KR101061541B1 - Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor - Google Patents

Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor Download PDF

Info

Publication number
KR101061541B1
KR101061541B1 KR1020080072101A KR20080072101A KR101061541B1 KR 101061541 B1 KR101061541 B1 KR 101061541B1 KR 1020080072101 A KR1020080072101 A KR 1020080072101A KR 20080072101 A KR20080072101 A KR 20080072101A KR 101061541 B1 KR101061541 B1 KR 101061541B1
Authority
KR
South Korea
Prior art keywords
ser
pro
gene encoding
gly
leu
Prior art date
Application number
KR1020080072101A
Other languages
Korean (ko)
Other versions
KR20100011053A (en
Inventor
황동연
임동문
Original Assignee
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단 filed Critical 차의과학대학교 산학협력단
Priority to KR1020080072101A priority Critical patent/KR101061541B1/en
Publication of KR20100011053A publication Critical patent/KR20100011053A/en
Application granted granted Critical
Publication of KR101061541B1 publication Critical patent/KR101061541B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 (a) 역분화 유도인자를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스(Herpes simplex amplicon viruses) 존재 하에서 인간에서 유래된 체세포 또는 불사화된(immortalized) 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니(embryonic stem cell-like colonies)를 분리하는 단계를 포함하는, 역분화 만능 줄기세포(iPS cells)의 제조방법을 제공한다. The present invention comprises the steps of (a) culturing a somatic or immortalized cell line derived from human in the presence of Herpes simplex amplicon viruses comprising a gene encoding a reverse differentiation inducer; And (b) isolating embryonic stem cell-like colonies from the culture obtained from step (a), thereby providing a method for producing iPS cells. .

헤르페스 심플렉스 앰플리콘 바이러스, 역분화 만능 줄기세포 Herpes simplex amplicon virus, pluripotent stem cell

Description

역분화 유도 인자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스를 이용한 역분화 전분화성 줄기 세포의 제조방법{Method for preparing induced pluripotent stem cells using herpes simplex amplicon viruses containing reprogramming-inducing genes}Method for preparing induced pluripotent stem cells using herpes simplex amplicon viruses containing reprogramming-inducing genes}

본 발명은 헤르페스 심플렉스 앰플리콘 바이러스 (herpes simplex simplex amplicon viruse)를 역분화 유도 인자를 코딩하는 유전자의 수송체(gene delivery vehicle)로 사용하여, 역분화 만능 줄기세포(iPS cells)를 제조하는 방법에 관한 것이다.The present invention uses a herpes simplex simplex amplicon virus as a gene delivery vehicle for encoding a gene for inducing differentiation, thereby producing iPS cells. It is about.

역분화 만능 줄기세포 (induced pluripotent stem cell, iPS 세포)는 분화된 세포(예를 들어, 체세포)로부터 역분화되어 얻어진 만능분화능(pluripotency)을 갖는 세포를 지칭하며, 각종 장기 세포로 분화 가능하다. iPS 세포는 역분화 유도인자들에 의해 분화된 세포를 재프로그램화(reprogramming)하여 얻어질 수 있으므로, 체세포 핵치환(somatic cell transfer) 없이 환자 면역 적합성 만능 세포주의 생성이 가능하다. 따라서 iPS 세포는 환자의 세포에서 유래될 수 있어 임상에 적용 시 면역 거부반응을 피할 수 있다. 또한, iPS 세포는 난자나 배아를 사용하지 않기 때 문에 생명윤리적 논란이나 종교적 비난이 없는 장점이 있다.Induced pluripotent stem cells (iPS cells) refer to cells having pluripotency obtained by dedifferentiation from differentiated cells (eg, somatic cells), and are capable of differentiating into various organ cells. iPS cells can be obtained by reprogramming cells differentiated by dedifferentiation inducers, thus enabling the generation of patient immunocompatible pluripotent cell lines without somatic cell transfer. Thus, iPS cells can be derived from the cells of the patient to avoid immune rejection in clinical applications. In addition, iPS cells do not use eggs or embryos, so there is no bioethical controversy or religious criticism.

2006년 8월에 Takahashi, K., 및 Yamanaka, S. 등이 생쥐 세포를 이용한 역분화에 의한 iPS 세포의 형성을 최초로 발표(Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676)한 이래, Takahashi, K. 등 및 Yu, J. 등은 인간세포를 대상으로 역분화에 의한 iPS 세포의 형성을 보고한 바 있다(Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872; 및 Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al . (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science New York, NY). Takahashi, K. 등은 iPS 세포를 얻기 위해서는 Sox2, Oct3/4, 및 Klf4의 역분화 유도인자가 필수적으로 필요하고 또한, 추가적으로 c-Myc이 iPS 세포의 형성을 촉진하는 역할을 하는 것을 밝혀냈다. 또한, Yu, J. 등은 Sox2, Oct3/4, 및 Nanog의 역분화 유도인자가 iPS 세포를 얻기 위해 필수적으로 필요하며, Lin28이 존재하는 경우 iPS 세포의 형성이 증가하는 것을 밝혀냈다.In August 2006, Takahashi, K., and Yamanaka, S. et al. Announced the formation of iPS cells by dedifferentiation using mouse cells (Takahashi, K., and Yamanaka, S. (2006) .Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell 126 , 663-676), Takahashi, K. et al. and Yu, J. et al. reported the formation of iPS cells by dedifferentiation in human cells. (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) .Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell 131 , 861-872; and Yu, J., Vodyanik, MA, Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, JL, Tian, S., Nie, J. , Jonsdottir, GA, Ruotti, V., Stewart, R. , et al . (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science New York, NY). Takahashi, K. et al. Found that dedifferentiation inducers of Sox2, Oct3 / 4, and Klf4 are necessary to obtain iPS cells, and additionally c-Myc plays a role in promoting the formation of iPS cells. In addition, Yu, J. et al. Found that reverse differentiation inducers of Sox2, Oct3 / 4, and Nanog are necessary for obtaining iPS cells, and the formation of iPS cells increases when Lin28 is present.

한편, 재프로그램화 (reprogramming)에 의한 iPS 세포 형성을 위해서는, 역분화 유도인자를 체세포 내에 전달하는 단계를 필수적으로 거치게 되며, 구체적으로는 Sox2, Oct3/4, Klf4, 및 c-Myc의 역분화 유도인자를 코딩하는 유전자들을 각 각 레트로바이러스들을 수송체로 사용하여 체세포에 전달하거나(Takahashi, K. et al (2007) Cell 131, 861-872), 또는 Sox2, Oct3/4, Nanog, Lin28의 역분화 유도인자를 코딩하는 유전자를 각각 렌티바이러스들을 수송체로 사용하여 체세포에 전달하여야한다 (Yu, J., et al . (2007), Science, New York, NY). On the other hand, for iPS cell formation by reprogramming, the step of delivering the dedifferentiation inducer into the somatic cells is essential. Specifically, the dedifferentiation of Sox2, Oct3 / 4, Klf4, and c-Myc Genes encoding inducers can be transferred to somatic cells using individual retroviruses as transporters (Takahashi, K. et al (2007) Cell 131 , 861-872), or inverse of Sox2, Oct3 / 4, Nanog, Lin28 Genes encoding differentiation inducers must be delivered to somatic cells using lentiviruses as transporters respectively (Yu, J., et al . (2007), Science, New York, NY).

그러나, 상기 레트로바이러스나 렌티바이러스는 세포의 핵 내의 염색체에 무작위로 끼어 들어가는 성질을 가지고 있기 때문에, 끼어들어가는 위치에 따라 얻어지는 iPS 세포를 임상에 적용할 경우 암 발생을 포함하여 안전성에 심각한 영향을 미칠 수 있다. 2000년도 초반 대에 프랑스에서 레트로바이러스를 이용하여 유전자치료법으로 Bubble boy 병 (X-SCID 병)을 치료받던 11명의 아이들 중에 3명의 아이가 백혈병에 걸렸던 사례가 보고된 바 있다.However, since the retroviruses or lentiviruses intervene randomly in the chromosome in the nucleus of the cell, iPS cells obtained according to the intercalation position may have a serious impact on safety including the occurrence of cancer when clinically applied. Can be. In the early 2000s, three out of 11 children who had been treated for bubble boy disease (X-SCID disease) with gene therapy using retroviruses in France were reported.

본 발명자들은 안전성 확보될 수 있는 우수한 iPS 세포의 제조방법을 개발하고자 다양한 연구를 수행하였다. 그 결과, 재조합 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)를 사용하여 얻어진 헤르페스 심플렉스 앰플리콘 바이러스를 통하여 역분화 유도인자들을 전달할 경우, 염색체에 끼어 들어가지 않고 염색체 바깥에서 에피솜(extrachromosomal episome) 형태로 존재하여 역분화 유도 유전자를 발현시키기 때문에 레트로바이러스 혹은 렌티바이러스 등을 사용함으로써 야기될 수 있는 안전성 문제를 피할 수 있다는 것을 발견하였다. 또한 재조합 앰플리콘 플라스미드는 크기가 10 kb 정도이기 때문에 헤르페스 바이러스 안에 150 kb의 DNA까지 집어넣을 수 있어, 각 유전자들이 10 카피이상 한 개의 헤르페스 심플렉스 바이러스 내로 들어가 세포 내로 동시에 많은 양이 전달될 수 있다는 것을 발견하였다.The present inventors carried out various studies to develop a method for producing excellent iPS cells that can be secured. As a result, when the inducer of reverse differentiation is transmitted through the herpes simplex virus amplicon plasmid obtained using a recombinant herpes simplex virus amplicon plasmid, the episomal (outside the chromosome) does not enter the chromosome. Because they exist in the form of extrachromosomal episomes and express genes that induce differentiation, they have been able to avoid safety problems that can be caused by the use of retroviruses or lentiviruses. In addition, the recombinant amplicon plasmid is about 10 kb in size, so that up to 150 kb of DNA can be inserted into the herpes virus, allowing each gene to enter more than 10 copies into a single herpes simplex virus and deliver large amounts simultaneously into the cell. I found that.

따라서, 본 발명은 헤르페스 심플렉스 앰플리콘 바이러스 (Herpes simplex amplicon virus)를 이용한 iPS 세포의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for producing iPS cells using the Herpes simplex amplicon virus.

본 발명의 일 태양에 따라, (a) 역분화 유도인자를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스(Herpes simplex amplicon viruses) 존재하에서 인간에서 유래된 체세포 또는 불사화된(immortalized) 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로 니(embryonic stem cell-like colonies)를 분리하는 단계를 포함하는, 역분화 만능 줄기세포(iPS cells)의 제조방법이 제공된다.According to one aspect of the invention, (a) a somatic or immortalized cell line derived from humans in the presence of Herpes simplex amplicon viruses comprising a gene encoding a reverse differentiation inducer Culturing; And (b) isolating embryonic stem cell-like colonies from the culture obtained from step (a), there is provided a method for producing iPS cells do.

본 발명의 제조방법에 있어서, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; Oct3/4를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; 및 Nanog을 코딩하는 유전자를 포함(선택적으로 Lin28을 코딩하는 유전자를 추가로 포함)하는 헤르페스 심플렉스 앰플리콘 바이러스 존재 하에서 수행될 수 있다. 또한, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; Oct3/4를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; 및 Klf4를 코딩하는 유전자를 포함(선택적으로 c-Myc를 코딩하는 유전자를 추가로 포함)하는 헤르페스 심플렉스 앰플리콘 바이러스 존재 하에서 수행될 수 있다. 상기 헤르페스 심플렉스 바이러스는 각각의 상응하는 역분화 유도인자를 코딩하는 유전자를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid), 바람직하게는 서열번호 17의 염기서열을 갖는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드에 재조합시켜 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시켜 얻어질 수 있다. 또한, 상기 패키징은 상기 발현 플라스미드, BAC DNA(fHSV△pac△27 0+), 및 헬퍼-플라스미드(pEBHICP27)를 상기 수용 세포에 공동-형질도입(co-transfection)시킴으로써 수행될 수 있다.In the production method of the present invention, the culture of step (a) is a herpes simplex amplicon virus comprising a gene encoding Sox2; Herpes simplex amplicon virus comprising a gene encoding Oct3 / 4; And a herpes simplex amplicon virus comprising a gene encoding Nanog (optionally further comprising a gene encoding Lin28). In addition, the culture of step (a) is a herpes simplex amplicon virus comprising a gene encoding Sox2; Herpes simplex amplicon virus comprising a gene encoding Oct3 / 4; And a herpes simplex amplicon virus comprising a gene encoding Klf4 (optionally further comprising a gene encoding c-Myc). The herpes simplex virus is a herpes simplex virus amplicon plasmid (Herpes simplex virus amplicon plasmid), a gene encoding each corresponding reverse differentiation inducer, preferably the herpes simplex virus ampoule having the nucleotide sequence of SEQ ID NO: 17 The expression plasmid obtained by recombination into the lycon plasmid can be obtained by packaging in a permissive cell line. In addition, the packaging may be performed by co-transfection of the expression plasmid, BAC DNA (fHSVΔpacΔ27 0+), and helper-plasmid (pEBHICP27) into the recipient cells.

또한, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Nanog을 코딩하는 유전자를 동시에 포함(선택적으로 Lin28을 코딩하는 유전자를 추가로 포함)하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. 또한, 상기 배양은 Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Klf4를 코딩하는 유전자를 동시에 포함(선택적으로, c-Myc를 코딩하는 유전자를 추가로 포함)하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. In addition, the culture of step (a) is a gene encoding Sox2; Gene encoding Oct3 / 4; And one herpes simplex amplicon virus simultaneously comprising a gene encoding Nanog (optionally further comprising a gene encoding Lin28). In addition, the culture is a gene encoding Sox2; Gene encoding Oct3 / 4; And one herpes simplex amplicon virus simultaneously comprising a gene encoding Klf4 (optionally further comprising a gene encoding c-Myc).

단계 (a)가 1 종의 헤르페스 심플렉스 바이러스를 사용하여 수행되는 경우, 상기 헤르페스 심플렉스 바이러스는 (i) Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Nanog를 코딩하는 유전자, 및 선택적으로 Lin28을 코딩하는 유전자; 또는 Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Klf4를 코딩하는 유전자, 및 선택적으로 c-Myc를 코딩하는 유전자를 포함하는 유전자 구조체로서, 상기 유전자들이 서열번호 1의 펩타이드를 코딩하는 유전자를 매개로 연결된 유도 유전자 구조체를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)에 재조합시켜 발현 플라스미드를 제작하는 단계, 및 (ii) 단계(i)에서 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시키는 단계를 포함하는 방법에 의해 얻어질 수 있다. 상기 서열번호 1의 펩타이드를 코딩하는 유전자는 서열번호 2의 염기서열을 가질 수 있으며, 상기 유전자 구조체가 서열번호 15 또는 16의 염기 서열로 구성될 수 있다. 상기 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드는 서열번호 17의 염기서열을 가질 수 있다. 또한, 상기 패키징은 상기 발현 플라스미드, BAC DNA(fHSV△pac△27 0+), 및 헬퍼-플라스미드(pEBHICP27)를 상기 수용 세포에 공동-형질도입(co-transfection)시킴으로써 수행될 수 있다.If step (a) is performed using one type of herpes simplex virus, the herpes simplex virus comprises (i) a gene encoding Sox2, a gene encoding Oct3 / 4, a gene encoding Nanog, and a selective The gene encoding Lin28; Or a gene construct comprising a gene encoding Sox2, a gene encoding Oct3 / 4, a gene encoding Klf4, and optionally a gene encoding c-Myc, wherein the genes encode a peptide of SEQ ID NO: 1 Recombining the induced gene constructs linked to the herpes simplex virus amplicon plasmid to produce an expression plasmid, and (ii) receiving the expression plasmid obtained in step (i) into a permissive cell. can be obtained by a method comprising the step of packaging in a line. The gene encoding the peptide of SEQ ID NO: 1 may have a nucleotide sequence of SEQ ID NO: 2, the gene structure may be composed of the nucleotide sequence of SEQ ID NO: 15 or 16. The herpes simplex virus amplicon plasmid may have a nucleotide sequence of SEQ ID NO. In addition, the packaging may be performed by co-transfection of the expression plasmid, BAC DNA (fHSVΔpacΔ27 0+), and helper-plasmid (pEBHICP27) into the recipient cells.

본 발명에 따라, 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드를 사용하여 얻어진 헤르페스 심플렉스 앰플리콘 바이러스를 통하여 역분화 유도인자를 전달할 경우, 염색체에 끼어 들어가지 않고 핵 내에 에피솜(episome) 형태로 존재함으로써 레트로바이러스 혹은 렌티바이러스 등의 바이러스를 수송체로 사용함으로써 생길 수 있는 안전성 문제를 피할 수 있다. 또한, 역분화 유도인자들을 각각 코딩하는 유전자들을 서열번호 1의 펩타이드를 코딩하는 DNA 단편을 매개로 연결시켜 얻어진 다중 역분화 유도 유전자 구조체를 상기 바이러스 앰플리콘 플라스미드에 재조합시켜 얻어진 발현 플라스미드로 헤르페스 심플렉스 바이러스 입자를 형성시켜, 상기 입자를 분화된 체세포에 도입할 경우 하나의 폴리시스트론(polycistronic) mRNA로부터 여러 개의 역분화 유도 인자들을 동시에 발현시킬 수 있다. 상기와 같이 제작된 다중 역분화 유전자 발현 플라스미드를 헤르페스 심플렉스 바이러스를 만드는데 필요한 유전자가 들어있는 BAC DNA(fHSV△pac△27 0+) 와 pEBHICP27 플라스미드와 함께 베로 세포(vero cells) 등의 수용 세포에 동시-형질 도입 (co-transfection)시킨 후, 상기 세포를 배양하여 상기 유전자 구조체를 포함하는 바이러스 입자를 분리하여 분화된 체세포에 도입할 경우, 높은 효율로 역분화된 세포(즉, iPS 세포)를 얻을 수 있다.According to the present invention, when a reverse differentiation inducer is delivered through a herpes simplex amplicon virus obtained using a herpes simplex virus amplicon plasmid, it is present in the form of episomes in the nucleus without being inserted into the chromosome. The use of viruses such as viruses or lentiviruses as transporters can avoid the safety problems that may arise. In addition, the herpes simplex is expressed as an expression plasmid obtained by recombining a multiple reverse differentiation inducing gene construct obtained by linking genes encoding the reverse differentiation inducers to a DNA fragment encoding a peptide of SEQ ID NO: 1 into the viral amplicon plasmid. When viral particles are formed, the particles can be introduced into differentiated somatic cells to simultaneously express several dedifferentiation inducing factors from one polycistronic mRNA. The multiple reverse differentiation gene expression plasmids prepared as described above were applied to receiving cells such as vero cells together with BAC DNA (fHSVΔpac △ 27 0+) and pEBHICP27 plasmid containing genes necessary for the production of herpes simplex virus. After co-transfection, the cells are cultured to isolate virus particles containing the gene construct and introduce them into differentiated somatic cells. You can get it.

본 명세서에서, "역분화 만능 줄기세포 (induced pluripotent stem cells, iPS 세포)"라 함은 "reprogrammed pluripotent stem cells"로도 지칭되며, 분화된 세포 를 재프로그램하여(즉, 역분화시켜) 만능분화능(pluripotency)을 갖도록 유도된 세포를 말한다. 상기 역분화 만능 줄기세포는 뇌, 심장 등의 장기 세포로 다양하게 분화될 수 있다.In the present specification, "induced pluripotent stem cells (iPS cells)" is also referred to as "reprogrammed pluripotent stem cells", and the pluripotency ( refers to cells induced to have pluripotency). The dedifferentiated pluripotent stem cells may be variously differentiated into organ cells such as brain and heart.

본 발명은 (a) 역분화 유도인자를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스(Herpes simplex amplicon viruses) 존재하에서 인간에서 유래된 체세포 또는 불사화된(immortalized) 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니(embryonic stem cell-like colonies)를 분리하는 단계를 포함하는, 역분화 만능 줄기세포(iPS cells)의 제조방법을 제공한다.The present invention comprises the steps of: (a) culturing a somatic or immortalized cell line derived from human in the presence of Herpes simplex amplicon viruses comprising a gene encoding a reverse differentiation inducer; And (b) isolating embryonic stem cell-like colonies from the culture obtained from step (a), thereby providing a method for producing iPS cells. .

헤르페스 심플렉스 바이러스 (Herpes simplex virus)는, 레트로바이러스나 렌티바이러스와 달리, 숙주세포(host cell)의 염색체에 끼어 들어가지 않고 염색체 밖에서 에피솜(episome) 상태로 존재하므로, 레트로바이러스 혹은 렌티바이러스를 사용함으로써 야기될 수 있는 안전성 문제를 피할 수 있다. 특히, 헤르페스 심플렉스 바이러스 형성에 사용되는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)는 "gutted" DNA 플라스미드로서 DNA 복제 (replication) origin (oriS) 과 packaging signal (pac) 만을 가지고 있기 때문에 상대적으로 크기가 큰 외부유전자(transgene)도 삽입할 수 있다.Herpes simplex virus, unlike retroviruses and lentiviruses, does not enter the chromosome of the host cell and exists in the episome outside the chromosome. The safety problems that can be caused by use can be avoided. In particular, the herpes simplex virus amplicon plasmid used to form the herpes simplex virus is a "gutted" DNA plasmid that has only its DNA replication ( oriS ) and packaging signal ( pac ). Relatively large transgenes can also be inserted.

본 발명에 의해, 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)에 역분화 유도 인자를 코딩하는 유전자가 재조합된 발현 플라스미드로부터 얻어진 헤르페스 심플렉스 바이러스를 분화된 체세포에 도입할 경우, 안전성 문제를 피하면서 역분화 만능 줄기세포를 제조할 수 있다는 것이 밝혀졌다. According to the present invention, a safety problem when a herpes simplex virus amplicon plasmid is introduced into a differentiated somatic cell by introducing a herpes simplex virus obtained from a recombinant plasmid in which a gene encoding a reverse differentiation inducing factor is introduced into the herpes simplex virus amplicon plasmid. It has been found that de-differentiated pluripotent stem cells can be prepared while avoiding.

상기 역분화 유도인자는 재프로그램화를 유도할 수 있는 기능을 갖는 모든 인자들을 포함하며, 바람직하게는 재프로그램화에 관여하는 것으로 알려져 있는 역분화 유도인자의 조합을 포함한다. 예를 들어, 상기 역분화 유도인자는 재프로그램화를 유도하는 것으로 알려져 있는 Sox2, Oct3/4, Nanog, Klf4, Lin28, 및 Myc로 이루어진 군으로부터 선택될 수 있다. 상기 Sox2, Oct3/4, Nanog, Klf4, Lin28, 및 c-Myc의 아미노산 서열 및 염기 서열은 GenBank 등에 공지되어 있으며, 각각 서열번호 3 내지 14 와 같다 (표 1 참조).The dedifferentiation inducer includes all factors having the function of inducing reprogramming and preferably includes a combination of dedifferentiation inducers known to be involved in reprogramming. For example, the dedifferentiation inducer may be selected from the group consisting of Sox2, Oct3 / 4, Nanog, Klf4, Lin28, and Myc, which are known to induce reprogramming. The amino acid sequence and base sequence of Sox2, Oct3 / 4, Nanog, Klf4, Lin28, and c-Myc are known from GenBank et al., And are shown in SEQ ID NOs: 3 to 14, respectively (see Table 1).

역분화 유도인자Inverse differentiation inducer 종류Kinds 서열번호SEQ ID NO: Sox2Sox2 아미노산 서열Amino acid sequence 33 염기서열Sequence 44 Oct3/4Oct3 / 4 아미노산 서열Amino acid sequence 55 염기서열Sequence 66 NanogNanog 아미노산 서열Amino acid sequence 77 염기서열Sequence 88 Klf4Klf4 아미노산 서열Amino acid sequence 99 염기서열Sequence 1010 Lin28Lin28 아미노산 서열Amino acid sequence 1111 염기서열Sequence 1212 c-Mycc-Myc 아미노산 서열Amino acid sequence 1313 염기서열Sequence 1414

바람직하게는, 상기 역분화 유도인자는 Oct3/4를 코딩하는 유전자, Nanog를 코딩하는 유전자, 및 Sox2를 코딩하는 유전자의 조합(및, 선택적으로 Lin28을 코딩하는 유전자를 추가로 포함하는 조합)이거나, Oct3/4를 코딩하는 유전자, Klf4를 코딩하는 유전자, 및 Sox2를 코딩하는 유전자의 조합(및, 선택적으로 c-Myc을 코딩하는 유전자를 추가로 포함하는 조합)일 수 있다. 당업자는 상기한 Sox2, Oct3/4, Nanog, Klf4, Lin28, c-Myc 뿐만 아니라, 역분화 유도에 관여하는 것으로 알려지거나 알려질 다양한 인자들이 본 발명에 따른 제조방법에 제한 없이 적용될 수 있음을 인식할 것이다. Preferably, said dedifferentiation inducer is a combination of a gene encoding Oct3 / 4, a gene encoding Nanog, and a gene encoding Sox2 (and, optionally, a combination further comprising a gene encoding Lin28) , A gene encoding Oct3 / 4, a gene encoding Klf4, and a gene encoding Sox2 (and, optionally, a combination further comprising a gene encoding c-Myc). Those skilled in the art will recognize that various factors known or known to be involved in inducing differentiation, as well as Sox2, Oct3 / 4, Nanog, Klf4, Lin28, c-Myc described above, can be applied without limitation to the preparation method according to the present invention. will be.

본 발명의 제조방법에 있어서, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; Oct3/4를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; 및 Nanog을 코딩하는 유전자를 포함(선택적으로 Lin28을 코딩하는 유전자를 추가로 포함)하는 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. 또한, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; Oct3/4를 코딩하는 유전자를 포함하는 헤르페스 심플렉스 앰플리콘 바이러스; 및 Klf4를 코딩하는 유전자를 포함(선택적으로 c-Myc를 코딩하는 유전자를 추가로 포함)하는 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. In the production method of the present invention, the culture of step (a) is a herpes simplex amplicon virus comprising a gene encoding Sox2; Herpes simplex amplicon virus comprising a gene encoding Oct3 / 4; And a herpes simplex amplicon virus comprising a gene encoding Nanog (optionally further comprising a gene encoding Lin28). In addition, the culture of step (a) is a herpes simplex amplicon virus comprising a gene encoding Sox2; Herpes simplex amplicon virus comprising a gene encoding Oct3 / 4; And a herpes simplex amplicon virus comprising a gene encoding Klf4 (optionally further comprising a gene encoding c-Myc).

상기 헤르페스 심플렉스 바이러스는 각각의 상응하는 역분화 유도인자를 코딩하는 유전자를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid), 바람직하게는 서열번호 17의 염기서열을 갖는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드에 재조합시켜 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시켜 얻어질 수 있다. 또한, 상기 패키징은 상기 발현 플라스미드, BAC DNA(fHSV△pac△27 0+), 및 헬퍼-플라스미드(pEBHICP27)를 상기 수용 세포에 공동-형질도입(co-transfection)시킴으로써 수행될 수 있다.The herpes simplex virus is a herpes simplex virus amplicon plasmid (Herpes simplex virus amplicon plasmid), a gene encoding each corresponding reverse differentiation inducer, preferably the herpes simplex virus ampoule having the nucleotide sequence of SEQ ID NO: 17 The expression plasmid obtained by recombination into the lycon plasmid can be obtained by packaging in a permissive cell line. In addition, the packaging may be performed by co-transfection of the expression plasmid, BAC DNA (fHSVΔpacΔ27 0+), and helper-plasmid (pEBHICP27) into the recipient cells.

본 발명에 따라, 역분화 유도 인자들을 서열번호 1의 펩타이드를 코딩하는 DNA 단편을 매개로 연결시킬 경우, 하나의 폴리시스트론(polycistronic) mRNA로부터 여러 개의 역분화 유도 인자들을 동시에 얻을 수 있다. 즉, 역분화 유도 인자들을 코딩하는 유전자들 사이에 서열번호 1의 펩타이드를 코딩하는 DNA 단편을 동일한 프레임으로 삽입하게 되면, 라이보좀이 상기 2A 단편의 총 27 아미노산 중에서 아미노산 26번째와 27번째 사이를 건너뛰게 되어 펩타이드 사슬을 끊어 줌으로써 결국 26개의 서열번호 1의 펩타이드에서 유래한 여분의 아미노산이 C-말단에 붙은 역분화 유도 인자(단백질 1)와 N-말단에 1개의 서열번호 1의 펩타이드에서 유래한 아미노산이 붙은 채로 역분화 유도 인자(단백질 2)가 분리된다. 상기 메커니즘을 모식도로 나타내면 도 1과 같다. 상기 서열번호 1의 펩타이드는 Hasegawa, K., Cowan, A.B., Nakatsuji, N., and Suemori, H. (2007). Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem cells (Dayton, Ohio) 25, 1707-1712 에서 개시된 바 있으며, Hasegawa, K. 등은 인간 배아 줄기 세포에서 FMDV (foot-and-mouth disease virus)에서 유래한 2A 단편에 의해 매개된 도입 유전자들의 다중시스트론 발현(multicistronic expression)을 보고하고 있다. 그러나, Hasegawa, K. 등은 인간 배아 줄기세포를 대상으로 도입유전자의 효율적인 발현을 개시하고 있을 뿐이다.According to the present invention, when the dedifferentiation inducing factors are linked through a DNA fragment encoding the peptide of SEQ ID NO: 1, it is possible to simultaneously obtain several dedifferentiation inducing factors from one polycistronic mRNA. That is, when the DNA fragment encoding the peptide of SEQ ID NO: 1 is inserted in the same frame between genes encoding dedifferentiation inducing factors, the ribosome is between the 26th and 27th amino acids among the 27 amino acids of the 2A fragment. By breaking the peptide chain, the extra amino acid derived from the peptide of 26 SEQ ID NO: 1 is derived from the reverse differentiation inducing factor (protein 1) attached to the C-terminus and the peptide of SEQ ID NO: 1 to the N-terminus. The dedifferentiation inducing factor (protein 2) is isolated with one amino acid attached. The mechanism is schematically shown in FIG. 1. The peptide of SEQ ID NO: 1 is Hasegawa, K., Cowan, A.B., Nakatsuji, N., and Suemori, H. (2007). Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem cells (Dayton, Ohio) 25, 1707-1712, and Hasegawa, K., et al., Describe the introduction of transgenes mediated by 2A fragments derived from foot-and-mouth disease virus (FMDV) in human embryonic stem cells. Multicistronic expression is reported. However, Hasegawa, K. et al. Only disclose efficient expression of transgenes in human embryonic stem cells.

본 발명에 의해, 2종 이상의 역분화 유도 인자들을 코딩하는 각각의 유전자들을 서열번호 1의 펩타이드를 코딩하는 DNA 단편, 예를 들어 서열번호 2의 염기서열을 갖는 DNA 단편을 매개로 연결시켜 다중 유전자 (multi-gene) 구조체로 제작할 경우, 다중 역분화 유전자 발현 (multi-gene expression) 플라스미드가 제작될 수 있으며, 상기 유전자 재조합 앰플리콘 플라스미드가 도입된 헤르페스 심플렉스 바이러스 입자를 분화된 체세포에 도입할 경우, 높은 효율로 iPS 세포를 얻을 수 있다는 것이 밝혀졌다. According to the present invention, multiple genes are linked by linking respective genes encoding two or more dedifferentiation inducing factors through a DNA fragment encoding a peptide of SEQ ID NO. 1, for example, a DNA fragment having a nucleotide sequence of SEQ ID NO. In the case of constructing a multi-gene construct, a multi-gene expression plasmid may be prepared, and when the herpes simplex virus particles into which the recombinant amplicon plasmid is introduced are introduced into differentiated somatic cells. It has been found that iPS cells can be obtained with high efficiency.

따라서, 본 발명의 제조방법에 있어서, 단계(a)의 상기 배양은 Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Nanog을 코딩하는 유전자를 동시에 포함(선택적으로 Lin28을 코딩하는 유전자를 추가로 포함)하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. 또한, 상기 배양은 Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Klf4를 코딩하는 유전자를 동시에 포함(선택적으로, c-Myc를 코딩하는 유전자를 추가로 포함)하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 수행될 수 있다. Thus, in the production method of the present invention, the culture of step (a) is a gene encoding Sox2; Gene encoding Oct3 / 4; And one herpes simplex amplicon virus simultaneously comprising a gene encoding Nanog (optionally further comprising a gene encoding Lin28). In addition, the culture is a gene encoding Sox2; Gene encoding Oct3 / 4; And one herpes simplex amplicon virus simultaneously comprising a gene encoding Klf4 (optionally further comprising a gene encoding c-Myc).

상기한 바와 같이, 단계 (a)가 1 종의 헤르페스 심플렉스 바이러스를 사용하여 수행되는 경우, 상기 헤르페스 심플렉스 바이러스는 (i) Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Nanog를 코딩하는 유전자, 및 선택적으로 Lin28을 코딩하는 유전자; 또는 Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Klf4를 코딩하는 유전자, 및 선택적으로 c-Myc를 코딩하는 유전자를 포함하는 유전자 구조체로서, 상기 유전자들이 서열번호 1의 펩타이드를 코딩하는 염기서열을 매개로 연결된 유도 유전자 구조체를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)에 재조합시켜 발현 플라스미드를 제작하는 단계, 및 (ii) 단계(i)에서 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시키는 단계를 포함하는 방법에 의해 얻어질 수 있다. As described above, when step (a) is performed using one herpes simplex virus, the herpes simplex virus (i) encodes a gene encoding Sox2, a gene encoding Oct3 / 4, Nanog Genes, and optionally, genes encoding Lin28; Or a gene construct comprising a gene encoding Sox2, a gene encoding Oct3 / 4, a gene encoding Klf4, and optionally a gene encoding c-Myc, wherein said genes encode a peptide of SEQ ID NO: 1 Recombining the sequence-directed gene construct into a herpes simplex virus amplicon plasmid to produce an expression plasmid, and (ii) the expression plasmid obtained in step (i) is permissive. It can be obtained by a method comprising the step of packaging in a cell line.

단계(i)에서 상기 서열번호 1의 펩타이드를 코딩하는 염기서열은 서열번호 2의 염기서열일 수 있다. 또한, 상기 유전자 구조체는 서열번호 15 또는 16의 염기 서열로 구성될 수 있다. 그러나, 당업자는 상기한 Sox2, Oct3/4, Nanog, Klf4, Lin28, c-Myc 뿐만 아니라, 역분화 유도에 관여하는 것으로 알려지거나 알려질 다양한 인자들이 본 발명에 따른 유전자 구조체에 제한 없이 적용될 수 있음을 인식할 것이다. 또한, 당업자는 본 발명에 따른 유전자 구조체에 있어서, 상기 역분화 유전자들의 연결 순서가 임의로 선택될 수 있음을 인식할 것이다. 상기 유전자 구조체는 아래에서 언급한 바와 같이, 상기 역분화 유전자 구조체로 형질전환된 바이러스 벡터 플라스미드를 사용하여 적절한 패키징 방법으로 얻어진 바이러스[즉, 바이러스 입자]로부터 통상의 방법으로 분리할 수 있다. 상기 역분화 유전자 구조체로 형질전환된 바이러스 벡터 플라스미드 즉, 상기 유전자 구조체를 포함하는 다중 역분화 유도 유전자 (multiple reprogramming-inducing gene) 발현 플라스미드는 결국 숙주세포 내로 전달이 가능한 수송체 역할을 하는 바이러스 (즉, 바이러스 입자) 내에 패키지(package)되어 숙주세포 내로 전달된다.In step (i), the nucleotide sequence encoding the peptide of SEQ ID NO: 1 may be the nucleotide sequence of SEQ ID NO: 2. In addition, the gene construct may be composed of the nucleotide sequence of SEQ ID NO: 15 or 16. However, those skilled in the art will appreciate that the Sox2, Oct3 / 4, Nanog, Klf4, Lin28, c-Myc, as well as various factors known or known to be involved in the induction of reverse differentiation can be applied to the gene construct according to the present invention without limitation. Will recognize. Those skilled in the art will also recognize that, in the gene construct according to the present invention, the order of linkage of said dedifferentiated genes may be arbitrarily selected. The gene construct can be isolated in a conventional manner from viruses (ie, viral particles) obtained by appropriate packaging methods using viral vector plasmids transformed with the dedifferentiated gene construct, as mentioned below. A viral vector plasmid transformed with the reverse differentiation gene construct, ie, a multiple reprogramming-inducing gene expression plasmid comprising the gene construct, is a virus (ie, a transporter capable of delivering into a host cell) It is packaged in (viral particles) and delivered into the host cell.

상기 유전자 구조체는 그 크기가 약 4-5 kb 정도로 작기 때문에 다양한 바이러스 벡터 플라스미드들(viral vector plasmids), 예를 들어, 레트로바이러스 플라스미드(retroviral plasmid), 렌티바이러스 플라스미드(lentiviral plasmid), 아데노바이러스 플라스미드(adenovirus plasmid), 헤르페스 심플렉스 바이러스 앰플리콘 바이러스 플라스미드(herpes simplex amplicon viral plasmid) 등에 재조합시켜 얻어질 수 있다. 이 중, 헤르페스 심플렉스 앰플리콘 바이러스를 사용할 경우, 얻어지는 바이러스가 염색체에 끼어 들어가지 않고 에피솜(episome) 형태로 존재함으로써 레트로바이러스 혹은 렌티바이러스 등의 바이러스 벡터를 사용함으로써 야기될 수 있는 안전성 문제를 피할 수 있고 또한 세포 독성이 낮으므로, 바람직하게 사용될 수 있다. 즉, 상기 다중 역분화 유도 유전자 발현 플라스미드는 상기 유전자 구조체를 바이러스 벡터 플라스미드(viral vector plasmid)에 재조합시켜 얻어질 수 있으며, 상기 바이러스 벡터 플라스미드는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid), 더욱 바람직하게는 서열번호 17의 염기서열을 갖는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드일 수 있다. Since the gene construct is small, about 4-5 kb in size, various viral vector plasmids such as retroviral plasmids, lentiviral plasmids, and adenovirus plasmids adenovirus plasmid, herpes simplex amplicon viral plasmid, and the like. Among them, when using the herpes simplex amplicon virus, the resulting virus does not get into the chromosome and is present in the form of episomes, which is a safety problem that may be caused by using a viral vector such as retrovirus or lentivirus. Since it can be avoided and the cytotoxicity is low, it can be used preferably. That is, the multiple reverse differentiation inducing gene expression plasmid can be obtained by recombining the gene construct into a viral vector plasmid, and the viral vector plasmid is a herpes simplex virus amplicon plasmid. , More preferably, a herpes simplex virus amplicon plasmid having the nucleotide sequence of SEQ ID NO.

상기 다중 역분화 유도 유전자 발현 플라스미드는 예를 들어, Oct3/4, Nanog, 및 Sox2 유전자 등의 역분화 유도 인자를 코딩하는 유전자들을 PCR 등으로 증폭시키고, pHGCX(Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X.O., and Chiocca, E.A. (2001). Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 3, 591-601)와 PCR-T/A 플라스미드인 yT&A (RBC T&A Cloning Kit, Cat. No. RC001)등의 벡터에 NheI, NotI, BamHI, BglII, XbaI 및 EcoRI 등의 적절한 제한효소를 사용하여 상기 증폭시킨 유전자 및 2A 단편(예를 들어, 서열번호 2의 단편)을 클로닝하여 얻어질 수 있다 (도 2 참조). 바람직하게는 상기 유전자 구조체가 재조합된 재조합 플라스미드를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(예를 들어, 서열번호 17의 염기서열을 갖는 앰플리콘 플라스미드)에 재조합시켜, 프로모터(예를 들어, elongation factor 1 프로모터, 사이토메갈로바이러스 (CMV) 프로모터 등) 및 폴리 A 서열(예를 들어, SV40 바이러스 폴리 A 서열, 소성장호르몬(bovine growth factor, BGH) 폴리 A 서열) 사이에 상기한 유전자 구조체가 삽입된 다중 역분화 유도 유전자 발현 플라스미드를 제작할 수 있다 (도 3 참조).The multiple reverse differentiation inducing gene expression plasmid, for example, amplifies genes encoding reverse differentiation inducing factors such as Oct3 / 4, Nanog, and Sox2 genes by PCR and the like, and pHGCX (Saeki, Y., Fraefel, C. , Ichikawa, T., Breakefield, XO, and Chiocca, EA (2001) .Improve helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome.Mol Ther 3, 591-601) and the PCR-T / A plasmid yT & A (RBC T & A Cloning Kit, Cat. No. RC001) and other vectors using appropriate restriction enzymes such as NheI, NotI, BamHI, BglII, XbaI and EcoRI Genes and 2A fragments (eg, fragments of SEQ ID NO: 2) can be obtained by cloning (see FIG. 2). Preferably, the recombinant plasmid in which the gene construct is recombined is recombined into a herpes simplex virus amplicon plasmid (eg, an amplicon plasmid having a nucleotide sequence of SEQ ID NO: 17) to a promoter (eg, an elongation factor 1 promoter. , Cytomegalovirus (CMV) promoter, etc.) and poly A sequences (e.g., SV40 virus poly A sequence, bovine growth factor (BGH) poly A sequence) Differentiation inducing gene expression plasmids can be constructed (see FIG. 3).

상기와 같이 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시키는 단계[즉, 단계(i)]는 베로 2-2 세포 (vero 2-2 cell: African green monkey kidney cell; from Dr. Rozanne Sandri-Goldin,. University of California, Irvine, CA, USA) 등의 통상의 수용 세포주를 사용하여 수행할 수 있다. 상기 패키징(packaging)은 상기한 수용 세포주를 사용하여, 무-헬퍼 바이러스 시스템[예를 들어, 헬퍼-BAC DNA 및 pEBHICP27 플라스미드(ICP27 유전자를 따로 분리하여 제작된 플라스미드)를 이용한 시스템]을 이용한 방법 혹은 자기복제 능력이 없는 헬퍼-바이러스(예를 들어, 헬퍼-아데노바이러스 혹은 헬퍼-헤르페스 심플렉스 바이러스)를 이용한 방법을 통하여 수행할 수 있다. 예를 들어 헬퍼-헤르페스 심플렉스 바이러스를 사용할 경우 헤르페스 심플렉스 앰플리콘 바이러스의 분리과정에서 상기 헬퍼-바이러스가 조금씩 섞여 들어가 세포 독성을 유발할 가능성이 있다. 따라서, 상기 패키징은 헬퍼-바이러스의 오염 가능성을 없앤 무-헬퍼 바이러스 시스템(Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X.O., and Chiocca, E.A. (2001). Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 3, 591-601)을 사용하여 수행하는 것이 바람직하다. 상기 무-헬퍼 바이러스 시스템에서는 pac (packaging) 시그날을 제외한 전 헤르페스 심플렉스 바이러스 게놈이 BAC (bacterial artificial chromosome; fHSV△pac△27 0+) 에 넣어져 있고 안전성을 더 높이기 위해 ICP27 유전자를 BAC DNA 에서 제거하여 또 다른 플라스미드(pEBHICP27)로서 제공해 준다. 따라서 이 두 가지의 플라스미드들과 상기한 다중 역분화 유도 유전자 발현 앰플리콘 플라스미드를 vero 2-2 세포 등의 수용세포(permissive cell line)에 동시-형질전환(co-transfection)시킬 경우, BAC DNA 와 pEBHICP27 플라스미드로부터 생산되는 헤르페스 심플렉스 바이러스 생성에 필요한 유전자 산물로 인하여 헤르페스 심플렉스 바이러스의 구조가 만들어지고 그 내부로 다중 역분화 유도 유전자 발현 앰플리콘 플라스미드가 rolling circle mechanism 을 통해 헤르페스 심플렉스 바이러스의 캡시드(capsid) 내부를 채움으로써, 바이러스[즉, 바이러스 입자(viral particles)]를 얻을 수 있다 (도 4 참조).Packaging (ie, step (i)) the expression plasmid obtained as described above into a permissive cell line is a Vero 2-2 cell (African green monkey kidney cell; from Dr. Rozanne Sandri-Goldin, University of California, Irvine, CA, USA). The packaging is a method using a non-helper virus system (for example, a system using a helper-BAC DNA and pEBHICP27 plasmid (plasmid produced by separating the ICP27 gene)) using the above-mentioned recipient cell line, or This can be done via methods using helper-viruses (eg, helper-adenoviruses or helper-herpes simplex viruses) that do not have self-replicating capabilities. For example, when the helper-herpes simplex virus is used, there is a possibility that the helper-virus is mixed little by little during the separation of the herpes simplex amplicon virus and causes cytotoxicity. Therefore, the packaging is a non-helper virus system (Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, XO, and Chiocca, EA (2001). free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome.Mol Ther 3, 591-601). In the non-helper virus system, the entire herpes simplex virus genome, except for the pac (packaging) signal, is placed in a bacterial artificial chromosome (fHSVΔpac △ 27 0+) and the ICP27 gene is added to the BAC DNA to increase safety. Remove and serve as another plasmid (pEBHICP27). Therefore, when co-transfection of these two plasmids and the above-mentioned multiple reverse differentiation induction gene expression amplicon plasmids into permissive cell lines such as vero 2-2 cells, BAC DNA and The gene product required for the production of the herpes simplex virus produced from the pEBHICP27 plasmid creates the structure of the herpes simplex virus, and the multiple dedifferentiation-induced gene expression amplicon plasmids are formed inside the capsid of the herpes simplex virus through a rolling circle mechanism. By filling the inside of the capsid, a virus (ie, viral particles) can be obtained (see FIG. 4).

본 발명의 제조방법의 단계(a)에 있어서, 상기 배지는 통상의 세포 배양용 배지, 예를 들어, 태아소혈청 (Fetal bovine serum), 페니실린/스트렙토마이신 등의 항생제, 비-필수 아미노산(non-essential amino acid) 등이 보충된 DMEM 배지를 사용하여, 통상의 세포 배양 조건하에서 배양할 수 있다. 배지 중의 상기 바이러스 입자의 농도는 약 1 M.O.I. (multiplicity of infection) 정도일 수 있으나, 이에 제한되는 것이 아니다. In step (a) of the preparation method of the present invention, the medium is a conventional cell culture medium, for example, antibiotics such as fetal bovine serum, penicillin / streptomycin, non-essential amino acids (non DMEM medium supplemented with -essential amino acid) or the like can be used under normal cell culture conditions. The concentration of the viral particles in the medium is about 1 M.O.I. may be multiplicity of infection, but is not limited thereto.

상기 인간으로부터 유래된 체세포는 예를 들어 인간의 피부, 모발, 성체줄기세포 등을 제한없이 포함한다. 또한, 불사화된 세포 주는, 예를 들어 293 세포 주(human embryonic kidney cell line) 등의 인간에서 유래된 불사화된 세포 주를 사용할 수 있다. 또한, 줄기세포에서 특이적으로 발현하는 것으로 알려진 Oct3/4 프로모터; 및 항생제 내성 유전자(하이그로마이신 내성 유전자) 및/또는 eGFP 형광 유전자 등이 도입된 불사화된 세포 주(즉, 불사화된 리포터 세포주)를 사용할 경우, 하이그로마이신(Hygromycin) 내성 유전자와 eGFP 유전자가 배아줄기세포에만 특이적으로 작동하는 Oct4 프로모터에 의해 발현되므로, 이어지는 줄기세포 주 분리 과정을 손쉽게 수행할 수도 있다. Oct3/4 프로모터, 항생제 내성 유전자(하이그로마이신 내성 유전자), eGFP 형광 유전자 등이 도입된 불사화된 리포터 세포주 다음과 같이 제작할 수 있다: Somatic cells derived from humans include, without limitation, human skin, hair, adult stem cells, and the like. Immortalized cell lines can also be used, for example, immortalized cell lines derived from humans, such as the human embryonic kidney cell line. In addition, Oct3 / 4 promoter known to specifically express in stem cells; And a hygromycin resistance gene and an eGFP gene when using an immortalized cell line (that is, an immortalized reporter cell line) into which an antibiotic resistance gene (hygromycin resistance gene) and / or an eGFP fluorescent gene is introduced. Is expressed by the Oct4 promoter, which only works specifically for embryonic stem cells, so that subsequent stem cell separation processes can be easily performed. Immortalized reporter cell lines incorporating Oct3 / 4 promoter, antibiotic resistance gene (hygromycin resistance gene), eGFP fluorescent gene, etc. can be constructed as follows:

인간 Oct3/4 locus 전체를 포함하는 BAC (bacterial artificial chromosome) DNA를 얻고(Children's Hospital Oakland Research Institute, Cat# RP11-100L8), 독립적으로 pHygrEGFP (Clontech cat# PT3203-5) 등의 공지의 플라스미드에 "하이그로마이신 내성 유전자와 eGFP 형광 유전자를 코돈 프레임이 맞도록 이어붙인 융합 유전자" 와 "인간 elogation factor 1 alpha (EF1a) 프로모터-블라스토시딘 (blastocidin) 내성 단백질 코딩 유전자(pEF/Bsd plasmid (Invitrogen, K511-01)" 발현 유닛을 통상의 유전공학적 방법으로 클로닝한다. 상기 "하이그로마이신 내성 유전자:eGFP 형광 유전자 융합 유전자와 인간 elogation factor 1 alpha (EF1a) 프로모터-블라스토시딘 (blastocidin) 내성 단백질 코딩 유전자 발현 유닛"을 BAC DNA 상의 Oct3/4 프로모터 뒤에 삽입하기 위해선 다음과 같은 방법을 사용할 있다. 먼저 "하이그로마이신 내성 유전자:eGFP 융합 유전자와 인간 EF1a 프로모터-블라스토시딘 (blastocidin) 내성 유전자" 발현 유닛을 집어넣을 곳인 BAC DNA 상의 Oct3/4 프로모터 뒤의 삽입을 원하는 위치의 위, 아래쪽의 (upstream & downstream) BAC DNA sequences의 150-50 bp정도를 따로 제조한 "하이그로마이신 내성 유전자:eGFP 형광 융합 유전자-인간 EF1a 프로모터 -블라스토시딘 내성 (blastocidin) 유전자 발현 유닛"의 위쪽 (5' 단말) 부분과 아래쪽 (3' 단말) 부분에 각각 150 bp 와 50 bp의 Oct3/4 내의 삽입하고자 하는 프로모터 바로 아랫부분의 염기서열을 센스 및 안티센스 올리고뉴클레오티드를 만들어 어닐링하여 이중 가닥을 만든 후 리가아제(ligase)를 이용하여 붙인다. 이 재조합된 플라스미드를 박테리아 내에서 BAC DNA (Oct3/4 locus 포함)와 동시에 집어넣어 homologous recombination에 의해 발현 유닛을 BAC DNA의 원하는 부위인 Oct3/4 프로모터 뒤에 정확하게 삽입되게 한다. 그리고 sequence 분석을 통해 삽입코자하는 발현 유닛들이 원하는 BAC DNA의 부위에 들어갔는지를 확인한다. 즉 BAC DNA의 Oct3/4 프로모터 뒤에 "하이그로마이신 내성 유전자:eGFP 형광 융합 유전자" 와 "인간 EF1a 프로모터-블라스토시딘 내성 유전자 발현 유닛" 이 정확한 위치에 들어간 재조합 BAC DNA를 얻게 되면 293 세포 등의 불사화된 세포주에 이 BAC DNA를 형질도입 (transfection) 시킨 후 블라스토시딘을 이용하여 BAC DNA가 안정하게 염색체에 끼어들어간 stable cell line 만을 선발한다. Obtain BAC (bacterial chromosome) DNA containing the entire human Oct3 / 4 locus (Children's Hospital Oakland Research Institute, Cat # RP11-100L8), and independently in known plasmids such as pHygrEGFP (Clontech cat # PT3203-5). A fusion gene joining the hygromycin resistance gene with the eGFP fluorescent gene to fit the codon frame "and" human elogation factor 1 alpha (EF1a) promoter-blastocidin resistance protein coding gene (pEF / Bsd plasmid (Invitrogen, K511-01) "expression unit is cloned by conventional genetic engineering methods. The" hygromycin resistance gene: eGFP fluorescent gene fusion gene and human elogation factor 1 alpha (EF1a) promoter-blastocidin resistance protein coding. To insert the gene expression unit after the Oct3 / 4 promoter on BAC DNA, the following method can be used: First, the "hygromycin resistance gene: eGFP". 150 of the upstream and downstream BAC DNA sequences above and below the desired position for insertion after the Oct3 / 4 promoter on the BAC DNA where the fusion gene and the human EF1a promoter-blastocidin resistant gene "expression unit will be inserted. The upper (5 'terminal) and the lower (3' terminal) portions of the "hygromycin resistance gene: eGFP fluorescent fusion gene-human EF1a promoter-blastosodin resistance (blastocidin) gene expression unit" prepared separately at about -50 bp The nucleotide sequence immediately below the promoter to be inserted into 1503 bp and 50 bp Oct3 / 4, respectively, is annealed by making a sense and antisense oligonucleotide to form a double strand, and then attaching using a ligase. This recombination plasmid is placed simultaneously in Bacteria with BAC DNA (including Oct3 / 4 locus) so that homologous recombination inserts the expression unit correctly behind the Oct3 / 4 promoter, the desired site of BAC DNA. Sequence analysis confirms that the expression units to be inserted enter the desired BAC DNA site. After the Oct3 / 4 promoter of BAC DNA, "Hygromycin resistance gene: eGFP fluorescence fusion gene" and "human EF1a promoter-blastosidine resistance gene expression unit" were obtained, the recombinant BAC DNA with 293 cells, etc. After transfecting this BAC DNA into an immortalized cell line, blastosidine is used to select only stable cell lines in which BAC DNA is stably inserted into the chromosome.

상기와 같이 제작된 리포터 세포주는 하이그로마이신(Hygromycin) 내성 유전자와 eGFP 유전자가 배아줄기세포에만 특이적으로 작동하는 Oct4 프로모터에 의해 발현되는 특성을 가지고 있다. 따라서, 상기 리포터 세포주가 iPS 세포로 역분화되는 경우, 하이그로마이신 내성 유전자와 eGFP 형광이 발현되므로 항생제에 의한 선발이나 검색을 용이하게 수행할 수 있다.The reporter cell line prepared as described above has the characteristic that the hygromycin resistance gene and the eGFP gene are expressed by Oct4 promoter that operates specifically in embryonic stem cells. Therefore, when the reporter cell line is dedifferentiated into iPS cells, the hygromycin resistance gene and eGFP fluorescence are expressed so that selection or search by antibiotics can be easily performed.

상기와 같이 역분화 시켜 얻어진 iPS 세포는 배지를 줄기 세포 배양용 배지, 예를 들어, 0.05mM 베타-머캅토에탄올, 1% 비필수아미노산, 20% 넉-아웃 혈청 대체물(knock out serum replacement), 100U/ml 페니실린, 100ug/ml 스프렙토마이신, 및 4ng/ml bFGF로 보충된 DMEM-12 배지로 교체하여 배양한 후, 배양물로부터 배아줄기세포-유사 콜로니(embryonic stem cell-like colonies)를 분리함으로써 얻을 수 있다. 상기 콜로니는 배양물 중에서 핵이 상대적으로 크면서 세포질은 적은 작고 둥근 세포들이 뭉쳐있는 형태의 형태학적으로 구분되는 모양을 가지고 있으므로 알콜램프로 끝을 구부린 파스퇴르 파이펫을 이용한 물리적인 방법으로 이들을 분리할 수 있다. 또한, 상기한 바와 같이 불사화된 리포터 세포주가 사용된 경우에는 항생제 내성 및 형광에 의해 iPS 세포를 분리할 수 있다.IPS cells obtained by dedifferentiation as described above are cultured for stem cell culture medium, for example, 0.05 mM beta-mercaptoethanol, 1% non-essential amino acid, 20% knock-out serum replacement, Embryonic stem cell-like colonies were isolated from the cultures after incubation with DMEM-12 medium supplemented with 100 U / ml penicillin, 100 ug / ml spreptomycin, and 4 ng / ml bFGF. It can be obtained by. Since the colonies have a morphologically distinctive shape in which small, rounded cells are clustered with relatively large nuclei in culture, they can be separated by physical methods using Pasteur pipettes bent with alcohol lamps. Can be. In addition, when immortalized reporter cell lines are used as described above, iPS cells can be separated by antibiotic resistance and fluorescence.

본 발명의 제조방법에 있어서, 상기와 같이 제작된 다중 역분화 유도 유전자 구조체 (gene construct containing multiple reprogramming-inducing genes)를 바이러스를 수송체 (vector)로 이용하여 분화된 체세포에 도입할 경우, 높은 효율로 iPS 세포를 얻을 수 있으며, 상기한 본 발명의 역분화 만능 줄기세포의 제조방법의 일 예를 모식도로 나타내면 도 5와 같다.In the production method of the present invention, when the gene construct containing multiple reprogramming-inducing genes prepared as described above are introduced into differentiated somatic cells using a virus as a vector, high efficiency IPS cells can be obtained, and an example of the method for producing the dedifferentiated pluripotent stem cells of the present invention described above is as shown in FIG. 5.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited to these examples.

실시예Example 1. 다중  1. Multiple 역분화Dedifferentiation 유도 인자 발현 플라스미드의 제작  Construction of Inducing Factor Expression Plasmids

서열번호 4, 6, 및 8의 염기서열을 갖는 Sox2, Oct3/4, 및 Nanog 유전자를 PCR을 사용하여 증폭하였으며, 사용한 프라이머들은 다음 표 2와 같다.Sox2, Oct3 / 4, and Nanog genes having the nucleotide sequences of SEQ ID NOs: 4, 6, and 8 were amplified using PCR, and the primers used are shown in Table 2 below.

역분화 유도인자Inverse differentiation inducer 종류Kinds 서열번호SEQ ID NO: 서열order NheI-Oct3/4NheI-Oct3 / 4 정방향Forward 1818 GGGGGCTAGCCGCCATGGCGGGACACCTGGCTTCGGGGGCTAGCCGCCATGGCGGGACACCTGGCTTC NotI-Oct3/4NotI-Oct3 / 4 역방향Reverse 1919 GGGGGCGGCCGCTCAGTTTGAATGCATGGGAGGGGGGCGGCCGCTCAGTTTGAATGCATGGGAG XhoI-Sox2XhoI-Sox2 정방향Forward 2020 GGGGCTCGAGCCGCCATGTACAACATGATGGAGACGGGGCTCGAGCCGCCATGTACAACATGATGGAGAC XbaI-Sox2XbaI-Sox2 역방향Reverse 2121 GGGGTCTAGATCACATGTGTGAGAGGGGCAGTGTGGGGGTCTAGATCACATGTGTGAGAGGGGCAGTGTG BglII-NanogBglII-Nanog 정방향Forward 2222 GGGGAGATCTGCCGCCATGAGTGTGGATCCAGCTTGGGGGAGATCTGCCGCCATGAGTGTGGATCCAGCTTG EcoRI-NanogEcoRI-Nanog 역방향Reverse 2323 GGGGGAATTCACACGTCTTCAGGTTGCATGGGGGGAATTCACACGTCTTCAGGTTGCATG

pHGCX 벡터를 제한효소 NheI 및 EcoRI으로 자른 후 CIP (Calf Intestinal Alkaline Phosphatase)를 처리하고, 제한효소 NheI 및 NotI으로 잘라 증폭시킨 Oct3/4 유전자(insert 1), 2A 단편 증폭용 정방향 프라이머(5'-GGGGGCGGCCGCAAAATTGTCGCTCCTGTCAAACAAACTCTTAACTTTGATTTACTCAAACTGGCTGGGGATGTAGAAAGCAATCCAGGTCCAGGATCCGGGG-3', 서열번호 24) 및 역방향 프라이머(5'-CCCCGATCCTGGACCTGGATTGCTTTCTACATCCCCAGCCAGTTTGAGTAAATCAAAGTTAAGAGTTTGGACAGGAGCGACAATTTTGCGGCCGCCCCC-3', 서열번호 25)를 95 ℃에서 2-3분 denature 시키고, 서서히 상온으로 떨어지게 하여 어닐링(annealing)시키고, 제한효소로 이중절단 (NotI/BamH1) 하여 양쪽에 제한효소 부위 NotI 과 BamHI을 갖도록 제작한 2A segment (insert 2), 및 BglII 및 EcoRI으로 자른 증폭시킨 Nanog 유전자(insert 3)를 접합(ligation)시켜 재조합 플라스미드(재조합 플라스미드-1)를 제작하였다. yT&A(RBC T&A Cloning Kit, Cat. No. RC001)) 벡터를 제한효소 EcoRI 및 XbaI으로 자른 후 CIP (Calf Intestinal Alkaline Phosphatase)를 처리하고, 2A 단편 증폭용 정방향 프라이머(5'-GGGGGAATTCAAAATTGTCGCTCCTGTCAAACAAACTCTTAACTTTGATTTACTCAAACTGGCTGGGGATGTAGAAAGCAATCCAGGTCCACTCGAGGGGG-3', 서열번호 26) 및 역방향 프라이머(5'-CCCCCTCGAGTGGACCTGGATTGCTTTCTACATCCCCAGCCAGTTTGAGTAAATCAAAGTTAAGAGTTTGGACAGGAGCGACAATTTTGAATTCCCCC-3', 서열번호 27)를 95 ℃에서 2-3분 denature 시키고, 서서히 상온으로 떨어지게 하여 어닐링(annealing)시키고, 제한효소로 이중절단 (ECoRI/XhoI) 하여 양쪽에 제한효소 부위 EcoRI 과 XhoI을 갖도록 제작한 2A segment (insert 1) 및 XhoI 과 XbaI으로 잘라 증폭시킨 Sox2 유전자(insert 2')를 접합(ligation)시켜 재조합 플라스미드(재조합 플라스미드-2)를 제작하였다. 상기에서 얻어진 재조합 플라스미드-2에 제한효소 EcoRI 과 XbaI을 처리하여 2A-Sox 재조합 유전자 조각을 재조합 플라스미드-2의 EcoRI/XbaI 부위에 접합(ligation)시켰다. 상기한 바와 같이 Oct3/4, Nanog, 및 Sox2 유전자가 2A 단편을 매개로 연결된 유전자 구조체(즉, Oct3/4-2A-Nanog-2A-Sox2, 서열번호 15)를 포함하는 재조합 플라스미드의 제작과정은 도 2에 나타낸 바와 같다. 상기 서열번호 15의 유전자 구조체를 포함하는 재조합 플라스미드를 서열번호 17의 염기서열을 갖는 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(pHGCX)에 재조합시켜, 서열번호 15의 유전자 구조체가 사이토메갈로바이러스 (CMV) 프로모터 및 소 성장호르몬 (BGH) 유전자에서 유래한 폴리 A 서열 사이에 삽입된 다중 역분화 유도 유전자 발현 플라스미드를 제작하였다 (도 3 참조).The pHGCX vector was cut with restriction enzymes NheI and EcoRI, and then treated with Cal Intestinal Alkaline Phosphatase (CIP), and cut and amplified with restriction enzymes NheI and NotI, Oct3 / 4 gene (insert 1), and a forward primer for amplifying 2A fragments (5'- GGGGGCGGCCGCAAAATTGTCGCTCCTGTCAAACAAACTCTTAACTTTGATTTACTCAAACTGGCTGGGGATGTAGAAAGCAATCCAGGTCCAGGATCCGGGG-3 ', SEQ ID NO: 24) and reverse primer (5'-CCCCGATCCTGGACCTGGATTGCTTTCTACATCCCCAGCCAGTTTGAGTAAATCAAAGTTAAGAGTTTGGACAGGAGCGACAATTTTGCGGCCGCCCCC-3', SEQ ID NO: 25) was 2-3 minutes denature at 95 ℃, gradually to fall to room temperature and annealing (annealing), with restriction enzymes Double-cutting (NotI / BamH1) to the recombinant plasmid by ligation of the 2A segment (insert 2) prepared to have restriction enzyme sites NotI and BamHI on both sides, and the amplified Nanog gene (insert 3) cut with BglII and EcoRI. Recombinant plasmid-1) was constructed. The yT & A (RBC T & A Cloning Kit, Cat.No. RC001) vector was cut with restriction enzymes EcoRI and XbaI, treated with Cal Intestinal Alkaline Phosphatase (CIP), and a forward primer for amplifying 2A fragments (5'-GGGGGAATTCAAAATTGTCGCTCCTGTCAAACAAACTCTTAACTTTGAGACTCCACACTACATGATGATCACGATGACACT SEQ ID NO: 26) and reverse primer (5'-CCCCCTCGAGTGGACCTGGATTGCTTTCTACATCCCCAGCCAGTTTGAGTAAATCAAAGTTAAGAGTTTGGACAGGAGCGACAATTTTGAATTCCCCC-3 ', SEQ ID NO: 27) denature 2-3 min at 95 ° C, and slowly drop to room temperature to double anneal (annealing) / restriction enzymes 2A segment (insert 1) prepared to have restriction enzyme sites EcoRI and XhoI on both sides, and the Sox2 gene (insert 2 ′) cut and amplified by XhoI and XbaI (recombinant plasmid-2) Was produced. The recombinant plasmid-2 obtained above was treated with restriction enzymes EcoRI and XbaI to ligation the 2A-Sox recombinant gene fragment to the EcoRI / XbaI site of recombinant plasmid-2. As described above, the production process of a recombinant plasmid comprising a gene construct (ie, Oct3 / 4-2A-Nanog-2A-Sox2, SEQ ID NO: 15) in which Oct3 / 4, Nanog, and Sox2 genes are connected through a 2A fragment is performed. As shown in FIG. The recombinant plasmid comprising the gene construct of SEQ ID NO: 15 was recombined into a herpes simplex virus amplicon plasmid (pHGCX) having the nucleotide sequence of SEQ ID NO: 17, so that the gene construct of SEQ ID NO: 15 was a cytomegalovirus (CMV) promoter and Multiple reverse differentiation inducing gene expression plasmids were inserted between poly A sequences derived from bovine growth hormone (BGH) genes (see FIG. 3).

실시예Example 2. 다중  2. Multiple 역분화Dedifferentiation 유도 인자 발현 헤르페스  Inducer expression herpes 심플렉스Simplex 바이러스의 제조 Preparation of the virus

실시예 1에서 얻어진 다중 역분화 유도 유전자 발현 플라스미드와 헤르페스 심플렉스 바이러스의 구조를 만드는데 필요한 헬퍼-플라스미드 (pEBHICP27) 및 BAC DNA (fHSVΔpacΔ27 0+)를 vero 세포에 동시-형질도입하여 다중 역분화 유도 유전자 구조체를 포함하는 헤르페스 심플렉스 바이러스를 얻었다 (도 4 참조).Multiple reverse differentiation inducing gene expression plasmid obtained in Example 1 and helper-plasmid (pEBHICP27) and BAC DNA (fHSVΔpacΔ27 0+) necessary for constructing the structure of the herpes simplex virus were co-transduced into vero cells to induce multiple reverse differentiation inducing gene A herpes simplex virus comprising the construct was obtained (see FIG. 4).

상기 동시-형질도입은 6 cm 배양용기에서 95%이상 자란 vero 2-2 세포(Dr. Rozanne Sandri-Goldin,. University of California, Irvine, CA, USA)에 실시예 1 에서 얻어진 다중 역분화 유도 유전자 발현 플라스미드 즉, 재조합된 앰플리콘 플라스미드(1.2 ug)와 헬퍼-플라스미드(pEBHICP27, 0.4 ug) 및 BAC DNA (4 ug)을 혼합하여 FuGENEHD Transfection Reagent (8:2) (Roche, 독일)를 이용하여 수행하였다. 최종적으로 바이러스 입자는 60시간 후에 상기 세포를 배양액과 함께 모은 뒤, 세포를 얼림과 녹임을 3회 반복하면서 깨뜨려 세포 내의 바이러스를 방출시킨 후 1,350 x g로 원심분리하여 터진 세포 찌꺼기를 제거하고, 얻어진 배양액을 20,000 rpm으로 3 시간 동안 초원심분리하여 농축한 후 사용하였다. The co-transduction was carried out in multiple reverse differentiation induction genes obtained in Example 1 in vero 2-2 cells (Dr. Rozanne Sandri-Goldin, University of California, Irvine, CA, USA) grown more than 95% in a 6 cm culture vessel. Expression plasmids, ie, recombinant amplicon plasmids (1.2 ug), helper-plasmids (pEBHICP27, 0.4 ug) and BAC DNA (4 ug) were mixed using FuGENEHD Transfection Reagent (8: 2) (Roche, Germany) It was. Finally, after 60 hours, the virus particles gather the cells with the culture medium, break the cells by freezing and thawing three times to release the virus in the cells, and then centrifuged at 1,350 xg to remove the debris from the cells. Was used after concentration by ultracentrifugation at 20,000 rpm for 3 hours.

상기 과정을 통하여, 헤르페스 앰플리콘 플라스미드가 캡시드 속으로 여러 개가 이어져서 150 kb 가 될 때까지 들어가게 되고, 앰플리콘 플라스미드로 채워진 캡시드가 숙주 세포의 세포막을 감싸고 나옴으로써 감염력이 있는 헤르페스 심플렉스 엠플리콘 바이러스를 제조하였다.Through this process, several herpes amplicon plasmids enter into the capsid until 150 kb, and the capsid filled with the amplicon plasmid wraps around the cell membrane of the host cell and infects the herpes simplex amplicon virus. Was prepared.

실시예Example 3.  3. 웨스턴Weston 블럿팅Blotting

실시예 2에서 얻어진 다중 역분화 유전자 구조체를 가진 헤르페스 심플렉스 바이러스가 인간세포에 감염 되었을 때 2A 시스템이 제대로 작용하여 각각의 역분화 단백질들이 세포 내에서 형성이 되는지 확인하기 위해서 웨스턴 블럿팅을 수행하였다. 재조합 헤르페스 심플렉스 바이러스를 G16-9 (인간 글리오블라스토마, glioblastoma; Gli36 derived cell line that express HSV-1 VP 16 constitutuvely; widely available from many labs)에 감염시킨 후 24시간 후 세포 추출액을 만들고(lane 3, 도 6), 양성 대조군으로서 Oct3/4 만 발현하는 헤르페스 심플렉스 앰플리콘 바이러스를 감염시킨 G16-9 세포의 세포 추출액을 만들고(lane 2, 도 6), 음성 대조군으로서 Oct3/4를 발현하지 않는 헤르페스 심플렉스 앰플리콘 바이러스를 감염시킨 G16-9 세포의 세포 추출액을 만들어(lane 1, 도 6), 상기 세포 추출액들을 이용하여 웨스턴 블럿팅을 실시한 결과는 도 6과 같다. When the herpes simplex virus having the multiple reverse differentiation gene construct obtained in Example 2 was infected with human cells, Western blotting was performed to confirm that the 2A system works properly to form the respective reverse differentiation proteins in the cells. . Recombinant herpes simplex virus was infected with G16-9 (human glioblastoma; glioblastoma; Gli36 derived cell line that express HSV-1 VP 16 constitutuvely; widely available from many labs) and cell extracts were made 24 hours later (lane 3, FIG. 6), a cell extract of G16-9 cells infected with the herpes simplex amplicon virus expressing only Oct3 / 4 as a positive control was generated (lane 2, FIG. 6) and not expressing Oct3 / 4 as a negative control. Cell extracts of G16-9 cells infected with the herpes simplex amplicon virus (lane 1, FIG. 6) were prepared, and the results of Western blotting using the cell extracts are shown in FIG. 6.

도 6의 왼쪽 위 그림은 Oct3/4를 발현하는 바이러스 (HSVamp-Oct3/4 promoter-Oct3/4)를 감염시킨 후 얻은 형광사진이며, 왼쪽 아래 그림은 Oct3/4가 2A로 연결된 유전자 구조체 안에 포함 되어 있는 바이러스 (HSVamp-hOct4promoter-Oct3/4-2A-Nanog-2A-Sox2)를 감염시킨 후 얻은 형광사진으로서 EGFP는 앰플리콘 플라스미드 내의 헤르페스 심플렉스 바이러스 immediate early (IE) 프로모터 뒤에 붙여져 있어 모든 헤르페스 심플렉스 앰플리콘 바이러스들은 EGFP 형광을 나타낸다. 이 왼쪽의 형광 사진들은 vero 세포에서 만들어진 헤르페스 심플렉스 앰플리콘 바이러스들을 G16-9 세포에 처리를 한 것으로서 바이러스들이 잘 만들어졌음을 보여주고 있다. The upper left picture of Figure 6 is a fluorescence picture obtained after the infection of the virus expressing Oct3 / 4 (HSVamp-Oct3 / 4 promoter-Oct3 / 4), the lower left picture is contained in the gene structure that Oct3 / 4 is connected to 2A Fluorescence photograph obtained after infection with the virus (HSVamp-hOct4promoter-Oct3 / 4-2A-Nanog-2A-Sox2) .The EGFP is attached to the herpes simplex virus immediate early (IE) promoter in the amplicon plasmid. Rex amplicon viruses show EGFP fluorescence. Fluorescence pictures on the left show that the herpes simplex amplicon viruses produced in vero cells were treated with G16-9 cells and the virus was well formed.

도 6의 오른쪽 그림은 위에서 설명한 세 가지 바이러스 감염결과 얻은 G16-9 세포 추출물들을 SDS-PAGE 전기영동을 한 후에 Oct3/4에 특이적인 항체로 웨스턴 블럿팅을 한 결과이다. 도 6의 결과로부터, 본 발명에 따라 얻어진 다중 역분화 유도 유전자로 이루어진 유전자 구조체를 포함하고 있는 재조합 헤르페스 심플렉스 바이러스로 형질전환 된 G16-9 세포는 Oct3/4를 발현하고 있음을 알 수 있으며 (lane 3, 도 6), 도 6의 세 번째 레인(lane)에서 Oct3/4 단백질이 조금 크기가 크게 나타난 것은 서열번호 1의 2A 펩타이드로부터 유래한 26 아미노산이 Oct3/4의 C-말단에 아직 붙어 있기 때문이다. 이러한 결과로부터 보건대 본 발명에 따라 제작된 재조합 바이러스로부터 다중 역분화 유도 유전자 발현 유닛이 효과적으로 작동되는 것을 확인할 수 있다.6 is a result of Western blotting with the antibody specific for Oct3 / 4 after SDS-PAGE electrophoresis of the G16-9 cell extracts obtained as a result of the three viral infections described above. From the results of FIG. 6, it can be seen that G16-9 cells transformed with the recombinant herpes simplex virus containing the gene construct consisting of multiple reverse differentiation inducing genes obtained according to the present invention express Oct3 / 4 ( lane 3, FIG. 6) and the slightly larger size of the Oct3 / 4 protein in the third lane of FIG. 6 indicate that 26 amino acids derived from the 2A peptide of SEQ ID NO: 1 are still attached to the C-terminus of Oct3 / 4. Because there is. From these results, it can be seen that the multiple reverse differentiation inducing gene expression unit works effectively from the recombinant virus produced according to the present invention.

실시예Example 4. 세포 배양 및  4. Cell culture and iPSiPS 세포주 형성 측정 Cell Line Formation Measurement

6웰 플레이트에 최종농도 10%의 정제된 소혈청 (defined FBS)과 항생제인 페니실린(100U/ml)과 스트렙토마이신(100ug/ml)이 보충된 DMEM (Gibco) 배지를 가하고, 인간 포피 섬유아세포 (human foreskin fibroblast cell: ATCC, SCRC-1041)를 한 웰 당 1x104 - 1x105 정도로 접종하고, 실시예 2에서 얻어진 바이러스를 1 M.O.I 정도로 가하고 37 ℃, 5% C의 조건에서 배양하였다. 3일 마다 한번 씩 3회 상기 과정을 반복하였다. 마지막으로 바이러스를 가한 후, 5일 째에 배양세포(인간 포피 섬유아세포)들을 STO 피더세포 (feeder cell layer) 위로 이동시켜 배양하였으며, 12일 째에 bFGF가 포함 되어 있는 인간 배아줄기세포 배양배지(0.05mM 베타-머캅토에탄올, 1% 비필수아미노산, 20% 넉-아웃 혈청 대체물(knock out serum replacement), 100U/ml 페니실린, 100ug/ml 스프렙토마이신, 및 4ng/ml bFGF로 보충된 DMEM-12 배지)로 교체하여 배양하였다. 상기 배양 과정을 요약하면 도 7과 같다. 마지막으로 바이러스를 가한 후 15일 째에 iPS 세포 콜로니가 형성되기 시작하였으며, 17일 째에 배아줄기세포의 콜로니처럼 자라는 세포들을 수확하였다. To a 6-well plate, DMEM (Gibco) medium supplemented with purified bovine serum (defined FBS) at a final concentration of 10% and antibiotics penicillin (100 U / ml) and streptomycin (100 ug / ml) was added to human foreskin fibroblasts ( Human foreskin fibroblast cells (ATCC, SCRC-1041) were inoculated at about 1 × 10 4-1 × 10 5 per well, and the virus obtained in Example 2 was added at about 1 MOI and incubated at 37 ° C. and 5% C. The process was repeated three times, once every three days. Finally, on day 5 after the virus was added, the cultured cells (human foreskin fibroblasts) were transferred onto STO feeder cell layers and cultured on human embryonic stem cell culture medium containing bFGF on day 12. DMEM- supplemented with 0.05 mM beta-mercaptoethanol, 1% non-essential amino acid, 20% knock out serum replacement, 100 U / ml penicillin, 100 ug / ml spreptomycin, and 4 ng / ml bFGF 12 medium) and incubated. The culture process is summarized in FIG. 7. Finally, iPS cell colonies began to form on the 15th day after the virus was applied, and on the 17th day, cells growing like embryonic stem cells were harvested.

17일 째에 얻어진 iPS 세포 콜로니를 관찰한 결과는 도 7의 하단과 같다. 도 7의 하단은 17일 째에 관찰된 수확하기 직전의 대표적인 iPS 세포 콜로니 4 개의 형태를 보여준다 (A, B, C, D). Observing the iPS cell colonies obtained on the 17th day is the same as the bottom of FIG. 7 shows the morphology of four representative iPS cell colonies immediately before harvest observed on day 17 (A, B, C, D).

도 1은 본 발명에 따른 유전자 구조체의 작동 메커니즘을 모식도로 나타낸 것이다.1 is a schematic diagram showing the operating mechanism of the gene construct according to the present invention.

도 2는 다중 역분화 유전자 구조체를 포함하는 재조합 플라스미드의 제작과정의 일 예를 모식도로 나타낸 것이다.Figure 2 shows a schematic diagram of an example of the manufacturing process of a recombinant plasmid comprising a multiple reverse differentiation gene construct.

도 3은 다중 역분화 유전자 구조체가 재조합된 다중 역분화 유도 인자 발현 플라스미드의 개열지도의 일 예이다.3 is an example of a cleavage map of multiple retrodifferentiation inducing factor expression plasmids in which multiple retrodifferentiation gene constructs are recombined.

도 4는 다중 역분화 유도 인자 발현 플라스미드, BAC DNA, 및 pEBHICP27 플라스미드를 사용하여, 무-헬퍼 바이러스 시스템을 통한 바이러스 제작과정의 일 예를 나타낸다.4 shows an example of virus production via a helper-free virus system using multiple retrodifferentiation inducing factor expression plasmids, BAC DNA, and pEBHICP27 plasmid.

도 5는 다중 역분화 유도 유전자 구조체를 동시에 전달/발현시켜 역분화 만능 줄기세포 (iPS cell)을 제조하는 방법을 모식도로 나타내 것이다. 5 is a schematic diagram showing a method for preparing iPS cells by simultaneously delivering / expressing multiple induction of differentiation gene constructs.

도 6의 왼쪽 위 그림은 Oct3/4를 발현하는 바이러스 (HSVamp-Oct3/4 promoter-Oct3/4)를 감염시킨 후 얻은 형광사진이며, 왼쪽 아래 그림은 Oct3/4가 2A로 연결된 유전자 구조체 안에 포함 되어 있는 바이러스 (HSVamp-hOct4promoter-Oct3/4-2A-Nanog-2A-Sox2)를 감염시킨 후 얻은 형광사진이다. 도 6의 오른쪽 그림은 바이러스 감염결과 얻은 G16-9 세포 추출물들을 SDS-PAGE 전기영동을 한 후에 Oct3/4에 특이적인 항체로 웨스턴 블럿팅을 한 결과이다. The upper left picture of Figure 6 is a fluorescence picture obtained after the infection of the virus expressing Oct3 / 4 (HSVamp-Oct3 / 4 promoter-Oct3 / 4), the lower left picture is contained in the gene structure that Oct3 / 4 is connected to 2A Fluorescence was obtained after infection with the virus (HSVamp-hOct4promoter-Oct3 / 4-2A-Nanog-2A-Sox2). 6 is a result of Western blotting with antibodies specific for Oct3 / 4 after SDS-PAGE electrophoresis of G16-9 cell extracts obtained as a result of virus infection.

도 7은 인간 표피 섬유아세포 (human foreskin fibroblast cell)로부터 iPS 세포를 얻는 배양과정을 나타낸 것이며(상단), 도 7의 하단은 17일 째에 관찰된 수 확하기 직전의 대표적인 iPS 세포 콜로니 4 개의 형태를 보여준다 (A, B, C, D).FIG. 7 shows the culturing process for obtaining iPS cells from human foreskin fibroblast cells (top), and the bottom of FIG. 7 shows four representative iPS cell colonies just before harvesting on day 17 (A, B, C, D).

<110> College of Medicine Pochon CHA University Industry-Academic Cooperation Foundation <120> Method for preparing induced pluripotent stem cells using herpes simplex amplicon viruses containing reprogramming-inducing genes <130> PN0180 <160> 27 <170> KopatentIn 1.71 <210> 1 <211> 27 <212> PRT <213> Foot-and-mouth disease virus <400> 1 Lys Leu Val Ala Pro Val Lys Gln Thr Pro Asn Phe Asp Leu Leu Lys 1 5 10 15 Leu Ala Gly Asp Val Glu Ser Asn Pro Gly Pro 20 25 <210> 2 <211> 81 <212> DNA <213> Foot-and-mouth disease virus <400> 2 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 60 gtagaaagca atccaggtcc a 81 <210> 3 <211> 317 <212> PRT <213> Homo sapiens <400> 3 Met Tyr Asn Met Met Glu Thr Glu Leu Lys Pro Pro Gly Pro Gln Gln 1 5 10 15 Thr Ser Gly Gly Gly Gly Gly Asn Ser Thr Ala Ala Ala Ala Gly Gly 20 25 30 Asn Gln Lys Asn Ser Pro Asp Arg Val Lys Arg Pro Met Asn Ala Phe 35 40 45 Met Val Trp Ser Arg Gly Gln Arg Arg Lys Met Ala Gln Glu Asn Pro 50 55 60 Lys Met His Asn Ser Glu Ile Ser Lys Arg Leu Gly Ala Glu Trp Lys 65 70 75 80 Leu Leu Ser Glu Thr Glu Lys Arg Pro Phe Ile Asp Glu Ala Lys Arg 85 90 95 Leu Arg Ala Leu His Met Lys Glu His Pro Asp Tyr Lys Tyr Arg Pro 100 105 110 Arg Arg Lys Thr Lys Thr Leu Met Lys Lys Asp Lys Tyr Thr Leu Pro 115 120 125 Gly Gly Leu Leu Ala Pro Gly Gly Asn Ser Met Ala Ser Gly Val Gly 130 135 140 Val Gly Ala Gly Leu Gly Ala Gly Val Asn Gln Arg Met Asp Ser Tyr 145 150 155 160 Ala His Met Asn Gly Trp Ser Asn Gly Ser Tyr Ser Met Met Gln Asp 165 170 175 Gln Leu Gly Tyr Pro Gln His Pro Gly Leu Asn Ala His Gly Ala Ala 180 185 190 Gln Met Gln Pro Met His Arg Tyr Asp Val Ser Ala Leu Gln Tyr Asn 195 200 205 Ser Met Thr Ser Ser Gln Thr Tyr Met Asn Gly Ser Pro Thr Tyr Ser 210 215 220 Met Ser Tyr Ser Gln Gln Gly Thr Pro Gly Met Ala Leu Gly Ser Met 225 230 235 240 Gly Ser Val Val Lys Ser Glu Ala Ser Ser Ser Pro Pro Val Val Thr 245 250 255 Ser Ser Ser His Ser Arg Ala Pro Cys Gln Ala Gly Asp Leu Arg Asp 260 265 270 Met Ile Ser Met Tyr Leu Pro Gly Ala Glu Val Pro Glu Pro Ala Ala 275 280 285 Pro Ser Arg Leu His Met Ser Gln His Tyr Gln Ser Gly Pro Val Pro 290 295 300 Gly Thr Ala Ile Asn Gly Thr Leu Pro Leu Ser His Met 305 310 315 <210> 4 <211> 954 <212> DNA <213> Homo sapiens <400> 4 atgtacaaca tgatggagac ggagctgaag ccgccgggcc cgcagcaaac ttcggggggc 60 ggcggcggca actccaccgc ggcggcggcc ggcggcaacc agaaaaacag cccggaccgc 120 gtcaagcggc ccatgaatgc cttcatggtg tggtcccgcg ggcagcggcg caagatggcc 180 caggagaacc ccaagatgca caactcggag atcagcaagc gcctgggcgc cgagtggaaa 240 cttttgtcgg agacggagaa gcggccgttc atcgacgagg ctaagcggct gcgagcgctg 300 cacatgaagg agcacccgga ttataaatac cggccccggc ggaaaaccaa gacgctcatg 360 aagaaggata agtacacgct gcccggcggg ctgctggccc ccggcggcaa tagcatggcg 420 agcggggtcg gggtgggcgc cggcctgggc gcgggcgtga accagcgcat ggacagttac 480 gcgcacatga acggctggag caacggcagc tacagcatga tgcaggacca gctgggctac 540 ccgcagcacc cgggcctcaa tgcgcacggc gcagcgcaga tgcagcccat gcaccgctac 600 gacgtgagcg ccctgcagta caactccatg accagctcgc agacctacat gaacggctcg 660 cccacctaca gcatgtccta ctcgcagcag ggcacccctg gcatggctct tggctccatg 720 ggttcggtgg tcaagtccga ggccagctcc agcccccctg tggttacctc ttcctcccac 780 tccagggcgc cctgccaggc cggggacctc cgggacatga tcagcatgta tctccccggc 840 gccgaggtgc cggaacccgc cgcccccagc agacttcaca tgtcccagca ctaccagagc 900 ggcccggtgc ccggcacggc cattaacggc acactgcccc tctcacacat gtga 954 <210> 5 <211> 360 <212> PRT <213> Homo sapiens <400> 5 Met Ala Gly His Leu Ala Ser Asp Phe Ala Phe Ser Pro Pro Pro Gly 1 5 10 15 Gly Gly Gly Asp Gly Pro Gly Gly Pro Glu Pro Gly Trp Val Asp Pro 20 25 30 Arg Thr Trp Leu Ser Phe Gln Gly Pro Pro Gly Gly Pro Gly Ile Gly 35 40 45 Pro Gly Val Gly Pro Gly Ser Glu Val Trp Gly Ile Pro Pro Cys Pro 50 55 60 Pro Pro Tyr Glu Phe Cys Gly Gly Met Ala Tyr Cys Gly Pro Gln Val 65 70 75 80 Gly Val Gly Leu Val Pro Gln Gly Gly Leu Glu Thr Ser Gln Pro Glu 85 90 95 Gly Glu Ala Gly Val Gly Val Glu Ser Asn Ser Asp Gly Ala Ser Pro 100 105 110 Glu Pro Cys Thr Val Thr Pro Gly Ala Val Lys Leu Glu Lys Glu Lys 115 120 125 Leu Glu Gln Asn Pro Glu Glu Ser Gln Asp Ile Lys Ala Leu Gln Lys 130 135 140 Glu Leu Glu Gln Phe Ala Lys Leu Leu Lys Gln Lys Arg Ile Thr Leu 145 150 155 160 Gly Tyr Thr Gln Ala Asp Val Gly Leu Thr Leu Gly Val Leu Phe Gly 165 170 175 Lys Val Phe Ser Gln Thr Thr Ile Cys Arg Phe Glu Ala Leu Gln Leu 180 185 190 Ser Phe Lys Asn Met Cys Lys Leu Arg Pro Leu Leu Gln Lys Trp Val 195 200 205 Glu Glu Ala Asp Asn Asn Glu Asn Leu Gln Glu Ile Cys Lys Ala Glu 210 215 220 Thr Leu Val Gln Ala Arg Lys Arg Lys Arg Thr Ser Ile Glu Asn Arg 225 230 235 240 Val Arg Gly Asn Leu Glu Asn Leu Phe Leu Gln Cys Pro Lys Pro Thr 245 250 255 Leu Gln Gln Ile Ser His Ile Ala Gln Gln Leu Gly Leu Glu Lys Asp 260 265 270 Val Val Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Gly Lys Arg Ser 275 280 285 Ser Ser Asp Tyr Ala Gln Arg Glu Asp Phe Glu Ala Ala Gly Ser Pro 290 295 300 Phe Ser Gly Gly Pro Val Ser Phe Pro Leu Ala Pro Gly Pro His Phe 305 310 315 320 Gly Thr Pro Gly Tyr Gly Ser Pro His Phe Thr Ala Leu Tyr Ser Ser 325 330 335 Val Pro Phe Pro Glu Gly Glu Ala Phe Pro Pro Val Ser Val Thr Thr 340 345 350 Leu Gly Ser Pro Met His Ser Asn 355 360 <210> 6 <211> 1083 <212> DNA <213> Homo sapiens <400> 6 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 tga 1083 <210> 7 <211> 305 <212> PRT <213> Homo sapiens <400> 7 Met Ser Val Asp Pro Ala Cys Pro Gln Ser Leu Pro Cys Phe Glu Ala 1 5 10 15 Ser Asp Cys Lys Glu Ser Ser Pro Met Pro Val Ile Cys Gly Pro Glu 20 25 30 Glu Asn Tyr Pro Ser Leu Gln Met Ser Ser Ala Glu Met Pro His Thr 35 40 45 Glu Thr Val Ser Pro Leu Pro Ser Ser Met Asp Leu Leu Ile Gln Asp 50 55 60 Ser Pro Asp Ser Ser Thr Ser Pro Lys Gly Lys Gln Pro Thr Ser Ala 65 70 75 80 Glu Lys Ser Val Ala Lys Lys Glu Asp Lys Val Pro Val Lys Lys Gln 85 90 95 Lys Thr Arg Thr Val Phe Ser Ser Thr Gln Leu Cys Val Leu Asn Asp 100 105 110 Arg Phe Gln Arg Gln Lys Tyr Leu Ser Leu Gln Gln Met Gln Glu Leu 115 120 125 Ser Asn Ile Leu Asn Leu Ser Tyr Lys Gln Val Lys Thr Trp Phe Gln 130 135 140 Asn Gln Arg Met Lys Ser Lys Arg Trp Gln Lys Asn Asn Trp Pro Lys 145 150 155 160 Asn Ser Asn Gly Val Thr Gln Lys Ala Ser Ala Pro Thr Tyr Pro Ser 165 170 175 Leu Tyr Ser Ser Tyr His Gln Gly Cys Leu Val Asn Pro Thr Gly Asn 180 185 190 Leu Pro Met Trp Ser Asn Gln Thr Trp Asn Asn Ser Thr Trp Ser Asn 195 200 205 Gln Thr Gln Asn Ile Gln Ser Trp Ser Asn His Ser Trp Asn Thr Gln 210 215 220 Thr Trp Cys Thr Gln Ser Trp Asn Asn Gln Ala Trp Asn Ser Pro Phe 225 230 235 240 Tyr Asn Cys Gly Glu Glu Ser Leu Gln Ser Cys Met Gln Phe Gln Pro 245 250 255 Asn Ser Pro Ala Ser Asp Leu Glu Ala Ala Leu Glu Ala Ala Gly Glu 260 265 270 Gly Leu Asn Val Ile Gln Gln Thr Thr Arg Tyr Phe Ser Thr Pro Gln 275 280 285 Thr Met Asp Leu Phe Leu Asn Tyr Ser Met Asn Met Gln Pro Glu Asp 290 295 300 Val 305 <210> 8 <211> 918 <212> DNA <213> Homo sapiens <400> 8 atgagtgtgg atccagcttg tccccaaagc ttgccttgct ttgaagcatc cgactgtaaa 60 gaatcttcac ctatgcctgt gatttgtggg cctgaagaaa actatccatc cttgcaaatg 120 tcttctgctg agatgcctca cacggagact gtctctcctc ttccttcctc catggatctg 180 cttattcagg acagccctga ttcttccacc agtcccaaag gcaaacaacc cacttctgca 240 gagaagagtg tcgcaaaaaa ggaagacaag gtcccggtca agaaacagaa gaccagaact 300 gtgttctctt ccacccagct gtgtgtactc aatgatagat ttcagagaca gaaatacctc 360 agcctccagc agatgcaaga actctccaac atcctgaacc tcagctacaa acaggtgaag 420 acctggttcc agaaccagag aatgaaatct aagaggtggc agaaaaacaa ctggccgaag 480 aatagcaatg gtgtgacgca gaaggcctca gcacctacct accccagcct ttactcttcc 540 taccaccagg gatgcctggt gaacccgact gggaaccttc caatgtggag caaccagacc 600 tggaacaatt caacctggag caaccagacc cagaacatcc agtcctggag caaccactcc 660 tggaacactc agacctggtg cacccaatcc tggaacaatc aggcctggaa cagtcccttc 720 tataactgtg gagaggaatc tctgcagtcc tgcatgcagt tccagccaaa ttctcctgcc 780 agtgacttgg aggctgcctt ggaagctgct ggggaaggcc ttaatgtaat acagcagacc 840 actaggtatt ttagtactcc acaaaccatg gatttattcc taaactactc catgaacatg 900 caacctgaag acgtgtga 918 <210> 9 <211> 479 <212> PRT <213> Homo sapiens <400> 9 Met Arg Gln Pro Pro Gly Glu Ser Asp Met Ala Val Ser Asp Ala Leu 1 5 10 15 Leu Pro Ser Phe Ser Thr Phe Ala Ser Gly Pro Ala Gly Arg Glu Lys 20 25 30 Thr Leu Arg Gln Ala Gly Ala Pro Asn Asn Arg Trp Arg Glu Glu Leu 35 40 45 Ser His Met Lys Arg Leu Pro Pro Val Leu Pro Gly Arg Pro Tyr Asp 50 55 60 Leu Ala Ala Ala Thr Val Ala Thr Asp Leu Glu Ser Gly Gly Ala Gly 65 70 75 80 Ala Ala Cys Gly Gly Ser Asn Leu Ala Pro Leu Pro Arg Arg Glu Thr 85 90 95 Glu Glu Phe Asn Asp Leu Leu Asp Leu Asp Phe Ile Leu Ser Asn Ser 100 105 110 Leu Thr His Pro Pro Glu Ser Val Ala Ala Thr Val Ser Ser Ser Ala 115 120 125 Ser Ala Ser Ser Ser Ser Ser Pro Ser Ser Ser Gly Pro Ala Ser Ala 130 135 140 Pro Ser Thr Cys Ser Phe Thr Tyr Pro Ile Arg Ala Gly Asn Asp Pro 145 150 155 160 Gly Val Ala Pro Gly Gly Thr Gly Gly Gly Leu Leu Tyr Gly Arg Glu 165 170 175 Ser Ala Pro Pro Pro Thr Ala Pro Phe Asn Leu Ala Asp Ile Asn Asp 180 185 190 Val Ser Pro Ser Gly Gly Phe Val Ala Glu Leu Leu Arg Pro Glu Leu 195 200 205 Asp Pro Val Tyr Ile Pro Pro Gln Gln Pro Gln Pro Pro Gly Gly Gly 210 215 220 Leu Met Gly Lys Phe Val Leu Lys Ala Ser Leu Ser Ala Pro Gly Ser 225 230 235 240 Glu Tyr Gly Ser Pro Ser Val Ile Ser Val Ser Lys Gly Ser Pro Asp 245 250 255 Gly Ser His Pro Val Val Val Ala Pro Tyr Asn Gly Gly Pro Pro Arg 260 265 270 Thr Cys Pro Lys Ile Lys Gln Glu Ala Val Ser Ser Cys Thr His Leu 275 280 285 Gly Ala Gly Pro Pro Leu Ser Asn Gly His Arg Pro Ala Ala His Asp 290 295 300 Phe Pro Leu Gly Arg Gln Leu Pro Ser Arg Thr Thr Pro Thr Leu Gly 305 310 315 320 Leu Glu Glu Val Leu Ser Ser Arg Asp Cys His Pro Ala Leu Pro Leu 325 330 335 Pro Pro Gly Phe His Pro His Pro Gly Pro Asn Tyr Pro Ser Phe Leu 340 345 350 Pro Asp Gln Met Gln Pro Gln Val Pro Pro Leu His Tyr Gln Glu Leu 355 360 365 Met Pro Pro Gly Ser Cys Met Pro Glu Glu Pro Lys Pro Lys Arg Gly 370 375 380 Arg Arg Ser Trp Pro Arg Lys Arg Thr Ala Thr His Thr Cys Asp Tyr 385 390 395 400 Ala Gly Cys Gly Lys Thr Tyr Thr Lys Ser Ser His Leu Lys Ala His 405 410 415 Leu Arg Thr His Thr Gly Glu Lys Pro Tyr His Cys Asp Trp Asp Gly 420 425 430 Cys Gly Trp Lys Phe Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg 435 440 445 Lys His Thr Gly His Arg Pro Phe Gln Cys Gln Lys Cys Asp Arg Ala 450 455 460 Phe Ser Arg Ser Asp His Leu Ala Leu His Met Lys Arg His Phe 465 470 475 <210> 10 <211> 1440 <212> DNA <213> Homo sapiens <400> 10 atgaggcagc cacctggcga gtctgacatg gctgtcagcg acgcgctgct cccatctttc 60 tccacgttcg cgtctggccc ggcgggaagg gagaagacac tgcgtcaagc aggtgccccg 120 aataaccgct ggcgggagga gctctcccac atgaagcgac ttcccccagt gcttcccggc 180 cgcccctatg acctggcggc ggcgaccgtg gccacagacc tggagagcgg cggagccggt 240 gcggcttgcg gcggtagcaa cctggcgccc ctacctcgga gagagaccga ggagttcaac 300 gatctcctgg acctggactt tattctctcc aattcgctga cccatcctcc ggagtcagtg 360 gccgccaccg tgtcctcgtc agcgtcagcc tcctcttcgt cgtcgccgtc gagcagcggc 420 cctgccagcg cgccctccac ctgcagcttc acctatccga tccgggccgg gaacgacccg 480 ggcgtggcgc cgggcggcac gggcggaggc ctcctctatg gcagggagtc cgctccccct 540 ccgacggctc ccttcaacct ggcggacatc aacgacgtga gcccctcggg cggcttcgtg 600 gccgagctcc tgcggccaga attggacccg gtgtacattc cgccgcagca gccgcagccg 660 ccaggtggcg ggctgatggg caagttcgtg ctgaaggcgt cgctgagcgc ccctggcagc 720 gagtacggca gcccgtcggt catcagcgtc agcaaaggca gccctgacgg cagccacccg 780 gtggtggtgg cgccctacaa cggcgggccg ccgcgcacgt gccccaagat caagcaggag 840 gcggtctctt cgtgcaccca cttgggcgct ggaccccctc tcagcaatgg ccaccggccg 900 gctgcacacg acttccccct ggggcggcag ctccccagca ggactacccc gaccctgggt 960 cttgaggaag tgctgagcag cagggactgt caccctgccc tgccgcttcc tcccggcttc 1020 catccccacc cggggcccaa ttacccatcc ttcctgcccg atcagatgca gccgcaagtc 1080 ccgccgctcc attaccaaga gctcatgcca cccggttcct gcatgccaga ggagcccaag 1140 ccaaagaggg gaagacgatc gtggccccgg aaaaggaccg ccacccacac ttgtgattac 1200 gcgggctgcg gcaaaaccta cacaaagagt tcccatctca aggcacacct gcgaacccac 1260 acaggtgaga aaccttacca ctgtgactgg gacggctgtg gatggaaatt cgcccgctca 1320 gatgaactga ccaggcacta ccgtaaacac acggggcacc gcccgttcca gtgccaaaaa 1380 tgcgaccgag cattttccag gtcggaccac ctcgccttac acatgaagag gcatttttaa 1440 1440 <210> 11 <211> 209 <212> PRT <213> Homo sapiens <400> 11 Met Gly Ser Val Ser Asn Gln Gln Phe Ala Gly Gly Cys Ala Lys Ala 1 5 10 15 Ala Glu Glu Ala Pro Glu Glu Ala Pro Glu Asp Ala Ala Arg Ala Ala 20 25 30 Asp Glu Pro Gln Leu Leu His Gly Ala Gly Ile Cys Lys Trp Phe Asn 35 40 45 Val Arg Met Gly Phe Gly Phe Leu Ser Met Thr Ala Arg Ala Gly Val 50 55 60 Ala Leu Asp Pro Pro Val Asp Val Phe Val His Gln Ser Lys Leu His 65 70 75 80 Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Ala Val Glu Phe Thr 85 90 95 Phe Lys Lys Ser Ala Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro 100 105 110 Gly Gly Val Phe Cys Ile Gly Ser Glu Arg Arg Pro Lys Gly Lys Ser 115 120 125 Met Gln Lys Arg Arg Ser Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly 130 135 140 Leu Asp His His Ala Lys Glu Cys Lys Leu Pro Pro Gln Pro Lys Lys 145 150 155 160 Cys His Phe Cys Gln Ser Ile Ser His Met Val Ala Ser Cys Pro Leu 165 170 175 Lys Ala Gln Gln Gly Pro Ser Ala Gln Gly Lys Pro Thr Tyr Phe Arg 180 185 190 Glu Glu Glu Glu Glu Ile His Ser Pro Thr Leu Leu Pro Glu Ala Gln 195 200 205 Asn <210> 12 <211> 630 <212> DNA <213> Homo sapiens <400> 12 atgggctccg tgtccaacca gcagtttgca ggtggctgcg ccaaggcggc agaagaggcg 60 cccgaggagg cgccggagga cgcggcccgg gcggcggacg agcctcagct gctgcacggt 120 gcgggcatct gtaagtggtt caacgtgcgc atggggttcg gcttcctgtc catgaccgcc 180 cgcgccgggg tcgcgctcga ccccccagtg gatgtctttg tgcaccagag taagctgcac 240 atggaagggt tccggagctt gaaggagggt gaggcagtgg agttcacctt taagaagtca 300 gccaagggtc tggaatccat ccgtgtcacc ggacctggtg gagtattctg tattgggagt 360 gagaggcggc caaaaggaaa gagcatgcag aagcgcagat caaaaggaga caggtgctac 420 aactgtggag gtctagatca tcatgccaag gaatgcaagc tgccacccca gcccaagaag 480 tgccacttct gccagagcat cagccatatg gtagcctcat gtccgctgaa ggcccagcag 540 ggccctagtg cacagggaaa gccaacctac tttcgagagg aagaagaaga aatccacagc 600 cctaccctgc tcccggaggc acagaattga 630 <210> 13 <211> 454 <212> PRT <213> Homo sapiens <400> 13 Met Asp Phe Phe Arg Val Val Glu Asn Gln Gln Pro Pro Ala Thr Met 1 5 10 15 Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr Asp 20 25 30 Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Glu Asn Phe Tyr Gln 35 40 45 Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp Ile 50 55 60 Trp Lys Lys Phe Glu Leu Leu Pro Thr Pro Pro Leu Ser Pro Ser Arg 65 70 75 80 Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe Ser 85 90 95 Leu Arg Gly Asp Asn Asp Gly Gly Gly Gly Ser Phe Ser Thr Ala Asp 100 105 110 Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn Gln 115 120 125 Ser Phe Ile Cys Asp Pro Asp Asp Glu Thr Phe Ile Lys Asn Ile Ile 130 135 140 Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu Val 145 150 155 160 Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly Ser 165 170 175 Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu Tyr 180 185 190 Leu Gln Asp Leu Ser Ala Ala Ala Ser Glu Cys Ile Asp Pro Ser Val 195 200 205 Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Ser Pro Lys Ser Cys Ala 210 215 220 Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu Ser 225 230 235 240 Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu His 245 250 255 Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Glu Gln Glu 260 265 270 Asp Glu Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala Pro 275 280 285 Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser Lys 290 295 300 Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr His 305 310 315 320 Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro Ala 325 330 335 Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile Ser 340 345 350 Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu Asn 355 360 365 Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Arg Asn Glu 370 375 380 Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu Glu 385 390 395 400 Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr Ala 405 410 415 Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu Glu 420 425 430 Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu Gln 435 440 445 Leu Arg Asn Ser Cys Ala 450 <210> 14 <211> 1365 <212> DNA <213> Homo sapiens <400> 14 ctggattttt ttcgggtagt ggaaaaccag cagcctcccg cgacgatgcc cctcaacgtt 60 agcttcacca acaggaacta tgacctcgac tacgactcgg tgcagccgta tttctactgc 120 gacgaggagg agaacttcta ccagcagcag cagcagagcg agctgcagcc cccggcgccc 180 agcgaggata tctggaagaa attcgagctg ctgcccaccc cgcccctgtc ccctagccgc 240 cgctccgggc tctgctcgcc ctcctacgtt gcggtcacac ccttctccct tcggggagac 300 aacgacggcg gtggcgggag cttctccacg gccgaccagc tggagatggt gaccgagctg 360 ctgggaggag acatggtgaa ccagagtttc atctgcgacc cggacgacga gaccttcatc 420 aaaaacatca tcatccagga ctgtatgtgg agcggcttct cggccgccgc caagctcgtc 480 tcagagaagc tggcctccta ccaggctgcg cgcaaagaca gcggcagccc gaaccccgcc 540 cgcggccaca gcgtctgctc cacctccagc ttgtacctgc aggatctgag cgccgccgcc 600 tcagagtgca tcgacccctc ggtggtcttc ccctaccctc tcaacgacag cagctcgccc 660 aagtcctgcg cctcgcaaga ctccagcgcc ttctctccgt cctcggattc tctgctctcc 720 tcgacggagt cctccccgca gggcagcccc gagcccctgg tgctccatga ggagacaccg 780 cccaccacca gcagcgactc tgaggaggaa caagaagatg aggaagaaat cgatgttgtt 840 tctgtggaaa agaggcaggc tcctggcaaa aggtcagagt ctggatcacc ttctgctgga 900 ggccacagca aacctcctca cagcccactg gtcctcaaga ggtgccacgt ctccacacat 960 cagcacaact acgcagcgcc tccctccact cggaaggact atcctgctgc caagagggtc 1020 aagttggaca gtgtcagagt cctgagacag atcagcaaca accgaaaatg caccagcccc 1080 aggtcctcgg acaccgagga gaatgtcaag aggcgaacac acaacgtctt ggagcgccag 1140 aggaggaacg agctaaaacg gagctttttt gccctgcgtg accagatccc ggagttggaa 1200 aacaatgaaa aggcccccaa ggtagttatc cttaaaaaag ccacagcata catcctgtcc 1260 gtccaagcag aggagcaaaa gctcatttct gaagaggact tgttgcggaa acgacgagaa 1320 cagttgaaac acaaacttga acagctacgg aactcttgtg cgtaa 1365 <210> 15 <211> 3111 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence <400> 15 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 1140 gtagaaagca atccaggtcc aatgagtgtg gatccagctt gtccccaaag cttgccttgc 1200 tttgaagcat ccgactgtaa agaatcttca cctatgcctg tgatttgtgg gcctgaagaa 1260 aactatccat ccttgcaaat gtcttctgct gagatgcctc acacggagac tgtctctcct 1320 cttccttcct ccatggatct gcttattcag gacagccctg attcttccac cagtcccaaa 1380 ggcaaacaac ccacttctgc agagaagagt gtcgcaaaaa aggaagacaa ggtcccggtc 1440 aagaaacaga agaccagaac tgtgttctct tccacccagc tgtgtgtact caatgataga 1500 tttcagagac agaaatacct cagcctccag cagatgcaag aactctccaa catcctgaac 1560 ctcagctaca aacaggtgaa gacctggttc cagaaccaga gaatgaaatc taagaggtgg 1620 cagaaaaaca actggccgaa gaatagcaat ggtgtgacgc agaaggcctc agcacctacc 1680 taccccagcc tttactcttc ctaccaccag ggatgcctgg tgaacccgac tgggaacctt 1740 ccaatgtgga gcaaccagac ctggaacaat tcaacctgga gcaaccagac ccagaacatc 1800 cagtcctgga gcaaccactc ctggaacact cagacctggt gcacccaatc ctggaacaat 1860 caggcctgga acagtccctt ctataactgt ggagaggaat ctctgcagtc ctgcatgcag 1920 ttccagccaa attctcctgc cagtgacttg gaggctgcct tggaagctgc tggggaaggc 1980 cttaatgtaa tacagcagac cactaggtat tttagtactc cacaaaccat ggatttattc 2040 ctaaactact ccatgaacat gcaacctgaa gacgtgaaaa ttgtcgctcc tgtcaaacaa 2100 actcttaact ttgatttact caaactggct ggggatgtag aaagcaatcc aggtccaatg 2160 tacaacatga tggagacgga gctgaagccg ccgggcccgc agcaaacttc ggggggcggc 2220 ggcggcaact ccaccgcggc ggcggccggc ggcaaccaga aaaacagccc ggaccgcgtc 2280 aagcggccca tgaatgcctt catggtgtgg tcccgcgggc agcggcgcaa gatggcccag 2340 gagaacccca agatgcacaa ctcggagatc agcaagcgcc tgggcgccga gtggaaactt 2400 ttgtcggaga cggagaagcg gccgttcatc gacgaggcta agcggctgcg agcgctgcac 2460 atgaaggagc acccggatta taaataccgg ccccggcgga aaaccaagac gctcatgaag 2520 aaggataagt acacgctgcc cggcgggctg ctggcccccg gcggcaatag catggcgagc 2580 ggggtcgggg tgggcgccgg cctgggcgcg ggcgtgaacc agcgcatgga cagttacgcg 2640 cacatgaacg gctggagcaa cggcagctac agcatgatgc aggaccagct gggctacccg 2700 cagcacccgg gcctcaatgc gcacggcgca gcgcagatgc agcccatgca ccgctacgac 2760 gtgagcgccc tgcagtacaa ctccatgacc agctcgcaga cctacatgaa cggctcgccc 2820 acctacagca tgtcctactc gcagcagggc acccctggca tggctcttgg ctccatgggt 2880 tcggtggtca agtccgaggc cagctccagc ccccctgtgg ttacctcttc ctcccactcc 2940 agggcgccct gccaggccgg ggacctccgg gacatgatca gcatgtatct ccccggcgcc 3000 gaggtgccgg aacccgccgc ccccagcaga cttcacatgt cccagcacta ccagagcggc 3060 ccggtgcccg gcacggccat taacggcaca ctgcccctct cacacatgtg a 3111 <210> 16 <211> 3606 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence <400> 16 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 1140 gtagaaagca atccaggtcc aatggctgtc agcgacgcgc tgctcccatc tttctccacg 1200 ttcgcgtctg gcccggcggg aagggagaag acactgcgtc aagcaggtgc cccgaataac 1260 cgctggcggg aggagctctc ccacatgaag cgacttcccc cagtgcttcc cggccgcccc 1320 tatgacctgg cggcggcgac cgtggccaca gacctggaga gcggcggagc cggtgcggct 1380 tgcggcggta gcaacctggc gcccctacct cggagagaga ccgaggagtt caacgatctc 1440 ctggacctgg actttattct ctccaattcg ctgacccatc ctccggagtc agtggccgcc 1500 accgtgtcct cgtcagcgtc agcctcctct tcgtcgtcgc cgtcgagcag cggccctgcc 1560 agcgcgccct ccacctgcag cttcacctat ccgatccggg ccgggaacga cccgggcgtg 1620 gcgccgggcg gcacgggcgg aggcctcctc tatggcaggg agtccgctcc ccctccgacg 1680 gctcccttca acctggcgga catcaacgac gtgagcccct cgggcggctt cgtggccgag 1740 ctcctgcggc cagaattgga cccggtgtac attccgccgc agcagccgca gccgccaggt 1800 ggcgggctga tgggcaagtt cgtgctgaag gcgtcgctga gcgcccctgg cagcgagtac 1860 ggcagcccgt cggtcatcag cgtcagcaaa ggcagccctg acggcagcca cccggtggtg 1920 gtggcgccct acaacggcgg gccgccgcgc acgtgcccca agatcaagca ggaggcggtc 1980 tcttcgtgca cccacttggg cgctggaccc cctctcagca atggccaccg gccggctgca 2040 cacgacttcc ccctggggcg gcagctcccc agcaggacta ccccgaccct gggtcttgag 2100 gaagtgctga gcagcaggga ctgtcaccct gccctgccgc ttcctcccgg cttccatccc 2160 cacccggggc ccaattaccc atccttcctg cccgatcaga tgcagccgca agtcccgccg 2220 ctccattacc aagagctcat gccacccggt tcctgcatgc cagaggagcc caagccaaag 2280 aggggaagac gatcgtggcc ccggaaaagg accgccaccc acacttgtga ttacgcgggc 2340 tgcggcaaaa cctacacaaa gagttcccat ctcaaggcac acctgcgaac ccacacaggt 2400 gagaaacctt accactgtga ctgggacggc tgtggatgga aattcgcccg ctcagatgaa 2460 ctgaccaggc actaccgtaa acacacgggg caccgcccgt tccagtgcca aaaatgcgac 2520 cgagcatttt ccaggtcgga ccacctcgcc ttacacatga agaggcattt taaaattgtc 2580 gctcctgtca aacaaactct taactttgat ttactcaaac tggctgggga tgtagaaagc 2640 aatccaggtc caatgtacaa catgatggag acggagctga agccgccggg cccgcagcaa 2700 acttcggggg gcggcggcgg caactccacc gcggcggcgg ccggcggcaa ccagaaaaac 2760 agcccggacc gcgtcaagcg gcccatgaat gccttcatgg tgtggtcccg cgggcagcgg 2820 cgcaagatgg cccaggagaa ccccaagatg cacaactcgg agatcagcaa gcgcctgggc 2880 gccgagtgga aacttttgtc ggagacggag aagcggccgt tcatcgacga ggctaagcgg 2940 ctgcgagcgc tgcacatgaa ggagcacccg gattataaat accggccccg gcggaaaacc 3000 aagacgctca tgaagaagga taagtacacg ctgcccggcg ggctgctggc ccccggcggc 3060 aatagcatgg cgagcggggt cggggtgggc gccggcctgg gcgcgggcgt gaaccagcgc 3120 atggacagtt acgcgcacat gaacggctgg agcaacggca gctacagcat gatgcaggac 3180 cagctgggct acccgcagca cccgggcctc aatgcgcacg gcgcagcgca gatgcagccc 3240 atgcaccgct acgacgtgag cgccctgcag tacaactcca tgaccagctc gcagacctac 3300 atgaacggct cgcccaccta cagcatgtcc tactcgcagc agggcacccc tggcatggct 3360 cttggctcca tgggttcggt ggtcaagtcc gaggccagct ccagcccccc tgtggttacc 3420 tcttcctccc actccagggc gccctgccag gccggggacc tccgggacat gatcagcatg 3480 tatctccccg gcgccgaggt gccggaaccc gccgccccca gcagacttca catgtcccag 3540 cactaccaga gcggcccggt gcccggcacg gccattaacg gcacactgcc cctctcacac 3600 atgtga 3606 <210> 17 <211> 6723 <212> DNA <213> herpes simplex virus 7 <400> 17 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 60 ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc 120 gtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata 180 taagcagagc tctctggcta actagagaac ccactgctta ctggcttatc gaaattaata 240 cgactcacta tagggagacc caagctggct agcgtttaaa cttaagcttg gtaccgagct 300 cggatccact agtccagtgt ggtggaattc tgcagatatc cagcacagtg gcggccgctc 360 gagtctagag ggcccgttta aacccgctga tcagcctcga ctgtgccttc tagttgccag 420 ccatctgttg tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc cactcccact 480 gtcctttcct aataaaatga ggaaattgca tcgcattgtc tgagtaggtg tcattctatt 540 ctggggggtg gggtggggca ggacagcaag ggggaggatt gggaagacaa tagcgttaat 600 taaaattcca gctgagcgcc ggtcgctacc attaccagtt ggtctggtgt caaaaataat 660 aataaccggg caggccatgt ctgcccgtat ttcgcgtaag gaaatccatt atgtactatt 720 taaaaaacac aaacttttgg atgttcggtt tattcttttt cttttacttt tttatcatgg 780 gagcctactt cccgtttttc ccgatttggc tacatgacat caaccatatc agcaaaagtg 840 atacgggtat tatttttgcc gctatttctc tgttctcgct attattccaa ccgctgtttg 900 gtctgctttc tgacaaactc ggaacttgtt tattgcagct tataatggtt acaaataaag 960 caatagcatc acaaatttca caaataaagc atttttttca ctgcattcta gttgtggttg 1020 tccaaactca tcaatgtatc ttatcatgtc tggatctctg acctgagatt ggcggcactg 1080 aggtagagat gcccgaaccc ccccgaggga gcgcgggacg cgccggggag ggctggggcc 1140 ggggagggct ggggccgggg agggctgggg ccggggaggg ctggggccgg ggagggctgg 1200 ggccggggag ggctggggcc ggggagggct ggggctgggg agggctgggg ctggggaggg 1260 ggcggtggtg tgtagcagga gcggtgtgtt gcgccggggt acgtctggag gagcgggagg 1320 tgcgcggtga cgtgtggatg aggaacagga gttgttgcgc ggtgagttgt cgctgtgagt 1380 tgtgttgttg ggcaggtgtg gtggatgacg tgacgtgtga cgtgcggagt gcgccgtgct 1440 ctgttggttt cacctgtggc agcccgggcc ccccgcgggc gcgcgcgcgc gcaaaaaagg 1500 cgggcggcgg tccgggcggc gtgcgcgcgc gcggcgggcg tggggggcgg ggccgcggga 1560 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1620 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1680 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1740 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ccagacgccg aaaacgggcc 1800 ccccccaaaa cacacccccc gggggtcgcg cgcggccctt taaagcggtg gcggcgggca 1860 gcccgggccc cccgcggccg agactagcga gttagacagg caagcactac tcgcctctgc 1920 acgcacatgc ttgcctgtca aactctacca ccccggcacg ctctctgtct ccatggcccg 1980 ccgccgccgc catcgcggcc cccgccgccc ccggccgccc gggcccacgg gcgccgtccc 2040 aaccgcacag tcccaggtaa cgagctcgaa ttaattcttg aagacgaaag ggcctcgtga 2100 tacgcctatt tttataggtt aatgtcatga taataatggt ttcttagggt cgacccaggt 2160 ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tatttttcta aatacattca 2220 aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg 2280 aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc 2340 cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg 2400 ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt 2460 cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta 2520 ttatcccgtg ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat 2580 gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga 2640 gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca 2700 acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact 2760 cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc 2820 acgatgcctg cagcaatggc aacaacgttg cgcaaactat taactggcga actacttact 2880 ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccactt 2940 ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt 3000 gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt 3060 atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 3120 ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag 3180 attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat 3240 ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa 3300 aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca 3360 aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactcttttt 3420 ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg 3480 tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc 3540 ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga 3600 cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc 3660 agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct atgagaaagc 3720 gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca 3780 ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg 3840 tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta 3900 tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg gccttttgct 3960 cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac cgcctttgag 4020 tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt gagcgaggaa 4080 gcggaagagc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc 4140 ataggtcgac ctatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 4200 gtatacactc cgctatcgct acgtgactgg gtcatggctg cgccccgaca cccgccaaca 4260 cccgctgacg cgccctgacg ggcttgtctg ctcccggcat ccgcttacag acaagctgtg 4320 accgtctccg ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa acgcgcgagg 4380 cagccggcca ttatgcacga ccccgccccg acgccggcac gccgggggcc cgtggccgcg 4440 gcccgttggt cgaacccccg gccccgccca tccgcgccat ctgccatggg cggggcgcga 4500 gggcgggtgg gtccgcgccc cgccccgcat ggcatctcat taccgcccga tccggcggtt 4560 tccgcttccg ttccgcatgc taacgaggaa cgggcagggg gcggggcccg ggccccgact 4620 tcccggttcg gcggtaatga gatacgagcc ccgcgcgccc gttggccgtc cccgggcccc 4680 ccggtcccgc ccgccggacg ccgggaccaa cgggacggcg ggcggcccaa gggccgcccg 4740 ccttgccgcc cccccattgg ccggcgggcg ggaccgcccc aagggggcgg ggccgccggg 4800 taaaagaagt gagaacgcga agcgttcgca cttcgtccca atatatatat attattaggg 4860 cgaagtgcga gcactggcgc cgtgcccgac tccgcgccgg ccccgggggc gggcccgggc 4920 ggcggggggc gggtctctcc ggcgcacata aaggcccggc gcgaccgacg cccgcagacg 4980 gcgccggcca cgaacgacgg gagcggctgc ggagcacgcg gaccgggagc gggagtcgca 5040 gagggccgtc ggagcggacg gcgtcggcat cgcgacgccc cggctcggga tcgggatcgc 5100 atcggaaagg gacacgcgga cgcggggggg aaagacccgc ccaccccacc cacgaaacac 5160 aggggacgca ccccgggggc ctccgacgac agaaacccac cggtccgcct tttttgcacg 5220 ggtaagcacc ttgggtgggc ggaggagggg gggacgcggg ggtggaggag gggggacgcg 5280 ggggcggagg aggggggacg cgggggcgga ggagggggga cgcgggggcg gaggaggggg 5340 gacgcggggg cggaggaggg ggctcacccg cgttcgtgcc ttcccgcagg aggaacgtcc 5400 tcgtcgataa gctgatccat cgccaccatg gtgagcaagg gcgaggagct gttcaccggg 5460 gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 5520 ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 5580 ggcaagctgc ccgtgccctg gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc 5640 ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 5700 ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 5760 gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc 5820 aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 5880 tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 5940 atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 6000 ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgccct gagcaaagac 6060 cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 6120 ctcggcatgg acgagctgta caagtaaagc ggccaacttg tttattgcag cttataatgg 6180 ttacaaataa agcaatagca tcacaaattt cacaaataaa gcattttttt cactgcattc 6240 tagttgtggt ttgtccaaac tcatcaatgt atcttatcat gtctggatcg gtttgaagat 6300 cttccgatgt acgggccaga tatacgcgtt gacattgatt attgactagt tattaatagt 6360 aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta 6420 cggtaaatgg cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga 6480 cgtatgttcc catagtaacg ccaataggga ctttccattg acgtcaatgg gtggactatt 6540 tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta 6600 ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg 6660 actttcctac ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt 6720 ttt 6723 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 18 gggggctagc cgccatggcg ggacacctgg cttc 34 <210> 19 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 19 gggggcggcc gctcagtttg aatgcatggg ag 32 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 20 ggggctcgag ccgccatgta caacatgatg gagac 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 21 ggggtctaga tcacatgtgt gagaggggca gtgtg 35 <210> 22 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 22 ggggagatct gccgccatga gtgtggatcc agcttg 36 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 23 gggggaattc acacgtcttc aggttgcatg 30 <210> 24 <211> 103 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 24 gggggcggcc gcaaaattgt cgctcctgtc aaacaaactc ttaactttga tttactcaaa 60 ctggctgggg atgtagaaag caatccaggt ccaggatccg ggg 103 <210> 25 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 25 ccccgatcct ggacctggat tgctttctac atccccagcc agtttgagta aatcaaagtt 60 aagagtttgg acaggagcga caattttgcg gccgccccc 99 <210> 26 <211> 101 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 26 gggggaattc aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact 60 ggctggggat gtagaaagca atccaggtcc actcgagggg g 101 <210> 27 <211> 98 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 27 ccccctcgag tggacctgga ttgctttcta catccccagc cagtttgagt aaatcaaagt 60 taagagtttg gacaggagcg acaattttga attccccc 98 <110> College of Medicine Pochon CHA University Industry-Academic Cooperation Foundation <120> Method for preparing induced pluripotent stem cells using herpes          simplex amplicon viruses containing reprogramming-inducing genes <130> PN0180 <160> 27 <170> KopatentIn 1.71 <210> 1 <211> 27 <212> PRT <213> Foot-and-mouth disease virus <400> 1 Lys Leu Val Ala Pro Val Lys Gln Thr Pro Asn Phe Asp Leu Leu Lys   1 5 10 15 Leu Ala Gly Asp Val Glu Ser Asn Pro Gly Pro              20 25 <210> 2 <211> 81 <212> DNA <213> Foot-and-mouth disease virus <400> 2 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 60 gtagaaagca atccaggtcc a 81 <210> 3 <211> 317 <212> PRT <213> Homo sapiens <400> 3 Met Tyr Asn Met Met Glu Thr Glu Leu Lys Pro Pro Gly Pro Gln Gln   1 5 10 15 Thr Ser Gly Gly Gly Gly Gly Asn Ser Thr Ala Ala Ala Ala Gly Gly              20 25 30 Asn Gln Lys Asn Ser Pro Asp Arg Val Lys Arg Pro Met Asn Ala Phe          35 40 45 Met Val Trp Ser Arg Gly Gln Arg Arg Lys Met Ala Gln Glu Asn Pro      50 55 60 Lys Met His Asn Ser Glu Ile Ser Lys Arg Leu Gly Ala Glu Trp Lys  65 70 75 80 Leu Leu Ser Glu Thr Glu Lys Arg Pro Phe Ile Asp Glu Ala Lys Arg                  85 90 95 Leu Arg Ala Leu His Met Lys Glu His Pro Asp Tyr Lys Tyr Arg Pro             100 105 110 Arg Arg Lys Thr Lys Thr Leu Met Lys Lys Asp Lys Tyr Thr Leu Pro         115 120 125 Gly Gly Leu Leu Ala Pro Gly Gly Asn Ser Met Ala Ser Gly Val Gly     130 135 140 Val Gly Ala Gly Leu Gly Ala Gly Val Asn Gln Arg Met Asp Ser Tyr 145 150 155 160 Ala His Met Asn Gly Trp Ser Asn Gly Ser Tyr Ser Met Met Gln Asp                 165 170 175 Gln Leu Gly Tyr Pro Gln His Pro Gly Leu Asn Ala His Gly Ala Ala             180 185 190 Gln Met Gln Pro Met His Arg Tyr Asp Val Ser Ala Leu Gln Tyr Asn         195 200 205 Ser Met Thr Ser Ser Gln Thr Tyr Met Asn Gly Ser Pro Thr Tyr Ser     210 215 220 Met Ser Tyr Ser Gln Gln Gly Thr Pro Gly Met Ala Leu Gly Ser Met 225 230 235 240 Gly Ser Val Val Lys Ser Glu Ala Ser Ser Ser Pro Pro Val Val Thr                 245 250 255 Ser Ser Ser His Ser Arg Ala Pro Cys Gln Ala Gly Asp Leu Arg Asp             260 265 270 Met Ile Ser Met Tyr Leu Pro Gly Ala Glu Val Pro Glu Pro Ala Ala         275 280 285 Pro Ser Arg Leu His Met Ser Gln His Tyr Gln Ser Gly Pro Val Pro     290 295 300 Gly Thr Ala Ile Asn Gly Thr Leu Pro Leu Ser His Met 305 310 315 <210> 4 <211> 954 <212> DNA <213> Homo sapiens <400> 4 atgtacaaca tgatggagac ggagctgaag ccgccgggcc cgcagcaaac ttcggggggc 60 ggcggcggca actccaccgc ggcggcggcc ggcggcaacc agaaaaacag cccggaccgc 120 gtcaagcggc ccatgaatgc cttcatggtg tggtcccgcg ggcagcggcg caagatggcc 180 caggagaacc ccaagatgca caactcggag atcagcaagc gcctgggcgc cgagtggaaa 240 cttttgtcgg agacggagaa gcggccgttc atcgacgagg ctaagcggct gcgagcgctg 300 cacatgaagg agcacccgga ttataaatac cggccccggc ggaaaaccaa gacgctcatg 360 aagaaggata agtacacgct gcccggcggg ctgctggccc ccggcggcaa tagcatggcg 420 agcggggtcg gggtgggcgc cggcctgggc gcgggcgtga accagcgcat ggacagttac 480 gcgcacatga acggctggag caacggcagc tacagcatga tgcaggacca gctgggctac 540 ccgcagcacc cgggcctcaa tgcgcacggc gcagcgcaga tgcagcccat gcaccgctac 600 gacgtgagcg ccctgcagta caactccatg accagctcgc agacctacat gaacggctcg 660 cccacctaca gcatgtccta ctcgcagcag ggcacccctg gcatggctct tggctccatg 720 ggttcggtgg tcaagtccga ggccagctcc agcccccctg tggttacctc ttcctcccac 780 tccagggcgc cctgccaggc cggggacctc cgggacatga tcagcatgta tctccccggc 840 gccgaggtgc cggaacccgc cgcccccagc agacttcaca tgtcccagca ctaccagagc 900 ggcccggtgc ccggcacggc cattaacggc acactgcccc tctcacacat gtga 954 <210> 5 <211> 360 <212> PRT <213> Homo sapiens <400> 5 Met Ala Gly His Leu Ala Ser Asp Phe Ala Phe Ser Pro Pro Gly   1 5 10 15 Gly Gly Gly Asp Gly Pro Gly Gly Pro Glu Pro Gly Trp Val Asp Pro              20 25 30 Arg Thr Trp Leu Ser Phe Gln Gly Pro Pro Gly Gly Pro Gly Ile Gly          35 40 45 Pro Gly Val Gly Pro Gly Ser Glu Val Trp Gly Ile Pro Pro Cys Pro      50 55 60 Pro Pro Tyr Glu Phe Cys Gly Gly Met Ala Tyr Cys Gly Pro Gln Val  65 70 75 80 Gly Val Gly Leu Val Pro Gln Gly Gly Leu Glu Thr Ser Gln Pro Glu                  85 90 95 Gly Glu Ala Gly Val Gly Val Glu Ser Asn Ser Asp Gly Ala Ser Pro             100 105 110 Glu Pro Cys Thr Val Thr Pro Gly Ala Val Lys Leu Glu Lys Glu Lys         115 120 125 Leu Glu Gln Asn Pro Glu Glu Ser Gln Asp Ile Lys Ala Leu Gln Lys     130 135 140 Glu Leu Glu Gln Phe Ala Lys Leu Leu Lys Gln Lys Arg Ile Thr Leu 145 150 155 160 Gly Tyr Thr Gln Ala Asp Val Gly Leu Thr Leu Gly Val Leu Phe Gly                 165 170 175 Lys Val Phe Ser Gln Thr Thr Ile Cys Arg Phe Glu Ala Leu Gln Leu             180 185 190 Ser Phe Lys Asn Met Cys Lys Leu Arg Pro Leu Leu Gln Lys Trp Val         195 200 205 Glu Glu Ala Asp Asn Asn Glu Asn Leu Gln Glu Ile Cys Lys Ala Glu     210 215 220 Thr Leu Val Gln Ala Arg Lys Arg Lys Arg Thr Ser Ile Glu Asn Arg 225 230 235 240 Val Arg Gly Asn Leu Glu Asn Leu Phe Leu Gln Cys Pro Lys Pro Thr                 245 250 255 Leu Gln Gln Ile Ser His Ile Ala Gln Gln Leu Gly Leu Glu Lys Asp             260 265 270 Val Val Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Gly Lys Arg Ser         275 280 285 Ser Ser Asp Tyr Ala Gln Arg Glu Asp Phe Glu Ala Ala Gly Ser Pro     290 295 300 Phe Ser Gly Gly Pro Val Ser Phe Pro Leu Ala Pro Gly Pro His Phe 305 310 315 320 Gly Thr Pro Gly Tyr Gly Ser Pro His Phe Thr Ala Leu Tyr Ser Ser                 325 330 335 Val Pro Phe Pro Glu Gly Glu Ala Phe Pro Pro Val Ser Val Thr Thr             340 345 350 Leu Gly Ser Pro Met His Ser Asn         355 360 <210> 6 <211> 1083 <212> DNA <213> Homo sapiens <400> 6 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 tga 1083 <210> 7 <211> 305 <212> PRT <213> Homo sapiens <400> 7 Met Ser Val Asp Pro Ala Cys Pro Gln Ser Leu Pro Cys Phe Glu Ala   1 5 10 15 Ser Asp Cys Lys Glu Ser Ser Pro Met Pro Val Ile Cys Gly Pro Glu              20 25 30 Glu Asn Tyr Pro Ser Leu Gln Met Ser Ser Ala Glu Met Pro His Thr          35 40 45 Glu Thr Val Ser Pro Leu Pro Ser Ser Met Asp Leu Leu Ile Gln Asp      50 55 60 Ser Pro Asp Ser Ser Thr Ser Pro Lys Gly Lys Gln Pro Thr Ser Ala  65 70 75 80 Glu Lys Ser Val Ala Lys Lys Glu Asp Lys Val Pro Val Lys Lys Gln                  85 90 95 Lys Thr Arg Thr Val Phe Ser Ser Thr Gln Leu Cys Val Leu Asn Asp             100 105 110 Arg Phe Gln Arg Gln Lys Tyr Leu Ser Leu Gln Gln Met Gln Glu Leu         115 120 125 Ser Asn Ile Leu Asn Leu Ser Tyr Lys Gln Val Lys Thr Trp Phe Gln     130 135 140 Asn Gln Arg Met Lys Ser Lys Arg Trp Gln Lys Asn Asn Trp Pro Lys 145 150 155 160 Asn Ser Asn Gly Val Thr Gln Lys Ala Ser Ala Pro Thr Tyr Pro Ser                 165 170 175 Leu Tyr Ser Ser Tyr His Gln Gly Cys Leu Val Asn Pro Thr Gly Asn             180 185 190 Leu Pro Met Trp Ser Asn Gln Thr Trp Asn Asn Ser Thr Trp Ser Asn         195 200 205 Gln Thr Gln Asn Ile Gln Ser Trp Ser Asn His Ser Trp Asn Thr Gln     210 215 220 Thr Trp Cys Thr Gln Ser Trp Asn Asn Gln Ala Trp Asn Ser Pro Phe 225 230 235 240 Tyr Asn Cys Gly Glu Glu Ser Leu Gln Ser Cys Met Gln Phe Gln Pro                 245 250 255 Asn Ser Pro Ala Ser Asp Leu Glu Ala Ala Leu Glu Ala Ala Gly Glu             260 265 270 Gly Leu Asn Val Ile Gln Gln Thr Thr Arg Tyr Phe Ser Thr Pro Gln         275 280 285 Thr Met Asp Leu Phe Leu Asn Tyr Ser Met Asn Met Gln Pro Glu Asp     290 295 300 Val 305 <210> 8 <211> 918 <212> DNA <213> Homo sapiens <400> 8 atgagtgtgg atccagcttg tccccaaagc ttgccttgct ttgaagcatc cgactgtaaa 60 gaatcttcac ctatgcctgt gatttgtggg cctgaagaaa actatccatc cttgcaaatg 120 tcttctgctg agatgcctca cacggagact gtctctcctc ttccttcctc catggatctg 180 cttattcagg acagccctga ttcttccacc agtcccaaag gcaaacaacc cacttctgca 240 gagaagagtg tcgcaaaaaa ggaagacaag gtcccggtca agaaacagaa gaccagaact 300 gtgttctctt ccacccagct gtgtgtactc aatgatagat ttcagagaca gaaatacctc 360 agcctccagc agatgcaaga actctccaac atcctgaacc tcagctacaa acaggtgaag 420 acctggttcc agaaccagag aatgaaatct aagaggtggc agaaaaacaa ctggccgaag 480 aatagcaatg gtgtgacgca gaaggcctca gcacctacct accccagcct ttactcttcc 540 taccaccagg gatgcctggt gaacccgact gggaaccttc caatgtggag caaccagacc 600 tggaacaatt caacctggag caaccagacc cagaacatcc agtcctggag caaccactcc 660 tggaacactc agacctggtg cacccaatcc tggaacaatc aggcctggaa cagtcccttc 720 tataactgtg gagaggaatc tctgcagtcc tgcatgcagt tccagccaaa ttctcctgcc 780 agtgacttgg aggctgcctt ggaagctgct ggggaaggcc ttaatgtaat acagcagacc 840 actaggtatt ttagtactcc acaaaccatg gatttattcc taaactactc catgaacatg 900 caacctgaag acgtgtga 918 <210> 9 <211> 479 <212> PRT <213> Homo sapiens <400> 9 Met Arg Gln Pro Pro Gly Glu Ser Asp Met Ala Val Ser Asp Ala Leu   1 5 10 15 Leu Pro Ser Phe Ser Thr Phe Ala Ser Gly Pro Ala Gly Arg Glu Lys              20 25 30 Thr Leu Arg Gln Ala Gly Ala Pro Asn Asn Arg Trp Arg Glu Glu Leu          35 40 45 Ser His Met Lys Arg Leu Pro Pro Val Leu Pro Gly Arg Pro Tyr Asp      50 55 60 Leu Ala Ala Ala Thr Val Ala Thr Asp Leu Glu Ser Gly Gly Ala Gly  65 70 75 80 Ala Ala Cys Gly Gly Ser Asn Leu Ala Pro Leu Pro Arg Arg Glu Thr                  85 90 95 Glu Glu Phe Asn Asp Leu Leu Asp Leu Asp Phe Ile Leu Ser Asn Ser             100 105 110 Leu Thr His Pro Pro Glu Ser Val Ala Ala Thr Val Ser Ser Ser Ala         115 120 125 Ser Ala Ser Ser Ser Ser Ser Pro Ser Ser Ser Gly Pro Ala Ser Ala     130 135 140 Pro Ser Thr Cys Ser Phe Thr Tyr Pro Ile Arg Ala Gly Asn Asp Pro 145 150 155 160 Gly Val Ala Pro Gly Gly Thr Gly Gly Gly Leu Leu Tyr Gly Arg Glu                 165 170 175 Ser Ala Pro Pro Pro Thr Ala Pro Phe Asn Leu Ala Asp Ile Asn Asp             180 185 190 Val Ser Pro Ser Gly Gly Phe Val Ala Glu Leu Leu Arg Pro Glu Leu         195 200 205 Asp Pro Val Tyr Ile Pro Pro Gln Gln Pro Gln Pro Pro Gly Gly Gly     210 215 220 Leu Met Gly Lys Phe Val Leu Lys Ala Ser Leu Ser Ala Pro Gly Ser 225 230 235 240 Glu Tyr Gly Ser Pro Ser Val Ile Ser Val Ser Lys Gly Ser Pro Asp                 245 250 255 Gly Ser His Pro Val Val Val Ala Pro Tyr Asn Gly Gly Pro Pro Arg             260 265 270 Thr Cys Pro Lys Ile Lys Gln Glu Ala Val Ser Ser Cys Thr His Leu         275 280 285 Gly Ala Gly Pro Pro Leu Ser Asn Gly His Arg Pro Ala Ala His Asp     290 295 300 Phe Pro Leu Gly Arg Gln Leu Pro Ser Arg Thr Thr Pro Thr Leu Gly 305 310 315 320 Leu Glu Glu Val Leu Ser Ser Arg Asp Cys His Pro Ala Leu Pro Leu                 325 330 335 Pro Pro Gly Phe His Pro His Pro Gly Pro Asn Tyr Pro Ser Phe Leu             340 345 350 Pro Asp Gln Met Gln Pro Gln Val Pro Pro Leu His Tyr Gln Glu Leu         355 360 365 Met Pro Pro Gly Ser Cys Met Pro Glu Glu Pro Lys Pro Lys Arg Gly     370 375 380 Arg Arg Ser Trp Pro Arg Lys Arg Thr Ala Thr His Thr Cys Asp Tyr 385 390 395 400 Ala Gly Cys Gly Lys Thr Tyr Thr Lys Ser Ser His Leu Lys Ala His                 405 410 415 Leu Arg Thr His Thr Gly Glu Lys Pro Tyr His Cys Asp Trp Asp Gly             420 425 430 Cys Gly Trp Lys Phe Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg         435 440 445 Lys His Thr Gly His Arg Pro Phe Gln Cys Gln Lys Cys Asp Arg Ala     450 455 460 Phe Ser Arg Ser Asp His Leu Ala Leu His Met Lys Arg His Phe 465 470 475 <210> 10 <211> 1440 <212> DNA <213> Homo sapiens <400> 10 atgaggcagc cacctggcga gtctgacatg gctgtcagcg acgcgctgct cccatctttc 60 tccacgttcg cgtctggccc ggcgggaagg gagaagacac tgcgtcaagc aggtgccccg 120 aataaccgct ggcgggagga gctctcccac atgaagcgac ttcccccagt gcttcccggc 180 cgcccctatg acctggcggc ggcgaccgtg gccacagacc tggagagcgg cggagccggt 240 gcggcttgcg gcggtagcaa cctggcgccc ctacctcgga gagagaccga ggagttcaac 300 gatctcctgg acctggactt tattctctcc aattcgctga cccatcctcc ggagtcagtg 360 gccgccaccg tgtcctcgtc agcgtcagcc tcctcttcgt cgtcgccgtc gagcagcggc 420 cctgccagcg cgccctccac ctgcagcttc acctatccga tccgggccgg gaacgacccg 480 ggcgtggcgc cgggcggcac gggcggaggc ctcctctatg gcagggagtc cgctccccct 540 ccgacggctc ccttcaacct ggcggacatc aacgacgtga gcccctcggg cggcttcgtg 600 gccgagctcc tgcggccaga attggacccg gtgtacattc cgccgcagca gccgcagccg 660 ccaggtggcg ggctgatggg caagttcgtg ctgaaggcgt cgctgagcgc ccctggcagc 720 gagtacggca gcccgtcggt catcagcgtc agcaaaggca gccctgacgg cagccacccg 780 gtggtggtgg cgccctacaa cggcgggccg ccgcgcacgt gccccaagat caagcaggag 840 gcggtctctt cgtgcaccca cttgggcgct ggaccccctc tcagcaatgg ccaccggccg 900 gctgcacacg acttccccct ggggcggcag ctccccagca ggactacccc gaccctgggt 960 cttgaggaag tgctgagcag cagggactgt caccctgccc tgccgcttcc tcccggcttc 1020 catccccacc cggggcccaa ttacccatcc ttcctgcccg atcagatgca gccgcaagtc 1080 ccgccgctcc attaccaaga gctcatgcca cccggttcct gcatgccaga ggagcccaag 1140 ccaaagaggg gaagacgatc gtggccccgg aaaaggaccg ccacccacac ttgtgattac 1200 gcgggctgcg gcaaaaccta cacaaagagt tcccatctca aggcacacct gcgaacccac 1260 acaggtgaga aaccttacca ctgtgactgg gacggctgtg gatggaaatt cgcccgctca 1320 gatgaactga ccaggcacta ccgtaaacac acggggcacc gcccgttcca gtgccaaaaa 1380 tgcgaccgag cattttccag gtcggaccac ctcgccttac acatgaagag gcatttttaa 1440                                                                         1440 <210> 11 <211> 209 <212> PRT <213> Homo sapiens <400> 11 Met Gly Ser Val Ser Asn Gln Gln Phe Ala Gly Gly Cys Ala Lys Ala   1 5 10 15 Ala Glu Glu Ala Pro Glu Glu Ala Pro Glu Asp Ala Ala Arg Ala Ala              20 25 30 Asp Glu Pro Gln Leu Leu His Gly Ala Gly Ile Cys Lys Trp Phe Asn          35 40 45 Val Arg Met Gly Phe Gly Phe Leu Ser Met Thr Ala Arg Ala Gly Val      50 55 60 Ala Leu Asp Pro Pro Val Asp Val Phe Val His Gln Ser Lys Leu His  65 70 75 80 Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Ala Val Glu Phe Thr                  85 90 95 Phe Lys Lys Ser Ala Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro             100 105 110 Gly Gly Val Phe Cys Ile Gly Ser Glu Arg Arg Pro Lys Gly Lys Ser         115 120 125 Met Gln Lys Arg Arg Ser Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly     130 135 140 Leu Asp His His Ala Lys Glu Cys Lys Leu Pro Pro Gln Pro Lys Lys 145 150 155 160 Cys His Phe Cys Gln Ser Ile Ser His Met Val Ala Ser Cys Pro Leu                 165 170 175 Lys Ala Gln Gln Gly Pro Ser Ala Gln Gly Lys Pro Thr Tyr Phe Arg             180 185 190 Glu Glu Glu Glu Glu Ile His Ser Pro Thr Leu Leu Pro Glu Ala Gln         195 200 205 Asn     <210> 12 <211> 630 <212> DNA <213> Homo sapiens <400> 12 atgggctccg tgtccaacca gcagtttgca ggtggctgcg ccaaggcggc agaagaggcg 60 cccgaggagg cgccggagga cgcggcccgg gcggcggacg agcctcagct gctgcacggt 120 gcgggcatct gtaagtggtt caacgtgcgc atggggttcg gcttcctgtc catgaccgcc 180 cgcgccgggg tcgcgctcga ccccccagtg gatgtctttg tgcaccagag taagctgcac 240 atggaagggt tccggagctt gaaggagggt gaggcagtgg agttcacctt taagaagtca 300 gccaagggtc tggaatccat ccgtgtcacc ggacctggtg gagtattctg tattgggagt 360 gagaggcggc caaaaggaaa gagcatgcag aagcgcagat caaaaggaga caggtgctac 420 aactgtggag gtctagatca tcatgccaag gaatgcaagc tgccacccca gcccaagaag 480 tgccacttct gccagagcat cagccatatg gtagcctcat gtccgctgaa ggcccagcag 540 ggccctagtg cacagggaaa gccaacctac tttcgagagg aagaagaaga aatccacagc 600 cctaccctgc tcccggaggc acagaattga 630 <210> 13 <211> 454 <212> PRT <213> Homo sapiens <400> 13 Met Asp Phe Phe Arg Val Val Glu Asn Gln Gln Pro Pro Ala Thr Met   1 5 10 15 Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr Asp              20 25 30 Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Glu Asn Phe Tyr Gln          35 40 45 Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp Ile      50 55 60 Trp Lys Lys Phe Glu Leu Leu Pro Thr Pro Pro Leu Ser Pro Ser Arg  65 70 75 80 Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe Ser                  85 90 95 Leu Arg Gly Asp Asn Asp Gly Gly Gly Gly Ser Phe Ser Thr Ala Asp             100 105 110 Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn Gln         115 120 125 Ser Phe Ile Cys Asp Pro Asp Asp Glu Thr Phe Ile Lys Asn Ile Ile     130 135 140 Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu Val 145 150 155 160 Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly Ser                 165 170 175 Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu Tyr             180 185 190 Leu Gln Asp Leu Ser Ala Ala Ala Ser Glu Cys Ile Asp Pro Ser Val         195 200 205 Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Ser Pro Lys Ser Cys Ala     210 215 220 Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu Ser 225 230 235 240 Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu His                 245 250 255 Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Glu Gln Glu             260 265 270 Asp Glu Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala Pro         275 280 285 Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser Lys     290 295 300 Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr His 305 310 315 320 Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro Ala                 325 330 335 Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile Ser             340 345 350 Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu Asn         355 360 365 Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Arg Asn Glu     370 375 380 Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu Glu 385 390 395 400 Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr Ala                 405 410 415 Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu Glu             420 425 430 Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu Gln         435 440 445 Leu Arg Asn Ser Cys Ala     450 <210> 14 <211> 1365 <212> DNA <213> Homo sapiens <400> 14 ctggattttt ttcgggtagt ggaaaaccag cagcctcccg cgacgatgcc cctcaacgtt 60 agcttcacca acaggaacta tgacctcgac tacgactcgg tgcagccgta tttctactgc 120 gacgaggagg agaacttcta ccagcagcag cagcagagcg agctgcagcc cccggcgccc 180 agcgaggata tctggaagaa attcgagctg ctgcccaccc cgcccctgtc ccctagccgc 240 cgctccgggc tctgctcgcc ctcctacgtt gcggtcacac ccttctccct tcggggagac 300 aacgacggcg gtggcgggag cttctccacg gccgaccagc tggagatggt gaccgagctg 360 ctgggaggag acatggtgaa ccagagtttc atctgcgacc cggacgacga gaccttcatc 420 aaaaacatca tcatccagga ctgtatgtgg agcggcttct cggccgccgc caagctcgtc 480 tcagagaagc tggcctccta ccaggctgcg cgcaaagaca gcggcagccc gaaccccgcc 540 cgcggccaca gcgtctgctc cacctccagc ttgtacctgc aggatctgag cgccgccgcc 600 tcagagtgca tcgacccctc ggtggtcttc ccctaccctc tcaacgacag cagctcgccc 660 aagtcctgcg cctcgcaaga ctccagcgcc ttctctccgt cctcggattc tctgctctcc 720 tcgacggagt cctccccgca gggcagcccc gagcccctgg tgctccatga ggagacaccg 780 cccaccacca gcagcgactc tgaggaggaa caagaagatg aggaagaaat cgatgttgtt 840 tctgtggaaa agaggcaggc tcctggcaaa aggtcagagt ctggatcacc ttctgctgga 900 ggccacagca aacctcctca cagcccactg gtcctcaaga ggtgccacgt ctccacacat 960 cagcacaact acgcagcgcc tccctccact cggaaggact atcctgctgc caagagggtc 1020 aagttggaca gtgtcagagt cctgagacag atcagcaaca accgaaaatg caccagcccc 1080 aggtcctcgg acaccgagga gaatgtcaag aggcgaacac acaacgtctt ggagcgccag 1140 aggaggaacg agctaaaacg gagctttttt gccctgcgtg accagatccc ggagttggaa 1200 aacaatgaaa aggcccccaa ggtagttatc cttaaaaaag ccacagcata catcctgtcc 1260 gtccaagcag aggagcaaaa gctcatttct gaagaggact tgttgcggaa acgacgagaa 1320 cagttgaaac acaaacttga acagctacgg aactcttgtg cgtaa 1365 <210> 15 <211> 3111 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence <400> 15 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 1140 gtagaaagca atccaggtcc aatgagtgtg gatccagctt gtccccaaag cttgccttgc 1200 tttgaagcat ccgactgtaa agaatcttca cctatgcctg tgatttgtgg gcctgaagaa 1260 aactatccat ccttgcaaat gtcttctgct gagatgcctc acacggagac tgtctctcct 1320 cttccttcct ccatggatct gcttattcag gacagccctg attcttccac cagtcccaaa 1380 ggcaaacaac ccacttctgc agagaagagt gtcgcaaaaa aggaagacaa ggtcccggtc 1440 aagaaacaga agaccagaac tgtgttctct tccacccagc tgtgtgtact caatgataga 1500 tttcagagac agaaatacct cagcctccag cagatgcaag aactctccaa catcctgaac 1560 ctcagctaca aacaggtgaa gacctggttc cagaaccaga gaatgaaatc taagaggtgg 1620 cagaaaaaca actggccgaa gaatagcaat ggtgtgacgc agaaggcctc agcacctacc 1680 taccccagcc tttactcttc ctaccaccag ggatgcctgg tgaacccgac tgggaacctt 1740 ccaatgtgga gcaaccagac ctggaacaat tcaacctgga gcaaccagac ccagaacatc 1800 cagtcctgga gcaaccactc ctggaacact cagacctggt gcacccaatc ctggaacaat 1860 caggcctgga acagtccctt ctataactgt ggagaggaat ctctgcagtc ctgcatgcag 1920 ttccagccaa attctcctgc cagtgacttg gaggctgcct tggaagctgc tggggaaggc 1980 cttaatgtaa tacagcagac cactaggtat tttagtactc cacaaaccat ggatttattc 2040 ctaaactact ccatgaacat gcaacctgaa gacgtgaaaa ttgtcgctcc tgtcaaacaa 2100 actcttaact ttgatttact caaactggct ggggatgtag aaagcaatcc aggtccaatg 2160 tacaacatga tggagacgga gctgaagccg ccgggcccgc agcaaacttc ggggggcggc 2220 ggcggcaact ccaccgcggc ggcggccggc ggcaaccaga aaaacagccc ggaccgcgtc 2280 aagcggccca tgaatgcctt catggtgtgg tcccgcgggc agcggcgcaa gatggcccag 2340 gagaacccca agatgcacaa ctcggagatc agcaagcgcc tgggcgccga gtggaaactt 2400 ttgtcggaga cggagaagcg gccgttcatc gacgaggcta agcggctgcg agcgctgcac 2460 atgaaggagc acccggatta taaataccgg ccccggcgga aaaccaagac gctcatgaag 2520 aaggataagt acacgctgcc cggcgggctg ctggcccccg gcggcaatag catggcgagc 2580 ggggtcgggg tgggcgccgg cctgggcgcg ggcgtgaacc agcgcatgga cagttacgcg 2640 cacatgaacg gctggagcaa cggcagctac agcatgatgc aggaccagct gggctacccg 2700 cagcacccgg gcctcaatgc gcacggcgca gcgcagatgc agcccatgca ccgctacgac 2760 gtgagcgccc tgcagtacaa ctccatgacc agctcgcaga cctacatgaa cggctcgccc 2820 acctacagca tgtcctactc gcagcagggc acccctggca tggctcttgg ctccatgggt 2880 tcggtggtca agtccgaggc cagctccagc ccccctgtgg ttacctcttc ctcccactcc 2940 agggcgccct gccaggccgg ggacctccgg gacatgatca gcatgtatct ccccggcgcc 3000 gaggtgccgg aacccgccgc ccccagcaga cttcacatgt cccagcacta ccagagcggc 3060 ccggtgcccg gcacggccat taacggcaca ctgcccctct cacacatgtg a 3111 <210> 16 <211> 3606 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence <400> 16 atggcgggac acctggcttc ggatttcgcc ttctcgcccc ctccaggtgg tggaggtgat 60 gggccagggg ggccggagcc gggctgggtt gatcctcgga cctggctaag cttccaaggc 120 cctcctggag ggccaggaat cgggccgggg gttgggccag gctctgaggt gtgggggatt 180 cccccatgcc ccccgccgta tgagttctgt ggggggatgg cgtactgtgg gccccaggtt 240 ggagtggggc tagtgcccca aggcggcttg gagacctctc agcctgaggg cgaagcagga 300 gtcggggtgg agagcaactc cgatggggcc tccccggagc cctgcaccgt cacccctggt 360 gccgtgaagc tggagaagga gaagctggag caaaacccgg aggagtccca ggacatcaaa 420 gctctgcaga aagaactcga gcaatttgcc aagctcctga agcagaagag gatcaccctg 480 ggatatacac aggccgatgt ggggctcacc ctgggggttc tatttgggaa ggtattcagc 540 caaacgacca tctgccgctt tgaggctctg cagcttagct tcaagaacat gtgtaagctg 600 cggcccttgc tgcagaagtg ggtggaggaa gctgacaaca atgaaaatct tcaggagata 660 tgcaaagcag aaaccctcgt gcaggcccga aagagaaagc gaaccagtat cgagaaccga 720 gtgagaggca acctggagaa tttgttcctg cagtgcccga aacccacact gcagcagatc 780 agccacatcg cccagcagct tgggctcgag aaggatgtgg tccgagtgtg gttctgtaac 840 cggcgccaga agggcaagcg atcaagcagc gactatgcac aacgagagga ttttgaggct 900 gctgggtctc ctttctcagg gggaccagtg tcctttcctc tggccccagg gccccatttt 960 ggtaccccag gctatgggag ccctcacttc actgcactgt actcctcggt ccctttccct 1020 gagggggaag cctttccccc tgtctccgtc accactctgg gctctcccat gcattcaaac 1080 aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact ggctggggat 1140 gtagaaagca atccaggtcc aatggctgtc agcgacgcgc tgctcccatc tttctccacg 1200 ttcgcgtctg gcccggcggg aagggagaag acactgcgtc aagcaggtgc cccgaataac 1260 cgctggcggg aggagctctc ccacatgaag cgacttcccc cagtgcttcc cggccgcccc 1320 tatgacctgg cggcggcgac cgtggccaca gacctggaga gcggcggagc cggtgcggct 1380 tgcggcggta gcaacctggc gcccctacct cggagagaga ccgaggagtt caacgatctc 1440 ctggacctgg actttattct ctccaattcg ctgacccatc ctccggagtc agtggccgcc 1500 accgtgtcct cgtcagcgtc agcctcctct tcgtcgtcgc cgtcgagcag cggccctgcc 1560 agcgcgccct ccacctgcag cttcacctat ccgatccggg ccgggaacga cccgggcgtg 1620 gcgccgggcg gcacgggcgg aggcctcctc tatggcaggg agtccgctcc ccctccgacg 1680 gctcccttca acctggcgga catcaacgac gtgagcccct cgggcggctt cgtggccgag 1740 ctcctgcggc cagaattgga cccggtgtac attccgccgc agcagccgca gccgccaggt 1800 ggcgggctga tgggcaagtt cgtgctgaag gcgtcgctga gcgcccctgg cagcgagtac 1860 ggcagcccgt cggtcatcag cgtcagcaaa ggcagccctg acggcagcca cccggtggtg 1920 gtggcgccct acaacggcgg gccgccgcgc acgtgcccca agatcaagca ggaggcggtc 1980 tcttcgtgca cccacttggg cgctggaccc cctctcagca atggccaccg gccggctgca 2040 cacgacttcc ccctggggcg gcagctcccc agcaggacta ccccgaccct gggtcttgag 2100 gaagtgctga gcagcaggga ctgtcaccct gccctgccgc ttcctcccgg cttccatccc 2160 cacccggggc ccaattaccc atccttcctg cccgatcaga tgcagccgca agtcccgccg 2220 ctccattacc aagagctcat gccacccggt tcctgcatgc cagaggagcc caagccaaag 2280 aggggaagac gatcgtggcc ccggaaaagg accgccaccc acacttgtga ttacgcgggc 2340 tgcggcaaaa cctacacaaa gagttcccat ctcaaggcac acctgcgaac ccacacaggt 2400 gagaaacctt accactgtga ctgggacggc tgtggatgga aattcgcccg ctcagatgaa 2460 ctgaccaggc actaccgtaa acacacgggg caccgcccgt tccagtgcca aaaatgcgac 2520 cgagcatttt ccaggtcgga ccacctcgcc ttacacatga agaggcattt taaaattgtc 2580 gctcctgtca aacaaactct taactttgat ttactcaaac tggctgggga tgtagaaagc 2640 aatccaggtc caatgtacaa catgatggag acggagctga agccgccggg cccgcagcaa 2700 acttcggggg gcggcggcgg caactccacc gcggcggcgg ccggcggcaa ccagaaaaac 2760 agcccggacc gcgtcaagcg gcccatgaat gccttcatgg tgtggtcccg cgggcagcgg 2820 cgcaagatgg cccaggagaa ccccaagatg cacaactcgg agatcagcaa gcgcctgggc 2880 gccgagtgga aacttttgtc ggagacggag aagcggccgt tcatcgacga ggctaagcgg 2940 ctgcgagcgc tgcacatgaa ggagcacccg gattataaat accggccccg gcggaaaacc 3000 aagacgctca tgaagaagga taagtacacg ctgcccggcg ggctgctggc ccccggcggc 3060 aatagcatgg cgagcggggt cggggtgggc gccggcctgg gcgcgggcgt gaaccagcgc 3120 atggacagtt acgcgcacat gaacggctgg agcaacggca gctacagcat gatgcaggac 3180 cagctgggct acccgcagca cccgggcctc aatgcgcacg gcgcagcgca gatgcagccc 3240 atgcaccgct acgacgtgag cgccctgcag tacaactcca tgaccagctc gcagacctac 3300 atgaacggct cgcccaccta cagcatgtcc tactcgcagc agggcacccc tggcatggct 3360 cttggctcca tgggttcggt ggtcaagtcc gaggccagct ccagcccccc tgtggttacc 3420 tcttcctccc actccagggc gccctgccag gccggggacc tccgggacat gatcagcatg 3480 tatctccccg gcgccgaggt gccggaaccc gccgccccca gcagacttca catgtcccag 3540 cactaccaga gcggcccggt gcccggcacg gccattaacg gcacactgcc cctctcacac 3600 atgtga 3606 <210> 17 <211> 6723 <212> DNA <213> herpes simplex virus 7 <400> 17 ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc 60 ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc 120 gtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata 180 taagcagagc tctctggcta actagagaac ccactgctta ctggcttatc gaaattaata 240 cgactcacta tagggagacc caagctggct agcgtttaaa cttaagcttg gtaccgagct 300 cggatccact agtccagtgt ggtggaattc tgcagatatc cagcacagtg gcggccgctc 360 gagtctagag ggcccgttta aacccgctga tcagcctcga ctgtgccttc tagttgccag 420 ccatctgttg tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc cactcccact 480 gtcctttcct aataaaatga ggaaattgca tcgcattgtc tgagtaggtg tcattctatt 540 ctggggggtg gggtggggca ggacagcaag ggggaggatt gggaagacaa tagcgttaat 600 taaaattcca gctgagcgcc ggtcgctacc attaccagtt ggtctggtgt caaaaataat 660 aataaccggg caggccatgt ctgcccgtat ttcgcgtaag gaaatccatt atgtactatt 720 taaaaaacac aaacttttgg atgttcggtt tattcttttt cttttacttt tttatcatgg 780 gagcctactt cccgtttttc ccgatttggc tacatgacat caaccatatc agcaaaagtg 840 atacgggtat tatttttgcc gctatttctc tgttctcgct attattccaa ccgctgtttg 900 gtctgctttc tgacaaactc ggaacttgtt tattgcagct tataatggtt acaaataaag 960 caatagcatc acaaatttca caaataaagc atttttttca ctgcattcta gttgtggttg 1020 tccaaactca tcaatgtatc ttatcatgtc tggatctctg acctgagatt ggcggcactg 1080 aggtagagat gcccgaaccc ccccgaggga gcgcgggacg cgccggggag ggctggggcc 1140 ggggagggct ggggccgggg agggctgggg ccggggaggg ctggggccgg ggagggctgg 1200 ggccggggag ggctggggcc ggggagggct ggggctgggg agggctgggg ctggggaggg 1260 ggcggtggtg tgtagcagga gcggtgtgtt gcgccggggt acgtctggag gagcgggagg 1320 tgcgcggtga cgtgtggatg aggaacagga gttgttgcgc ggtgagttgt cgctgtgagt 1380 tgtgttgttg ggcaggtgtg gtggatgacg tgacgtgtga cgtgcggagt gcgccgtgct 1440 ctgttggttt cacctgtggc agcccgggcc ccccgcgggc gcgcgcgcgc gcaaaaaagg 1500 cgggcggcgg tccgggcggc gtgcgcgcgc gcggcgggcg tggggggcgg ggccgcggga 1560 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1620 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1680 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ggggaggagc ggggggagga 1740 gcggggggag gagcgggggg aggagcgggg ggaggagcgg ccagacgccg aaaacgggcc 1800 ccccccaaaa cacacccccc gggggtcgcg cgcggccctt taaagcggtg gcggcgggca 1860 gcccgggccc cccgcggccg agactagcga gttagacagg caagcactac tcgcctctgc 1920 acgcacatgc ttgcctgtca aactctacca ccccggcacg ctctctgtct ccatggcccg 1980 ccgccgccgc catcgcggcc cccgccgccc ccggccgccc gggcccacgg gcgccgtccc 2040 aaccgcacag tcccaggtaa cgagctcgaa ttaattcttg aagacgaaag ggcctcgtga 2100 tacgcctatt tttataggtt aatgtcatga taataatggt ttcttagggt cgacccaggt 2160 ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tatttttcta aatacattca 2220 aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg 2280 aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc 2340 cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg 2400 ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt 2460 cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta 2520 ttatcccgtg ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat 2580 gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga 2640 gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca 2700 acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact 2760 cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc 2820 acgatgcctg cagcaatggc aacaacgttg cgcaaactat taactggcga actacttact 2880 ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccactt 2940 ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt 3000 gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt 3060 atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 3120 ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag 3180 attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat 3240 ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa 3300 aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca 3360 aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactcttttt 3420 ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg 3480 tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc 3540 ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga 3600 cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc 3660 agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct atgagaaagc 3720 gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca 3780 ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg 3840 tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta 3900 tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg gccttttgct 3960 cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac cgcctttgag 4020 tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt gagcgaggaa 4080 gcggaagagc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc 4140 ataggtcgac ctatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 4200 gtatacactc cgctatcgct acgtgactgg gtcatggctg cgccccgaca cccgccaaca 4260 cccgctgacg cgccctgacg ggcttgtctg ctcccggcat ccgcttacag acaagctgtg 4320 accgtctccg ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa acgcgcgagg 4380 cagccggcca ttatgcacga ccccgccccg acgccggcac gccgggggcc cgtggccgcg 4440 gcccgttggt cgaacccccg gccccgccca tccgcgccat ctgccatggg cggggcgcga 4500 gggcgggtgg gtccgcgccc cgccccgcat ggcatctcat taccgcccga tccggcggtt 4560 tccgcttccg ttccgcatgc taacgaggaa cgggcagggg gcggggcccg ggccccgact 4620 tcccggttcg gcggtaatga gatacgagcc ccgcgcgccc gttggccgtc cccgggcccc 4680 ccggtcccgc ccgccggacg ccgggaccaa cgggacggcg ggcggcccaa gggccgcccg 4740 ccttgccgcc cccccattgg ccggcgggcg ggaccgcccc aagggggcgg ggccgccggg 4800 taaaagaagt gagaacgcga agcgttcgca cttcgtccca atatatatat attattaggg 4860 cgaagtgcga gcactggcgc cgtgcccgac tccgcgccgg ccccgggggc gggcccgggc 4920 ggcggggggc gggtctctcc ggcgcacata aaggcccggc gcgaccgacg cccgcagacg 4980 gcgccggcca cgaacgacgg gagcggctgc ggagcacgcg gaccgggagc gggagtcgca 5040 gagggccgtc ggagcggacg gcgtcggcat cgcgacgccc cggctcggga tcgggatcgc 5100 atcggaaagg gacacgcgga cgcggggggg aaagacccgc ccaccccacc cacgaaacac 5160 aggggacgca ccccgggggc ctccgacgac agaaacccac cggtccgcct tttttgcacg 5220 ggtaagcacc ttgggtgggc ggaggagggg gggacgcggg ggtggaggag gggggacgcg 5280 ggggcggagg aggggggacg cgggggcgga ggagggggga cgcgggggcg gaggaggggg 5340 gacgcggggg cggaggaggg ggctcacccg cgttcgtgcc ttcccgcagg aggaacgtcc 5400 tcgtcgataa gctgatccat cgccaccatg gtgagcaagg gcgaggagct gttcaccggg 5460 gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc 5520 ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc 5580 ggcaagctgc ccgtgccctg gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc 5640 ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa 5700 ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa gacccgcgcc 5760 gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc 5820 aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc 5880 tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat ccgccacaac 5940 atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac 6000 ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgccct gagcaaagac 6060 cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc cgggatcact 6120 ctcggcatgg acgagctgta caagtaaagc ggccaacttg tttattgcag cttataatgg 6180 ttacaaataa agcaatagca tcacaaattt cacaaataaa gcattttttt cactgcattc 6240 tagttgtggt ttgtccaaac tcatcaatgt atcttatcat gtctggatcg gtttgaagat 6300 cttccgatgt acgggccaga tatacgcgtt gacattgatt attgactagt tattaatagt 6360 aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta 6420 cggtaaatgg cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga 6480 cgtatgttcc catagtaacg ccaataggga ctttccattg acgtcaatgg gtggactatt 6540 tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta 6600 ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg 6660 actttcctac ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt 6720 ttt 6723 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 18 gggggctagc cgccatggcg ggacacctgg cttc 34 <210> 19 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 19 gggggcggcc gctcagtttg aatgcatggg ag 32 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 20 ggggctcgag ccgccatgta caacatgatg gagac 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 21 ggggtctaga tcacatgtgt gagaggggca gtgtg 35 <210> 22 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 22 ggggagatct gccgccatga gtgtggatcc agcttg 36 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 23 gggggaattc acacgtcttc aggttgcatg 30 <210> 24 <211> 103 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 24 gggggcggcc gcaaaattgt cgctcctgtc aaacaaactc ttaactttga tttactcaaa 60 ctggctgggg atgtagaaag caatccaggt ccaggatccg ggg 103 <210> 25 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 25 ccccgatcct ggacctggat tgctttctac atccccagcc agtttgagta aatcaaagtt 60 aagagtttgg acaggagcga caattttgcg gccgccccc 99 <210> 26 <211> 101 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 26 gggggaattc aaaattgtcg ctcctgtcaa acaaactctt aactttgatt tactcaaact 60 ggctggggat gtagaaagca atccaggtcc actcgagggg g 101 <210> 27 <211> 98 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 27 ccccctcgag tggacctgga ttgctttcta catccccagc cagtttgagt aaatcaaagt 60 taagagtttg gacaggagcg acaattttga attccccc 98  

Claims (17)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Nanog을 코딩하는 유전자를 동시에 포함하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 인간에서 유래된 체세포 또는 불사화된 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는, 역분화 만능 줄기세포의 제조방법.(a) a gene encoding Sox2; Gene encoding Oct3 / 4; Culturing a somatic or immortalized cell line derived from a human in the presence of one herpes simplex amplicon virus comprising a gene encoding Nanog; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a). (a) Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; Nanog을 코딩하는 유전자; 및 Lin28을 코딩하는 유전자를 동시에 포함하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 인간에서 유래된 체세포 또는 불사화된 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는, 역분화 만능 줄기세포의 제조방법.(a) a gene encoding Sox2; Gene encoding Oct3 / 4; Gene encoding Nanog; Culturing a human-derived somatic or immortalized cell line in the presence of a single herpes simplex amplicon virus comprising a gene encoding Lin28; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a). (a) Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; 및 Klf4를 코딩하는 유전자를 동시에 포함하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 인간에서 유래된 체세포 또는 불사화된 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는, 역분화 만능 줄기세포의 제조방법.(a) a gene encoding Sox2; Gene encoding Oct3 / 4; Culturing a human-derived somatic or immortalized cell line in the presence of one herpes simplex amplicon virus comprising a gene encoding Klf4; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a). (a) Sox2를 코딩하는 유전자; Oct3/4를 코딩하는 유전자; Klf4를 코딩하는 유전자; 및 c-Myc를 코딩하는 유전자를 동시에 포함하는 1 종의 헤르페스 심플렉스 앰플리콘 바이러스 존재하에서 인간에서 유래된 체세포 또는 불사화된 세포 주를 배양하는 단계; 및 (b) 단계(a)로부터 얻어진 배양물로부터 배아줄기세포-유사 콜로니를 분리하는 단계를 포함하는, 역분화 만능 줄기세포의 제조방법.(a) a gene encoding Sox2; Gene encoding Oct3 / 4; Gene encoding Klf4; Culturing a human-derived somatic or immortalized cell line in the presence of one herpes simplex amplicon virus simultaneously comprising a gene encoding c-Myc; And (b) separating embryonic stem cell-like colonies from the culture obtained from step (a). 삭제delete 삭제delete 삭제delete 제6항 내지 제9항 중 어느 한 항에 있어서, 상기 헤르페스 심플렉스 바이러스가 The method of claim 6, wherein the herpes simplex virus is (i) Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Nanog를 코딩하는 유전자, 및 선택적으로 Lin28을 코딩하는 유전자; 또는 Sox2를 코딩하는 유전자, Oct3/4를 코딩하는 유전자, Klf4를 코딩하는 유전자, 및 선택적으로 c-Myc를 코딩하는 유전자를 포함하는 유전자 구조체로서, 상기 유전자들이 서열번호 1의 펩타이드를 코딩하는 유전자를 매개로 연결된 유도 유전자 구조체를 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드(Herpes simplex virus amplicon plasmid)에 재조합시켜 발현 플라스미드를 제작하는 단계, 및(i) a gene encoding Sox2, a gene encoding Oct3 / 4, a gene encoding Nanog, and optionally a gene encoding Lin28; Or a gene construct comprising a gene encoding Sox2, a gene encoding Oct3 / 4, a gene encoding Klf4, and optionally a gene encoding c-Myc, wherein the genes encode a peptide of SEQ ID NO: 1 Preparing an expression plasmid by recombining the induced gene construct connected through the herpes simplex virus amplicon plasmid into a herpes simplex virus amplicon plasmid, and (ii) 단계(i)에서 얻어진 발현 플라스미드를 수용 세포(permissive cell line)에 패키징(packaging)시키는 단계를 포함하는 방법에 의해 얻어진 것임을 특징으로 하는 제조방법.(ii) a method comprising the step of packaging the expression plasmid obtained in step (i) into a permissive cell line. 제13항에 있어서, 상기 서열번호 1의 펩타이드를 코딩하는 유전자가 서열번호 2의 염기서열을 갖는 것을 특징으로 하는 제조방법.The method of claim 13, wherein the gene encoding the peptide of SEQ ID NO: 1 has a nucleotide sequence of SEQ ID NO: 2. 제13항에 있어서, 상기 유전자 구조체가 서열번호 15 또는 16의 염기 서열로 구성된 것임을 특징으로 하는 제조방법.The method of claim 13, wherein the gene construct is composed of the nucleotide sequence of SEQ ID NO: 15 or 16. 제13항에 있어서, 상기 헤르페스 심플렉스 바이러스 앰플리콘 플라스미드가 서열번호 17의 염기서열을 갖는 것을 특징으로 하는 제조방법.The method of claim 13, wherein the herpes simplex virus amplicon plasmid has a nucleotide sequence of SEQ ID NO: 17. 제13항에 있어서, 상기 패키징이 상기 발현 플라스미드, fHSV△pac△27 0+, 및 pEBHICP27를 상기 수용 세포에 공동-형질도입(co-transfection)시킴으로써 수행되는 것을 특징으로 하는 제조방법.The method of claim 13, wherein said packaging is performed by co-transfection of said expression plasmid, fHSVΔpacΔ27 0+, and pEBHICP27 to the recipient cells.
KR1020080072101A 2008-07-24 2008-07-24 Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor KR101061541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080072101A KR101061541B1 (en) 2008-07-24 2008-07-24 Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080072101A KR101061541B1 (en) 2008-07-24 2008-07-24 Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor

Publications (2)

Publication Number Publication Date
KR20100011053A KR20100011053A (en) 2010-02-03
KR101061541B1 true KR101061541B1 (en) 2011-09-01

Family

ID=42085568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080072101A KR101061541B1 (en) 2008-07-24 2008-07-24 Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor

Country Status (1)

Country Link
KR (1) KR101061541B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055305B1 (en) * 2008-07-24 2011-08-09 차의과학대학교 산학협력단 Method for producing a virus containing two or more target genes simultaneously
WO2010028019A2 (en) * 2008-09-03 2010-03-11 The General Hospital Corporation Direct reprogramming of somatic cells using non-integrating vectors
KR20120134360A (en) * 2011-06-02 2012-12-12 서울대학교병원 Composition for improving dedifferentiation of cells and method for producing induced pluripotent stem cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nature, 제451권, 제7175호, 제141-147면 (2007년)

Also Published As

Publication number Publication date
KR20100011053A (en) 2010-02-03

Similar Documents

Publication Publication Date Title
KR102110187B1 (en) Nucleic acid for coding chimeric antigen feceptor protein and t lymphocyte for expression of chimeric antigen receprof prorein
CN112386684B (en) COVID-19 vaccine and preparation method and application thereof
CN109320615B (en) Chimeric antigen receptor targeting novel BCMA and uses thereof
CN111363046A (en) Chimeric antigen receptor targeting NKG2D, chimeric antigen receptor T cell, and preparation method and application thereof
EP1690937B1 (en) Method of constructing transgenic dendritic cell
CN108070608B (en) Chimeric antigen receptor targeting CD19-CD28-tEGFR and application thereof
CN112601811A (en) Production of engineered cells and uses thereof
CN111454372A (en) Construction and application of NKG2D-ACE2CAR-NK cell secreting super I L15
KR20210102870A (en) Cardiac Cell Reprogramming with Myocardin and ASCL1
KR101061541B1 (en) Method for preparing reverse differentiated pluripotent stem cells using herpes simplex amplicon virus containing reverse differentiation inducing factor
CN107281475B (en) Gene vaccine for preventing and treating tumor and preparation method and application thereof
CN110305219B (en) Use of T cell comprising Chimeric Antigen Receptor (CAR) modification for preparing cell medicament
KR20210046004A (en) How to genetically modify hematopoietic cells
KR100988289B1 (en) Gene constructs comprising two or more reprogramming-inducing genes and method for preparing induced pluripotent stem cells using the same
CN115885040A (en) Compositions useful for treating CDKL5 deficiency (CDD)
WO2023124973A1 (en) Method for treating tumors by means of combining exogenous antigen with therapeutic agent
AU2013262426B2 (en) Cellular vaccine and method of inducing an immune response in a subject
CN113980965A (en) Dual-functional expression vector and chimeric antigen receptor modified macrophage
KR101055305B1 (en) Method for producing a virus containing two or more target genes simultaneously
CN111154003B (en) Cas9 fusion protein for improving gene knock-in efficiency and exogenous gene knock-in integration system
CA3201011A1 (en) Vector
KR20230167100A (en) Compositions and methods for ocular transgene expression
JP7088902B2 (en) Nucleic acid encoding the chimeric antigen receptor protein and T lymphocytes expressing the chimeric antigen receptor protein
CN110885790B (en) Targeting MMSA-1 chimeric antigen receptor modified T lymphocyte and preparation method and application thereof
KR100981995B1 (en) FRM-EGF fusion protein and composition for wound healing comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140725

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170728

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180726

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 9