KR101060576B1 - Plastic scintillator and its manufacturing method - Google Patents

Plastic scintillator and its manufacturing method Download PDF

Info

Publication number
KR101060576B1
KR101060576B1 KR1020080111413A KR20080111413A KR101060576B1 KR 101060576 B1 KR101060576 B1 KR 101060576B1 KR 1020080111413 A KR1020080111413 A KR 1020080111413A KR 20080111413 A KR20080111413 A KR 20080111413A KR 101060576 B1 KR101060576 B1 KR 101060576B1
Authority
KR
South Korea
Prior art keywords
optical fiber
cell
scintillator
scintillation
plastic
Prior art date
Application number
KR1020080111413A
Other languages
Korean (ko)
Other versions
KR20100052612A (en
Inventor
정준모
박현숙
서준석
Original Assignee
정준모
박현숙
서준석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정준모, 박현숙, 서준석 filed Critical 정준모
Priority to KR1020080111413A priority Critical patent/KR101060576B1/en
Publication of KR20100052612A publication Critical patent/KR20100052612A/en
Application granted granted Critical
Publication of KR101060576B1 publication Critical patent/KR101060576B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/203Measuring radiation intensity with scintillation detectors the detector being made of plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명은 플라스틱 섬광체와 그 제조방법에 관한 것으로, 광섬유와 섬광셀 및 반사막을 모두 동시에 압출하여 플라스틱 섬광체 제조를 위한 시간과 비용을 대폭 감소하면서, 원하는 치수와 모양으로 플라스틱 섬광체를 제조할 수 있도록 하는 데 있다.The present invention relates to a plastic scintillator and a method of manufacturing the same, and simultaneously extrudes both an optical fiber, a scintillation cell and a reflective film, thereby greatly reducing the time and cost for the production of the plastic scintillator, and to produce the plastic scintillator in a desired dimension and shape. There is.

섬광체, 광섬유, 압출 Scintillator, optical fiber, extrusion

Description

플라스틱 섬광체와 그 제조방법{Plastic scintillator and manufacturing method of it}Plastic scintillator and manufacturing method thereof

본 발명은 플라스틱 섬광체와 그 제조방법에 관한 것으로, 광섬유가 섬광셀의 중심에 위치되도록 동시에 압출 성형함으로써, 제조시간과 단가를 대폭 감소시키는 플라스틱 섬광체와 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic scintillator and a method of manufacturing the same, and to a plastic scintillator and a method of manufacturing the same, which greatly reduce manufacturing time and cost by extrusion molding an optical fiber to be positioned at the center of the scintillation cell.

고 에너지를 가진 입자의 검출기 등에 사용되는 플라스틱 섬광체(scintillator)는 입사한 입자를 빛으로 변환하기 위한 섬광셀과, 상기 섬광셀에 삽입되어 섬광셀로부터 나오는 빛을 포집하여 외부로 전달하기 위한 광섬유로 구성된다.The plastic scintillator used for the detector of particles with high energy is a scintillator cell for converting the incident particles into light, and an optical fiber for capturing light from the scintillation cell inserted into the scintillator cell and transmitting it to the outside. It is composed.

이러한 플라스틱 섬광체를 제조하는 방법의 일 예로서 알루미늄 틀을 이용한 중합방법을 이용한 제조방법을 살펴보면, 알루미늄 틀에 단량체 스티렌(STYRENE) 용매 100g당 일차 형광첨가제로 2,5-디페닐옥사졸(PPO) 1g, 이차 형광첨가제로 1,4-비스-[5-페닐-2-옥사졸]벤젠(POPOP, 1,4-bis(5-phenyloxazol-2-yl)benzene) 0.05g을 넣어 혼합하고, 단량체 스티렌과 첨가물이 잘 섞이게 하기 위해 건조기에 넣어 100℃에서 약 1시간 정도 놓아둔 후 중합반응이 일어나는 온도인 약 120℃로 가열한다. 중합반응은 수시간 내에 일어나지만 반응하지 않은 단량체 스티렌은 색깔을 변하게 하여 플라스틱 섬광체의 특성을 나쁘게 하므로, 여분의 단량체 스티렌을 반응시키거나 증발시키기 위해 약 150시간 이상 가열한다. 중합반응 후 온도를 급격히 냉각시키면 폴리스티렌에 응력이 발생하므로 플라스틱 섬광체의 특성에 나쁜 영향을 미치기 때문에 12시간 이상 서서히 건조기에서 냉각한다. 그리고 틀에서 꺼낸 플라스틱 섬광체를 밀링 기계를 이용하여 필요한 형태로 가공하고, 거친 천과 부드러운 천으로 이루어진 고속 회전기를 이용하여 표면을 연마한다.As an example of a method of manufacturing such plastic scintillator, a manufacturing method using a polymerization method using an aluminum mold, 2,5-diphenyl oxazole (PPO) as a primary fluorescent additive per 100 g of the monomer styrene (STYRENE) solvent in the aluminum mold 1g, 0.05 g of 1,4-bis- [5-phenyl-2-oxazole] benzene (POPOP, 1,4-bis (5-phenyloxazol-2-yl) benzene) as a secondary fluorescent additive was added and mixed. In order to mix the styrene and the additive well, put it in a drier and leave it at about 100 ° C. for about 1 hour and then heat it to about 120 ° C., which is a temperature at which the polymerization reaction takes place. The polymerization takes place within a few hours, but the unreacted monomer styrene changes color and degrades the properties of the plastic scintillator, so that excess monomer styrene is heated for about 150 hours to react or evaporate. If the temperature is rapidly cooled after the polymerization reaction, a stress is generated in the polystyrene, and thus the plastic scintillator has a bad effect on the characteristics of the plastic scintillator. The plastic scintillator is removed from the mold and processed into a required shape using a milling machine, and the surface is polished using a high speed rotor made of coarse and soft cloth.

이러한 중합반응은 중합에 약 6-7일 소요되어 시간이 오래 걸리고, 중합을 위하여 고온의 작업이 요구되며, 틀에서 꺼낸 플라스틱 섬광체를 원하는 크기와 모양으로 2차 가공하는 작업(밀링, 연마 등)이 요구되어 시간과 비용 소모가 큰 문제점이 있었다.This polymerization takes about 6-7 days to polymerize, which takes a long time, requires high temperature work for polymerization, and secondary processing of the plastic scintillator from the mold to a desired size and shape (milling, polishing, etc.). This has been a major problem that is time consuming and costly.

그리고 상기한 종래의 섬광체 제조방법에서는 섬광셀만 제조되고 광섬유는 섬광셀과 함께 제조되지 않아서 섬광셀에 별도로 광섬유를 배치시키기 위한 'U'형 홈을 섬광셀 표면에 기계적으로 가공한 후, 'U'형 홈에 광섬유를 끼우고 마일러(Mylar) 테이프로 고정시켜 섬광체의 외주에 전체적으로 반사막을 수작업으로 씌워야 했으므로, 홈을 형성하고 광섬유를 끼우며 반사막을 씌우는 각 과정에 별도의 시간이 소요되고, 광섬유가 섬광체의 일측에만 위치되므로 광효율이 저하되는 문제점이 있었다.In the above-described conventional scintillator manufacturing method, only the scintillation cell is manufactured and the optical fiber is not manufactured together with the scintillation cell. Therefore, the 'U' groove for mechanically arranging the optical fiber in the scintillation cell is mechanically processed on the surface of the scintillation cell, and then 'U' 'Because the optical fiber was inserted into the groove and fixed with Mylar tape, the reflective film was manually covered on the outer circumference of the scintillator. Therefore, each process of forming the groove, inserting the optical fiber and covering the reflective film takes extra time. Since the optical fiber is located only on one side of the scintillator, there is a problem that the light efficiency is lowered.

한편, 종래의 플라스틱 섬광체 제조 방법의 다른 예로서는 압출 방식이 있는데, 상기한 압출 방식은 도 1에 나타내는 바와 같이 불활성 가스를 주입하면서 폴 리스티렌 알갱이와 형광첨가제를 혼합하여 압출기에서 중심에 광섬유가 삽입되는 삽입공이 형성되도록 섬광셀을 압출한 후, 삽입공으로 광섬유를 삽입하고, 섬광셀의 외주로 반사막을 수작업으로 씌우는 것으로, 이 또한 광섬유 삽입과정과 반사막을 씌우는 과정을 별도로 수행하여야 하므로 공정에 시간과 비용이 많이 소요되는 문제점이 있었고, 삽입공 내로 광섬유를 삽입하여야 하나 삽입공과 광섬유의 크기를 정확하게 맞추는데 제한이 있어서 정밀한 섬광체를 제조할 수 없는 문제점이 있었다.On the other hand, another example of the conventional plastic scintillator manufacturing method is an extrusion method, the extrusion method is that the optical fiber is inserted in the center in the extruder by mixing the polystyrene grains and the fluorescent additive while injecting an inert gas as shown in FIG. After extruding the scintillation cell to form the insertion hole, the optical fiber is inserted into the insertion hole and the reflective film is manually covered by the outer periphery of the scintillation cell. Also, the optical fiber insertion process and the reflective film covering process must be performed separately. There was a problem that it takes a lot, there is a problem that can not manufacture a precise scintillator because there is a limit to accurately fit the insertion hole and the size of the optical fiber into the insertion hole.

상기한 문제점을 해결하기 위한 본 발명의 목적은 광섬유와 섬광셀 및 반사막을 모두 동시에 압출하여 플라스틱 섬광체 제조를 위한 시간과 비용을 대폭 감소하면서, 원하는 치수와 모양으로 플라스틱 섬광체를 제조할 수 있도록 하는 데 있다.An object of the present invention for solving the above problems is to extrude both the optical fiber, the flash cell and the reflective film at the same time to significantly reduce the time and cost for the production of plastic scintillator, and to produce the plastic scintillator to the desired dimensions and shapes have.

상기한 목적을 달성하기 위한 본 발명의 특징은, 광섬유와 섬광셀 및 반사막을 동시에 압출 성형하여 광섬유를 중심으로 그 외주에 섬광셀이 일체로 형성되도록 플라스틱 섬광체를 제공하고, 상기한 섬광셀의 외주에는 반사막이 일체로 더 형성될 수 있고, 상기한 광섬유는 광섬유 코어만으로 구성되거나 광성유코어 외주에 클래딩(cladding)이 더 형성된 것으로 구성된다.A feature of the present invention for achieving the above object is, by simultaneously extruding the optical fiber, the flash cell and the reflective film to provide a plastic scintillator to form a flash cell integrally around the optical fiber, the outer periphery of the flash cell The reflective film may be further formed integrally, and the optical fiber may include only an optical fiber core or a cladding further formed on the outer periphery of the optical core.

그리고 본 발명의 다른 특징은 광섬유와 섬광셀을 포함한 섬광체의 각 층별 재료가 각각 투입되는 다수의 호퍼와, 광섬유의 외주에 섬광셀이 동시에 형성되도록 다수의 출구를 갖는 압출다이와, 상기한 호퍼로 투입된 재료가 압출다이의 다수 출구 중 해당하는 출구로 배출되도록 각각의 호퍼와 압출다이의 출구를 연결하는 실린더 및, 상기한 실린더의 내측에 구비되어 호퍼로 투입된 재료를 배출하는 스크류를 포함하는 압출기를 사용하여 광섬유와 섬광셀을 동시에 압출하여 광섬유의 외주에 섬광셀이 위치되도록 섬광체를 형성하는 압출단계와, 상기한 압출단계를 통과한 섬광체가 사이징기를 거치면서 정확한 치수와 형상을 갖도록 하는 사이징단계 와, 상기한 사이징기를 통과한 압출물이 냉각기를 통해서 냉각되는 단계를 포함하여 구성되는 압출 방법에 있다.And another feature of the present invention is a plurality of hoppers each of the material of each layer of the scintillator including the optical fiber and the scintillation cell, an extrusion die having a plurality of outlets so that the scintillation cells are formed at the outer periphery of the optical fiber, and the hopper Using an extruder comprising a cylinder connecting the respective hopper and the outlet of the extrusion die so that the material is discharged to a corresponding one of the plurality of outlets of the extrusion die, and a screw provided inside the cylinder to discharge the material injected into the hopper And extruding the optical fiber and the scintillation cell simultaneously to form the scintillator so that the scintillation cell is located on the outer periphery of the optical fiber, and the sizing step of the scintillator passing through the extruder step to have a correct dimension and shape while passing through the sizing machine; A pressure comprising the step of passing the extrudate having passed through the sizing machine through a cooler; It's on the way to get out.

상기한 구성에서, 섬광셀과 광섬유는 동일 내지 유사한 굴절률을 갖는 재료를 사용하고, 광섬유의 클래딩은 광섬유 코어보다 굴절율이 작은 재료를 사용한다.In the above configuration, the flash cell and the optical fiber use a material having the same to similar refractive index, and the cladding of the optical fiber uses a material having a smaller refractive index than the optical fiber core.

본 발명에 의하면 압출과정에서 광섬유와 섬광셀이 동시에 형성되고 이로 인하여 광섬유를 포함한 섬광체의 생산비가 대폭 절감되는 효과가 있다. 또한, 압출과정에서 광섬유와 섬광셀이 동시에 형성되므로 섬광체를 원하는 어떠한 모양과 크기로도 만들 수 있으므로 종래의 광섬유를 별도로 삽입하는 압출 방식에서 발생되는 시간과 공정의 과다소요 문제점과, 추가 공정으로 광섬유를 삽입함으로 발생되는 치수 불일치로 인한 섬광체의 불량 문제를 모두 해소하므로, 섬광체 제작에 소요되는 비용을 대폭 절감할 수 있고, 생산성이 향상되는 효과가 있으며, 원하는 치수대로 형성할 수 있어서 성형성이 향상되는 효과가 있다.According to the present invention, the optical fiber and the scintillation cell are simultaneously formed in the extrusion process, thereby greatly reducing the production cost of the scintillator including the optical fiber. In addition, since the optical fiber and the scintillation cell are formed at the same time during the extrusion process, the scintillator can be made in any shape and size desired, and the excessive time and process problems occurring in the extrusion method of inserting the conventional optical fiber separately, and the additional optical fiber It solves all the defects of the scintillator due to the dimensional mismatch caused by the insertion of the gasket, thereby greatly reducing the cost of the scintillator manufacturing, improving the productivity, and forming the desired dimensions, thereby improving the formability. It is effective.

아울러, 섬광셀의 외주에 반사막이 일체로 압출성형되므로 종래의 반사막을 일일이 수작업으로 씌워야하는 방법에 비하여 생산성이 향상되는 효과가 있다. In addition, since the reflective film is integrally extruded on the outer circumference of the flash cell, productivity is improved as compared with a method of manually covering the conventional reflective film manually.

이와 같이 성형성이 향상되고 생산비가 대폭 절감되므로, 종래의 섬광셀을 이용하는 각종 기기, 예를 들면 감마선 검출기, 중성자 검출기 등의 생산비가 감소될 수 있고, 이들 검출기의 성능개선이 이루어질 수 있게 되는 효과가 있다.Since the formability is improved and the production cost is greatly reduced, the production cost of various devices using conventional flash cells, for example, a gamma ray detector and a neutron detector, can be reduced, and the performance of these detectors can be improved. There is.

본 발명의 실시예를 하기에서 보다 상세하게 살펴본다.An embodiment of the present invention is described in more detail below.

도 2는 본 발명에 따른 섬광체 압출 시스템을 나타내는 블록도이고, 도 3은 압출기의 구조를 나타내는 도면이며, 도 4는 압출다이 구조를 나타내는 단면도이고, 도 5는 본 발명에 따른 플라스틱 섬광체를 나타내는 단면도이다.Figure 2 is a block diagram showing a flasher extrusion system according to the present invention, Figure 3 is a view showing the structure of the extruder, Figure 4 is a cross-sectional view showing the extrusion die structure, Figure 5 is a cross-sectional view showing a plastic flasher according to the present invention. to be.

본 발명에 따른 압출 시스템은 크게, 압출기(100)와 사이징기(200), 냉각기(300), 인출기(400)와 커팅기(500) 및 권취기(600)로 구성되며, 이러한 압출 시스템은 공지의 압출시스템을 본 발명의 섬광셀 모양에 맞게 수정한 것이므로 구체적인 설명은 생략한다.Extrusion system according to the present invention is largely composed of an extruder 100 and a sizing machine 200, a cooler 300, a drawer 400 and a cutter 500 and a winding machine 600, such an extrusion system is known Since the extrusion system is modified to fit the shape of the flash cell of the present invention, a detailed description thereof will be omitted.

상기한 구성에서 압출기(100)는 광섬유 코어와 클래딩, 섬광셀, 반사막을 포함한 섬광체의 각 층별 재료가 각각 투입되는 다수의 호퍼(112)(122)(132)(142)(152)와, 광섬유 코어를 중심으로 외측으로 클래딩, 섬광셀, 반사막이 형성되도록 각각의 형상에 대응되는 다수의 출구를 갖는 압출다이(160)와, 상기한 호퍼(112)(122)(132)(142)(152)로 투입된 재료가 압출다이(160)의 다수 출구 중 해당하는 출구로 배출되도록 각각의 호퍼(112)(122)(132)(142)(152)와 압출다이(160)의 출구를 연결하는 실린더(114)(124)(134)(144)(154) 및, 상기한 실린더(114)(124)(134)(144)(154)의 내측에 구비되어 호퍼(112)(122)(132)(142)(152)로 투입된 재료를 배출하는 스크류를 포함하여 구성된다.In the above configuration, the extruder 100 includes a plurality of hoppers 112, 122, 132, 142 and 152 into which the material of each layer of the scintillator including the optical fiber core and the cladding, the scintillation cell, and the reflective film is respectively injected. Extrusion die 160 having a plurality of outlets corresponding to the respective shapes so that the cladding, the flash cell, and the reflective film are formed outwardly around the core, and the hoppers 112, 122, 132, 142, and 152 described above. Cylinders connecting the outlets of each of the hoppers 112, 122, 132, 142 and 152 and the extrusion die 160 so that the material injected into the outlet is discharged to the corresponding one of the multiple outlets of the extrusion die 160. (114) 124, 134, 144, 154 and the cylinders 114, 124, 134, 144, 154 are provided inside the hopper 112, 122, 132 And a screw for discharging the material introduced into the (142) and (152).

그리고 상기한 사이징기(200)는 내부는 진공상태이며, 압출기(100)에서 배출된 섬광체가 관통되는 관통로가 형성되며, 상기한 관통로는 섬광체의 정확한 형상 과 치수에 따라 설계된다.In addition, the sizing machine 200 has a vacuum inside, a through passage through which the scintillator discharged from the extruder 100 is formed, and the through passage is designed according to the exact shape and dimensions of the scintillator.

또한, 상기한 사이징기(200)와 연속하여 냉각기(300)가 설치되며, 냉각기(300)의 후방에는 인출기(400)와 커팅기(500)가 구비된다.In addition, the cooler 300 is installed in series with the sizing machine 200, and the extractor 400 and the cutting machine 500 are provided at the rear of the cooler 300.

상기한 구성에서 압출다이(160)는 도 3에 나타내는 바와 같이 중심에 광섬유 코어용 배출구(162)가 형성되고, 광섬유 코어용 배출구(162)의 외측에는 각각 제 1/2클래딩용 배출구(164)(165)가 형성되며, 제 2클래딩용 배출구(165)의 외측에는 섬광셀용 배출구(167)가 형성되고, 섬광셀용 배출구(167)의 외측에는 반사막용 배출구(169)가 형성된다.As shown in FIG. 3, the extrusion die 160 has the outlet 162 for the optical fiber core in the center, and the first and second cladding outlets 164 on the outside of the outlet 162 for the optical fiber core. 165 is formed, a flash cell discharge port 167 is formed outside the second cladding discharge port 165, and a reflective film discharge port 169 is formed outside the flash cell discharge port 167.

이상과 같은 압출 시스템을 이용한 본 발명의 압출 방법을 하기에서 설명한다.The extrusion method of the present invention using the extrusion system as described above will be described below.

우선, 본 발명에서 사용되는 재료를 살펴본다.First, look at the material used in the present invention.

섬광셀과 광섬유를 위한 재료로는 폴리스티렌(PS)과 형광첨가제를 사용한다.Polystyrene (PS) and fluorescent additives are used as materials for scintillation cells and optical fibers.

상기에서 섬광셀을 위한 형광첨가제는 일차 형광첨가제와 이차 형광첨가제로 구분되는데, 일차 형광첨가제는 파라 테르페닐(PT)나 2,5-디페닐옥사졸(PPO)를 사용한다. 그리고 이차 형광첨가제, 즉 파장 전이제는 POPOP나, 4-비스(2-메틸스티릴) benzene(4-bis(2-Methylstyryl) 벤젠)(bis-MSB)를 사용한다.In the above, the fluorescent additives for the scintillation cell are classified into primary fluorescent additives and secondary fluorescent additives, and primary fluorescent additives use paraphenyl (PT) or 2,5-diphenyloxazole (PPO). Secondary fluorescent additives, that is, wavelength transfer agents, use POPOP or 4-bis (2-methylstyryl) benzene (4-bis (2-Methylstyryl) benzene) (bis-MSB).

그리고 광섬유를 위한 형광첨가제는 K27을 사용하거나 미국 National Diagnostics 제품인 BBQ(7H-benzimidazo[2,1 -a]benz[de]isoquinoline-7-one)와 BASF사의 Lumogen을 사용하여, 검출기 활용 용도에 따라 빨강, 주황, 노랑, 초록, 파랑, 보라의 색과 분홍색의 다른 색의 형광첨가제를 첨가하여 파장 영역 411nm - 613nm의 파장을 전부 이용하여, 기존의 광전자증배관(PMT)이나 실리콘-광전자증배기(SiPM: Silicon photomultipliers) 또는 다중 픽셀 광자 계수기(MPPC: Multi Pixel Photon Counter)에도 사용할 수 있도록 한다.Fluorescent additives for optical fibers are based on K27 or US National Diagnostics BBQ (7H-benzimidazo [2,1-a] benz [de] isoquinoline-7-one) and BASF's Lumogen. Existing photomultiplier tube (PMT) or silicon photoelectron multiplier using all wavelengths from 411nm to 613nm by adding fluorescent additives of red, orange, yellow, green, blue, violet and other colors of pink It can also be used for Silicon photomultipliers (SiPM) or Multi Pixel Photon Counters (MPPC).

그리고 상기한 광섬유의 클래딩으로 사용될 재료를 살펴보면, 광섬유의 1차 클래딩은 광섬유 코어로 PS를 사용할 경우에는 PMMA(Poly Methyl Metha Acrylate)를 사용하는데, 상기한 PMMA는 굴절률이 1.59이고 밀도는 1.19이다. 그리고 상기한 1차 클래딩 외주에 코팅되는 2차 클래딩은 PMMA보다 굴절률이 작은 어떠한 물질(예를 들면 PTFE, PEFE)도 사용할 수 있으며, 경우에 따라 2차 클래딩은 생략할 수도 있다.In addition, looking at the material to be used as the cladding of the optical fiber, the primary cladding of the optical fiber uses a poly methyl methacrylate (PMMA) when using PS as the optical fiber core, the PMMA has a refractive index of 1.59 and a density of 1.19. The secondary cladding coated on the outer circumference of the primary cladding may use any material having a lower refractive index than PMMA (for example, PTFE and PEFE), and in some cases, the secondary cladding may be omitted.

한편, 광섬유 코어를 PMMA로 사용할 경우에는 클래딩으로 PTFE, PEFE 등 굴절률이 PMMA보다 작은 것을 사용한다. On the other hand, when the optical fiber core is used as PMMA, the refractive index of PTFE, PEFE, etc., which is smaller than PMMA is used as cladding.

그리고 섬광셀의 외측에 위치되는 반사막은 알루미늄이나 이산화티타늄(TiO2)을 사용한다.The reflective film positioned outside the flash cell is made of aluminum or titanium dioxide (TiO 2 ).

그리고 상기한 재료를 사용한 제조방법을 살펴본다.And look at the manufacturing method using the above materials.

우선, PS 알갱이를 60-90℃에서 4-8시간 동안 건조한다. 이후 건조된 PS에 형광첨가제를 넣어 10-30분간 혼합한다.First, the PS granules are dried at 60-90 ° C. for 4-8 hours. Then add a fluorescent additive to the dried PS and mix for 10-30 minutes.

상기에서 혼합과정은 두 가지의 다른 방법으로 할 수 있다. 그 하나는 폴리 스티렌 알갱이와 형광첨가제를 미리 혼합하여 압출기의 호퍼에 투입하는 것이고, 다른 하나는 폴리스티렌과 형광첨가제를 복수개의 압출기 호퍼에 각각 주입하여 압출기의 실린더 안에서 혼합되도록 하는 것으로, 본 발명의 실시예에서는 미리 혼합하는 방법을 사용하며, 이 경우 형광첨가제가 잘 고르게 분포되도록 혼합에 주의한다.The mixing process can be done in two different ways. One is to mix the polystyrene grains and the fluorescent additives in advance to the hopper of the extruder, the other is to inject the polystyrene and the fluorescent additives into the plurality of extruder hoppers respectively to be mixed in the cylinder of the extruder, the practice of the present invention In the example, a method of mixing in advance is used. In this case, pay attention to mixing so that the fluorescent additives are evenly distributed.

그리고 준비된 재료를 각각의 출구에 해당하는 호퍼에 투입하여 광섬유 코어와 클래딩, 섬광셀 및 반사막을 동시에 압출하여 광섬유 코어를 중심으로 하여 광섬유 코어, 클래딩(1차/2차), 섬광셀 및 반사막이 순차적으로 위치되도록 한다.Then, the prepared material is put into a hopper corresponding to each outlet, and the optical fiber core, the cladding, the flash cell, and the reflective film are simultaneously extruded, and the optical fiber core, the cladding (primary / secondary), the flash cell, and the reflective film Position them sequentially.

상기한 압출 단계를 통과한 섬광체는 사이징기를 거치면서 정확한 치수와 형상을 갖게 되는데, 압출기의 압출다이는 원하는 섬광체의 치수보다 다소 큰 치수를 갖도록 하고 사이징기에는 다수의 단계를 거쳐서 원하는 치수를 얻을 수 있도록 다수개의 사이징 다이가 구비된다.The scintillator passed through the extrusion step has a precise dimension and shape while passing through the sizing machine. The extrusion die of the extruder has a size slightly larger than that of the desired scintillator, and the sizing machine can obtain a desired dimension through a plurality of steps. A number of sizing dies are provided.

그리고 원하는 치수로 형성된 섬광체는 냉각기를 통해서 냉각되고, 인취기를 통해서 인취된 섬광체는 커팅기에 의해서 원하는 사이즈로 절단된다.The scintillator formed to the desired dimension is cooled through the cooler, and the scintillator drawn through the takeover machine is cut into the desired size by the cutter.

이와 같이 형성된 섬광체는 정사각형, 육각형, 직사각형의 모양이 있으며, 내부로부터 도 5에 나타내는 바와 같이 광섬유 코어(172), 1/2차 클래딩(174)(175), 섬광셀(177), 반사막(179)으로 구성되며, 광섬유의 직경은 필요에 따라 결정한다.The scintillator thus formed has square, hexagonal, and rectangular shapes, and as shown in FIG. 5 from the inside, the optical fiber core 172, the half-clad cladding 174, 175, the flash cell 177, and the reflective film 179. The diameter of the optical fiber is determined as necessary.

도 1은 종래의 압출 방법에 의한 플라스틱 섬광체의 제조과정을 나타내는 도면1 is a view showing a manufacturing process of a plastic scintillator by a conventional extrusion method

도 2는 본 발명에 따른 압출시스템을 나타내는 도면2 is a view showing an extrusion system according to the present invention;

도 3은 본 발명에 따른 압출기의 개략적인 구조를 나타내는 도면Figure 3 shows a schematic structure of an extruder according to the invention

도 4는 본 발명에 따른 압출다이의 구조를 나타내는 단면도4 is a cross-sectional view showing the structure of an extrusion die according to the present invention.

도 5는 본 발명에 따른 플라스틱 섬광체를 나타내는 단면도5 is a cross-sectional view showing a plastic scintillator according to the present invention

Claims (5)

폴리스티렌과 형광첨가제로 구성되어 입사한 입자를 빛으로 변환하기 위한 섬광셀과, 상기 섬광셀의 중심에 위치되며 섬광셀로부터 나오는 빛을 포집하여 외부로 전달하기 위한 광섬유로 구성되며, 상기 섬광셀과 광섬유가 동시에 압출되어 일체로 구성되는 것을 특징으로 하는 플라스틱 섬광체.The flash cell is composed of a polystyrene and a fluorescent additive to convert the incident particles into light, and is located in the center of the flash cell, and consists of an optical fiber for collecting light from the flash cell and transmitting it to the outside. Plastic scintillator, characterized in that the optical fiber is simultaneously extruded to be configured integrally. 제 1항에 있어서, 상기한 섬광셀의 외주에 반사막이 일체로 더 형성되는 것을 특징으로 하는 플라스틱 섬광체.The plastic scintillator according to claim 1, wherein a reflective film is further formed integrally with the outer circumference of the scintillation cell. 제 1항 또는 제 2항에 있어서, 상기한 광섬유는 코어만으로 구성되거나 광섬유와 섬광셀 사이에 광섬유 코어보다 굴절율이 작은 클래딩 층이 더 일체로 형성된 것 중에서 택일되는 것을 특징으로 하는 플라스틱 섬광체.3. The plastic scintillator according to claim 1 or 2, wherein the optical fiber is selected from the group consisting of a core alone, or a cladding layer having a smaller refractive index than the optical fiber core is integrally formed between the optical fiber and the flash cell. 폴리스티렌과 형광첨가제로 구성된 플라스틱 섬광셀 재료와 플라스틱 광섬유재료를 포함한 섬광체의 각 층별 재료가 각각 투입되는 다수의 호퍼와, 광섬유의 외주에 섬광셀이 동시에 형성되도록 다수의 출구를 갖는 압출다이와, 상기한 호퍼로 투입된 재료가 압출다이의 다수 출구 중 해당하는 출구로 배출되도록 각각의 호퍼와 압출다이의 출구를 연결하는 실린더 및, 상기한 실린더의 내측에 구비되어 호퍼로 투입된 재료를 배출하는 스크류를 포함하는 압출기를 사용하여, A plurality of hoppers into which the material of each layer of the scintillator including the plastic flash cell material and the plastic optical fiber material composed of polystyrene and the fluorescent additive is respectively injected, and an extrusion die having a plurality of outlets to simultaneously form the scintillation cell on the outer periphery of the optical fiber; A cylinder connecting each hopper and an outlet of the extrusion die so that the material injected into the hopper is discharged to a corresponding one of the plurality of outlets of the extrusion die, and a screw provided inside the cylinder to discharge the material injected into the hopper. Using an extruder, 입사한 입자를 빛으로 변환하기 위한 섬광셀의 내부에 상기 섬광셀로부터 나오는 빛을 포집하여 외부로 전달하기 위한 광섬유가 위치되도록 광섬유와 섬광셀을 동시에 압출하는 압출단계와, An extrusion step of simultaneously extruding the optical fiber and the scintillation cell so that an optical fiber for collecting the light from the scintillation cell and transmitting it to the outside is located inside the scintillation cell for converting the incident particles into light; 상기한 압출단계를 통과한 섬광체가 사이징기를 거치면서 정확한 치수와 형상을 갖도록 하는 사이징단계와, A sizing step in which the scintillator passing through the extrusion step has a correct dimension and shape while passing through a sizing machine; 상기한 사이징기를 통과한 압출물이 냉각기를 통해서 냉각되는 단계를 포함하여 구성되는 것을 특징으로 하는 플라스틱 섬광체 제조 방법.And a step of cooling the extrudate passing through the sizing machine through a cooler. 제 4항에 있어서, 상기한 섬광셀과 광섬유는 동일 내지 유사한 굴절율을 갖는 재료를 사용하는 것을 특징으로 하는 플라스틱 섬광체 제조 방법.The method of claim 4, wherein the scintillation cell and the optical fiber use a material having the same to similar refractive index.
KR1020080111413A 2008-11-11 2008-11-11 Plastic scintillator and its manufacturing method KR101060576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080111413A KR101060576B1 (en) 2008-11-11 2008-11-11 Plastic scintillator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080111413A KR101060576B1 (en) 2008-11-11 2008-11-11 Plastic scintillator and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20100052612A KR20100052612A (en) 2010-05-20
KR101060576B1 true KR101060576B1 (en) 2011-08-31

Family

ID=42277832

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080111413A KR101060576B1 (en) 2008-11-11 2008-11-11 Plastic scintillator and its manufacturing method

Country Status (1)

Country Link
KR (1) KR101060576B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126164A1 (en) * 2010-04-08 2011-10-13 Suh Jun-Suhk Plastic scintillator and a production method therefor
US9869778B2 (en) 2012-11-15 2018-01-16 Carestream Health, Inc. Digital radiography detector
US20140270039A1 (en) * 2013-03-14 2014-09-18 Westinghouse Electric Company Llc Nuclear radiation dosimeter using stress induced birefringence changes in fiber optic cables
WO2020125139A1 (en) * 2018-12-19 2020-06-25 同方威视技术股份有限公司 Mold and method for manufacturing reflective layer of scintillator
EP4214557A1 (en) * 2020-09-21 2023-07-26 Luxium Solutions, LLC Optical light guide including fluorescent material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065939A (en) 1998-08-18 2000-03-03 Wired Japan:Kk Optical fiber and optical fiber cable
JP2002277554A (en) * 2001-03-16 2002-09-25 Wired Japan:Kk Optical fiber and optical fiber cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065939A (en) 1998-08-18 2000-03-03 Wired Japan:Kk Optical fiber and optical fiber cable
JP2002277554A (en) * 2001-03-16 2002-09-25 Wired Japan:Kk Optical fiber and optical fiber cable

Also Published As

Publication number Publication date
KR20100052612A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
KR101060576B1 (en) Plastic scintillator and its manufacturing method
KR101802053B1 (en) Color conversion film, method for preparing the same, back light unit and display appratus
KR101975350B1 (en) Color conversion film and backlight unit and display apparatus comprising the same
EP3690495B1 (en) Method for manufacturing optical sheet, optical sheet, and image display device
KR101915352B1 (en) Backlight unit and display apparatus comprising the same
KR20080070530A (en) Color purity improving sheet, optical apparatus, image display, and liquid crystal display
EP3557288B1 (en) Method of producing a plastic scintillation fiber
KR102014256B1 (en) Display screen for image display system and method for manufacturing the same
JP2005526976A (en) Photopic detector system and filter for it
CZ2007732A3 (en) Light diffusing plate
KR102324966B1 (en) Display appratus
KR20170067073A (en) Color conversion film and method for preparing the same
WO2018043383A1 (en) High-dose field plastic scintillation fiber and method of manufacturing same
WO2011126164A1 (en) Plastic scintillator and a production method therefor
CN112109410A (en) Preparation method of perovskite quantum dot film
CN110041614A (en) A kind of quantum dot light transition material and its preparation method and application
CN1768436A (en) Visible wavelength detector systems and filters therefor
KR20160108212A (en) Color conversion film integrated wih polarizing plate and display apparatus comprising the same
CN109822887B (en) Plastic scintillator and preparation method thereof
KR20160097147A (en) Color conversion film and method for preparing the same and back light unit comprising the same
CN112140677A (en) Perovskite quantum dot film
KR20160097153A (en) Color conversion film and method for preparing the same and back light unit comprising the same
CN108828897A (en) Colored filter and WOLED display
CN104479272A (en) Light conversion master batch used for photovoltaic encapsulation adhesive film and preparation method thereof
KR102260406B1 (en) Optical composite sheet and display apparatus comprising same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150603

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190812

Year of fee payment: 9