KR101069576B1 - Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point - Google Patents

Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point Download PDF

Info

Publication number
KR101069576B1
KR101069576B1 KR1020100014260A KR20100014260A KR101069576B1 KR 101069576 B1 KR101069576 B1 KR 101069576B1 KR 1020100014260 A KR1020100014260 A KR 1020100014260A KR 20100014260 A KR20100014260 A KR 20100014260A KR 101069576 B1 KR101069576 B1 KR 101069576B1
Authority
KR
South Korea
Prior art keywords
film
cuse
particles
diamine
cis
Prior art date
Application number
KR1020100014260A
Other languages
Korean (ko)
Other versions
KR20110094703A (en
Inventor
정선호
류병환
최영민
김창균
정택모
이병석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020100014260A priority Critical patent/KR101069576B1/en
Publication of KR20110094703A publication Critical patent/KR20110094703A/en
Application granted granted Critical
Publication of KR101069576B1 publication Critical patent/KR101069576B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 a)구리화합물, 인듐화합물 및 셀레늄화합물을 끓는점이 200℃이상인 반응용매와 혼합하는 단계;
b)상기 혼합액을 마이크로파를 조사하여 200~300℃에서 15~40분동안 반응하여 CuSe 및 CuSe2가 형성되어 있는 CI(G)S입자의 제조단계; 및
c)상기 CuSe 및 CuSe2가 생성되어 함유된 CI(G)S 입자를 기판에 코팅하고 열처리하여 CI(G)S 막을 제조하는 단계;
를 포함하는 CI(G)S 막의 제조방법에 관한 것이다 본 발명에 의한 CI(G)S 입자는 저융점 이차상인 CuSe 및 CuSe2를 포함하여 상기 c)단계에서 550 oC 내외의 열처리 과정를 통하여 CI(G)S막을 제조 하였을때 놀랍게도 상기 제조된 CI(G)S 막의 치밀도가 우수한 효과가 있다.
The present invention comprises the steps of: a) mixing a copper compound, an indium compound and a selenium compound with a reaction solvent having a boiling point of 200 ° C. or higher;
b) a step of preparing CI (G) S particles in which CuSe and CuSe 2 are formed by reacting the mixed solution with microwaves for 15 to 40 minutes at 200 to 300 ° C .; And
c) the above Coating and heat-treating CI (G) S particles containing CuSe and CuSe 2 on the substrate to prepare a CI (G) S film;
It relates to a method for producing a CI (G) S film comprising a CI (G) S particles according to the invention is a low melting point secondary phase including CuSe and CuSe 2 CI in the step c) through a heat treatment of about 550 ° C Surprisingly, when the (G) S film is prepared, the density of the prepared CI (G) S film is excellent.

Description

저융점 이차상을 포함하고 화학양론비가 맞는 CI(G)S 입자를 이용한 치밀한 미세구조를 가지는 CI(G)S 막의 제조 방법 {Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point}Method for fabricating the CI (G) S thin-film with dense microstructure using stoichiometric containing denser microstructures using CIS particles with low melting point secondary phase CI (G) S particles containing phases with low melting point}

본 발명은 CI(G)S 막을 제조하는 방법에 관한 것이다. The present invention relates to a method of making a CI (G) S film.

입자 기반의 용액 공정을 통한 CI(G)S 막 제조에 있어서 Cu, In, Ga을 포함하는 금속 산화물 입자를 이용하는 방법이 보고되었다. 이는 금속 산화물 나노 입자의 혼합물 또는 금속 산화물과 산화물이 아닌 입자의 혼합물을 기판에 코팅한 후 환원 분위기 및 Se 기체 분위기 하에서 반응시켜 CI(G)S 막을 제조하는 방법이다 (미국 등록특허 제6127202호, 미국 등록특허 제6268014호). 하지만 부수적인 환원 공정이 필수적으로 이루어져야 하며, 환원 공정시 막에 결함이 생기는 문제가 있으며 이는 Se 기체 열처리 공정시 반응의 뷸균일성을 야기한다. 또한, 산화물을 포함하지 않는 CI(G)S 단일상 입자를 이용하여 CI(G)S 막을 제조하는 경우, CI(G)S의 녹는점이 986 oC이기 때문에 Se 기체 분위기에서의 열처리일지라도, 공정 허용 온도인 550 oC 내외의 온도에서는 막의 치밀화가 일어나기 힘들고 이는 태양전지 효율 특성을 크게 저하시키는 요인이다. A method of using metal oxide particles containing Cu, In, and Ga in the production of CI (G) S films through particle-based solution processes has been reported. This is a method of manufacturing a CI (G) S film by coating a mixture of metal oxide nanoparticles or a mixture of metal oxide and non-oxide on a substrate and reacting in a reducing atmosphere and a Se gas atmosphere (US Patent No. 6127202, U.S. Pat.No.6268014). However, the secondary reduction process must be made inevitably, and there is a problem in that a defect occurs in the film during the reduction process, which causes the unevenness of the reaction during the Se gas heat treatment process. In addition, in the case of producing a CI (G) S film using CI (G) S single-phase particles containing no oxide, the melting point of CI (G) S is 986 ° C. At temperatures around 550 ° C, the densification of the film is unlikely to occur, which significantly reduces the efficiency of solar cells.

반면에, 치밀한 CI(G)S 막을 형성하기 위해 낮은 융점을 가지는 CuSe2 입자 합성 및 CI(G)S 입자와의 물리적인 혼합을 통한 CI(G)S 막 형성에 대한 연구 (한국특허 10-2008-0021269)와 낮은 융점을 가지는 CuSe/CuSe2와 인듐 셀레나이드의 코어-쉘 구조의 입자 (한국 특허 10-2008-0009345)에 대한 연구가 보고되었다. 하지만, 이들 방법은 물리적인 혼합 및 코워-쉘 구조 형성이라는 부가적인 공정이 첨가된다는 공정상의 단점을 지니고 있으며, CI(G)S 형성을 위한 화학양론비 제어가 힘들다는 한계점을 지니고 있다. 또한, 최종 CI(G)S 막의 치밀도가 낮아서 태양전지 특성이 저하된다는 단점이 있다. 따라서 공정 허용 온도인 550 oC 내외의 열처리 과정을 통해 치밀하면서 화학양론비가 맞는 CI(G)S막을 제조할 수 있는 새로운 경제적인 접근 방법에 대한 연구 개발이 시급하다.On the other hand, the study on the formation of CI (G) S film through the synthesis of CuSe 2 particles having low melting point and physical mixing with the CI (G) S particles to form dense CI (G) S film (Korea Patent 10- 2008-0021269) and core-shell structures of CuSe / CuSe 2 and indium selenide having low melting points (Korean Patent 10-2008-0009345) have been reported. However, these methods have a disadvantage in that they add an additional process of physical mixing and forming a core-shell structure, and have a limitation in that stoichiometric ratio control for CI (G) S formation is difficult. In addition, there is a disadvantage in that the density of the final CI (G) S film is low and thus solar cell characteristics are deteriorated. Therefore, there is an urgent need for research and development of a new economical approach to producing dense and stoichiometric CI (G) S films through annealing at or near the process tolerance of 550 ° C.

본 발명의 목적은 상기와 같은 종래 기술이 갖는 문제점을 극복하면서 경제적인 공정에 의해 우수한 물성의 막 태양전지 흡수층용 치밀한 CI(G)S막을 제조할 수 있도록, 저융점 CuSe 및 CuSe2 이차상을 포함하고 있는 CI(G)S 입자를 합성하는 것을 목적으로 한다. 또한, 본 발명은 하나의 공정상에서 CuSe 및 CuSe2 이차상을 형성하도록 하고, 전체적인 Cu : In : Se의 화학양론비를 원하는 조성으로 합성단계에서부터 조절함으로써, 놀랍게도 별도의 추가공정 없이 화학양론비가 잘 맞는 치밀도가 획기적으로 우수한 CI(G)S 막을 제조하는 방법을 제시한다. An object of the present invention is to provide a low-melting-point CuSe and CuSe 2 secondary phase so as to produce a dense CI (G) S film for a film solar cell absorbing layer having excellent physical properties by an economic process while overcoming the problems of the prior art as described above. It aims at synthesize | combining CI (G) S particle | grains containing. In addition, the present invention is to form a CuSe and CuSe 2 secondary phase in one process, and by adjusting the stoichiometric ratio of the overall Cu: In: Se from the synthesis step to the desired composition, surprisingly well stoichiometry without additional process We present a method for producing a CI (G) S film that is dramatically superior in fit density.

상기 목적을 달성하기위하여, 본 발명의 저융점 이차상인 CuSe 및 CuSe2를 포함하는 화학양론비가 맞는 CI(G)S입자를 합성함으로써, 치밀도가 획기적으로 증가된 새로운 CI(G)S막의 제조방법을 제공한다. 본 발명에 의한 CI(G)S막을 제조하는 방법은, In order to achieve the above object, by producing a suitable stoichiometric ratio of CI (G) S particles containing CuSe and CuSe 2 of the low melting point secondary phase of the present invention, the production of a new CI (G) S film with a significantly increased density Provide a method. Method for producing a CI (G) S film according to the present invention,

a)구리화합물, 인듐화합물 및 셀레늄화합물을 끓는점이 200℃이상인 반응용매와 혼합하는 단계;a) mixing a copper compound, an indium compound and a selenium compound with a reaction solvent having a boiling point of 200 ° C. or higher;

b)상기 혼합액을 마이크로파를 조사하여 200~300℃에서 15~40분동안 반응하여 CuSe 및 CuSe2가 형성되어 있는 CI(G)S입자의 제조단계; 및 c)상기 CuSe 및 CuSe2가 생성되어 함유된 CI(G)S 입자를 기판에 코팅하고 열처리하여 CI(G)S 막을 제조하는 단계;b) a step of preparing CI (G) S particles in which CuSe and CuSe 2 are formed by reacting the mixed solution with microwaves for 15 to 40 minutes at 200 to 300 ° C .; And c) said Coating and heat-treating CI (G) S particles containing CuSe and CuSe 2 on the substrate to prepare a CI (G) S film;

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

또한 본 발명은 상기 a)단계에서 갈륨화합물을 더 포함하는 CI(G)S 막을 제조하는 방법을 제공한다.In another aspect, the present invention provides a method for producing a CI (G) S film further comprising a gallium compound in step a).

본 발명은 또한 상기 c)단계에서 열처리는 200~400℃에서 15~60분 유지한 후, 500~600℃로 승온하여 15~60분 유지하는 2단계 열처리인 것을 특징으로 하는 CI(G)S 막의 제조방법에 관한 것이다. 상기 c)단계에서 열처리는 비활성 기체 또는 Se기체분위기에서 수행하는 것이 바람직하다.The present invention is also characterized in that the heat treatment in step c) is a two-step heat treatment for 15 to 60 minutes after maintaining 15 to 60 minutes at 200 ~ 400 ℃, the temperature is increased to 500 ~ 600 ℃ CI (G) S It relates to a method for producing a membrane. Heat treatment in step c) is preferably carried out in an inert gas or Se gas atmosphere.

이하 보다 구체적으로 본 발명에 대하여 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 의한 CI(G)S 입자는 저융점 이차상인 CuSe 및 CuSe2를 형성하도록 한 상태에서, 상기 c)단계에서 550 oC 내외의 열처리 과정를 통하여 CI(G)S막을 제조 하였을 때 놀랍게도 상기 제조된 CI(G)S 막의 치밀도가 우수하며 화학양론비가 만족되는 효과가 있다.The CI (G) S particles according to the present invention are surprisingly when the CI (G) S film is prepared through heat treatment at about 550 ° C. in step c) in a state of forming low melting point secondary phases CuSe and CuSe 2 . The density of the prepared CI (G) S film is excellent and there is an effect that the stoichiometric ratio is satisfied.

본 발명은 상기 a)단계에서 반응용매는 기존에서 사용되어진 낮은 끓는점의 용매와 달리 끓는점이 200℃이상 이상인 용매를 사용하였고,b)단계에서 마이크로파를 조사하여 상기 온도로 히팅 하였을때 또한 CuSe 및 CuSe2를 포함하는 이차상의 형성이 제어된다. 또한 제조된 CI(G)S 막의 치밀도가 우수하며 화학양론비가 만족되는 효과가 있다.In the present invention, the reaction solvent in step a) used a solvent having a boiling point of 200 ° C. or higher, unlike a low boiling point solvent used in the past, and b) CuSe and CuSe when heated to the above temperature by microwave irradiation. Formation of the secondary phase including two is controlled. In addition, the prepared CI (G) S film has an excellent density and has an effect of satisfying a stoichiometric ratio.

또한 CuSe 및 CuSe2의 이차상이 형성될 지라도 전체적인 Cu:In:Se의 화학양론비는 초기에 투입된 구리화합물, 인듐화합물, 갈륨화합물, 셀레늄화합물의 조성비에 의해 결정되기 때문에 전체적인 입자의 화학양론비는 아주 쉽게 제어될 수 있다. 상기 반응용매는 보다 구체적으로 끓는점이 200~450 oC 인것이 좋다. 이는 기존의 저융점 CuSe/CuSe2의 물리적인 혼합 또는 코어-쉘 구조 형성의 방법과 차별되는 획기적으로 우수한 본 발명의 장점이다. 본 발명에서 상기 Cu : In : Se의 화학양론비는 바람직하게는 0.7~1.3 : 0.7~1.3 : 1.7~2.3인 것이 좋다. 갈륨화합물이 더 포함될 경우 Cu : In : Ga : Se의 화학양론비가 0.7~1.3 : 0.7~1.3 0.7~1.3 : 1.7~2.3인 것이 좋다. In addition, even though the secondary phases of CuSe and CuSe 2 are formed, the overall stoichiometric ratio of Cu: In: Se is determined by the composition ratio of copper, indium, gallium, and selenium compounds that are initially added. It can be controlled very easily. The reaction solvent is more preferably boiling point 200 ~ 450 o C. This is an advantage of the invention that is significantly superior to the existing methods of physically mixing or forming core-shell structures of low melting point CuSe / CuSe 2 . In the present invention, the stoichiometric ratio of Cu: In: Se is preferably 0.7 to 1.3: 0.7 to 1.3: 1.7 to 2.3. If the gallium compound is further included, the stoichiometric ratio of Cu: In: Ga: Se is preferably 0.7-1.3: 0.7-1.3 0.7-1.3: 1.7-2.3.

또한 상기 반응 용매는 보다 구체적으로 폴리욜계 용매, 아민계열 용매, 그리고 포스핀계 용매로부터 선택된 1종 또는 2종이상을 포함하는 것을 특징으로 한다. In addition, the reaction solvent is more specifically characterized in that it comprises one or two or more selected from polyol solvents, amine solvents, and phosphine solvents.

폴리욜계 용매는 디에틸렌글리콜(diethylene glycol), 디에틸렌글리콜 에틸이서(diethylene glycol ethyl ether), 디에틸렌글리콜 부틸이서(diethylene glycol buthyl ether), 트리에틸렌글리콜(triethylene glycol,), 폴리에틸렌 글리콜 (poly(ethylene glycol), 분자량; 200~100,000), 폴리에틸렌 글리콜 다이아크릴레이트 (poly(ethylene glycol) diacrylate), 폴리에틸렌 글리콜 다이벤조네이트 (poly(ethylene glycol) dibenzonate), 디프로필렌글리콜 (dipropylene glycol), 트리프로필렌글리콜 (dipropylene glycol), 글리세롤 (glycerol)을 포함할 수 있다. The polyol solvents include diethylene glycol, diethylene glycol ethyl ether, diethylene glycol buthyl ether, triethylene glycol, and polyethylene glycol ethylene glycol, molecular weight; 200-100,000), polyethylene glycol diacrylate, polyethylene glycol dibenzonate, dipropylene glycol, tripropylene glycol (dipropylene glycol), glycerol (glycerol) may be included.

아민계열 용매는 디에틸아민(diethyl amine), 트리에틸아민(triethylamine), 1,3-프로판디아민(1,3-propane diamine), 1,4-부탄디아민(1,4-butane diamine), 1,5-펜탄디아민(1,5-pentane diamine), 1,6-헥산디아민(1,6-hexane diamine), 1,7-헵탄디아민(1,7-heptane diamine), 1,8-옥탄디아민(octane diamine), 디에틸렌디아민 (diethylene diamine), 디에틸렌트리아민(diethylene triamine), 톨루엔 디아민(toluene diamine), m-페닐렌디아민(m-phenylenediamine), 디페닐메탄 디아민(diphenyl methane diamine), 헥사메틸렌 디아민(hexamethylene diamine), 트리에틸렌테트라아민(triethylene tetramine), 테트라에틸렌펜타아민(tetraethylenepentamine), 헥사메틸렌테트라아민(hexamethylene tetramine)을 포함하며 상기, 아민계 용매는 킬레이팅제로도 사용될 수 있다. The amine solvents include diethyl amine, triethylamine, 1,3-propane diamine, 1,4-butane diamine, 1 1,5-pentane diamine, 1,6-hexane diamine, 1,7-heptane diamine, 1,8-octane diamine (octane diamine), diethylene diamine, diethylene triamine, toluene diamine, m-phenylenediamine, diphenyl methane diamine, Hexamethylene diamine, hexamethylene diamine, triethylene tetramine, tetraethylenepentamine, tetraethylenepentamine, hexamethylene tetramine, and the amine solvent may be used as a chelating agent.

상기 포스핀계 용매는 트리옥틸포스핀 (trioctylphosphine), 트리옥틸포스핀옥사이드 (trioctylphosphineoxide)를 포함한다.The phosphine solvent includes trioctylphosphine and trioctylphosphineoxide.

본 발명은 상기 b)단계에서 상기 혼합액에 마이크로파를 조사하여 200~300℃에서 15~40분 열처리하여 반응하는 것을 특징으로 하며, 상기 반응온도와 반응시간에 따라 놀랍게도 이차상인 CuSe 및 CuSe2 입자의 형성이 제어될 수 있다. 이와 같이 끓는점이 높은 반응용매의 사용과 반응 시간, 반응온도를 통해 이차상의 형성을 제어 할 수 있다.본 발명은 상기 b)단계에서 상기 마이크로파의 출력이 500~900w인 CI(G)S 막의 제조방법을 제공한다. The present invention is characterized in that in step b) by irradiating microwaves to the mixed solution for 15 to 40 minutes heat treatment at 200 ~ 300 ℃, the reaction temperature and reaction time of the surprisingly secondary phase of the CuSe and CuSe 2 particles Formation can be controlled. As such, the formation of a secondary phase can be controlled through the use of a reaction solvent having a high boiling point, reaction time, and reaction temperature. In the present invention, in the step b), the production of a CI (G) S film having a power of 500 to 900 w Provide a method.

본 발명은 상기 b)단계에서 제조된 CI(G)S 입자는 CuSe 및 CuSe2의 몰비가 전체CI(G)S 입자의 부피에 대하여 서로 독립적으로 1~20 vol%를 포함하는 것을 특징으로 한다.In the present invention, the CI (G) S particles prepared in step b) are characterized in that the molar ratio of CuSe and CuSe 2 includes 1-20 vol% of each other independently of the volume of the entire CI (G) S particles. .

본 발명은 상기 a)단계에서 구리화합물은 CuO, CuO2, CuOH, Cu(OH)2, Cu(CH3COO), Cu(CH3COO)2, CuF2, CuCl, CuCl2, CuBr, CuBr2, CuI, Cu(ClO4)2,Cu(NO3)2, CuSO4 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다. 상기 인듐화합물은 In2O3, In(OH)3, In(CH3COO)3, InF3, InCl, InCl3, InBr, InBr3, InI, InI3, In(ClO4)3, In(NO3)3, In2(SO4)3 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다. 상기 갈륨화합물은 Ga2O3, Ga(OH)3, Ga(CH3COO)3, GaF3, GaCl, GaCl3, GaBr, GaBr3, GaI, GaI3, Ga(ClO4)3, Ga(NO3)3, Ga2(SO4)3 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다. 상기 셀레늄화합물은 Se, H2Se, Na2Se, K2Se, Ca2Se, (CH3)2Se 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다.In the step a), the copper compound is CuO, CuO 2 , CuOH, Cu (OH) 2 , Cu (CH 3 COO), Cu (CH 3 COO) 2 , CuF 2 , CuCl, CuCl 2 , CuBr, CuBr 2 , CuI, Cu (ClO 4 ) 2 , Cu (NO 3 ) 2 , CuSO 4 and one or more selected from the group consisting of hydrates thereof. The indium compound may be In 2 O 3 , In (OH) 3 , In (CH 3 COO) 3 , InF 3 , InCl, InCl 3 , InBr, InBr 3 , InI, InI 3 , In (ClO 4 ) 3 , In ( NO 3 ) 3 , In 2 (SO 4 ) 3 and one or more selected from the group consisting of hydrates thereof. The gallium compound may be Ga 2 O 3 , Ga (OH) 3 , Ga (CH 3 COO) 3 , GaF 3 , GaCl, GaCl 3 , GaBr, GaBr 3 , GaI, GaI 3 , Ga (ClO 4 ) 3 , Ga ( NO 3 ) 3 , Ga 2 (SO 4 ) 3 and one or more selected from the group consisting of hydrates thereof. The selenium compound may include one, two or more selected from the group consisting of Se, H 2 Se, Na 2 Se, K 2 Se, Ca 2 Se, (CH 3 ) 2 Se, and hydrates thereof.

상기 c)단계에서 열처리는 200~400℃에서 15~60분 유지한 후, 500~600℃로 승온하여 15~60분 유지하는 2단계 열처리인 것을 특징으로 하며, 상기 조건으로 열처리를 하였을 때 놀랍게도 치밀한 막이 형성될 수 있다. 상기 열처리는 비활성 가스 또는 Se 기체 분위기에서 진행하는 것이 좋으며, 급속열처리시스템(rapid thermal annealing system)을 이용할 수 있다. Heat treatment in step c) is characterized in that the two-step heat treatment for 15 to 60 minutes after maintaining 15 to 60 minutes at 200 ~ 400 ℃, the temperature is raised to 500 ~ 600 ℃, surprisingly when the heat treatment under the above conditions Dense membranes can be formed. The heat treatment may be performed in an inert gas or Se gas atmosphere, and a rapid thermal annealing system may be used.

상기 c)단계에서 코팅은 스핀코팅, 딥코팅, 드랍 캐스팅, 잉크젯 프린팅(ink-jet printing), 미세 접촉 프린팅(micro-contact printing), 임프린팅(imprinting), 그라비아 프린팅(gravure printing), 그라비아-옵셋 프린팅(gravure-offset printing), 플렉소 프린팅 (Flexography printing) 및 스크린 프린팅(screen printing)로부터 1종 이상 선택되는 방법을 사용한다. In step c), the coating is spin coating, dip coating, drop casting, ink-jet printing, micro-contact printing, imprinting, gravure printing, gravure- One or more methods are selected from offset-printing, flexography printing, and screen printing.

본 발명은 경제적인 공정에 의해 저융점 CuSe 및 CuSe2 이차상을 포함하고 있는 CI(G)S 입자를 합성하여 막을 제조함으로써 치밀도가 우수한 막을 제조할 수 있는 장점이 있다. 또한 본 발명은 CI(G)S막을 제조하였을때 별도의 추가공정없이 Cu : In : Se의 화학양론비를 원하는 조성으로 합성단계에서부터 조절할 수 있는 장점이 있다.The present invention has an advantage that a film having excellent density can be prepared by synthesizing CI (G) S particles containing low melting point CuSe and CuSe 2 secondary phase by an economical process. In addition, the present invention has the advantage that can be adjusted from the synthesis step to the desired composition of the stoichiometric ratio of Cu: In: Se without additional process when producing a CI (G) S film.

도1은 실시예1에서 제조된 CIS입자의 XRD분석 결과를 나타낸 것이다.
도2는 실시예1에서 제조된 CIS막의 XRD분석 결과를 나타낸 것이다.
도3은 실시예1에서 제조된 CIS막을 SEM을 이용하여 관찰하여 나타낸 것이다.
도4는 반응 온도에 따른 입자의 상을 관찰하기 위하여 실시예1 내지 3 및 비교예 1내지 2의 CIS 입자의 XRD분석 결과를 나타낸 것이다.
도5는 반응 시간의 변화에 따른 입자의 상을 관찰하기 위하여, 상기 실시예1, 실시예4 내지6 및 비교예3 내지 4에서 제조된 CIS 입자의 XRD분석을 결과를 나타낸 것이다.
도6은 비교예5에서 제조된 CIS입자의 XRD분석 결과를 나타낸 것이다.
도7은 비교예5에서 제조된 CIS막의 XRD분석 결과를 나타낸 것이다.
도8은 비교예5에서 제조된 CIS막을 SEM을 이용하여 관찰하여 나타낸 것이다.
Figure 1 shows the XRD analysis of the CIS particles prepared in Example 1.
Figure 2 shows the XRD analysis of the CIS film prepared in Example 1.
Figure 3 shows the observation of the CIS film prepared in Example 1 by using a SEM.
Figure 4 shows the XRD analysis of the CIS particles of Examples 1 to 3 and Comparative Examples 1 to 2 to observe the phase of the particles according to the reaction temperature.
Figure 5 shows the results of XRD analysis of the CIS particles prepared in Examples 1, 4 to 6 and Comparative Examples 3 to 4 in order to observe the phase of the particles according to the change in the reaction time.
Figure 6 shows the XRD analysis of the CIS particles prepared in Comparative Example 5.
Figure 7 shows the XRD analysis of the CIS film prepared in Comparative Example 5.
8 shows the CIS film prepared in Comparative Example 5 by observing using a SEM.

[실시예1] Example 1

CISCIS 입자의 제조Preparation of Particles

구리아세테이트모노하이드레이트(Cu acetate monohydrate), 인듐아세테이트(Indium acetate), 셀레늄 파우더(Se powder)를 1:1:2 의 몰비로 평량한 후 혼합한 혼합물 3.2g을 20g의 폴리에틸렌글리콜(polyethylene glycol 400)에 투입한 후 1시간 동안 교반을 실시하였다. 혼합된 용액을 마이크로파를 이용하여 800W의 출력으로 2분동안 승온시켜 280℃에서 25분간 반응시킨 후 20분간 냉각시켜 입자를 제조하였다. 합성된 입자를 회수하기 위하여 에탄올을 이용하여 25000rpm으로 30분을 원심분리를 실시하여 세정 및 입자 회수를 하되 3회 반복 실시하여 입자를 회수하였다. 회수된 입자는 40℃의 진공오븐에서 건조를 실시하여 CuSe를 포함하는 이차상을 가지는 CuInSe2(CIS)입자를 제조하였다.Copper acetate monohydrate (Cu acetate monohydrate), Indium acetate (Indium acetate), selenium powder (Se powder) in a molar ratio of 1: 1: 2 and mixed mixture 3.2g 20g Into polyethylene glycol 400 was stirred for 1 hour. The mixed solution was heated at a power of 800 W for 2 minutes using microwave, reacted at 280 ° C. for 25 minutes, and cooled for 20 minutes to prepare particles. In order to recover the synthesized particles by centrifugation for 30 minutes at 25000rpm using ethanol to wash and recover the particles but repeated three times to recover the particles. The recovered particles were dried in a vacuum oven at 40 ℃ to prepare CuInSe 2 (CIS) particles having a secondary phase containing CuSe.

상기 제조된 CuInSe2(CIS)입자는 XRD분석을 실시하였고, 그 결과를 하기 도1에 도시하였다.The prepared CuInSe 2 (CIS) particles were subjected to XRD analysis, and the results are shown in FIG. 1.

CIS막CIS film 제조Produce

상기 제조된 CIS입자 이용하여 잉크를 준비하였다. 상기 잉크는 에틸렌글리콜 1.785g과 에탄올 0.765g을 혼합한 용매에 15wt%가 되도록 상기 제조된 CIS입자를 첨가하였으며, 분산성 향상을 위해서 볼밀링 공정을 실시하여 잉크를 준비하였다. 몰리브덴이 증착되어 있는 소다임글라스(Soda-lime Glass)에 바코팅 방법으로 막을 형성하였다. 형성된 막은 진공오븐에 넣어 80℃에서 건조시켰고, 건조된 막은 Se기체 분위기에서 열처리를 실시하였다. 상기 열처리는 분당 5℃의 승온속도로 250℃까지 승온시킨후 20분간 유지하였다. 그리고 다시 분당 5℃의 승온속도로 530℃까지 승온시킨후 20분간 유지하였다. 그리고 냉각은 노냉으로 실시하여 CIS막을 제조하였다. 제조된 막의 상분석을 위해 XRD 분석을 실시하여 하기 도2에 나타내었다. Ink was prepared using the prepared CIS particles. The ink was added to the prepared CIS particles to 15wt% in a solvent in which 1.785g of ethylene glycol and 0.765g of ethanol were mixed, and an ink was prepared by performing a ball milling process to improve dispersibility. A film was formed on the soda-lime glass on which molybdenum was deposited by a bar coating method. The formed film was put in a vacuum oven and dried at 80 ° C., and the dried film was heat-treated in an atmosphere of Se gas. The heat treatment was continued for 20 minutes after the temperature was raised to 250 ℃ at a temperature increase rate of 5 ℃ per minute. The temperature was further raised to 530 ° C. at a temperature increase rate of 5 ° C. per minute, and maintained for 20 minutes. And cooling was performed by furnace cooling, and the CIS film | membrane was manufactured. XRD analysis for the phase analysis of the prepared membrane is shown in Figure 2 below.

그리고 제조된 CIS막을 SEM을 이용하여 관찰하여 하기 도3에 나타내었다.The prepared CIS film was observed using SEM, and is shown in FIG. 3.

[실시예2]Example 2

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 250℃에서 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1, but the temperature was raised to 800W output using a microwave to react at 250 ℃, the rest was carried out in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[실시예3]Example 3

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 200℃에서 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1 except that the temperature was raised to 800W using microwave to react at 200 ° C., and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[실시예4]Example 4

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 30분동안 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.The same process as in Example 1 was performed except that the reaction was performed for 30 minutes by raising the temperature to 800W using microwave, and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[실시예5][Example 5]

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 20분동안 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.The same procedure as in Example 1 was performed except that the reaction was performed for 20 minutes by raising the temperature to 800W using microwave, and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[실시예6][Example 6]

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 15분동안 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1 except that the reaction was carried out for 15 minutes by heating to 800W output using microwave, and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[비교예1][Comparative Example 1]

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 150℃에서 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1, but the temperature was raised to 800W output using a microwave there is a difference in the reaction at 150 ℃, the rest was carried out in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[비교예2]Comparative Example 2

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 100℃에서 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1, but the temperature was raised to 800W output using a microwave to react at 100 ℃, the rest was carried out in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[비교예3][Comparative Example 3]

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 10분동안 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.The same procedure as in Example 1 was performed except that the reaction was performed for 10 minutes by raising the temperature to 800W using microwave, and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.It carried out similarly to Example 1 above.

[비교예4][Comparative Example 4]

CISCIS 입자의 제조Preparation of Particles

상기 실시예1과 동일하게 실시하되 마이크로파를 이용하여 800W출력으로 승온시켜 5분동안 반응 시킨 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다.The same procedure as in Example 1 was performed except that the reaction was performed for 5 minutes by heating to 800W output using microwave, and the rest was performed in the same manner as in Example 1.

CIS막CIS film 제조Produce

상기 실시예1과 동일하게 실시하였다.
It carried out similarly to Example 1 above.

반응 온도 변화에 따른 입자의 상을 관찰하기 위하여, 상기 실시예1 내지 3 및 비교예 1 내지 2의 CIS입자의 XRD 분석을 실시하여 하기 도4에 나타내었다.In order to observe the phase of the particles according to the change in the reaction temperature, the XRD analysis of the CIS particles of Examples 1 to 3 and Comparative Examples 1 and 2 is shown in Figure 4 below.

하기 도4의 a)는 비교예2(반응온도100℃)의 CIS입자의 XRD 분석 결과이고,b)는 비교예1(반응온도150℃), c)는 실시예3(반응온도200℃), d)는 실시예2(반응온도250℃) e)는 실시예1(반응온도280℃)의 XRD분석 결과이다.4 a) shows XRD analysis results of CIS particles of Comparative Example 2 (reaction temperature 100 ° C.), b) Comparative Example 1 (reaction temperature 150 ° C.), and Example 3 (reaction temperature 200 ° C.). and d) Example 2 (reaction temperature 250 ° C.) e) XRD analysis of Example 1 (reaction temperature 280 ° C.).

반응 시간의 변화에 따른 입자의 상을 관찰하기 위하여, 상기 실시예1, 실시예4 내지6 및 비교예3 내지 4에서 제조된 CIS 입자의 XRD분석을 실시하였고 그 결과를 하기 도5에 나타내었다.In order to observe the phase of the particles according to the change in the reaction time, XRD analysis of the CIS particles prepared in Examples 1, 4-6 and Comparative Examples 3-4 was carried out and the results are shown in FIG. 5. .

하기 도 5의 a)는 비교예4(반응시간5분)의 CIS입자의 XRD분석결과이며, b)는 비교예3(반응시간10분), c)는 실시예6(반응시간15분), d)는 실시예5(반응시간20분), e)는 실시예1(반응시간25분), f)는 실시예4(반응시간30분)의 CIS입자의 XRD분석 결과이다.5 a) shows XRD analysis results of CIS particles of Comparative Example 4 (reaction time 5 minutes), b) Comparative Example 3 (reaction time 10 minutes) and c) Example 6 (reaction time 15 minutes) , d) Example 5 (reaction time 20 minutes), e) Example 1 (reaction time 25 minutes), f) is the result of XRD analysis of the CIS particles of Example 4 (reaction time 30 minutes).

[비교예5][Comparative Example 5]

CISCIS 입자의 제조Preparation of Particles

구리아세테이트모노하이드레이트(Cu acetate monohydrate), 인듐아세테이트(Indium acetate), 셀레늄 파우더(Se powder)를 1:1:2 의 몰비로 평량한 후 혼합한 혼합물 3.2g을 20g의 에틸렌글리콜(ethylene glycol)에 투입한 후 1시간 동안 교반을 실시하였다. 혼합된 용액을 마이크로파를 이용하여 800W의 출력으로 2분동안 승온시켜 280℃에서 25분간 반응시킨 후 20분간 냉각시켜 입자를 제조하였다. 합성된 입자를 회수하기 위하여 에탄올을 이용하여 25000rpm으로 30분을 원심분리를 실시하여 세정 및 입자 회수를 하되 3회 반복 실시하여 입자를 회수하였다. 회수된 입자는 40℃의 진공오븐에서 건조를 실시하여 CuInSe2(CIS)입자를 제조하였다. 제조된 CIS 입자의 상분석을 위하여 XRD 분석을 실시하였고 그 결과를 하기 도6에 나타내었다. 상기 제조된 CIS입자는 단일상이었으며 화학양론비로 Cu:In:Se는 26:26:48이었다. Copper acetate monohydrate (Cu acetate monohydrate), Indium acetate (Indium acetate), selenium powder (Se powder) in a molar ratio of 1: 1: 2 and mixed mixture 3.2g was added to 20g of ethylene glycol and then stirred for 1 hour. The mixed solution was heated at a power of 800 W for 2 minutes using microwave, reacted at 280 ° C. for 25 minutes, and cooled for 20 minutes to prepare particles. In order to recover the synthesized particles by centrifugation for 30 minutes at 25000rpm using ethanol to wash and recover the particles but repeated three times to recover the particles. The recovered particles were dried in a vacuum oven at 40 ℃ to prepare CuInSe 2 (CIS) particles. XRD analysis was performed for phase analysis of the prepared CIS particles, and the results are shown in FIG. 6. The prepared CIS particles were a single phase and had a stoichiometric ratio of Cu: In: Se of 26:26:48.

CIS막CIS film 제조Produce

상기 제조된 단일상의 CIS입자를 이용하여 잉크를 제조하였다. 상기 잉크는 에틸렌글리콜 1.785g과 에탄올 0.765g을 혼합한 용매에 15wt%가 되도록 상기 제조된 CIS입자를 첨가하였으며, 분산성 향상을 위해서 볼밀링 공정을 실시하여 잉크를 준비하였다. 몰리브덴이 증착되어 있는 소다임글라스(Soda-lime Glass)에 바코팅 방법으로 막을 형성하였다. 형성된 막은 진공오븐에 넣어 80℃에서 건조시켰고, 건조된 막은 Se기체 분위기에서 열처리를 실시하였다. 상기 열처리는 분당 5℃의 승온속도로 250℃까지 승온시킨후 20분간 유지하였다. 그리고 다시 분당 5℃의 승온속도로 530℃까지 승온시킨후 20분간 유지하였다. 그리고 냉각은 노냉으로 실시하여 CIS막을 제조하였다. 상기 제조된 CIS막의 상분석을 위해 XDR분석을 실시하여 하기 도7에 나타내었다. 그리고 상기 제조된 CIS막의 구조를 SEM을 이용하여 관찰하여 하기 도8에 나타내었다.
Ink was prepared using the prepared single-phase CIS particles. The ink was added to the prepared CIS particles to 15wt% in a solvent in which 1.785g of ethylene glycol and 0.765g of ethanol were mixed, and an ink was prepared by performing a ball milling process to improve dispersibility. A film was formed on the soda-lime glass on which molybdenum was deposited by a bar coating method. The formed film was put in a vacuum oven and dried at 80 ° C., and the dried film was heat-treated in an atmosphere of Se gas. The heat treatment was continued for 20 minutes after the temperature was raised to 250 ℃ at a temperature increase rate of 5 ℃ per minute. The temperature was further raised to 530 ° C. at a temperature increase rate of 5 ° C. per minute, and maintained for 20 minutes. And cooling was performed by furnace cooling, and the CIS film | membrane was manufactured. XDR analysis for the phase analysis of the prepared CIS film is shown in Figure 7 below. And the structure of the prepared CIS film was observed by using a SEM shown in Figure 8 below.

도1은 실시예1에서 제조된 CIS입자의 XRD분석 결과를 나타낸 것이다. 도2는 실시예1에서 제조된 CIS막의 XRD분석 결과를 나타낸 것이다. 도3은 실시예1에서 제조된 CIS막을 SEM을 이용하여 관찰하여 나타낸 것이다.Figure 1 shows the XRD analysis of the CIS particles prepared in Example 1. Figure 2 shows the XRD analysis of the CIS film prepared in Example 1. Figure 3 shows the observation of the CIS film prepared in Example 1 by using a SEM.

도4는 반응 온도에 따른 입자의 상을 관찰하기 위하여 실시예1 내지 3 및 비교예 1내지 2의 CIS 입자의 XRD분석 결과를 나타낸 것이다.Figure 4 shows the XRD analysis of the CIS particles of Examples 1 to 3 and Comparative Examples 1 to 2 to observe the phase of the particles according to the reaction temperature.

도5는 반응 시간의 변화에 따른 입자의 상을 관찰하기 위하여, 상기 실시예1, 실시예4 내지6 및 비교예3 내지 4에서 제조된 CIS 입자의 XRD분석을 결과를 나타낸 것이다.Figure 5 shows the results of XRD analysis of the CIS particles prepared in Examples 1, 4 to 6 and Comparative Examples 3 to 4 in order to observe the phase of the particles according to the change in the reaction time.

도6은 비교예5에서 제조된 CIS입자의 XRD분석 결과를 나타낸 것이다. Figure 6 shows the XRD analysis of the CIS particles prepared in Comparative Example 5.

도7은 비교예5에서 제조된 CIS막의 XRD분석 결과를 나타낸 것이다. 도8은 비교예5에서 제조된 CIS막을 SEM을 이용하여 관찰하여 나타낸 것이다. Figure 7 shows the XRD analysis of the CIS film prepared in Comparative Example 5. 8 shows the CIS film prepared in Comparative Example 5 by observing using a SEM.

도1에서 확인되듯이 끓는점이 높은 폴리에틸렌글리콜400을 반응 용매로 합성하였을때, 제조된 CIS입자는 CuSe를 포함하는 이차상을 함유하였다. 이는 CISe 상으로의 전이 반응이 용매의 특성에 의해서 제어되어 이차상들이 존재하게 되는 결과이다. 이러한 이차상이 존재할지라도 Cu:In:Se의 비율은 EDX 측정 결과 첨가된 원료 전구체의 조성비와 크게 상이하지 않았다. (Cu:In:Se = 29:28:43) Se의 비율이 조금 적게 측정되는 것은 산화물로 존재하는 이차상의 존재에 기인하는 결과이고, 후공정인 Se 분위기에서의 열처리에 의해서 Cu:In:Se = 1:1:2의 화학양론비는 쉽게 최적화될 수 있었다.As shown in FIG. 1, when the high boiling point polyethylene glycol 400 was synthesized as a reaction solvent, the prepared CIS particles contained a secondary phase including CuSe. This is the result of the transition reaction to the CISe phase being controlled by the nature of the solvent resulting in the presence of secondary phases. Even if such a secondary phase was present, the ratio of Cu: In: Se did not differ significantly from the composition ratio of the raw material precursor added as a result of the EDX measurement. (Cu: In: Se = 29:28:43) The slightly smaller proportion of Se is due to the presence of secondary phases present as oxides, and the Cu: In: Se The stoichiometric ratio of 1: 1: 1 could be easily optimized.

도4는 반응온도의 변화에 따라 CuSe를 포함한 이차상의 존재가 제어되는 것을 알 수 있다. 200 oC 이하의 반응온도에서는 CIS 상이 형성되지 못하고 대부분 이차상으로 구성되어 있었다. 반응온도가 250 oC 이상으로 증가함에 따라 이차상들의 CIS로의 전이가 활발히 이루어지고, 그 결과 CuSe를 포함하는 이차상과 CIS가 혼재되어 있는 입자가 형성된다. 4 shows that the presence of a secondary phase including CuSe is controlled according to the change of reaction temperature. At the reaction temperature below 200 o C, the CIS phase could not be formed and was mostly composed of secondary phases. As the reaction temperature increases above 250 o C, the secondary phases are actively transitioned to CIS, and as a result Particles in which a secondary phase containing CuSe and a CIS are mixed are formed.

이러한 이차상과 CIS상의 혼재는 반응시간에 따라서도 제어될수 있으며, 이는 하기 도5에서 알 수 있다. 도5에서 보듯이 반응시간이 증가함에 따라 CuSe를 포함하는 이차상은 줄어들면서 CIS상이 증가하는 것을 알 수 있다. 따라서 치밀한 막을 형성하기 위해서 CIS가 주상으로 존재하면서 미량의 CuSe를 포함하는 것이 좋으며, 이는 CIS입자 제조 시 반응용매, 반응온도, 반응시간의 제어를 통해 얻을 수 있음을 확인할 수 있었다. This secondary phase and CIS phase mixture can be controlled according to the reaction time, which can be seen in Figure 5 below. As shown in FIG. 5, it can be seen that as the reaction time increases, the secondary phase including CuSe decreases and the CIS phase increases. Therefore, in order to form a dense film, CIS exists as a columnar, It is preferable to include CuSe, which can be obtained through the control of the reaction solvent, reaction temperature, reaction time when preparing the CIS particles.

도2 및 도3에서 볼 수 있듯이, 본 발명에 따른 실시예1은 CISe 단일상을 가지면서 치밀한 미세구조를 가지는 막이 형성되는 것을 알 수 있었다. 상기 실시예1에서 얻어진 CIS막의 조성은 화학양론비로 Cu:In:Se 가 25:23:52 였다.As can be seen in Figures 2 and 3, Example 1 according to the present invention was found to form a film having a dense microstructure while having a CISe single phase. The composition of the CIS film obtained in Example 1 was 25:23:52 in terms of stoichiometric ratio Cu: In: Se.

하기 도6에서 볼 수 있듯이, 비교예5에 의해 제조된 CIS입자는 이차상이 존재하지 않는 CIS단일상으로 이루어진 CIS입자임을 알 수 있었다.그리고 비교예5에 의해 제조된 CIS입자는 화학양론비로 Cu:In:Se는 26:26:48이었다. As can be seen in Figure 6, it can be seen that the CIS particles prepared by Comparative Example 5 is a CIS single-phase CIS particles that do not have a secondary phase. And the CIS particles prepared by Comparative Example 5 is Cu in a stoichiometric ratio : In: Se was 26:26:48.

하기 도 7, 8에서 확인할 수 있듯이 비교예 5에 의해 제조된 CIS입자는 단일상이며, 치밀도가 현저히 떨어지는 미세구조를 가지는 것을 알 수 있다. 화학양론비로는 Cu:In:Se는25:26:49였다.As can be seen in Figures 7 and 8 below it can be seen that the CIS particles prepared by Comparative Example 5 is a single phase, and has a microstructure with a significantly lower density. The stoichiometric ratio of Cu: In: Se was 25:26:49.

Claims (12)

a)구리화합물, 인듐화합물 및 셀레늄화합물을 끓는점이 200℃이상인 반응용매와 혼합하는 단계;
b)상기 혼합액을 마이크로파를 조사하여 200~300℃에서 15~40분동안 반응하여 CuSe 및 CuSe2가 형성되어 있는 CI(G)S입자의 제조단계; 및
c)상기 CuSe 및 CuSe2가 생성되어 함유된 CI(G)S 입자를 기판에 코팅하고 열처리하여 CI(G)S 막을 제조하는 단계;
를 포함하는 CI(G)S 막의 제조방법.
a) mixing a copper compound, an indium compound and a selenium compound with a reaction solvent having a boiling point of 200 ° C. or higher;
b) a step of preparing CI (G) S particles in which CuSe and CuSe 2 are formed by reacting the mixed solution with microwaves for 15 to 40 minutes at 200 to 300 ° C .; And
c) the above Coating and heat-treating CI (G) S particles containing CuSe and CuSe 2 on the substrate to prepare a CI (G) S film;
Method for producing a CI (G) S film comprising a.
제 1항에 있어서,
상기 a)단계에서 갈륨화합물을 더 포함하는 CI(G)S 막의 제조방법.
The method of claim 1,
The method of producing a CI (G) S film further comprising a gallium compound in step a).
제1항에 있어서,
상기 c)단계에서 열처리는 200~400℃에서 15~60분 유지한 후, 500~600℃로 승온하여 15~60분 유지하는 2단계 열처리인 것을 특징으로 하는 CI(G)S 막의 제조방법.
The method of claim 1,
The heat treatment in step c) is a method of producing a CI (G) S film, characterized in that the two-step heat treatment for 15 to 60 minutes after maintaining 15 to 60 minutes at 200 ~ 400 ℃, the temperature is increased to 500 ~ 600 ℃.
제1항에 있어서,
상기 a)단계에서 반응용매는 폴리욜계 용매, 아민계열 용매 및 포스핀계 용매로부터 1종 또는 2종 이상 포함하는 것을 특징으로 하는 CI(G)S 막의 제조방법.
The method of claim 1,
The reaction solvent in step a) is a method for producing a CI (G) S membrane, characterized in that it comprises one or two or more from a polyol solvent, an amine solvent and a phosphine solvent.
제1항에 있어서,
상기 a)단계에서 반응용매는 디에틸렌글리콜(diethylene glycol), 디에틸렌글리콜 에틸이서(diethylene glycol ethyl ether), 디에틸렌글리콜 부틸이서(diethylene glycol buthyl ether), 트리에틸렌글리콜(triethylene glycol,), 폴리에틸렌 글리콜 (poly(ethylene glycol), 분자량; 200~100,000), 폴리에틸렌 글리콜 다이아크릴레이트 (poly(ethylene glycol) diacrylate), 폴리에틸렌 글리콜 다이벤조네이트 (poly(ethylene glycol) dibenzonate), 디프로필렌글리콜 (dipropylene glycol), 트리프로필렌글리콜 (dipropylene glycol), 글리세롤 (glycerol), 디에틸아민(diethyl amine), 트리에틸아민(triethylamine), 1,3-프로판디아민(1,3-propane diamine), 1,4-부탄디아민(1,4-butane diamine), 1,5-펜탄디아민(1,5-pentane diamine), 1,6-헥산디아민(1,6-hexane diamine), 1,7-헵탄디아민(1,7-heptane diamine), 1,8-옥탄디아민(octane diamine), 디에틸렌디아민 (diethylene diamine), 디에틸렌트리아민(diethylene triamine), 톨루엔 디아민(toluene diamine), m-페닐렌디아민(m-phenylenediamine), 디페닐메탄 디아민(diphenyl methane diamine), 헥사메틸렌 디아민(hexamethylene diamine), 트리에틸렌테트라아민(triethylene tetramine), 테트라에틸렌펜타아민(tetraethylenepentamine), 헥사메틸렌테트라아민(hexamethylene tetramine), 트리옥틸포스핀 (trioctylphosphine) 및 트리옥틸포스핀옥사이드 (trioctylphosphineoxide)로이루어진 군으로부터 1종 또는 2종 이상 포함하는 CI(G)S 막의 제조방법.
The method of claim 1,
The reaction solvent in step a) is diethylene glycol, diethylene glycol ethyl ether, diethylene glycol butyl ether, triethylene glycol, polyethylene Glycol (poly (ethylene glycol), molecular weight; 200 ~ 100,000), polyethylene glycol diacrylate, polyethylene glycol dibenzonate, dipropylene glycol , Tripropylene glycol, glycerol, diethyl amine, triethylamine, 1,3-propane diamine, 1,4-butanediamine (1,4-butane diamine), 1,5-pentane diamine, 1,6-hexanediamine, 1,7-heptane diamine (1,7- heptane diamine, 1,8-octane diamine, diethylene diamine, diethyl Diethylene triamine, toluene diamine, m-phenylenediamine, diphenyl methane diamine, hexamethylene diamine, triethylene tetraamine ), Tetraethylenepentaamine (tetraethylenepentamine), hexamethylene tetramine (hexamethylene tetramine), trioctylphosphine (trioctylphosphine) and trioctylphosphine oxide (CI) containing one or two or more from the group consisting of trioctylphosphineoxide ) S film production method.
제1항에 있어서,
상기 a)단계에서 구리화합물은 CuO, CuO2, CuOH, Cu(OH)2, Cu(CH3COO), Cu(CH3COO)2, CuF2, CuCl, CuCl2, CuBr, CuBr2, CuI, Cu(ClO4)2,Cu(NO3)2, CuSO4 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함하는 CI(G)S 막의 제조방법.
The method of claim 1,
In step a), the copper compound is CuO, CuO 2 , CuOH, Cu (OH) 2 , Cu (CH 3 COO), Cu (CH 3 COO) 2 , CuF 2 , CuCl, CuCl 2 , CuBr, CuBr 2 , CuI , Cu (ClO 4 ) 2 , Cu (NO 3 ) 2 , CuSO 4 And a method for producing a CI (G) S film comprising one or two or more selected from the group consisting of hydrates thereof.
제1항에 있어서,
상기 a)단계에서 인듐화합물은 In2O3, In(OH)3, In(CH3COO)3, InF3, InCl, InCl3, InBr, InBr3, InI, InI3, In(ClO4)3, In(NO3)3, In2(SO4)3 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함하는 CI(G)S 막의 제조방법.
The method of claim 1,
The indium compound in step a) is In 2 O 3 , In (OH) 3 , In (CH 3 COO) 3 , InF 3 , InCl, InCl 3 , InBr, InBr 3 , InI, InI 3 , In (ClO 4 ) 3 , In (NO 3 ) 3 , In 2 (SO 4 ) 3 And a method for producing a CI (G) S film comprising one or two or more selected from the group consisting of hydrates thereof.
제2항에 있어서,
상기 a)단계에서 갈륨화합물은 Ga2O3, Ga(OH)3, Ga(CH3COO)3, GaF3, GaCl, GaCl3, GaBr, GaBr3, GaI, GaI3, Ga(ClO4)3, Ga(NO3)3, Ga2(SO4)3 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함하는 CI(G)S 막의 제조방법.
The method of claim 2,
In the step a), the gallium compound is Ga 2 O 3 , Ga (OH) 3 , Ga (CH 3 COO) 3 , GaF 3 , GaCl, GaCl 3 , GaBr, GaBr 3 , GaI, GaI 3 , Ga (ClO 4 ) 3 , Ga (NO 3 ) 3 , Ga 2 (SO 4 ) 3 And a method for producing a CI (G) S film comprising one or two or more selected from the group consisting of hydrates thereof.
제1항에 있어서,
상기 a)단계에서 셀레늄화합물은 Se, H2Se, Na2Se, K2Se, Ca2Se, (CH3)2Se 및 이들의 수화물로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함하는 CI(G)S 막의 제조방법.
The method of claim 1,
The selenium compound in step a) comprises one or two or more selected from the group consisting of Se, H 2 Se, Na 2 Se, K 2 Se, Ca 2 Se, (CH 3 ) 2 Se and hydrates thereof Process for preparing CI (G) S membrane.
제1항에 있어서,
상기 b)단계에서 제조된 CI(G)S 입자는 CuSe 및 CuSe2의 몰비가 전체CI(G)S 입자의 부피에 대하여 서로 독립적으로 1~20 vol%를 포함하는 것을 특징으로 하는 CI(G)S 막의 제조방법.
The method of claim 1,
CI (G) S particles prepared in step b) is characterized in that the molar ratio of CuSe and CuSe 2 includes 1 to 20 vol% independently of each other relative to the volume of the total CI (G) S particles (G) ) S film production method.
제1항에 있어서,
상기 c)단계에서 열처리는 비활성기체 또는 Se기체분위기에서 수행하는 것을 특징으로 하는 CI(G)S 막의 제조방법.
The method of claim 1,
The c) heat treatment in step c) is carried out in an inert gas or Se gas atmosphere, characterized in that the CI (G) S film manufacturing method.
제1항에 있어서,
상기 c)단계에서 코팅은 스핀코팅, 딥코팅, 드랍 캐스팅, 잉크젯 프린팅(ink-jet printing), 미세 접촉 프린팅(micro-contact printing), 임프린팅(imprinting), 그라비아 프린팅(gravure printing), 그라비아-옵셋 프린팅(gravure-offset printing), 플렉소 프린팅 (Flexography printing) 및 스크린 프린팅(screen printing)로부터 1종이상 선택되는 방법인 CI(G)S 막의 제조방법.
The method of claim 1,
In step c), the coating is spin coating, dip coating, drop casting, ink-jet printing, micro-contact printing, imprinting, gravure printing, gravure- A method for producing a CI (G) S film, which is a method selected from at least one of offset-printing, flexography printing, and screen printing.
KR1020100014260A 2010-02-17 2010-02-17 Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point KR101069576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100014260A KR101069576B1 (en) 2010-02-17 2010-02-17 Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100014260A KR101069576B1 (en) 2010-02-17 2010-02-17 Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point

Publications (2)

Publication Number Publication Date
KR20110094703A KR20110094703A (en) 2011-08-24
KR101069576B1 true KR101069576B1 (en) 2011-10-05

Family

ID=44930667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100014260A KR101069576B1 (en) 2010-02-17 2010-02-17 Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point

Country Status (1)

Country Link
KR (1) KR101069576B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154374A1 (en) * 2012-04-13 2013-10-17 Korea Reserach Institute Of Chemical Technology Fabrication method of photo active layer for solar cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395790B1 (en) * 2012-04-13 2014-05-19 한국화학연구원 Fabrication Method of Photo Active Layer for Solar Cell
KR101395779B1 (en) * 2012-04-13 2014-05-19 한국화학연구원 Fabrication Method of Photo Active Layer for Solar Cell
KR101388451B1 (en) * 2012-08-10 2014-04-24 한국에너지기술연구원 Preparation method of ci(g)s-based thin film with decreased carbon layers, ci(g)s-based thin film prepared by the same, and solar cell including the same
KR101508132B1 (en) * 2012-12-24 2015-04-06 한국에너지기술연구원 A CI(G)S Thin Film And The Fabrciation Method Of The Same, And A CI(G)S Solar Cell Using The CI(G)S Thin Film And The Fabrciation Method Of The Same.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588603B1 (en) 2005-05-04 2006-06-14 한국에너지기술연구원 Synthesis method of bar-shaped cuinse2 compound semiconductor nanoparticles by solvothermal route
KR100867665B1 (en) 2007-09-28 2008-11-10 한국화학연구원 Preparation method of chalcopyrite-type compounds with microwave irradiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588603B1 (en) 2005-05-04 2006-06-14 한국에너지기술연구원 Synthesis method of bar-shaped cuinse2 compound semiconductor nanoparticles by solvothermal route
KR100867665B1 (en) 2007-09-28 2008-11-10 한국화학연구원 Preparation method of chalcopyrite-type compounds with microwave irradiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154374A1 (en) * 2012-04-13 2013-10-17 Korea Reserach Institute Of Chemical Technology Fabrication method of photo active layer for solar cell

Also Published As

Publication number Publication date
KR20110094703A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
KR101069576B1 (en) Method for fabricating the CI(G)S thin-film with dense microstructure using stoichiometric CI(G)S particles containing phases with low melting point
US9487405B2 (en) Method for manufacturing SiC powders with high purity
JP6688832B2 (en) Antimony-doped nanoparticles
JP6623192B2 (en) Cu2ZnSnS4 nanoparticles
KR101848460B1 (en) Preparation of copper selenide nanoparticles
KR20120089159A (en) Chalcogenide semiconductor thin film and fabrication method thereof
McClary et al. Solution-processed copper arsenic sulfide thin films for photovoltaic applications
JP2011241396A5 (en)
CN109706525B (en) Bismuth-based topological insulator material and preparation method thereof
JP2013533841A (en) Selenide powder and production method
KR101311030B1 (en) Hybrid ink for CZTS film
KR101193106B1 (en) Preparation method for ci(g)s-based compound thin film using cu-se binary nano particle as flux and ci(g)s-based compound thin film prepared by the same
KR101232671B1 (en) Method for manufacturing absorber film of solar cell and absorber film thereof, solar cell and solar cell module by using the same
EP2531447A1 (en) Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom
Chien et al. Sol–gel assisted preparation and characterization of silver indium diselenide powders
KR101395790B1 (en) Fabrication Method of Photo Active Layer for Solar Cell
Kim et al. Preparation of precursor particles by cryogenic mechanical milling for the deposition of CuInS2 thin films
CN110480025A (en) A kind of high-density nanomaterial gas-phase production
KR101067337B1 (en) Method of manufaturing target for pvd
KR101395779B1 (en) Fabrication Method of Photo Active Layer for Solar Cell
TWI675890B (en) Cigs nanoparticle ink formulation with a high crack-free limit
Arumugam et al. Growth and study of cadmium tartrate oxalate single crystals by sol gel technique
Chiu et al. Preparation and formation mechanism of silver gallium selenide powders prepared via the sol–gel method
TW201335062A (en) Method of preparing binary chalcogenide compound
TW200828601A (en) Fabrication method of semiconductor nanocrystals

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee