200 : 행성 착륙선
210 : 가이드 홀

Claims (7)

  1. 추력 발생 장치를 포함한 전체 추진 모듈의 비행 시험을 하는 행성 착륙선의 비행시험 장치에 있어서,
    받침부(110), 행성 착륙선(200)의 상부 이탈을 방지하는 이탈 방지부(130), 상기 행성 착륙선(200)이 상기 받침부(110)와 상기 이탈 방지부(130) 사이를 이동하는 이동공간을 형성하며 상기 받침부(110)와 이탈 방지부(130)를 연결하도록 형성된 기둥부(120)를 구비한 스탠드 구조물(100);
    상기 행성 착륙선(200)의 상하 이동을 안내하도록 양단이 상하 방향으로 상호 이격되며 상기 스탠드 구조물(100)에 각각 고정 설치되는 적어도 둘 이상의 가이드 로프(140);
    상기 행성 착륙선(200)의 이동 구간을 제한하기 위해 상기 각각의 가이드 로프(140) 상측에 설치되는 상단 스토퍼(141) 및 상기 각각의 가이드 로프(140) 하측에 설치되는 하단 스토퍼(142);
    를 포함하는 것을 특징으로 하는 행성 착륙선의 비행시험 장치.
  2. 삭제
  3. 청구항 3은(는) 설정등록료 납부시 포기되었습니다.
    제 1 항에 있어서,
    상기 행성 착륙선(200)의 하강시 파손을 방지하기 위해 상기 하단 스토퍼(142)의 상측에 구비되는 충격 흡수 장치(143)를 더 포함하는 것을 특징으로 하는 행성 착륙선의 비행시험 장치.
  4. 청구항 4은(는) 설정등록료 납부시 포기되었습니다.
    제 1 항 및 제 3 항 중 어느 한 항에 있어서,
    상기 가이드 로프(140)는 금속 레일로 형성되는 것을 특징으로 하는 행성 착륙선의 비행시험 장치.
  5. 제 1 항 및 제 3 항 중 어느 한 항에 있어서,
    상기 가이드 로프(140)는 연성(延性)이 있는 소재로 형성되며,
    상기 가이드 로프(140)에는 상기 가이드 로프(140)의 장력을 조절하기 위한 장력 조절 장치(144)가 연결되는 것을 특징으로 하는 행성 착륙선의 비행시험 장치.
  6. 행성 착륙선의 지상시험에서 비행시험 장치를 사용하는 방법에 있어서,
    (a) 받침부(110)를 지반에 고정한 뒤 기둥부(120)를 연결하고 그 상단에 이탈 방지부(130)를 장착하는 스탠드 구조물(100)의 설치 단계;
    (b) 상기 스탠드 구조물(100)의 이동 공간에 상기 받침부(110)와 이탈 방지부(130)를 연결하도록 가이드 로프(140)를 고정하여 설치하는 단계;
    (c) 상기 가이드 로프(140)를 상기 행성 착륙선(200)의 가이드 홀(210)에 통과시킨 뒤 상기 행성 착륙선(200)을 상기 받침부(110) 상단에 안착시키는 단계;
    (d) 상기 가이드 로프(140) 상측에 상단 스토퍼(141)를 장착하고 상기 가이드 로프(140) 하측에 하단 스토퍼(142)를 장착하는 단계;
    (e) 상기 하단 스토퍼(142)의 상단에 충격 흡수 장치(143)를 장착한 뒤 상기 하단 스토퍼(142)의 하단에 장력 조절 장치(144)를 장착하는 단계; 및
    (f) 상기 행성 착륙선(200)의 엔진을 점화하여 비행 시험하는 단계;
    로 이루어지는 것을 특징으로 하는 행성 착륙선의 비행시험 장치 사용방법.
  7. 제 6 항에 있어서,
    상기 (f)단계를 수행한 뒤,
    (g) 상기 (b)단계에서 설치한 상기 가이드 로프(140)를 1 또는 2개만을 남기고 제거하는 단계;
    (h) 상기 (d)단계에서 설치한 상기 상단 스토퍼(141)를 상방으로 이동시켜 장착하고, 상기 하단 스토퍼(142)를 하방으로 이동시켜 장착하는 단계;
    (i) 상기 (e)단계에서 설치한 상기 장력 조절 장치(144)를 이용하여 상기 가이드 로프(140)를 늘이는 단계;
    중 선택되는 적어도 하나 이상의 단계를 추가로 수행하는 것을 특징으로 하는 행성 착륙선의 비행시험 장치 사용방법.
KR1020090014171A 2009-02-20 2009-02-20 행성 착륙선의 비행시험 장치와 그 사용 방법 KR101077959B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090014171A KR101077959B1 (ko) 2009-02-20 2009-02-20 행성 착륙선의 비행시험 장치와 그 사용 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090014171A KR101077959B1 (ko) 2009-02-20 2009-02-20 행성 착륙선의 비행시험 장치와 그 사용 방법

Publications (2)

Publication Number Publication Date
KR20100095064A KR20100095064A (ko) 2010-08-30
KR101077959B1 true KR101077959B1 (ko) 2011-10-28

Family

ID=42758859

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090014171A KR101077959B1 (ko) 2009-02-20 2009-02-20 행성 착륙선의 비행시험 장치와 그 사용 방법

Country Status (1)

Country Link
KR (1) KR101077959B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568370A (zh) * 2014-12-11 2015-04-29 中国航天空气动力技术研究院 超声速着陆器快速开伞风洞试验装置
KR20170002699U (ko) * 2016-01-20 2017-07-28 조현준 드론 운전 보조 장치
KR20200046922A (ko) * 2018-10-26 2020-05-07 한국항공우주연구원 액체 추진 로켓의 착륙 가속도 모사 시험 장치
KR20200058724A (ko) * 2018-11-20 2020-05-28 한국항공대학교산학협력단 비행제어 알고리즘 검증을 위한 무인비행체 비행 모의 시험 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278346A (zh) * 2013-06-05 2013-09-04 北京空间飞行器总体设计部 一种着陆器稳定性试验方法
CN103308339A (zh) * 2013-06-05 2013-09-18 北京空间飞行器总体设计部 一种用于着陆器稳定性试验的吊挂释放系统
CN103616151A (zh) * 2013-11-28 2014-03-05 北京卫星环境工程研究所 洁净环境下航天器着陆冲击试验系统及试验方法
CN103914092B (zh) * 2014-03-20 2016-03-02 航天东方红卫星有限公司 系统级热真空试验星上设备温度控制方法
CN103954468A (zh) * 2014-05-12 2014-07-30 北京空间机电研究所 一种模拟月球重力环境下着陆稳定性测试装置及方法
CN110566371A (zh) * 2019-10-09 2019-12-13 湖南云顶智能科技有限公司 一种用于试验的可拆式火箭发动机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187595A (ja) * 2006-01-16 2007-07-26 T Tekku:Kk 落下試験装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187595A (ja) * 2006-01-16 2007-07-26 T Tekku:Kk 落下試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 2008. 11*

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568370A (zh) * 2014-12-11 2015-04-29 中国航天空气动力技术研究院 超声速着陆器快速开伞风洞试验装置
CN104568370B (zh) * 2014-12-11 2017-05-03 中国航天空气动力技术研究院 超声速着陆器快速开伞风洞试验装置
KR20170002699U (ko) * 2016-01-20 2017-07-28 조현준 드론 운전 보조 장치
KR200492323Y1 (ko) * 2016-01-20 2020-09-17 조현준 드론 운전 보조 장치
KR20200046922A (ko) * 2018-10-26 2020-05-07 한국항공우주연구원 액체 추진 로켓의 착륙 가속도 모사 시험 장치
KR102182785B1 (ko) * 2018-10-26 2020-11-25 한국항공우주연구원 액체 추진 로켓의 착륙 가속도 모사 시험 장치
KR20200058724A (ko) * 2018-11-20 2020-05-28 한국항공대학교산학협력단 비행제어 알고리즘 검증을 위한 무인비행체 비행 모의 시험 장치
KR102184279B1 (ko) * 2018-11-20 2020-11-30 한국항공대학교산학협력단 비행제어 알고리즘 검증을 위한 무인비행체 비행 모의 시험 장치

Also Published As

Publication number Publication date
KR20100095064A (ko) 2010-08-30

Similar Documents

Publication Publication Date Title
KR101077959B1 (ko) 행성 착륙선의 비행시험 장치와 그 사용 방법
US8678465B1 (en) Vehicle seat with multi-axis energy attenuation
KR101059777B1 (ko) 로켓 엔진의 추력 측정 및 보정 장치와 그 방법
US9290275B2 (en) Mounting device for mounting an energy supply device on a structural component of an aircraft and aircraft with a mounting device
US8540186B2 (en) Rigid aircraft pylon structure in contact with a fuselage lateral extension for attachment
CN107719647B (zh) 高可靠性无人机起落架收放系统
US7296768B2 (en) Structure for mounting a turboprop under an aircraft wing
CN104724291A (zh) 用于飞行器的组件以及飞行器
CN103287580B (zh) 发动机附接挂架
AU2010246358A1 (en) A system for providing protection against an explosive threat
JP2010112404A (ja) 緩衝装置および着陸装置
KR101129345B1 (ko) 태양전지판 전개시험용 무중력상태 제공장치
JP2009513434A (ja) 航空機の固定支柱へのターボジェットエンジンの前部の締結装置
Gallon et al. Low density supersonic decelerator parachute decelerator system
Parissenti et al. Throttleable hybrid engine for planetary soft landing
US20100314491A1 (en) Aircraft engine pylon attachment
Witkowski et al. Mars exploration rover parachute decelerator system program overview
CN105857638A (zh) 一种机翼载荷加载装置
Turnbull et al. Soft sled test capability at the holloman high speed test track
Ryan A history of aerospace problems, their solutions, their lessons
Waimer et al. Development of a tension energy absorber-progressive bearing failure mechanisms of composite bolted joints
CN105978457A (zh) 一种空间太阳电池阵重复锁紧装置
Richter et al. Force Application of a Single Boom for a 500-m2-Class Solar Sail
Giersch et al. Supersonic Flight Test Of The SIAD-R: Supersonic Inflatable Aerodynamic Decelerator for Robotic Missions to Mars
CN114705080B (zh) 一种可变形可回收式火箭类飞行器空中发射系统

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee