KR101059342B1 - 수소 지-사이클 로터리 내연 기관 - Google Patents

수소 지-사이클 로터리 내연 기관 Download PDF

Info

Publication number
KR101059342B1
KR101059342B1 KR1020087010418A KR20087010418A KR101059342B1 KR 101059342 B1 KR101059342 B1 KR 101059342B1 KR 1020087010418 A KR1020087010418 A KR 1020087010418A KR 20087010418 A KR20087010418 A KR 20087010418A KR 101059342 B1 KR101059342 B1 KR 101059342B1
Authority
KR
South Korea
Prior art keywords
vane
rotor
chamber
vanes
stator
Prior art date
Application number
KR1020087010418A
Other languages
English (en)
Other versions
KR20080059271A (ko
Inventor
베리 알. 구슬리
Original Assignee
프라임 무버 인터네셔널, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프라임 무버 인터네셔널, 엘엘씨 filed Critical 프라임 무버 인터네셔널, 엘엘씨
Publication of KR20080059271A publication Critical patent/KR20080059271A/ko
Application granted granted Critical
Publication of KR101059342B1 publication Critical patent/KR101059342B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

수소 지-사이클 로터리 베인 내연 기관은 엔진 열을 최대한 유용한 일로 변환한다. 소듐 증기 챔버는 과도한 연소열을 연소 챔버로 전달하여 유용한 일을 하는데 사용하도록 한다. 활성 냉각 시스템은 엔진 하우징 스테이터, 로터, 슬라이딩 베인들에서 열을 흡수하여 연소 사이클로 다시 보낸다. 재흡수된 열은 연소 사이클에서 수소와 예혼합되어 피크 연소 온도를 줄이고, 초기 및 후기 연소 챔버 분사 단계에서 소듐 증기 챔버로부터의 열전달을 돕고, 챔버 온도 조절에 사용되고, 챔버 증기 압력을 높이는 데 사용된다. 연소 챔버 밀봉 시스템은 로터와 스테이터 사이에 축 실링들, 로터와 슬라이딩 베인들 사이에 베인면 실링들, 및 슬라이딩 베인들의 외측 주변부들과 스테이터 사이에 토글링 스플릿 베인 실링들을 포함한다. 슬라이딩 베인들은 베인 벨트 시스템의 지지를 받는 로터의 내외부로 왕복운동한다. 베인 벨트 시스템은 빠르게 회전하는 로터에 의해 발생해는 원심력에 대항하도록 구심력을 슬라이딩 베인들에 인가한다. 열차단 코팅은 열전달 및 열변형을 을 최소화한다. 고체 윤활제들은 고온 윤활 및 내구성을 보장한다.
지-사이클, 수소, 로터리, 연소 챔버, 베인

Description

수소 지-사이클 로터리 내연 기관{HYDROGEN G-CYCLE ROTARY INTERNAL COMBUSTION ENGINE}
본 출원은 2005년 9월 29일 출원된 미국 가출원 60/721,521의 효과를 받으며, 상기 가출원의 전체 내용을 인용한다.
본 발명은 내연 기관에 관한 것으로, 보다 상세하게는, 수소 연료 열동력 지-사이클을 이용하는 로터리 베인 기관에 관한 것이다.
세계 각국의 석유에 대한 수요의 증가로 인해 에너지 가격이 상승하고, 이로 인해 인플레이션의 우려가 고조되고 있으며 유한한 석유 자원에 대한 경쟁으로 국가간의 긴장감 마저 감돌고 있다. 수요를 충족시킬 정도로 충분한 석유가 공급된다고 하더라도, 석유의 사용은 지구 온난화의 원인이 되는 이산화 탄소 방출량 증가가 문제가 된다.
현재 다수의 수송, 석유, 에너지 기업들 및 정부들이 화석 연료를 대체할 연료를 개발할 목적으로 수소 관련 연구와 개발 프로그램에 막대한 자금을 투자하고 있다. 예를 들어, 많은 자동차 업체들이 수소 연료 전지 차량을 개발하고 있다. 하지만, 연료 전지의 내구성, 효율, 연료의 순도, 수소의 저장, 및 비용과 관련된 문제가 수소 연료 전지 차량의 실용화의 큰 장벽이 되고 있다.
또한, 자동차 메이커들은 현재의 내연 기관 차량과 미래의 연료 전지 차량의 중간 단계 차량으로서 하이브리드 전기/내연 기관 동력 시스템을 개발하고 있다. 그러나, 하이브리드 전기/내연 기관 차량이 높은 가격을 상쇄시킬 만큼 충분한 효율성을 소비자들에게 제공하는 지는 의문이다.
기존의 내연 기관 시스템을 개조하여 수소를 이용하여 구동하도록 하는 것 또한 문제가 있다. 즉, 수소의 연소 온도는 가솔린의 연소 온도 보다 상당히 높기 때문에, 녹스(NOx) 배출량이 상당히 증가하는 문제가 있다. 녹스 배출을 줄이기 위해 희박 수소 연료 혼합물(lean hydrogen fuel mixture)을 사용하는 것은 출력을 크게 떨어뜨리는 문제를 야기한다. 이러한 출력 저하 문제는 직접 수소 분사 방식을 사용하여 대처할 수 있지만, 직접 수소 분사 장치는 고가이고 고압의 구동 조건과 정밀성을 요구한다. 한번의 분사 펄스로 분사될 수 있는 연료량은 제한되어 있기 때문에 큰 출력을 내기 어렵다는 문제도 있다. 또한, 수소 가스의 건조성(dryness)은 펄스 인젝터의 작동을 어렵게 하고 마모를 증가 시킨다. 게다가, 수소 가스는 확산성이 높기 때문에, 수소 가스가 엔진의 연소실에서 실링부를 통과하여 크랭크 샤프트쪽으로 유출되어 매우 불완전한 연소가 야기 되고/되거나 크랭크 샤프트쪽의 윤활유가 점화 될 수도 있다.
고 효율의 수소 지-사이클 로터리 베인 내연 기관은 열역학적 에너지 이득(thermodynamic energy benefits)이 크고, 녹스(NOx) 배출이 적고, 연료 경제성(fuel economy)이 우수하며, 엔진 무게 및 체적 당 높은 파워 밀도(power-density)가 높아 향상된 정미 열효율(thermal brake efficiency)을 갖는다. 엔진은 또한 로터리 베인 엔진의 기계적 이득을 최대화하고, 향상된 실링, 로터 및 하우징 시스템들을 구비한 지-사이클의 동작을 보완하고, 열 손실 및 에너지 파괴(energy destruction)를 최소화하며, 그리고 마찰을 감소시키도록 최적화되어 신뢰성(reliability), 동작 수명(operating life), 그리고 소음, 진동 및 잡소리(harshness) 성능(NVH)을 향상시킨다.
지-사이클 및 로터리 베인 내연 기관에서 열역학적 열 손실은 열을 회수하고, 소듐(sodium) 증기 챔버, 챔버 물분사(chamber water injections) 및 기하학적 챔버 과팽창(geometric chamber over-expansion)을 이용하여 회수한 열을 다시 주입함으로써(re-inserting) 줄일 수 있다. 이렇게 하지 않는 경우 냉각 시스템, 대기로 열 및 배출 가스 엔탈피(enthalpy)가 손실된다. 활성수 냉각 시스템(active water cooling system)은 하우징으로부터 열을 포획(capture)하고, 포획한 열을 엔진 사이클로 다시 보낸다. 이러한 열 전달 흐름들을 모두 결합(combining)하여 파워 발생 및 추진 응용(propulsion applications)에 이상적으로 적합한 높은 파워 밀도 및 65% 내지 80%의 높은 전체 정미 열효율을 가지는 엔진을 제공할 수 있다
본 발명의 수소 엔진은 향상된 연소 공정, 향상된 열 전달 냉각 및 향상된 수소 연료 운반, 가변 물 압축비, 넓은 연료/공기 등가(equivalence) 작동 범위, 향상된 수소 점화(ignition), 확장된 연소/팽창 챔버, 긴 연소 시간 및 초기 및 후기 단계 물 분사(early and late stage water injections)를 가지는 에너지 가역(reversible) 소듐 증기 챔버 열 전달 시스템을 이용한 낮은 열 폐기(rejection) 손실로부터 수소 고 효율 열역학적 지-사이클을 이용하여 전술한 목적들을 성취한다.
본 발명의 수소 엔진은 스플릿 베인 실링들(split vane seals), 스넙 노우즈 팁(snub nose tip), 다이나믹 엑셜(dynamic axial) 스플릿 베인 씰링들, 베인 씰링 가스 통로들(passages), 다이나믹 로터(rotor) 엑셜 실링들, 베인면(vane face) 실링들, 베인 구조, 베인 히트 파이프 채널 냉각/열 전달 및 베인 반원심력(anti-centrifugal) 벨트 시스템들로 구성된 향상된 실링 시스템을 가진다. 엔진은 향상된 베인 접선 베어링 시스템으로부터 증기 챔버 냉각/열 전달 및 감소된 베인 마찰을 이용한 로터 열 제어를 갖는 향상된 로터 구조를 가진다. 엔진은 보다 넓은 팽창을 위한 찌그러진 타원형 내측 하우징 스테이터 구조(distorted oval inner housing stator geometry), 높은 하우징 작동 온도, 고체 윤활제(solid lubricants), 활성수 냉각/열 전달, 감소된 수소 누출, 외측 증기 챔버들 및 절연 커버(insulation cover)를 구비한 향상된 하우징을 가진다.
본 발명은 소듐 전기 챔버에 위치한 알칼리 금속 열전기 컨버터(alkaline metal thermal electrical converter: AMTEC)로부터 향상된 직류 전원(direct electrical power)을 더 제공한다.
본 발명의 또 다른 목적은 낮은 배출 열 손실, 냉각 시스템 열 손실 및 낮은 마찰 열 손실을 제공하여 현재의 내연 기관을 능가하는 전반적으로 증가된 정미열율을 갖는 향상된 열역학적 사이클을 제공하는 것이다.
열역학 제2 법칙(the second law of thermodynamics)에 따르면, 열을 일(work)로 전환(conversion)시키는 것은 카르노 사이클 효율(Carnot cycle efficiency)에 의해 최대화되며, 열량은 일부는 방열판(cold sink)으로 전달된다. 반응 열역학적 사이클로서 전체 엔진의 연소된 열역학적 및 기계적 시스템들을 이용하는 멀티-챔버 반응 사이클을 이용함으로써 지-사이클은 카르노 사이클 효율 한계를 극복한다. 소듐 증기 챔버는 연소/팽창 영역(zone)을 따라 멀티-챔버 반응들을 서로 연결(ties)시키거나 중첩(overlaps)시킨다. 소듐 증기 챔버는 연소 영역으로부터의 초과 열(excess heat)을 팽창 영역을 따라 연소 챔버 안으로 다시 전달되도록 한다.
지-사이클 엔진은 연소/팽창 사이클 전반에 걸쳐 열역학적 열 전달 특성들을 제어하고 유지하여 최대 파워 및 효율적인 성능을 얻는 자동적으로 동적 평형(dynamically balanced)을 이루는 시스템이다. 엔진은 챔버 압력이 회전 마찰 손실과 같을 때까지 연소 가스가 최대일(maximum work)을 확장 및 수행할 수 있는 흡입/압축 영역보다 넓은 연소/팽창 영역을 이용한다. 연소/팽창 영역을 따라 위치한 소듐 증기 챔버는 수소/물 사전 혼합물(premix)을 점화시키고 연소 영역으로부터 초과 연소열을 제거하여 그 열을 과팽창된 팽창 영역을 따라 회전 챔버들(rotating chambers)의 연소 캐버티들(combustion cavities)로 다시 전달하는데 이용된다. 연소 챔버들 내부로 연소/팽창 통로(path)를 따라 물을 분사하는 초기 단계는 연장된 연소/팽창 영역을 따라 초과 연소열 및 소듐 증기 챔버로부터의 열을 더 흡수한다. 연소/팽창을 따라 물을 분사하는 후기 단계는 연소 가스 온도를 낮추어 배기 열 손실링들을 최소로 하며 다음 흡입 사이클을 위하여 연소 챔버 표면을 냉각시킨다.
활성 냉각 시스템으로부터의 물은 연소 캐버티들 내부로의 초기 및 후기 단계 물 분사에 사용된다. 활성 냉각 시스템으로 흡수된 열은 섭씨(C) 약 250도 내지 350도 또는 절대 온도(K) 약 523K 내지 623K로 물 온도를 상승시킨다. 이러한 온도는 거의 수증기의 끓는 점(boiling point) 이하이며, 연소 캐버티들 내부로 수압 유체(hydraulic liquid)로서 물이 고압으로 상승되게 한다. 절대 온도 1,800K 근방의 연소 온도를 가짐에 따라, 분사 물은 연소 가스 온도를 크게 낮춘다. 이것은 온도 평형(temperature equilibrium)이 얻어질 때까지 연소 챔버로 보내지는 소듐 증기 챔버로부터의 열 전달을 가속화 시킨다.
지-사이클 엔진은 연료 경제성 및 가장 첨단의 기술을 사용한(state-of-the-art) 내연 기관(ICE)의 오염 배출을 감소시키는 큰 잠재성(great potential)을 가진다. 연료 경제성 향상을 위한 큰 잠재성은 실린더 벽들 및 배출 가스로부터 버려진 열을 이용하여 가열된 물을 생성하고 가열된 물 형상이 부가적인 팽창력(expansion power)을 위하여 액체로부터 기체로 변경되는 실린더 내부로 가열된 물을 분사함으로써 도출된다. 지-실린더 엔진의 사이클 효율은 지-사이클에서는 압축비(파워 소비)보다 높은 팽창비(파워 발생)의 부가적인 이득과 더불어 팽창력을 발생하는 작동 매체(working media)의 대부분이 상기 사이클 동안 증가하며, 반대로 카르노 사이클에서는 작동 매체의 대부분 및 압축비/팽창비가 고정된다는 사실에 의하여 카르노 사이클 효율에 제한되지 않는다. 또한, 지-사이클 엔진에서 높은 사이클 효율은 높은 연소 온도에 의존하지 않지만(카르노 사이클이 제시한 것과 같이), 그러나 사이클 주위의 열 에너지를 변환하는 것 및 전달하는 것에 의존한다. 이러한 방법으로, 종래의 ICE에서 녹스/매연/엔진 사이클 효율 상충 차단(NOx/smoke/engine cycle efficiency trade-off barrier)은 해결된다.
지-사이클은 전체 연소 엔진 열을 이용할 뿐만 아니라 냉각 시스템 내에서 포획되고 연소 챔버 내부로 다시 전달된 기계적 마찰열을 이용하여, 그 결과로 가역 엔진 시스템을 발생한다.
도 71에 도시된 바와 같은 주요 G-사이클 공정에서 발생하는 과정들이 아래에서 설명된다.
1. 로터 챔버(rotor chamber)는 흡입 포트를 지나 회전하는데, 여기서 신선한 공기의 완전 충진(full charge)은 일반적으로 흡입이나 바람직하게는 터보 부스트(turbo boost)를 통해 이루어진다.
2. 로터 챔버가 흡입 포트를 지나 최대 흡입 충진에 도달했을 때, 하우징 구조는 흡입 공기를 압축하기 시작한다. 가변적인 양의 약 250℃ 내지 약 350℃ 또는 약 523K 내지 약 623K 온도로 가열된 물이 액티브 냉각 시스템(active cooling ststem)에서부터 챔버 캐비티(chamber cavity) 안으로 압축 단계동안 분사된다. 이것은 제1가변 물 분사이다. 가열된 물은 유효 챔버 압축 비를 증가시키면서, 로터 챔버의 후반 영역 및 측부들을 따라 연소실 내에서 층을 형성한다. 챔버 압축 비를 제어하고 조절하기 위해 가열된 물의 양은 가변적이고, 가열된 물은 비압축성 유체로 간주된다. 전반 영역 안에 신선한 공기가 있고 후반 영역 안에 분사된 물이 있는 상태에서 로터 챔버에는 층이 형성된다.
3. 가열된 수소 기체는 후기 압축 과정 동안 로터 챔버 안으로 바로 분사된다. 로터 챔버 캐비티 안으로 수소 기체를 직접 분사함으로써 선점화 노킹(pre-ignition knock) 현상의 문제를 해결할 수 있다. 수소는 물과 공기의 혼합물보다 밀도가 작고, 수소의 농도를 상대적으로 균질하게 유지하는 로터 챔버의 전반 영역 가까이에서 층을 이루는 경향이 있으며, 챔버의 전반 영역을 향해 층을 이루는 신선한 흡입 공기와 쉽게 혼합된다. 균질한 농도를 가지고 생성된 수소/공기 혼합물의 쉽게 점화된다.
4. 스파크 플러그(spark plug)는 수소를 점화시킬 수 있으며, 유효 압축비에 따라서 제어 자동 점화(controlled auto-ignition)가 발생할 수 있다. 수소 자동 점화 온도는 585℃ 또는 858K이다.
5. 로터 챔버가 상사점(top dead center:TDC)을 지나면, 600℃ 또는 873K를 초과하는 연소열은 외부 고정자 하우징(stator housing)의 내면 상의 페로스크바이트 열차단 코팅 보호물(peroskvite thermal barrier coating(TBC) protection)을 관통하여 나트륨 증기 챔버(Sodium Vapor Chamber:SVC)로 전달된다. 페로스크바이트 열 배리어 코팅(TBC) 보호물은 1,800K 온도의 일정한 연소 점화로부터 하우징을 보호한다. SVC에서 나트륨은 액체 상태에서 기체 상태로 변화하고 팽창 경로를 따라 흐른다.
6. 페로스크바이트 TBC의 표면 온도는 1,800 K의 최대 기체 온도에 대응할 수 있다. 이러한 고온 표면 영역은 585℃ 또는 858K의 수소 자동 점화 온도보다 훨씬 높으며, 완전 연소 반응을 더 향상시키게 된다.
7. 액티브 냉각 시스템에서부터 약 250℃ 내지 약 350℃ 또는 약 523K 내지 약 623K 온도로 가열된 물의 제2물 분사가 연소/팽창 반응의 초기 단계에 이루어져, 연소 반응을 부분적으로 급냉 또는 냉각시켜 약 1,800K 의 최대 온도를 제어하고 챔버 기체 및 물 온도를 약 600℃ 또는 783K 온도까지 낮추어, 팽창 경로를 따라 더 높은 온도의 나트륨 증기 챔버에서부터 로터 챔버들 안으로의 열전달을 가속화한다. 가열된 물은 액체 상태에서 초 가열 스팀 증기로 변화하는데, 이러한 초 가열 스팀 증기는 챔버의 평균 유효 압력(mean effective pressure:MEP)을 증가시키면서 크게 팽창하여 일을 하게 된다.
8. 나트륨 증기 챔버는 다시, 챔버 온도를 약 600℃ 또는 약 873K로 계속 유지하는 회전하는 챔버들 안으로 열전달을 계속 수행하게 된다. 로터 챔버들의 기체들과 물이 냉각됨에 따라, 원심력들로 인해 냉각제 및 중수 액적(heavier water droplet)들이 외부 하우징 면의 벽에 접하게 되는데, 이러한 외부 하우징 면의 벽은 SVC로부터의 열 흡수를 돕고 SVC로부터 다시 로터 챔버로의 열 전달을 가속화하며 높은 증기압 및 MEP를 더 유지시켜 일을 하게 한다.
9. 제3물 분사 냉각기에서, 30℃ 또는 303K의 액티브 냉각 시스템에서 나온 물은 배기 포트 바로 앞에서 후기 연소/팽창으로 분사되어 연소 반응을 냉각시키고 연소 챔버 로터, 베인(vane), 및 실(seal) 부품들을 냉각시키며, 다음 번 흡입 충진에 대한 열 스로틀링(throuttling)을 막는다. 냉각수는 챔버 증기압 및 밀도의 증가를 돕는다. 또한, 냉각수는 수증기의 응축을 용이하게 한다.
10. 다음으로, 고압, 고속, 저온, 및 물 밀도가 높은 배기 가스들(water dense exhaust gases)은 가변적인 구조의 터보 차저 터빈(turbo charger turbine)을 통과하여 흡입 압축기를 구동한다.
11. 배기에서 나온 물은 응축되고 필터링(filtering)되며 액티브 냉각 시스템으로 재순환되어 들어간다.
저 연손실 열관리(Low Heat Loss Thermal Management)
지-사이클 엔진에서, 히트 싱크가 물분사 초기 및 후기단계를 가지는 소듐 증기 챔버 및 활성 냉각 시스템으로 전달된다. 이러한 시스템들은 가역적이며 열흐름을 엔진 챔버로 재순환할 수 있어서 열역학적 효율을 향상시킨다. 일반적으로 일을 수행할 에너지값 또는 능력을 가지지 못하는 활성수 냉각시스템으로부터의 물은 포지티브 에너지 작업(positive energy work)을 수행할 수 있는 엔진 챔버로 분사된다. 소듐 증기 챔버로 흡수된 열은 엔진 챔버로 다시 방출되거나 전달되어 에너지 작업을 수행한다. 활성수 냉각 시스템 및 소듐 증기 챔버 모두로부터의 열은 상승적으로 상호작용할 것이며 열을 서로의 시스템으로 전달할 수 있다. 이로 인해, 열의 많은 부분이 엔진을 통해 연속적으로 다시 전달되어 포지티브 에너지 작업 이익을 제공한다. 그럼에도 불구하고, 열의 일부는 각각의 전달시 소실된다.
로터 연소 챔버로 다시 분사된 물의 양을 조절함으로써 연소 가스 온도를 쉽게 낮출 수 있다. 물분사의 균형을 유지시켜 챔버와 엔진 시스템에서 또한 엔진의 일률과 엔탈피를 최대화시키는 것이 요점이다. 만일 너무 많은 물이 첨가되면, 반응은 너무 빨리 쿠엔칭(quenching)되거나 냉각되며, 공기의 흐름을 적적하게 배기하기에 충분한 엔탈피를 가지지 못하게 된다. 만일 너무 적은 물이 분사되면, 모든 열 포텐셜이 회수되지 않고 높은 배기 열 손실 및/또는 냉각 열 손실을 가지게 될 수도 있다.
소듐 증기 챔버 및 열전달 (Sodium Vapor Chamber and Heat Transfer)
지-사이클 엔진에서, 소듐 증기 챔버(SVC)는 2상 히트 파이프와 같이 작동하여, 연소의 연소의 핫 영역(hot zone)으로부터 열을 흡수하고 팽창행정 동안 회전 챔버로 다시 전달한다.
소듐 증기 챔버는 소듐을 작동 유체로 사용한다. 엔진 연소로 인해 발생된 열은 소듐 증기 챔버의 증발기 영역으로 전달되며, 소듐 증기 챔버에서 액상의 소듐이 전달된 열을 흡수하고 액상에서 가스 증기로 상변화한다. 그런 다음, 소듐 가스 증기는 음속으로 소듐 증기 챔버를 따라 응축기 영역으로 이동하며, 응축기 영역에서 소듐 가스는 그 열을 팽창 영역을 따라 회전 연소 챔버들로 전달하며 소듐은 가스 증기에서 액상으로 상변화한다. 일련의 심지 메쉬들은 모세관 활동을 제공하여, 소듐이 다시 증발하고 사이클이 반복되는 소듐 증기 챔버 증발기로 향하여 액상의 소듐을 균일하게 이동시킨다.
열이 활성 냉각 및 소듐 증기 챔버 시스템으로 흡수될 때 그리고 그것이 엔진의 팽창 사이클로 다시 전달될 때 열흐름 지연이 있다. 그러나, 이러한 지연은 연속적인 열흐름으로 인하여 작동 지-사이클에 대해서는 무의미하다. 지연은 연소열이 소듐 증기 챔버 및 활성 냉각 시스템으로 일차적으로 흡수되어 작동 온도 범위로 차징(charging)할 때인 운전개시 동안 단지 명백하다.
엔진이 rpm 속도를 변경하면, 일시적인 열부하(heat loading)가 비례적으로 변한다. 이것은 회전 챔버와의 열전달 지연 비율을 변화시킨다. 그러나, 소듐 증기 챔버는 더 높은 부하 조건들을 자동으로 조절하는 자체 밸런싱 시스템(self balancing system)이다. rpm 속도가 증가함에 따라, 소듐 증기 챔버 내로의 열적 열전달 부하가 증가하고 로터 움직임 또한 지연 포텐션을 증가시켜 열을 로터 챔버들로 다시 전달한다. 소듐 증기 챔버 소듐 온도가 높을수록, 핫 소듐 증발기 영역으로부터 응축기 영역까지의 온도 차가 커진다. 이것은 소듐 증기 챔버 내에서 열전달을 증가시키다. 연소 열부하가 계속됨에 따라, 증발기 영역 및 응축기 영역 둘다의 소듐 증기 챔버 평균 작동 온도가 증가한다. 이것은 팽창 경로를 따라 소듐 증기 챔버 및 회전 챔버 사이에 더 큰 온도차가 있어서 더 많은 열이 더 높은 속도로 다시 전달되는 조건을 낳는다. 더 높은 rpm에서, 소듐 증기 챔버로/부터 열전달의 지속시간이 더 짧아진다. 이것은 소듐 증기 챔버로의 과도한 열부하를 제한할 것이다.
소듐은 물과의 반응성이 높으며, 점화할 수 있는 가열된 수소 가스를 생성할 수 있다. 소듐 물 상호작용 및 반응을 감소시키기 위하여, 첫째, 소듐의 양은 크기가 매우 큰 엔진에조차 제한된 손상을 줄 만큼 상대적으로 적게 유지하고, 둘째, 엔진 커버는 쉽게 파열되지 않도록 매우 강한 초합금 물질로 만들며, 셋째, 소듐 증기 챔버 커버의 만곡부 기하학 설계는 또한 충격력을 전달하는 엄청난 힘을 제공하여 파열을 방지시키며, 넷째, 외측 커버는, 소듐 증기 챔버를 충격으로부터 또한 보호하는 금속 폼 절연 또는 블랭킷 물질의 매우 두꺼운 층에 의해 더 보호되며, 다섯째, 내부 소듐 작동 열전달을 최적화하고, 높은 충격 압력을 흡수하고, 파열가능성을 감소키는 데 도움을 주는 내부 소듐 증기 챔버 압력 조절 시스템이 사용되며, 여섯째, 파열의 경우, 소듐 물 상호작용이 일반적으로 매우 국지화되고 반응속도가 느려서 약간의 점화 포텐셜이 있으나 금속 플라잉(metal flying)의 결과를 가져오는 폭발은 반드시 있는 것은 아니다.
외측 소듐 증기 챔버 절연 커버(Outer SVC Insulation Cover)
외측 소듐 증기 챔버 표면은 소듐 증기 챔버를 통한 주변 환경으로의 열손실을 감소시키는 데 도움을 주는 절연 커버로 덮혀있다. 절연 커버는 또한 지-사이클 엔진 잡음 레벨을 상당히 감소시키는 데 도움이 된다. 절연 커버는 세라믹 물질의 절연 블랭킷 또는 폼 금속 또는 세라믹 물질로 만들 수 있다. 이러한 물질들은 또한 소듐 증기 챔버를 파열시킬 수 있는 사고로부터의 충격 손상으로부터 소듐 증기 챔버를 상당히 보호한다.
알칼리 금속 열전기 컨버터(Alkaline Metal Thermal Electrical Converter)
본 발명의 또 다른 목적은 직접적인 전기 소스(direct source of electricity)을 제공하는 것이다. 본 발명은 연소 영역을 따라 과잉 열을 제거하고 그것을 팽창 영역을 따라 전달하기 위한 소듐 증기 챔버 시스템들을 제공한다. 소듐 작동 유체의 순환 열전달 프로파일은 알칼리 금속 열전기 컨버터(AMTEC)을 사용하여 전기를 발생시키기 위하여 동일하다. 알칼리 금속 열전기 컨버터는 소듐을 작동 유체로 사용하며, 소듐은 베타 알루미나 고체 전극(beta alumina solid electrode, BASE)에 대해 가열되고 가압된다. 베타 알루미나 고체 전극에서 소듐은 액체에서 가스로 변하고 소듐 이온들이 베타 알루미나 고체 전극을 통과하여 전기를 발생시킨다.
로터 냉각(Rotor Cooling)
로터 표면은 최대 1,400도에서 작동가능한 결함 클러스터 열차단 코팅(TBC)으로 덮혀있다. 열차단 코팅은 연소 열 손상으로부터 로터를 보호하는 데 도움을 주며, 로터로의 표면 열전달을 최소화한다. 로터의 열차단 코팅을 통과하는 로터 챔버로부터의 열은 로터 표면 아래에 위치하는 수증기 챔버로 흡수될 것이다. 로터의 상부 수증기 챔버는 물 작동 유체가 액체에서 가스로 상변화하고 수증기 챔버 내부의 열을 로터의 양측에 위치하는 응축기들로 전달하는 증발기 영역이다. 활성수 냉각 시스템은, 로터가 회전하여 응축기 열을 흡수함에 따라 로터 응축기들을 가로질러 물을 분사함으로써, 로터 증기 챔버 물은 냉각되고 가스에서 액체로 상변화한 다음 높은-지(high-G) 원심력에 의해 증발기 영역으로 재순환된다. 로터 수증기 챔버는 또한 로터 전체 표면에 걸쳐 열분배를 등온화(isothermalize)을 돕는다. 이것은 전체 챔버에 걸쳐 균일 연소를 향상시키고 로터 구조에서 열점과 변형을 방지하는 데 도움을 준다.
높은 브레이크 열역학적 효율
자신의 소듐 증기 열 전달, 물 분사, 및 확장된 팽창 행정에 의해, 지-사이클 엔진은 더 높은 브레이크 열역학적 효율을 달성할 수 있다. 하우징 및 냉각 시스템으로 손실될 수 있는 열은 소듐 증기 챔버 시스템으로부터 복원된다. 활성 냉각 시스템 내부로 전달되는 열은 연소/팽창 사이클 내부로 다시 재순환 된다. 물이 분사되어 팽창된 연소/팽창 챔버에 의해 최대량의 연소 열이 MEP 및 열로 변환되어 배기 온도 손실을 감소시킨다. 압축 행정에 따른 마찰 손실 및 슬라이딩 베인들 및 로터로부터의 열은 활성 냉각 시스템의 물 내부로 포획되어 연소 챔버들 및 동작(operation) 사이클 내부로 다시 분사된다. 전체 엔진을 사이클로 이용함으로써 연소, 열 전달, 냉각, 배기 및 마찰에 의한 전체적인 열 손실을 감소시켜서 최대 파워와 브레이크 열역학적 효율을 65~80 %에 달하는 레벨들로 상승시킨다.
지-사이클은 방켈(Wankel) 엔진 및 다른 로터리 엔진들에 적합하게 사용될 수 있으나, 본 발명의 바람직한 실시예는 특히, 지-사이클의 열역학적 및 기계적 동작을 최적화하도록 설계된 다수의 특수한 기계적 시스템들을 구비하는 본 발명의 지-사이클 엔진을 위한 것이다.
높은 평균 파워 밀도
본 발명의 다른 목적은 더 높은 엔진 파워 대 부피/무게 성능을 가지는 더 좋은 평균 파워 분포를 제공하는데 있다.
이러한 엔진의 목적은 네 개의 엔진 사이클 행정들 각각을 최적화하고, 그것들의 동작을 높은 파워 대 엔진 부피 및 질량 무게 밀도뿐만 아니라 높은 엔진 효율을 달성하는 완전히 통합된 엔진 시스템으로 통합하는데 있다. 바람직하게는, 엔진 구성은 로터가 드라이브 샤프트의 중심에 위치하는 로터리 베인 형 엔진이다. 로터리 형 엔진은 네 개의 엔진 사이클들 각각을 독립적으로 분리할 수 있다는 점에서 이상적이다. 또한, 왕복형 엔진들과는 대조적으로, 로터리 형 엔진은 모든 연소 및 기계적인 힘들이 계속적으로 작용하고 하나의 방향으로만 회전하도록 정렬될 수 있게 한다. 이를 통해 더 작은 진동과 압력들로 더 유연하고 더 안정된 회전이 가능해 진다. 본 발명의 엔진에 사용된 챔버들은 비교적 더 작아서 연소 반응이 더 잘 제어될 수 있어 엔진이 단지 하나의 로터 만으로도 유연하게 동작할 수 있다.
또한, 본 발명의 엔진은 동일한 드라이브 샤프트 상에 연결된 가변수의 로터들을 구비하여 엔진 시스템의 전체 파워 성능을 증가시킬 수 있다. 로터들의 개수는 드라이브 샤프트의 길이와 강도로 한정되어 로터의 조작상의 부하들을 조종할 수 있다. 또한, 본 발명의 엔진은 6개, 8개, 9개 또는 12개의 연소 챔버들을 구비할 수 있다. 그러나, 본 발명의 바람직한 실시예는 8개의 챔버를 구비하는 엔진이다. 360도 CA 회전 당 엔진 스케일에 따라, 6개, 8개, 9개, 12개 또는 그 이상의 챔버들을 이용하여, 본 발명의 엔진은 작은 엔진 부피 및 질량 무게의 범위 내에서 매우 높은 배기 파워(displacement power)를 생성할 수 있다.
예를 들어, 로터 내에 8개의 연소 챔버를 구비하는 엔진인 경우에는, 360도 크랭크 회전 당 8개의 파워 펄스들을 제공할 수 있다.
가변 물 분사 압축 비율
비록 수소 지-사이클 엔진 내부에서 소듐 증기 챔버를 사용하게 되면 엔진으로부터 연소 캐버티를 완전히 제거할 수 있지만, 그러한 캐버티는 수소 및 물의 층화(stratification) 특성을 조절하는 것을 도와 점화를 개선하고 향상된 연소 반응 혼합을 위한 교란(turbulence)을 생성한다. 그러나, 연소 캐버티 리세스의 사용은 외부의 하우징 스테이터 표면과의 로터의 기하학적 상호 작용에 따라 쉽게 압축될 수 없는 챔버 부피를 추가함으로써 챔버의 압출 비율에 불리하게 영향을 주는 많은 챔버 부피를 발생시킨다. 지-사이클 엔진에서, 물의 분사는 연료의 분사와 기하학적으로 분리된다. 두 개의 물 분사들은 트레일링(trailing) 로터 챔버 베인이 흡입 포트를 청소하는 시점에 연소 행정에서 더 빨리 위치한다. 이는 물의 분사가 일어나기 전에 신선한 흡입 공기가 충분히 충전되게 한다. 이때, 활성 냉각 시스템으로부터의 가열된 물이 로터 스테이터 하우징의 측면에 위치하는 두 개의 물 분사기들에 의해 로터 챔버의 내부로 분사된다. 이러한 물의 분사는 각각의 분사기가 축 상의 봉인부들(seals)에 인접하는 로터 챔버와 로터의 각 측면에 물을 분사하면서 로터의 회전 방향과 함께 전방으로 향해진다. 물의 온도는 기화점 근처의 섭씨 250 내지 350도이다. 로터가 내부 하우징 스테이터 내부에서 회전함에 따라, 분사된 물은 원심력 및 관성력으로부터 로터 챔버의 후반부 내부로 층화된다. 그리고 나서 로터 챔버는 전반부에서의 신선한 공기와 후반부에서의 분사된 물로 층화된다. 이때, 물은 압축될 수 없는 유체로 취급되고 유효 챔버 부피를 크게 감소시킨다. 그리고 나서 수소 연료는 로터 챔버의 중심 전반부 내부로 직접 분사된다. 추가된 물은 최대 연소 온도의 조절을 도와주며 또한 유효 압축 비율을 증가시켜 연료의 점화를 도와준다. 또한, 이러한 챔버 내부에서의 물과 연료의 층화는 연료가 연소 성능을 개선시키는 물의 희석 없이도 더 빨리 점화되도록 도와준다. 또한, 이러한 물과 연료의 층화는 로터 챔버의 전반부에서의 연소 반응을 유지시켜 준다. 이를 통해 연소력들의 전방향 추진이 개선된다. 또한, 이러한 층화 없이, 연료는 로터 챔버의 후반부 방향으로 챔버 내부에서 층화되어 바람직한 연소 방향력들(vectored forces)을 감소시킨다. 일단 수소 연료가 점화되면, 매우 작은 양의 연소 열이 물을 극도로 가열된 증기로 기화시키는데 필요하다. 이러한 극도로 가열된 증기는 매우 강한 송풍 운동이 매우 큰 챔버 교란을 일으키면서 회전 방향을 향해 전달되어 연소 연료와 혼합된다. 그리고 나서 이러한 극도로 가열된 높은 교란 연료/물 반응은 1,800 K 또는 섭씨 1,526도의 표면 온도를 가지는 소듐 증기 챔버의 연소면 위를 지나간다. 이러한 지-사이클 엔진의 기하학적 부분은 매우 높은 하우징 표면 영역 대 챔버 부피를 가지며 연소 속도와 연료의 완전한 연소를 개선한다. 압축 행정에 분사된 물의 양은 유효 압축 비율을 변경하도록 변화되어 엔진 성능과 상이한 rpm 조건하의 효율을 최적화한다.
예를 들면, 400 cc의 기하학적 흡입 부피는 10:1의 압축 비율로 40 cc로 압축될 수 있다. 그러나, 20 cc의 압축될 수 없는 물이 분사되면, 유효 가스 압축 부피는 20:1의 압축 비율로 20 cc가 된다. 물의 양은 유효 압축 비율이 이상적인 동작 조건들에 적합하도록 조절될 수 있다.
역 연소 손실
압축 비율은 수소/물/공기 혼합 온도가 섭씨 585 도, 즉 자동 점화 온도와 매우 유사하도록 조절된다. 수소는 양호한 확산 연료이며 물과 동종의 전하를 신속하게 형성한다. 소듐 증기 챔버로부터의 열은 수소/물/공기 혼합물을 점화한다. 혼합물을 점화하는 하우징 표면 영역을 이용하여, 전체 연소 챔버가 동시에 점화된다. 자동 점화 온도와 평형 상태인 수소/물/공기 혼합 온도로 인해 연소 에너지는 거의 손실되지 않는다. 전체 하우징이 혼합물을 점화하는 데 이용되기 때문에, 반응되지 않은 연료 및 공기와의 연료 전면 교환으로부터의 연소 에너지의 손실이 매우 작다. 연소 혼합물이 단지 수소, 물 및 공기이기 때문에, 산물들과 반응물들은 단지 그러한 원소들로 제한된다. 이를 통해 더 큰 탄화수소 연쇄(chained) 연료들의 분자 결합들을 끊는 것과 관련된 연소 운동 에너지의 손실이 감소된다. 동종의 수소/물/공기 혼합물인 경우, 물은 수소와 매우 근접하며 열 에너지를 높은 증기 압력에 의한 에너지로 변환시키는 연소 반응이 일어나는 것을 억제하도록 한다. 연소 반응에서 수증기를 가열하는 것은 연소 열이 작은 에너지 분포를 가지는 다른 물 분자들 사이에 전달될 수 있는 더 가역적인 반응이 된다.
개선된 수소 연료 전달
본 발명의 또 다른 목적은 기존의 엔진들에 대하여 개선된 수소 연료 전달 및 점화 성능을 제공하는데 있다. 지-사이클 엔진은 모든 연소 반응 열을 활용 및 재활용할 뿐만 아니라 엔진의 기계적인 마찰, 사이클 압축 및 배기 가스 흐름으로부터의 열을 포획하는 활성수 냉각 시스템을 이용한다. 활성 냉각 시스템으로부터의 가열된 물은 분사 즉, 연소/팽창 영역으로의 초기 및 후기 물 분사 이전에 수소와 미리 혼합되는데 이용된다. 압축된 수소 저장 시스템들은 10,000 내지 15,000 psi 압력이 가능한 탱크들을 사용한다. 지-사이클 엔진은 압력으로 수소를 회전하는 연소 캐버티들 내부로 분사하는 조절기들을 사용한다. 압축된 가스가 고압에서 저압으로 변하는 경우, 가스 팽창으로부터 흡수되는 열이 존재한다. 만약 압력차와 가스 사용 비율이 매우 높다면, 결빙과 조절기들 및 시스템의 고장을 초래한다. 지-사이클 엔진은 엔진의 연소 챔버로 들어가기 전에 수소 가스와 미리 혼합되는 활성 냉각 시스템으로부터의 열을 이용하며, 가스 팽창에 필요한 열을 공급하여 조절기들이 결빙되는 것을 방지한다. 섭씨 585도의 높은 자동 점화 온도를 가지는 수소의 경우, 적당한 연소를 위하여 그것의 온도를 신속하게 상승시키는 것이 중요하다.
고 압축
본 발명의 또 다른 목적은 더 높은 동작 흡입 압축을 가지는 엔진을 제공하는데 있다. 수소는 매우 높은 압축 비율이 가능하며 33:1 만큼 높을 수 있다. 수소를 물과 미리 혼합함으로써, 본 발명의 엔진은 녹킹(knocking) 및 조기 점화의 발생 가능성을 줄이면서 14:1 이상의 더 높은 압축 비율을 제공할 수 있다. 본 발명은 수소/물/공기 혼합물을 자동 점화 온도와 근접하는 섭씨 585 도에 가까운 온도까지 만들 수 있는 압축 비율을 사용한다. 이러한 연소 평형 상태는 사전 혼합물을 점화하는 운동 연소 반응 열 손실을 감소시키는 것을 도와준다.
넓은 연료/공기/ 등가 동작 범위
본 발명의 또 다른 목적은 고 연료 효율 또는 고 파워 성능을 최적화하는 매우 낮은 양으로부터 화학량으로 또는 (>=0.4 내지 <=0.1)로 조절될 수 있는 넓은 범위의 Phi 연료 대 공기 혼합물들로 성공적으로 동작될 수 있는 수소 엔진을 제공하는데 있다. 수소와 흡입 공기는 낮은 등가 비율에서도 우수한 점화를 위해 함께 집중될 수 있다. 물의 분사는 점화 성능을 개선시킬 수 있는 고 압축 상태를 생성할 수 있다. 내부 스테이터 면의 높은 온도는 낮은 연료 혼합물 점화 및 완전 연소를 더 개선할 수 있다.
더 낮은 질소 산화물(NOx) 방출
본 발명의 또 다른 목적은 기존의 내연 기관들에 대하여 높은 파워 출력 성능을 가지며 개선된 더 낮은 NOx 방출을 제공하는 것을 목적으로 한다. 수소를 산소와 미리 혼합하는 것은 연료 혼합물을 희석시키며 최대 온도를 NOx가 거의 발생되지 않는 대략 1,800 도 K까지 감소시킬 수 있다.
수소 점화, 연소 시간, 및 평균 유효 압력
본 발명의 또 다른 목적은 기존의 엔진 시스템들에 비해 더 작은 전기 에너지를 사용하며 더 순간적이며 완전한 연소를 제공하데 있다.
본 발명의 또 다른 목적은 기존의 내연 기관들에 비해 완전 연소 성능을 개선하며, 연소 반응 교란을 개선하고, 연소 반응 비율을 개선하며, 연소 시간을 증가시키는데 있다.
본 발명의 또 다른 목적은 기존의 엔진 시스템들에 비하여 더 높은 평균 유효 압력을 가지는 연소 사이클을 제공하는데 있다.
수소는 낮은 소멸(quenching) 임계치를 가지며 연소 반응은 하우징 표면 영역을 통해 너무 많은 열을 잃는 경우 소멸하거나 사라진다. 본 발명의 로터리 베인 엔진은 높은 표면 대 부피 비율을 가지는 연소 캐버티를 초래하는 확장된 연소/팽창 영역을 가지도록 설계된다. 일반적인 엔진들에서, 이는 불완전 연소, 낮은 연료 효율, 및 순수 연료 방출과 함께 소멸하는 연소 반응을 초래하는 하우징 표면을 통한 높은 연소 열 손실을 발생시킬 수 있다. 본 발명의 엔진에서, 높은 표면 영역 대 부피는 연소/팽창 영역에 따른 소듐 증기 챔버의 통합으로 큰 이득이 된다. 하나 이상의 스파크 플러그들이 시동(startup) 중에 수소/공기/물 사전 혼합물을 점화한다. 일단 엔진 표면들이 동작 온도에 도달하면, 스파크 플러그가 꺼져서 전기 에너지를 절약하며, 내부 하우징 표면을 통한 소듐 증기 챔버로부터의 열을 이용하여 연료 혼합물을 점화한다. 수소는 섭씨 585 도의 자동 점화 온도를 가지며 소듐 증기 챔버는 섭씨 600 도의 동작 온도를 가진다. 일단 수소/공기/물 사전 혼합물이 소듐 증기 챔버가 존재하는 연소/팽창 영역 내부로 회전되면, 연료 혼합물을 순간적으로 점화하게 된다. 또한, 높은 표면 대 부피 비율은 내부 하우징 스테이터 표면의 쉬어링(shearing) 힘들로 인해 높은 가스 교란을 발생시킨다. 이를 통해 더욱 개선된 완전 연소 성능과 소듐 증기 챔버와의 열 전달이 이루어진다. 상기 수증기는 공기보다 더 높은 밀도를 가지며 높은 회전 원심력들로 소듐 증기 챔버가 존재하는 내부 하우징 스테이터 표면을 따라 이동하게 된다. 내부 하우징 스테이터의 높은 표면 영역을 따라 이동하는 물은 소듐 증기 챔버로부터 연소 캐버티들로의 열 전달을 개선시킨다. 이는 또한 팽창된 연소/팽창 영역의 전체 길이에 걸쳐서 높은 수증기 압력과 MEP 작업을 유지시켜 준다. 또한 높은 수증기 압력은 수소가 밀봉 시스템의 뒤로부터 엔진의 내부 격실로 침투하는 것을 방지하게끔 한다.
연소 챔버 실링 시스템(Combustion Chamber Sealing System)
또한, 본 발명의 목적은 기존의 실링들에 비해 증가된 밀봉 성능, 감소된 마찰 마모, 감소된 마찰열 축적, 및 증가된 강도 및 내구력을 달성하는 로터리 베인 내연 엔진들의 연소 챔버들을 밀봉하기 위한 수단을 제공하는 것이다.
본 발명의 또 다른 목적은 내측 하우징 스테이터의 열변형 크기 변화에 반응하고, 연소 챔버 가스를 이용하여 밀봉력을 유지하고, 공기/가스 압력에 빠르게 반응하고, 서로 다른 동적 챔버 힘하에서 이상적인 전방 및 후방 연소 챔버 실링을 독립적으로 유지시킴으로써 기존의 실링에 비해 향상된 밀봉 성능을 제공하는 연소 챔버 실링을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 실링에 비해 슬리이딩 스플릿 베인 실링들, 축실링들, 및 베인면 실링들 사이에 향상된 실링 인터페이스를 제공하는 향상된 연소 챔버 실링 인터페이스 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 실링에 비해 베인 플렉싱 변형을 감소시키는 향상된 연소 챔버 실링을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 실링에 비해 하우징 스테이터 내부면에 채터링 마크 데미지(chattering mark damage)을 최소화하고 작동 진동 및 하쉬니스 스트레스(harshness stress)을 감소시키는 향상된 연소 챔버 실링을 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 실링에 비해 연소 챔버 가스 교란을 일으켜 연소 반응를 향상시키는 향상된 연소 챔버 실링을 제공하는 것이다.
연소 챔버 실링은 본 발명의 중요한 측면이다. 슬라이딩 베인들은 전체 사이클에서 전방 및 후방 플렉싱 변형을 통해 누출되는 것을 방지하기 위해 높은 압력 및 연소 압력을 유지하여야 한다. 밀봉 마찰도 본 발명의 엔진 효율에 중요한 역할을 한다. 그러나, 더 큰 밀봉력을 생성하는 것은 일반적으로 더 높은 마찰 에너지 손실 및 마모를 또한 생성한다. 연소 챔버 실링의 설계는 연속적으로 변하는 챔버 사이즈와 관련된 복잡한 기하학적 표면 인터페이스를 해결한다. 연소 챔버 실링 시스템은 세 개의 주요 실링 서브시스템 즉 슬라이딩 베인과 엔진 하우스 사이의 실링들, 슬라이딩 베인과 로터 사이의 베인들, 및 로터와 엔진 하우스 사이의 실링들로 이루어진다. 이 실링 시스템의 품질은 엔진 출력, 효율, 내구성, 및 배기량에 필수적이다.
지-사이클 엔진 시스템은 각 베인이 두 개로 분리된 실링들을 포함하는 특별한 베인 스플릿 실링 시스템을 사용한다. 회전 원심력과 가스 압력은 하우징 스테이터의 내부면에 대하여 실링에 힘을 가한다. 각 베인 스플릿 실링은 적은 양의 가스가 실링들 아래로 침투하게 하여 실링들을 하우징 스테이터의 내부면에 대하여 외측으로 실링에 힘을 가하는 가스 경로 관통홀들을 가진다. 베인 실링들의 가스 로딩은 각 챔버로부터의 밀봉력이 과도한 마찰을 발생하지 않고 밀봉력의 균형을 맞출수 있도록 한다. 각 베인당 두 개의 실링들을 이용하는 것은 챔버의 블로-바이 손실을 더 감소시키는 이중 실링 시스템을 제공한다. 그러나, 챔버들 사이의 블로-바이는 엔진 사이클에 기생하는 것이 아니다. 발생하는 어떠한 가스 블로-바이도 여전히 그 챔버에서 긍정적으로 사용될 수 있다.
베인 스플릿 실링들은 베인면 표면과 로터 사이를 밀봉하는 곡선형 베인면 실링들과 로터와 사이드 하우징 사이를 밀봉하는 사이드 축 실링들에 의해 인터페이스된다. 동시에, 베인 스플릿 실링들, 면 실링들, 및 축 실링들은 로터 챔버들 각각을 밀봉한다.
베인면 및 축 실링들은 또한 주름진 스프링과 함께 미리 설치된다. 일단 엔진이 작동을 시작하면, 챔버 가스는 또한 실링들을 가압한다. 베인면 및 축 실링들은 또한 그들의 밀봉면을 따라 작은 실링 스트립을 포함한다. 이러한 실링들을 진동시키는 모든 강한 연소 진동들은 가스 누출의 결과를 가져올 것이다. 이러한 작은 실링 스트립들은 추가적인 실링 보호를 제공한다.
스플릿 베인 실링들(Split Vane Seals)
상술한 목적들에 따르면, 본 발명은 로터리 베인 내연 엔진 내에 일반적으로 반원 형상의 U-자형 슬라이딩 베인들의 외주부 따라 슬라이딩 결합되는 스플릿 베인 실링들을 제공한다. 각각의 스플릿 베인 실링은 엔진의 스테이터 하우징의 내측면과의 접촉 표면적을 최대화하도록 윤곽을 이루는 두 개의 베인 실링들을 포함한다. 각 실링 링의 큰 윤곽면은 접촉 실링 대 기존 얇은 에지드 어펙스 실링 시스템(thin edged apex seal system)의 더 큰 표면적을 제공한다. 따라서, 높은 연소 압력과 회전 속도하에서 더 좋은 밀봉 성능을 제공한다. 각 베인 실링의 큰 윤곽면은 또한, 스플릿 베인 실링이 스테이터의 내부면을 휩쓸고 지나감에 따라 각 베인 실링의 전체 앞면, 윗면, 및 뒷면으로 실링 접촉력을 분배한다. 이러한 실링 접촉력의 분배는 어떤 한 지점에서 일정한 마찰 마모를 최소화하며 베인 실링들의 수명, 내구성, 및 밀봉 성능을 크게 확장시키는 데 도움을 준다.
본 발명의 또 다른 목적은 앞뒤로 토글링하여 내부 하우징 스테이터의 변하는 표면 접촉 각도와 최적의 밀봉 접촉을 제공하는 베인 실링들을 제공하는 것이다.
각 베인 실링의 토글링 운동은 로터의 각 베인 실링과 그의 인접하는 섹션 사이뿐만 아니라 각 스플릿 베인 실링 내에 두 개의 베인 실링들 사이에 개재된 베인 베어링 채녈들 내에 위치하는 롤러 베어링에 의해 용이하게 된다. 베인 실링들의 내부면 및 외부면에 배치된 이러한 작은 롤러 베어링들은 스테이터 내에서 회전하기 때문에 베인 실링을 앞뒤로 토글링하는 것을 돕는다.
스너브 노즈 실 팁(Snub Nose Seal Tip)
베인 실 팁(vane seal tip)은 베인 실의 상면에 작은 윤곽의 둥근 팁을 제공하는 스너브 노즈 팁을 포함하는데, 베인 실은 내부 하우징 고정자 면의 프로파일(profile)에 걸쳐 원활하게 슬라이딩될 수 있다. 소형 스너브 노즈 팁은 피스톤 링과 같이 더 밀집되어 과다한 표면 밀봉 접촉을 최소화한다. 연속 과정동안 큰 스트레스 및 진동력들이 생성되는데, 실 기체 통로(passage)들은 흡수를 돕고 이러한 진동력들을 보상하게 된다. 그러나, 스너브 노즈 실은 진동으로 인해 내부 하우징 고정자 면으로부터 떨어져 나갈 수도 있는데, 이러한 작용은 고정자 면에 채터링 마크 데미지(chattering mark damage)를 야기할 수도 있다. 그러나, 스너브 노즈 실을 약간 더 넓게 형성함으로써 충격력들은 약간 더 큰 표면적에 걸쳐 분포하게 될 것이고 채터링 마크 데미지를 줄일 것이다. 또한, 스너브 노즐 팁에 있어서 산화물 윤활제(oxide lubricant)로 코팅되고 연장된 실 팁 면의 나머지는 열차단 코팅(thermal barrier coating)으로 코팅된다. 스너브 노즐 팁의 또 다른 장점은 축 및 베인 면 실링들(axial and vane face seals)과 이상적인 평면 접촉면을 형성하도록, 베인의 상면 중심에서부터 하부 베인 부의 외측들까지 변이(transition)될 수 있다는 것이다.
연장된 팁 에지(Extended Tip edge)
또한, 각 베인의 측면들은 연소 기체들이 고정자의 내부면을 향해 외부로 각 베인 실을 밀어 내기 위한 면을 제공하면서 실 에지 플레어(seal edge flare)들을 갈라 놓거나 상부 근처까지 연장한다. 이렇게 연장된 팁은 강철 "I" 빔 베인 팁 구조 보강재로써 작용하여, 내부 하우징 고정자 프로파일 둘레를 회전하여 연소력들에 영향을 받는 사이 베인 실이 뒤틀리거나 변형되는 것을 방지한다.
베인 실 기체 통로들(Vane Seal Gas Passages)
각각의 베인 실링들은 베인 리지(vane ridge)의 상면(top) 위에 걸쳐 형성하게 되는데, 베인 상부는 각각의 베인 실이 내부 하우징 고정자 면에 걸쳐 움직이면서 위치를 벗어나 회전력을 발생시키는(torquing) 것을 방지한다. 또한 각각의 베인 실은 각각의 슬라이딩 베인의 측방들을 따라 로터(rotor)의 축에 직교하여 토글링(toggling) 운동 형식으로 출입할 수 있다. 이렇게 함으로써, 접촉점이 변하면서 내부 하우징 고정자 면 둘레로 움직이며 내부 하우징 고정자 면과의 표면 접촉이 향상된다. 베인 실링들이 각각의 슬라이딩 베인의 상면(top) 상에서 토글링하며 출입할 때에 각각의 베인 실 내에 위치하는 기체 통로 채널들은 연소실들로부터 나온 기체가 베인 리지(vane ridge) 위의 각각의 베인 실의 일부 아래로 흐르도록 하여, 각각의 베인 실이 연소실의 기체 압력과 필요한 밀봉력 사이의 균형을 맞추도록 할 뿐만 아니라 고정자의 내부면과 더 밀착하도록 한다. 베인 리지(vane ridge) 스프링 실은 하부 실 측부(side section)의 저면 근처에 위치하게 되어, 적당한 기체 통로 압력들을 유지하고 기체가 베인 실의 저면에서 누설되는 것을 막도록 도와준다.
다이나믹 축 분지 베인 실링들(Dynamic Axial Split Vane Seals)
베인 실의 다른 동역학적 형상(dynamic aspect)에서 베인 실은 상부 반원형 중심부 및 두 개의 하부 직선 측방부(lower straight side segments)로 나누어지는 데, 각 측방은 특정한 방향들로 자유도 운동(freedom of motion)을 하여, 연소실들이 더 단단히 밀봉을 유지하도록 한다. 양 측방부들은 로터의 회전 평면을 따라 방사상으로 자유로이 출입가능하다. 또한 하부 측방부들은 로터 축에 다소 평행한 방향으로 축 방향을 따라 출입 가능하다. 소형 기체 채널은 각각의 하부 측방들의 내부 아래를 따라 형성되고, 상부 반원형 중십부의 기체 통로들과 연결된다. 연소실에서 나온 기체는 베인 실 기체 통로를 관통하여 압력이 내부 하우징 면을 따라 방사상으로 균일하게 작용하는 것을 돕는다. 다음으로, 기체는 하부 측방 기체 채널들을 따라 흘러 압력이 측방 하우징 고정자 면들을 따라 방사상으로 균일하게 작용하는 것을 돕는다. 기체 채널 스프링 실은 적당한 기체 채널 압력들을 유지하는 것을 돕고 가스들이 베인 실의 저면에서 누설되는 것을 막아 준다. 중심부 및 측방 베인 실 영역들의 동역학적 운동은 운동의 추가적인 밀봉 영역 및 열적 비대칭 하우징 프로파일의 열 팽창 변화들에 반응하는 능력을 제공한다. 이러한 신규한 설계 사항들은 각각의 연소실을 효과적으로 밀봉하는 수단을 제공한다.
다이나믹 로터 축 실들(Dynamic Rotor Axial Seals)
다이나믹 로터 축 실링들은 내부 하우징 고정자 면 및 로터의 측방을 따라 밀봉을 유지한다. 각각의 다이나믹 로터 축 실은 주 축 실 및 부(mionr) 실 스트립(strip)을 포함하는데, 보조 실 스트립은 내부 하우징 고정자와의 밀봉 접촉면을 따라 주축 실 안의 작은 홈에 안착된다. 주 축 실은 하나의 중앙부와 두개의 단부로 갈라지는데, 이것들은 축 실의 중앙부가 연장부(tongue extension)를 이용하고 단부들은 홈 형상의 함몰부를 이용하는 기울어진 면을 따라 상호 접촉한다. 연소실 기체 압력에 의해 축 실의 중앙부는 로터에서 외측을 향해 편향되고 주름 스프링은 내부 하우징 고정자 면과의 밀봉을 유지하며 접촉한다. 기체 압력 및 주름 스프링이 주 실을 외측으로 편향시킴에 따라 기체 압력 및 주름 스프링은 축 단부를 외측으로 또는 공통 방사상으로 편향시켜 내부 하우징 고정자 면과 슬라이딩 베인 실의 하부 모두에 밀봉 압력을 가한다. 작은 부 실 스트립은 주 축 단부들 및 중앙부의 면을 가로질러 형성된 작은 홈에 끼워진다. 부 실 스트립은 주 축 실 영역들에 걸쳐 연속적인 밀봉 면을 제공하고 임의의 기체가 주 축 실 둘레를 지나가는 것을 막는다. 주 축 실링들의 밀봉면들은 고체 윤활제로 코팅되어 마찰 및 밀봉 마모(sealing wear)를 줄인다.
베인 면 실링들(Vane Face Seals)
앞서 언급한 여러 목적들에 따르면, 또한 본 발명은 주 축 단부 실링들을 지지할 뿐만 아니라 로터와 각 슬라이딩 베인 사이에서 높은 밀봉을 생성하는 베인 면 실링들을 제공한다. 베인 면 실링들은 두 개의 단이 조합된 주 실과 부 실 스트립으로 구성된다. 주 베인 면 실링들은 연소실 기체 압력에서 나온 베인 면과 후측에 위치한 주름 스프링으로부터 베인 면의 표면에 대해 외측으로 편향되어 주 실을 가압(주체는?)한다. 부 실 스트립은 주 베인 면 실 영역들에 걸쳐서 연속적인 밀봉 면을 제공하고 임의의 기체가 주 베인 면 실을 지나가는 것을 막는다. 주 베인 면 실의 밀봉 면 표면은 고체 윤활제로 코팅되어 마찰 및 밀봉 마모(sealing wear)를 줄인다.
베인 구조(Vane Structure)
본 발명의 다른 목적은 열 응력 및 여러 기계적 변형에 덜 취약하면서 더 가볍고 강한 베인 구조를 제공하는 것이다.
방사상 내부 하우징 고정자, 로터, 및 베인들은 일반적인 사각형 구조 프로파일 대신에 반원 형의 구조 프로파일을 이용한다. 이렇게 함으로써, 베인은 로터로부터 연장되고 베인의 반원형 곡률 프로파일에 대응하는 베인의 중심부를 로터가 견고하게 지지하도록 한다. 따라서, 여러 실이 내부 하우징 고정자 면을 가압하는 베인 주변을 매우 효과적으로 지지한다. 베인 상에서 이렇게 로터가 지지함으로써, 연소 및 밀봉력들로부터 베인 및 실의 변형을 최소화하도록 도와준다.
베인의 질량이 감소함으로 해서, 여러 변형을 야기할 수 있는 내부 하우징 고정자를 따라, 원심력에 의한 여러 슬라이딩 힘이 줄어들게 된다. 베인의 형상은 반원형 상단 모서리를 가지는 역 U자 형상의 구조이고, 베인 실링들은 내부 하우징 고정자 면을 따라 밀봉하기 위해 반원형 상단 모서리에 안착된다. 베인의 중심은 수평 및 수직 접촉 지지 크로스 바(cross bar)로만 절단된다. 여러 큰 구멍이 수평 지지 바 영역에 위치하여 베인의 질량을 더 줄이게 된다.
베인은 헤인즈 230 (Haynes 230)과 같은, 바람직하게는 고강도의 가벼우면서도 고온에 강한 재질로 만들어진다. 베인의 전면과 후면은 바람직하게는 열차단 코팅으로 코팅되어 과다한 열팽창이나 변형을 야기할 수 있는, 베인 구조물에 가해지는 열손상을 막는다.
베인 히트 파이프 냉각/열 전달(Vane Heat Pipe Cooling/Heat Transfer)
베인은 또한 주변 실 면 아래에 히트 파이프 채널 시스템을 포함한다. 히트 파이프 채널은 바람직하게는 베인 프로파일과 같이 엎어놓은 U 형상을 하고, 바람직하게는 작동 유체로 물을 사용한다. 히트 파이프는 주로 높은 G 원심력들에 의해 작동된다. 원심력들은 물이 증발기 영역에서 실링들의 아래에 있는 베인의 팁을 향해 움직이도록 한다. 실링들로부터 나온 열은 히트 파이프 채널로 전달되고 물은 가열되어 액체 상태에서 기체 상태로 변화한다. 다음으로 기체는 히트 파이프 채널을 통해 두 개의 측방 단부 중 하나로 흐르는데, 이곳에서 응축기들 안으로 열전달이 이루어지고 다시 기체 상태에서 액체 상태로 변화하게 된다. 다음으로, 액체는 베인의 팁 또는 증발기 영역으로 다시 순환하여 다시 사이클을 시작한다. 액티브 냉각 시스템은 로터 및 외부 베인 응축기들에 걸쳐서 물을 분사하여 베인의 열을 액티브 냉각 시스템의 물로 전달한다. 다음으로, 가열된 물은 엔진 사이클로 분사되고 재순환된다. 다공성 역 U자 형상의 심지(wick) 구조는 바람직하게는 히트 파이프 채널 안에 위치하여 열 파이프 내부에 있는 물과 기체를 빨아 들이거나 전달시키는 것을 돕고 또한 냉각으로부터 물 팽창을 저온 보호하도록 도와준다. 베인 히트 파이프 채널은 베인 및 실 구조물들이 그 구조를 유지하면서 최적의 기능을 수행하도록 하면서, 베인 및 실 구조물들의 온도를 크게 내린다.
베인 반원심력 벨트 시스템(Vane Anti-Centrifugal Belting System)
상술한 본 발명의 목적들에 따르면, 슬라이딩 베인들 및 스테이터의 내부면에 배치되는 스플릿 베인 실링들 사이의 마찰력을 줄이기 위한 베인 반원심력 시스템이 제공된다. 베인 구심력 시스템은 베인 벨트 시스템을 포함하며, 베인 벨트 시스템은 빠르게 회전하는 슬라이딩 베인들에 의해 생성되는 원심력에 대항하기 위한 구심력을 발생시키다. 아크형 베인 벨트 플레이트들을 사용하여 베인 벨트들에 작용하는 스트레스를 줄일 수 있다.
본 발명의 다른 목적은 기존의 베인 구심력 시스템에 비하여 작동 범위가 더 크고 작동 속도(rpm)가 더 빠른 개선된 슬라이딩 베인 반원심력 벨트 시스템을 제공하는 것이다.
본 발명의 다른 목적은 기존의 베인 구심력 시스템에 비하여 마찰 마모가 적고, 마찰 열축적이 적고, 작동 진동이 적고, 향상된 강도와 내구성을 갖도록 개선된 슬라이딩 베인 반원심력 벨트 시스템을 제공하는 것이다.
베인들이 내측 하우징 스테이터를 따라 회전함에 따라, 베인들 및 실링들은 하우징 스테이터 내측면에 대하여 원심력에 의해 밀린다. 회전 속도가 증가함에 따라 원심력도 증가하여 큰 마찰력을 야기하고, 이러한 마찰력은 엔진을 구동하는 연소 챔버의 압력과 같아지거나 더 커질 수 있다. 이러한 경우 엔진의 출력 밀도나 정미 효율이 상당히 제한된다. 이러한 베인 원심력 마찰에 대처하기 위한 방법은 몇 가지 있다. 하나의 방법은 베인과 실링들의 무게를 줄이는 것이다. 이 경우 원심력 발생하는 전체 로드가 줄어든다. 다른 방법으로 링들과 연결 로드들을 사용하여 베인들을 드라이브 샤프트에 연결하는 것이다. 이 경우 하우징 스테이터 내착면 으로부터 고정된 거리 또는 일정 거리에서만 베인들은 회전한다. 이 방법은 베인과 실링의 원심력 마찰 문제를 해결하는 데는 도움이 되지만, 하우징 스테이터 내측면이 타원형인 경우에만 사용할 수 있다. 이는 또한 연소/팽창 기간을 단지 TDC 점화로부터 90도 CA 회전까지 만으로 제한한다. 다른 방법으로, 베인의 바닥들에 연결된 마름모꼴 링크를 사용하는 것이다. 마름모 꼴 링크 시스템을 사용하여 베인과 실링의 원심력을 구심력으로 변환하여 힘의 균형을 맞추거나 서로 상쇄 시킬 수 있다. 마름모꼴 링크는 가위(scissoring system)와 같이 작동하여 베인들이 내측 하우징 스테이터 프로파일을 따라 회전할 때 자동으로 조절 작용을 한다. 반대측의 베인들이 하우징 프로파일을 따라 외측으로 연장됨에 따라, 그 영향으로 나머지 두 베인들은 안쪽으로 인입된다. 하지만, 이 방법의 경우에도 내측 하우징 스테이터가 타원형 프로파일을 가져야 하고 그에 따라 단지 90도의 연소/팽창 기간만에 허용된다는 문제가 있다. 또한, 마름모꼴 링크 시스템은 많은 수 의 핀들과 링크들을 사용하는데, 이러한 부품들은 마찰력을 증가 시키고 마모를 일으키는 경향이 있다. 게다가, 마모가 되는 경우에도 재조정하거나 장력을 새로이 맞출 수 없어 시스템 장애의 원인이 될 수 있다. 다른 방법으로는 베인들의 바닥들에 큰 캠들을 추가하고 내측 하우징에 회전 프로파일을 따라 캠 그루브를 형성하는 것이다. 원심력 마찰 저항은 베인들 및 실링들의 끝단들에서 캠 채널의 캠들로 전달된다. 베인 캠들과 캠 채널들은 오일 윤활되어 있고, 이에 더하여 정교한 롤러 베어링 시스템들을 사용할 수 도 있다. 이에 의해서, 베인들은 확장된 기하학적 프로파일을 사용할 수 있으며, 연소/팽창 기간도 TDC로부터 90도 CA 보다 크게 할 수 있다. 하지만, 이 방법의 경우 캠 채널을 밀봉하고 윤활하기가 어렵다는 문제가 있다. 또한, 이러한 캠 채널 시스템은 마모에 따른 조정 방법을 제공하지 않는다. 즉, 캠 채널 시스템은 큰 마찰 로드를 줄이도록 디자인된 캠과 캠 채널로 로드를 전달하여 단지 원심력 마찰 문제만 약간 해결할 뿐이다. 캠은 베인의 무게를 증가 시키고 캠 채널에 줄이려고 노력하는 마찰을 추가적인 부과한다.
본 발명의 베인 및 실링 반원심력 시스템은 각 베인의 바닥에 부착된 토글링 시스템(toggling system)에 연결된 일련의 벨트들(series of belts)을 이용한다. 두 개의 일련의 벨트들은 두개의 벨트들이 교번(alternating) 베인들 사이에서 분리되도록 형성된다. 하나의 벨트는 엔진의 반경 중심(radial center) 및 구동축(driveshaft) 둘레를 따라 움직이며, 다른 하나의 벨트는 절반으로 분리되고 중심 벨트의 바깥쪽에서 움직인다. 각각의 외측 벨트들의 폭은 중심 벨트 폭의 절반이다. 벨트 시스템의 동작은 플레이어들이 스트링 루프(loop)를 이용하여 그들의 손가락으로 루프를 비틀어서 독창적인 스트링 형상을 만드는 스트링/핑거 캣츠 크레들 게임(string/finger cat’s cradle game)과 유사하게 동작한다. 독창적인 스트링 형상을 유지하기 위하여, 플레이어들은 양 손을 사용하여 그것들을 당겨서 스트링 상에 인장력(tension)을 인가하여야만 한다. 플레이어들은 그들의 손가락으로 스트링을 조절함으로써 스트링 형상 또는 위치를 변경할 수 있지만, 그러나 모든 손가락을 이용하여 스트링에 지속적인 인장력을 유지하여야만 한다. 본 발명은 이와 유사한 방법으로 동작된다. 여덟 개의 베인 엔진 시스템에서, 네 개의 교번 베인들은 중심 벨트 시스템에 연결되고, 네 개의 베인들은 외측 벨트 시스템에 연결된다. 각각의 벨트 시스템에서, 두 개의 베인들이 내측 하우징 스테이터 프로파일을 따르고 로터들의 중심으로부터 연장되기 시작함에 따라, 그들은 로터로 되돌아가는 다른 두 개의 베인들을 당긴다. 이러한 시스템은 또한 다른 베인들 및 실링들의 원심력으로 원심 베인과 실링력의 균형을 맞춤으로써 롬빅 연동 시스템(rhombic linkage system)처럼 동작하여야 한다. 본 발명의 장점은 베인 벨트 토글링 시스템 및 베인들 및 실링들이 연소/팽창이 상사점(TDC)으로부터 90도 CA보다 더 큰 비대칭(asymmetrical) 내측 하우징 프로파일들을 따르게 하는 프로파일 벨트를 또한 이용하는 것이다. 토글들은 베인 세그먼트들을 내측 하우징 프로파일 뒤틀림(distortions)에 적합하도록 연장되거나 단축되게 한다. 프로파일 벨트 시스템은 두 개의 내부 벨트 시스템의 외측 경계(outside perimeter)를 발생시키는 두 개의 작은 벨트들로 구성된 제3 벨트 시스템이다. 프로파일 벨트 시스템은 통일된(unified) 시스템으로서 중심 및 외측 벨트 시스템과 서로 연결되며, 그들이 비대칭 또는 찌그러진 타원형 내측 하우징 스테이터 프로파일 둘레를 회전함에 따라 다이나믹 캠 채널(dynamic cam channel)처럼 작동하여 내측 하우징 스테이터 표면을 가지는 고유한 위치에서 베인들 및 실링들을 유지하는데 보조한다. 본 발명의 다른 장점은 각각의 베인 토글 시스템이 임의의 시스템 웨어(wear) 또는 벨트 스트레칭(stretching)을 통하여 벨트 인장력을 조절할 수 있는 조절 가능한 인장 바(adjustable tension bar)에 연결될 수 있다는 것이다.
활성 냉각 시스템을 이용하여 물을 로터 중심으로 분사함으로써, 벨트 시스템 주위의 온도는 섭씨 100도 또는 절대온도 212도 근처에서 유지될 수 있다. 이 온도에서는, 다양한 다른 물질들이 벨트 물질로서 이용될 수 있다. 이러한 물질들은 직물로 짠 넥스텔 610 (woven Nextel 610) 및 AGY’s 933-S2 글라스, 섬유 유리, 탄소 섬유, 또는 스테인레스 스틸 와이어 등을 포함한다. 바람직한 벨트 물질은 플렛(flat) 벨트 세그먼트들로 짜여지고 베인 토글들에 연결된 고 신장력 섬유들이다. 베인 벨트들은 두 개의 연결된 벨트들 사이에 위치하는 벨트 아치들(over belt arches) 상에 얹혀질 수 있다. 벨트 아치들은 롤러 베어링들을 포함하여 베인 아치들을 가로지르는 벨트들의 운동을 더 보조할 수 있을 것이다. 롤러 베어링들은 또한 1,000 rpm보다 더 빠른 높은 rpm 속도로 압축하는 스프링 시스템에 연결된다. 이러한 속도에서, 롤러 베어링들은 베인 벨트들과 접촉을 끊고, 벨트들은 고체 윤활제로 도포된 벨트 아치의 작은 둘레 표면들을 가로질러 미끄러진다. 고체 윤활제는 매우 낮은 마찰 및 마모를 갖는 벨트 아치를 가로지르는 매우 높은 베인 벨트 운동을 가능하게 한다. 벨트 자신들도 또한 고체 윤활제로 도포되어 마찰 및 마모를 보다 더 감소시킬 수 있다.
로터 구조(Rotor Structure)
본 발명의 다른 목적은 로터 시스템보다 가볍고 강한 개선된 로터 구조를 제공하는 것이다.
엔진 로터는 엔진의 크기나 구성에 따라 8개 또는 6개의 세그먼트들로 구성된다. 바람직하게, 드라이브 샤프트는 8개 또는 6의 로터 세그먼트들과의 매칭을 위해 8각 또는 6각형 모양이다. 로터 세그먼트들 각각의 바닥은 바람직하게는 드라이브 샤프트의 평평한 면들 중 어느 한면에 안착된다. 둥근 잠금 플레이트는 드라이브 샤프트 양단으로 슬라이딩되어 모든 로터 세그먼트들을 락킹하여 하나의 로터를 형성한다. 바람직하게, 로터의 상측은 내측 하우징의 프로파일과 대응되는 반원형이다. 로터의 상측은 2개의 측면 플레이트들과 연결되며, 상기 측면 플레이트들은 로터의 형상이 베인과 같은 역 U 자형이 되도록하며 로터면 아래의 큰 개구부를 형성한다. 상측의 반원형 형성은 강력한 활과 같은 역할을 하며 로터의 큰 강도를 보장하고 하측의 큰 개구부를 제공한다. 이는 엔진의 무게를 줄이고 로터 제작비용을 줄이는 효과가 있다. 또한, 베인 반-원심력 벨트 시스템이 동작할 수 있는 공간을 제공한다.
연소 캐버티 소용돌이 와류(Combustion Cavity Vortex Turbulence)
연소 캐버티는 초승달 모양이고 종래의 연소 챔보들보다 좁다. 수소는 가솔린이나 디젤 연료보다 더 큰 화염속도를 갖는다. 이는 챔버 가스들과 물, 그리고 외측 하우징면과의 면 전단력을 발생시커 믹싱 와류가 생성되게 한다. 따라서, 화염 전단의 전파가 전체 챔버에 걸쳐 개선된다. 내측 하우징의 높은 온도와 함께 가열된 면의 이러한 전단 와류는 연소와 화염 전단의 전파를 더욱 가속화 한다.
연소 리세스는 수소와 물을 약간 층상으로 만든다. 즉, 약간의 물과 분리된 수소 균일 연소 섹션이 측면과 후측에 제공될 수 있다. 연소 리세스의 만곡은 챔버 와류 형성에 도움이 되어 수소 연소와 물과의 혼합을 개선한다.
수소가 챔버의 전면부에서 일단 점화되면, 물은 챔버의 후방을 향해 층상을 이룬다. 로터가 회전하여 90 CA 도 TDC를 지남에 따라, 연소 리세스의 곡률에 의해서 챔버 후방에서 압축 잠금 위치의 생성이 없이 물이 보다 쉽고 부드럽게 압축점에서 압착되고 분출된다. 물은 고속으로 전방으로 진행하여 가스 와류를 개선하고 연소 수소와 혼합된다.
로터 열제어 및 수증기 챔버 냉각/열전달(Rotor Thermal Control and Water Vapor Chamber Cooling/Heat Transfer)
본 발명의 다른 목적은 로터의 열침입을 최소화하고 열침투가 없는 개선된 로터 냉각 시스템을 제공하는 것이다.
로터의 상면과 3개의 연소 캐버티 리세스들은 바람직하게는 이트륨 안정화 지르코늄(yttrium stablilized zirconium, YSZ)과 같은 열차단 코팅제(thermal barrier coating, TBC)로 코팅된다. 열차단 코팅은 연소로 발생한 열이 로터 표면으로 침투하고 로터 내부의 부품으로 전달되는 것을 방지한다. 로터면 아래에 배치된 수증기 챔버는 열차단 코팅을 통과하여 로터로 침투하는 열을 흡수한다. 로터의 수증기 챔버는 로터의 표면을 등온화하는데 유용하며 로터 표면 열분포를 균일하게 하는데 유용하다. 이 경우 안정적인 연소가 이루어진다. 로터 수증기 챔버는 베인 히트 파이프 시스템과 비슷하게 동작한다. 로터 증기 챔버는 물을 작동 유체로 사용하여 섭씨 약 202도까지 동작한다. 로터 증기 챔버는 높은 G-회전력을 이용하여 로터의 외측 연소 캐버티면 아래에 있는 증발기 섹션과 측면의 두개의 응축기들 사이에서 물을 순환시키는 중력 순환식 챔버이다. 바람직하게는, 로터 증기 챔버는 또한 미세 및 성긴 심지 메쉬층들을 이용하여 로터의 전체면에 물을 골고루 분배하고 증발기와 응축기 사이의 물의 순환을 개선한다. 또한, 작동 유체의 순환을 개선하고 물의 결빙으로 인한 로터나 로터 증기 챔버의 손상을 방지하기 위하여 2개의 다공성 심지 튜브들이 로터 증기 챔버 내에 배치된다. 2개의 다공성 심지 튜브들 중 하나는 한 측면의 응축기에서 다른 측면의 응축기에 이르는 경로에서 로터의 반원형부를 축 방향으로 감싸도록 배치된다. 다른 하나의 다공성 심지 튜브는 로터 증기 챔버를 반지름 방향으로 가로질러 배치된다. 활성 냉각 시스템으로부터의 물은 양측면으로부터 로터 측면 응축기들을 가로질러 엔진 하우징 내로 분사된다. 로터 증기 챔버의 열은 응축기를 통해 활성 냉각 시스템으로부터 유입된 물에 전달된다. 이렇게 가열된 물은 엔진 하우징 외부로 안내되고 다시 연소 캐버티 내로 분사되어 수소와 예비 혼합된다.
베인 접선 베어링 시스템(Vane Tangential Bearing System)
본 발명의 다른 목적은 작동 속도가 증대되고, 마찰 마모가 줄어들고, 마찰열 생성이 줄어들고, 기존보다 강도 및 내구성이 향상된, 개선된 슬라이딩 베인 접선 베어링 시스템을 제공하는 것이다.
로터 베인 통로 내 로터면을 따라 돌출되고 바람직하게는 산화물 윤활제로 코팅된 작은 지그재그면들을 사용하여 베인들의 슬라이딩을 개선하고 연소 압력을 로터로 전달하도록 한다. 돌출된 지그재그 면들은 접촉 면적을 최소화하고, 산화물 윤활제는 슬라이딩 마찰을 최소화 한다. 또한, 돌출된 지그재그 면들은 작은 증기 채널의 역할을 한다. 베인들이 베인 통로를 통해 로터로 다시 들어 옴에 따라, 내측의 활성 냉각 시스템으로부터의 물은 지그재그 채널들로 유입되며 유입된 물은 고압의 증기로 상변화한다. 증기압에 의해여 돌출된 면들로부터 베인들 일부가 들어올려져서 베인 슬라이딩 마찰이 줄어든다. 증기는 모든 방향으로 동일하게 압력을 작용하며, 또한, 베인에 작용하는 연소 압력 일부를 로터로 전달하여 엔진 구동에 도움을 준다. 로터 베인 통로들에 형성된 리세스들에 배치된 작은 롤러 베어링들은 베인들에 작용하는 연소 압력은 로터에 전달하고 슬라이딩 마찰을 줄인다. 롤러 베어링들은 1,000 rpm 이하의 저속 구동 중에 주로 사용된다. 이 보다 높은 회전수의 속도에서, 롤러 베어링들은 작은 베어링 스프링들에 연결되고, 베어링 스프링들은 원심력에 의해 압축되며 롤러 베어링들을 롤러 베어링 통로 안쪽으로 들어 가게 한다. 고속 동작의 경우, 베인은 로터에서 아주 빠르게 나오고 들어가므로, 롤러 베어링은 관성 마찰을 증가시키고 엔진 효율을 떨어뜨리므로 사용되지 않는다. 엔진 회전수가 다시 1000 rpm이하로 떨어지는 경우, 롤러 베어링 스프링들의 압축이 해제되면서 롤러 베어링들이 슬라이딩 베인면에 직접 접촉하여 슬라이딩 베인의 마찰을 줄이고 베인의 연소 압력을 로터에 전달하는 긍정적인 효과가 제공된다.
본 발명의 다른 목적은 기존의 슬라이딩 베인 접선 베어링 시스템들 보다 우수한 진동 흡수 능력을 갖는 개선된 슬라이딩 베인 접선 베어링 댐핑 시스템을 제공하는 것이다.
돌출된 지그재그 물/증기 채널들과 롤러 베어링들을 조합하여 사용하는 경우, 베인 슬라이딩 마찰을 줄이고 베인 연소 압력을 로터에 전달하는 데 유용할 뿐만 아니라, 연소 펄스 및 베인들의 들어오고 나오는 동작에 따른 거친 진동을 상당히 줄일 수 있다. 이는 다른 부품에 작용하는 NVH (noise, vibration, and harshness) 스트레스를 최소화하고, 엔진 구동성 및 내구성을 향상시킨다.
엔진 하우징(Engine Housing)
본 발명의 엔진은 일반적인 엔진보다 훨씬 높은 온도에서 작동하므로, 다음과 같은 요소들의 독특한 조합을 사용하여 주요 영역에서 열이 축척 되는 것을 최소화 한다. 산화물 윤활제들, 열차단 코팅제들, 증기 챔버 시스템들, 및 활성수 냉각 시스템을 사용하여 과도한 열을 효율적으로 옮겨 외측 엔진 하우징을 등온화(isothermalization)한다. 엔진 하우징과 부품들은 열 스트레스나 변형에 잘 견디는 고온 합금들 및 열차단 코팅제를 이용하여 제조된다. 외측 엔지 하우징은 바람직하게는 두꺼운 열 블랭킷으로 덮어 열손실을 및 소음을 최소화 한다.
찌그러진 타원형 내측 하우징 스테이터 형상(Distorted Oval Inner Housing Stator Geometry)
본 발명의 다른 목적은 기존의 엔진 시스템들보다 우수하고 최적화된 열역학적 사이클 성능을 달성하면서 연소/팽창 영역을 최대화 또는 확장하고 흡입/압축 영역을 최소화하는 기하학적 프로파일을 제공하는 것이다.
본 발명의 다른 목적은 기존의 엔진 시스템에 비하여 베인 및 실링 변형의 적은 개선된 내측 하우징 스테이터 형상을 제공하는 것이다.
본 발의 내측 하우징 스테이터 기하학적 프로파일에 따르면, TDC부터 연소/팽창 영역은 점진적으로 확대되어 TDC로부터 측정한 크랭크 앵글 약 145도에서 최대가 된다. 크랭크 앵글 약 145도는 팽창 영역의 끝 지점이기도 하다. 이러한 구조 덕분에, 기존의 로터리 베인 엔진에 비하여 61% 긴 연소/팽창 기간을 갖으며, 더 많은 동역학적 열역학적 열이 기계적 일로 변환될 수 있다. 배기 포트는 뒤쪽의 베인이 팽창 영역 종료 지점을 지날 때 동일 챔버의 전방 슬라이딩 베인의 옆에 위치하게 된다. 연소/팽창 영역이 점진적으로 확대되게 함으로써, 베인과 실링 부품들에 작용하는 스트레스를 상당히 줄일 수 있다. TDC 바로 다음 위치에서, 연소력과 연소 압력이 최대가 된다. 이 지점에서, 베인들과 실링들은 로터 내측으로 들어가 강한 힘에 노출되는 면적이 줄어들며, 따라서 베인들과 실링의 변형과 손상이 방지된다. 베인들이 연소/팽창 영역을 따라 회전함에 따라, 베인들은 점진적으로 로터로부터 인출되어 내측 하우징 스테이터 면에 대한 밀봉을 한다. 팽창 영역 종료 점에서, 베인은 로터로부터 가장 멀리 인출된다. 하지만, 이 지점에서의 연소 챔버의 압력은 낮아 베인과 실링이 변형될 가능성은 낮다. 팽창 영역 종료 점 이 후에, 내측 하우징의 형상은 급격이 줄어들어 배기 효율을 높인다. 배기 포트는 엔진의 축을 따라 반지름 방향으로 형성되어 무거운 수증기를 회전 원심력을 이용해 배기 포트로 쉽게 배출할 수 있다. 배기 포트 옆의 챔버 후방 베인과 흡입 포트 옆의 챔버 전방 베인 사이에는 단일 연소 챔버 길이 갭이 존재한다. 흡입 포트도 엔진의 축을 따라 반지름 방향으로 형성되어 신선한 흡입 공기가 회전하는 챔버로 직접 유입되게 한다. 흡입 행정 중에, 전방 챔버 베인이 최대 흡입 팽창 지점에 있을 때 동일 챔버의 후방 챔버 베인은 흡입 포트를 통과를 마친다. 최대 흡입 팽창 지점 이후, 내측 하우징 스테이터 프로파일은 압축 영역을 따라 급격히 줄어든다. 압축 행정이 시작함에 따라, 연소 챔버의 압력은 오르기 시작하고, 베인은 로터 내측으로 들어 가기 시작한다. 이러한 구성에 의해, 압축력에 의한 베인과 실링의 변형이 최소화 된다.
높은 하우징 작동 온도(Higher Housing Operation Temperatures)
본 발명의 다른 목적은 기존의 내연 기관들 보다 높은 연소 온도에서 진행하는 연소 반응을 제공하는 것이다. 다른 엔진의 연소 가스 온도는 본 발명에 따른 엔진의 연소 가스온도와 비슷할 것이다. 하지만, 엔지 재질들은 화씨 350도 내지 450도로 냉각되어야 한다. 따라서, 연소로 발생하는 열의 약 27%가 냉각 시스템으로 소실된다. 디젤 엔진의 경우 표면 면적비 대비 엔질 부피가 크고 때문에 약 20% 정도만의 연소열이 냉각 시스템을 소실된다. 따라서, 더많은 연소 열 에너지가 일로 전환된다. 본 발명의 엔진은 고온에 견디는 Haynes 230과 같은 합금을 사용하여 형성하므로 최대 하우징 온도가 섭씨 900도 까지 증가한다. 그러나, 소듐 증기 챔버를 사용하는 열역학적 시이클 성능을 최적화하기 위하여 하우징 팽창 동작 온도는 섭씨 600도 정도에서 유지된다. 섭씨 600도 이상으로 올라가는 경우, 외측 하우징과 소듐 챔버를 통해 많은 양의 열이 전달되어 주위 대기로 소실될 수 있다. 이 경우 또한, 큰 스트레스가 엔진 하우징과 기계 부품들에 작용하여, 열변형, 마모, 및 손상의 원인이 된다.
고체 산화물 및 초경질 나노합성물 윤활제들(Solid Oxide and Superhard Nanocomposite Lubricants)
본 발명의 다른 목적은 오일 윤활제를 사용하지 않고 완전히 고체 윤활제만 사용하는 것이다. 이극성 산화물 윤활제들, 자기 윤활 고체 윤활제들, 다이어몬드 같은 코팅제들, 및 거의 마찰없는 카본(near frictionless carbon, NFC) 코팅제들이 다양한 엔진 부품에 사용되어 마찰을 줄이고 내구성을 향상시키고, 오일 윤활제를 사용하는 경우 보다 HC 방출을 줄인다.
G-사이클 엔진은 오일 윤활제를 사용하지 않는다. 바람직하게는, 모든 실링 접촉면들이 NASA Glenn에서 개발된 Plasma Spray PS 304 와 같은 산화물 윤활제로 코팅된다. PS 304 산화물 윤활제는 섭씨 900도까지의 온도 범위에서 오일면과 동일한 수준의 마찰 계수를 제공한다. 대안적으로, 국립 아르곤 연구소(Argonne National Laboratory)에서 개발된 초경질 나노합성물(superhard nanocomposite, SHNC) 윤활제 코팅제를 사용할 수도 있다. PS 304와 SHNC 모두 낮은 마찰 계수를 제공하고 수백만 슬라이드 사이클의 내구성을 보증한다.
바람직하게는, 플라즈마 스프레이법에 의해 PS 304 층 또는 SHNC 층이 모든 실링 접촉면에 형성된다. 베인 스플릿 실링을 위해서, PS 304 층 또는 SHNC 층을 특히 두껍게 형성하여 둥근 스넙 노우즈 실링면을 제공하는 것이 바람직하다. 베인 스플릿 실링들의 외측면은 가장 큰 밀봉 및 마찰력에 노출된다. 두꺼운 둥근 스넙 노우즈 실링은 집중적인 실링면을 제공하여 마찰력은 줄이고 마모에 견디는 긴 실링 동작 성능을 제공한다.
활성수 냉각/열전달(Active Water Cooling/Heat Transfer)
본 발명의 다른 목적은 기존의 내연 기관보다 낮은 외축 하우징 열손실을 제공하는 것이다.
본 발명의 다른 목적은 기존의 내연 기관 로터 냉각/열전달 시스템보다 우수한 로터 베인 냉각/열전달 시스템을 제공하는 것이다.
활성수 냉각/열전달 시스템은 압축 행정 동안 외측 하우징, 메인 드라이브 샤프트 베어링 영역, 및 엔진 하우징의 내부를 로터 및 베인들을 냉각하는 데 사용된다. 압축이나 마찰에 의하여 발생하는 열은 순환수에 전달된다. 연소/팽창 영역 초기 후기 단계 분사에서, 가열된 물은 수소 가스와의 예비 혼합을 위해 열을 반응 사이클로 방출한다.
냉각 시스템과의 열교환 및 마찰로 인해 손실 되었을 각각 약 20% 및 약 10%의 열이 물에 의해 흡수되어 엔진 사이클을 위해 재 사용된다. 이는 엔진의 정미 열효율(brake thermal efficiency) 30% 정도 높일 뿐만 아니라, 물이 증기로 변하면서 연소 챔버의 압력을 상당히 높이는 역할을 하므로 엔진의 MEP 일 특성을 개선한다. 아주 높은 속도 및 압력으로 분사된 물은 30% 정도인 배기 열손실을 상당히 줄인다. 연소 캐버티 내에서의 연소 과정 온도를 낮추면 배기 가스의 온도가 낮아진다. 배기 내의 수분은 응축되어 다시 엔진의 활성수 냉각 시스템으로 전달된다.
수소 누출(Hydrogen Leaking)
본 발명의 다른 목적은 수소 가스의 점화가 챔버 실링들 뒤의 내측 로터 부품들이 위치한 곳에서 발생하는 것을 줄이고 수소 가스가 엔진 밖으로 누출되는 것을 줄이는 것이다. 활성수 냉각 시스템으로부터 공급되는 물은 엔진의 중앙부로 분사되어 로터와 베인들을 냉각한다. 분사된 물의 많은 양이 지그재그 냉각 채널들 및 로터 실링들의 아래쪽을 따라 흐른다. 이러한 물은 밀봉 효과를 증대시키고 수소 가스가 실링들을 옆으로 누출되는 것을 방지한다. 실링들 옆을 지나는 수소는 물에 의해 희석되고 활성수 냉각 시스템에 의해 수거되어 엔진에서 제거된다. 이렇게 수거된 수소 가스는 물 분사시 함께 엔진 내로 분사되어 재 사용 된다.
NVH 감소(Reduced NVH)
본 발명의 다른 목적은 연소 파워 펄스 진동이 기존의 내연 기관보다 작은 연소 반응을 제공하는 것이다.
수소를 물과 예비 혼합함으로써, 피크 연소 온도를 줄일 수 있다. 이는 또한 피크 압력 프로파일을 변화 시키게 되어 피크 압력 레벨이 낮아 지고 더 많은 크랭크 앵글 범위에서 피크 압력 레벨이 부드럽게 분포되게 한다. 일을 수행하는 평균 유효 압력(mean effective pressure, MEP)은 증가 시킨다. 이 경우, 엔진 부품에 거친 충격과 스트레스를 주는 높은 파워 펄스 스파이크가 줄어 들어 부드러운 엔진 동작이 보장된다.
소듐 증기 챔버는 연소 영역에서 열을 흡수하여 피크 연소 온도를 낮추어 연소/패창 영역을 등온화하고, 흡수한 열을 팽창 영역에 있는 연소 챔버들로 다시 보낸다. 이 경우, 하우징 온도가 안정화되어 하우징 변형이 최소화된다.
본 발명의 다른 목적은 기존 내연 기관의 경우보다 개선된 외측 하우징 소음 절감 시스템을 제공하는 것이다.
연소/팽창 영역을 따라 소듐 증기 챔버위에 있는 외측 엔진 하우징은 열손실을 줄이고 엔진 소음을 줄이기 위해 두꺼운 열절연 블랭킷 또는 금속폼으로 덮힐 수 있다.
베인 실링 지지 리브들을 갖는 흡입/배기 포트들(Intake/Exhaust Ports with Vane Seal Support Ribs)
본 발명의 다른 목적은 흡입 및 배기 포트들을 통과시의 베인과 실링의 변형을 최소화하는 것이다.
흡입 포트와 배기 포트는 로터, 베인, 및 실링들의 회전에 대하여 반지름 방향으로 배열된다. 포트 개구부들은 반원형 하우징을 둘레에 축 방향으로 형성된다. 이러한 구조는 가스 교환을 위해 가장 좋은 위치를 제공하며 큰 사이즈의 포트 개구부도 가능하게 한다. 포트들은 두 개의 엔진 조각들의 볼트-업 섹션에 의해 그 중심부에서 분할된다. 추가적인 지지 리브가 포트 조각의 중간까지 연장되며 포트 개구부에서 약간 각지게 형성된다. 중앙의 볼트-업 섹션과 2개의 지지 리브들은 베인과 실링들이 포트 개구부들을 지날 때 베인과 실링들을 지지하여 베인과 실링들의 변형을 방지한다. 지지 리브들을 포트 내에 정렬함으로써, 베인과 실링들과의 접촉 점들을 보다 넓은 영역에 분포 되게 하여 접촉이 항상 같은 지점에서 일어나지 않게 한다. 포트 개구부들은 약간의 각을 이루게 형성되어 베인들과 실링들이 포트의 에지들 상에서 가위 모양을 배치된다. 이러한 구조에 의하여, 베인들과 실링들이 포트 개구부들과 일치하는 경우 베인들과 실링들이 손상되거나 변형되는 것이 방지된다. 베인들과 실링등은 포트 개구부의 테두리들과 충돌한다. 회전에 의하여 원심력이 발생하여 가스 배기를 향상시킨다. 내측 하우징 스테이터는 좁아져서 배기 포트에서 빈 공간이 없게 된다. 따라서, 배기과정이 개선되고, 모든 연소 가스가 배기 포트를 통해 배기되도록 한다. 내측 하우징 스테이터는 흡입 포트 이후 크게 확장된다. 이는 벤츄리(venturri) 흡입 효과를 제공하여 신선한 공기를 흡입 포트를 통해 연소 챔버 내로 흡입하는데 큰 도움을 준다.
하우징 수증기 챔버들(Housing Water Vapor Chambers)
본 발명의 다른 목적은 기존의 엔진 시스템보다 더욱 하우징 열변형을 줄이는 것이다.
소듐 증기 챔버는 연소/팽창 영역의 하우징 온도를 안정화시키고, 활성수 냉각 시스템은 하우징의 다른 부분의 온도를 안정화 시킨다. 이러한 두 시스템간에는 큰 온도차이가 있다. 소듐 증기 챔버는 섭씨 600도에서 작동하고, 활성수 냉각 시스템은 섭씨 25도 내지 98도에서 작동한다. 이러한 온도 차이로 인해 하우징이 열변형 되어 로터, 실링, 및 베인 부품들이 손상 될 수 있다. 바람직하게는, 열팽창 계수가 낮은 Haynes 230와 같은 고온에 견디는 합금을 이용하여 소듐 증기 챔버 부분의 하우징을 형성한다. 바람직하게는, 스테인리스스틸 316L 또는 330와 같이 저온이 물과 수소에 대한 내구성이 우수한 합금을 이용하여 엔진 하우징 다른 부분을 형성한다. 하우징의 볼트-업 섹션에 열차단 코팅을 플리즈마 스프레이법으로 형성하여 소듐 증기 챔버 부분에서 하우징의 다른 부분으로 열이 전달되는 것을 최소화 한다. 수증기 챔버는 섭씨 202도에서 동작하며 하우징을 등온화하고 하우징 온도를 안정화 시켜서 소듐 증기 챔버와 활성수 냉각 시스템이 있는 메인 하우징 영역 사이의 열변형을 최소화한다. 소듐 증기 챔버와 메인 하우징 영역의 안정적인 등온화는 정확한 열 팽창 모델을 제공한다. 이 경우, 소듐 증기 챔버와 메인 하우징 형상에 대한 조정값을 열팽창을 고려하여 계산할 수 있어 엔진 동작중의 하우징 변형을 최소화할 수 있다.
가벼운 재료들, 내구성, 및 비용(Light Weight Materials, Durability, and Cost)
본 발명의 다른 목적은 강력하고, 가볍고, 내구적이고, 신뢰할 수 있고, 경제적으로 제작될 수 있는 수소 로터리 베인 내연 기관을 제공하는 것이다.
엔지 크기와 무게가 급속도로 줄어듬에 따라, G-사이클 엔진은 더욱 발전되고 비싼 합급을 이용하여 제작될 수 있다. G-사이클 엔진의 고온 영역 부품들은 바람직하게는 Haynes 230과 같은 코발트/니켈 기반 합금들을 이용하여 형성된다. 316L과 330 같은 스테인리스스틸 합금 및 알루미늄은 바람직하게는 저온 부품들을 제작하는데 이용된다. 이러한 발전된 합금들을 이용함으로써 엔진의 중량을 더 줄일 수 있으며, 엔진 강도 및 내구성 향상시키고 열변형을 최소화할 수 있다. 이러한 합금들은 또한 수소 침투에 잘 견디고 잘 취약화되지 않는다. 이러한 합금들의 장점들을 잘 판단하고 G-사이클 엔진의 주요 영역 및 부품에 대하여 전략적으로 사용함으로써, 이러한 합금들의 장점을 효율적으로 이용하고 합금 사용량을 줄인다. 따라서, 엔진 제조 비용을 줄일 수 있다.
발전된 재료와 부품 디자인을 통해 엔진의 내구성을 향상 시킬 수 있다. Haynes 230과 같은 슈퍼 합금들은 고온 고압의 조건에서 약 30,000 시간의 수명을 보장한다. 주요부는 열차단 코팅을 이용하여 보호될 수 있다. 산화물 윤활제는 사실상 마모 없이 수백만번의 슬라이딩 모션에 견딘다. 실링들은 윤활 마모를 허용하고 밀봉 성능을 다이나믹게 조절하도록 설계된다. 열적 기계적 분석 및 파괴 분석은 연구에서 중요하다. 나노 재료들, 합금들, 및 산화물들에 추가적인 연구를 통해 성능 및 내구성을 향상시킬 수 있다.
알칼리 금속 열전기 컨버터(Alkali Metal Thermal Electrical Converter, AMTEC)
본 발명의 다른 목적은 전력의 직접적인 소스를 제공하는 것이다. 본 발명에서는, 연소 영역을 따라 과도한 열을 흡수하여 팽창 영역을 따라 전달하기 위해 소듐 증기 챔버 시스템이 사용된다. 소듐 작동 유체의 열전달을 위한 순환 프로파일은 전력 생산을 위해 알칼리 금속 열전기 컨버터를 사용하는 경우와 동일하다. 알칼리 금속 열전기 컨버터는 소듐을 작동 유체로 사용한다. 가열된 소듐 작동 유체가 베타 알루미나 고체 전극(beta alumina solid electrode, BASE)로 가압되고, 베타 알루미나 고체 전극에서 소듐 작동 유체는 액체 상태에서 기체 상태로 상변화하고 소듐의 이온들이 베타 알루미나 고체 전극을 통과하여 전력이 생산된다.
관련 구성 요소의 기능 작동 방법, 실시예들의 특징 및 장점들은 뒤따르는 본 발명의 실시예의 상세한 설명, 첨부된 청구항, 및 도면들을 참고하여 더 잘 이해될 수 있으며, 상기 도면들 중:
도 1은 수소 지-사이클 기관의 측면도;
도 2는 상기 수소 지-사이클 기관의 상측 사시도;
도 3은 상기 수소 지-사이클 기관의 부분 절개 사시도;
도 4는 크랭크 앵글에 따른 로터 및 엔진 챔버들을 보여주는 상기 수소 지-사이클 기관의 하우징의 측단면도;
도 5는 내측 엔진 하우징의 물회수로 및 물회수 부품들의 분해된 상태를 보여주는 도면;
도 6은 수소 지-사이클 엔진의 절개도;
도 7은 연소 챔버 실링들의 사시도;
도 8 내지 10은 연소 챔버 실링들의 상세 측면, 상면, 및 바닥 사시도들;
도 11 내지 13은 스플릿 베인 실링이 결합된 슬라이딩 베인 어셈블리의 전면, 바닥, 및 뒤면을 보여주는 사시도들;
도 14는 스플릿 베인 실링들, 슬라이딩 베인, 및 베인면 실링들을 상세히 도 시한 측단면도;
도 15 내지 17은 슬라이딩 베인, 스플릿 베인 실링, 및 분해된 베인 실링들은 도시한 정면, 측면, 및 상면 사시도들;
도 18 내지 21은 슬라이딩 베인 및 스플릿 베인 실링 어셈블리의 전면, 상면, 바닥, 및 측면 사시도들;
도 22 및 23은 슬라이딩 베인, 스플릿 베인 실링, 및 베인 벨트 토글 시스템을 도시한 상측 단면도들;
도 24는 슬라이딩 베인과 스플릿 베인 실링을 도시한 바닥 단면도;
도 25 및 26은 슬라이딩 베인 및 스플릿 베인 실링의 측단면도들;
도 27은 슬라이딩 베인과 스플릿 베인 실링을 도시한 전방 단면도;
도 28은 슬라이딩 베인과 스플릿 베인 실링 어셈블리들을 도시한 전개도;
도 29는 슬라이딩 베인과 반원심력 벨트 시스템이 구비된 엔진 하우징을 도시한 부분 절개사시도;
도 30 및 31은 로터 및 슬라이딩 베인 반원심력 벨트 시스템을 도시한 측면 사시도들;
도 32 내지 37은 슬라이딩 베인 반원심력 벨트 및 벨트 아크 시스템을 상세히 도시한 사시도들;
도 38 및 39는 단일 및 이중 벨트 아크 어셈블리를 도시한 측면 사시도들;
도 40은 조립된 로터 세그먼트를 도시한 측면도;
도 41 및 42는 로터 세그먼트 어셈블리를 도시한 측면도 및 정면도;
도 43은 로터 세그먼트 어셈블리를 도시한 전방 단며도;
도 44는 로터 세그먼트 어셈블리를 도시한 전방 오프-센터 단면도;
도 45는 로터 세그먼트 어셈블리를 도시한 측단면도;
도 46은 베인 프로파일 벨트 제한 스프링을 상세히 도시한 도면;
도 47은 베인 접선 롤러 베어링 어셈블리를 보여주는 로터 세그먼트 어셈블리의 측 단면도;
도 48 및 49는 로터 세그먼트 어셈블리를 도시한 바닥 단면도;
도 50 및 51은 로터 세그먼트 어셈블리들 도시한 상면 및 바닥 전개도들;
도 52는 소듐 증기 챔버 및 AMTEC를 도시한 상면 외측 사시도;
도 53 내지 55는 소듐 증기 챔버 밍 알칼리 금속 열전기 컨버터 어셈블리를 도시한 내측 상면 및 측면도들;
도 56 내디 61은 소듐 증기 챔버 및 알칼리 금속 열전기 컨버터 어셈블리를 도시한 외측도, 측면 단면도, 및 전방 단면도들;
도 62 내지 64는 소듐 증기 챔버 및 알칼리 금속 열전기 컨버터 어셈블리를 도시한 측면, 바닥, 및 상측 전개도들;
도 65 내지 67은 전개된 수증기 챔버 부품들 및 하측 엔진 하우징을 도시한 상면도, 측면도, 및 바닥도;
도 68은 소듐 증기 챔버 및 분해된 알칼리 금속 열전기 컨버터 절연 커버를 보여주는 엔진 어셈블리의 측면 사시도;
도 69 및 70은 전체 엔진 어셈블리를 도시한 측면 및 전방 단면도들; 및
도 71은 지-사이클 로터리 베인 엔진 과정들을 도시한 도면이다.
엔진 동작 개요
지-사이클 엔진(1)은 외측 하우징(2)을 포함한다. 외측 하우징(2)은 찌그러진 타원형모양의 하우징 내부면(37)을 포함하며, 하우징 내부면(37) 내측에서는 로터 어셈블리(183)가 시계방향으로 회전한다. 도 3 및 도 4를 참조한다. 외측 하우징(2)은 소듐 증기 챔버(229)를 포함하며, 소듐 증기 챔버(229)는 지-사이클 엔진(1)의 압축, 연소, 및 팽창 영역들(31, 32, 33) 각각과 분리되어 연통하지 않는다. 외측 하우징(2)의 내부면(37)은 드라이브 샤프트(18)를 향해 내측으로 활 모양으로 굽은 형상을 가지며, 드라이브 샤프트(18)를 중심으로 로터 어셈블리(183)가 흡입 포트(6)에서 소듐 증기 챔버(229)의 시작점 근처의 외주부를 향해 약 0도에서 105도의 크랭크 앵글 범위에서 회전한다. 소듐 증기 챔버(229)의 시작점 및 팽창 영역(33)의 시작점에 인접한 외측 하우징(2)의 내부면(37)은 드라이브 샤프트(18)로부터 멀어지는 방향으로 활 모양으로 굽은 형상을 가지며, 팽창 영역(33)의 시작점을 지난 약 147도에서 드라이브 샤프트(18)의 중심으로부터 최대 이격된다. 드라이브 샤프트(18)의 중심으로부터 최대 이격된 지점으로부터 나머지 크랭크 앵글 구간, 즉, 압축 영역(31)에서 외측 하우징(2)의 내부면(37)은 드라이브 샤프트(18)의 중심을 향한 방향으로 점진적으로 활 모양으로 굽은 형상을 갖는다. 따라서, 외측 하우징(2)의 내부는 찌그러진 타원 또는 토러스(torus) 형상을 이루며, 소듐 증기 챔버(229)가 연소 캐버티(34)의 팽창 영역(33)에 걸쳐 배치된다.
도 3을 참조하면, 로터 어셈블리(183)는 8개의 로터 베인들(116)을 포함한다. 로터 베인들(116)은 반지름 방향으로 내외측으로 이동 가능하게 배치되어 외측 하우징(2)의 내부면(37)과 밀봉 접촉(sealing contact) 한다. 로터 베인들(116)은 원주 방향으로 서로 이격되어 있으며, 로터 베인 세그먼트들(310)이 인접한 로터 베인들(116) 사이로 연장된다. 로터 베인들(116) 각각은 압축 영역(31) 및 팽창 영역(33)에서 외측 하우징(2)의 내부면(37)과의 밀봉을 위해 이중 베인 실링들(80)을 포함하고, 로터 베인 세그먼트들(310)과의 밀봉을 위해 사이드 베이면 실링들(111)을 포함한다.
소듐 증기 챔버(229)는 소듐, 칼륨, 또는 황을 수용하는 밀폐 챔버이다. 바람직하게는, 소듐 증기 챔버(229)는 열전달 능력을 극대화할 수 있는 소듐을 수용할 수 있다. 미세 흡입 메쉬(230), 중간 흡입 메쉬(231), 및 성긴 흡입 메쉬(232)가 각각 소듐 증기 챔버(229)에 배치된다(도 3 참조). 소듐 증기 챔버(229)는 그 시작부에서 그 말단부에 근접한 지점(즉, 팽창 영역(33)의 최대 팽창점)에 이르는 영역이 연소 영역(32) 및 팽창 영역(33)에 걸쳐 있다. 엔진(1)이 동작하는 경우, 로터 연소 캐버티들(186)에서 소듐 증기 챔버(229)로 전달된 열은 소듐 증기 챔버(229)에서 사실상 균일하게 분포된다. 이는 소듐 증기 챔버(229) 내의 소듐이 점화점 근처의 액체 상태에서 증기 상태로 연속적으로 상변화하기 때문이다. 흡입 포트(6)에서, 공기가 엔진(1) 내측으로 공급된다. 엔진(1)이 고속으로 회전시, 로터 연소 캐버티(186) 내부에서 공기, 물, 및 수소는 압축되어 로터 연소 캐버티(186)가 소듐 증기 챔버(229)의 시작부 근처의 연소 영역(32)에 도달하는 경우 자기 발 화(auto-ignited)된다. 큰 크랭크 앵글 영역에서 연소 영역(32)이 확대됨에 따라, 로터 베인들(116)은 원심력에 의해 외측 하우징(2)의 내부면(37)과 밀봉 접촉한다. 따라서, 소듐 증기 챔버(229)는 소듐 증기 챔버(229)와 연소 영역(32) 사이의 하우징 내측을 통해 소듐 증발 영역(379)으로 전달되는 연소 열 및 팽창 영역(33)으로 전달되는 연소 열을 실질적으로 손실 없이 흡수 할 수 있다. 즉, 소듐 증기 챔버 응축기 영역(380)을 따라 연소 캐버티들(34)로 열이 재흡수 될 수 있다. 이러한 아이소써말리제이션(isothermalization)을 통해, 열은 끊임없이 소듐 증기 챔버(229)으로 전달되어 연소 팽창 작용에 재 사용될 수 있다.
2개의 로터 베인들(116)은 나오고 다른 로터 베인들(116)은 원위치로 돌아가는 동안 로터 베인들(116) 사이의 밸런싱을 위한 목적, 및 원심력을 감소시커 로터 베인들(116)과 외측 하우징(2)의 내부면(37) 사이의 밀봉 접촉에 의한 마모를 줄이기 위한 목적으로 베인 밸트 시스템이 사용된다. 외측 하우징(2)은 찌그러진 타원형 모양을 갖기 때문에, 이중 베인 실링(80)와 외측 하우징(2)의 내부면(37) 사이의 압력이 균일하지 않게 된다. 하지만, 베인 벨트 시스템의 사용으로 이를 균일하게 할 수 있다.
도 32 및 도 34를 참조하면, 로터 어셈블리(183)는 바람직하게는 8개의 로터 베인들(116)을 갖는다. 이 경우, 단일 베인 벨트 시스템(도 32 참조)이 직교하는 4개의 베인들로 이루어진 첫 베인 세트에 대한 원심력을 줄이기 위해 사용되며, 이중 베인 벨트 시스템(도 34 참조)이 나머지 4개의 직교하는 베인들로 이루어진 두 번째 베인 세트에 대한 원심력을 줄이기 위해 사용된다. 도 11 및 도 32에 도시된 단일 베인 벨트 시스템을 참조하면, 로터 베인들(116) 각각은 한 쌍의 끝단 베인 벨트 로드 홀더들(151)을 포함한다. 베인 벨트 로드 홀더들(151)의 두 내측 끝단들을 따라 단일 토글바 시스템(142)이 회전 가능하게 장착되어 있다. 토글바 시스템(142)은 한 쌍의 베인 벨트 바들(146)(도 11)을 포함한다. 베인 벨트 바들(146)은 베인 벨트 로드(145)에 장착되다. 베인 벨트 로드(145)는 베인 벨트 로드 홀더들(151)에 회전 가능하게 장착된다. 도 32에 도시되 바와 같이, 단일 베인 벨트 아크 베이링들(156)이 로터 세그먼트들에 고정된 로터(183)의 반대측면들의 로터 엔드 플레이트에 의해 회전 가능하게 지지된다. 4개의 단일 베인 벨트들(137)의 반대측 끝단들이 인접한 로터 베인들(116)의 베인 벨트 바들(146)에 고정된다. 단일 베인 벨트들(137)은 단일 베인 벨트 아크 베이링들(156)의 내면을 따라 베인들 사이로 연장된다. 따라서, 찌그러진 타원 형상의 하우징 내부면(37)의 편심에 따른 토글들과 아크 베어링들의 작용에 따라 직교하는 베인들은 외측 하우징(2)의 내부면(37) 프로파일에 따라 나오거나 들어갈 수 있다.
도 34를 참조하면, 나머지 4개의 직교하는 로터 베인들(116)을 위해 이중 베인 벨트 시스템이 사용된다. 이중 베인 벨트들 각각은 이중 토글 바 시스템들(143)을 포함한다. 이중 토글 바 시스템들(143)은 로터 베인(116)의 베인 벨트 로드 홀더들(151)에 회전 가능하게 배치되는 벨트 로드에 장착된다. 한 쌍의 아크 베이링들(158)(도 34 참조)이 축방향으로 서로 이격되는 위치에서 장착된다. 아크 베이링들(158)은 로터 엔드 플레이트들 방향으로 회전 이동 가능하다. 한 쌍의 베인 벨트들(138)의 반대측 끝단들이 인접하는 베인 토글들의 이중 토글 바들(143)에 고정된 다. 베인 벨트들(138)은 아크 베이링들(158)의 내측을 따라 연장된다. 단일 베인 벨트 시스템의 경우와 유사한 작동에 의해, 4개의 직교하는 로터 베인들(116)은 외측 하우징(2)의 찌그러진 타원 형상의 내부면(37)의 포로파일에 따라 나오거나 들어간다. 토글들과 아크 베어링들의 경우와 같이, 단일 베인 벨트 시스템과 이중 베인 벨트 시스템의 베인 벨트들은 축방향으로 서로 이격되어 있다.
도 29 및 도 36을 참조하면, 단일 베인 벨트 시스템과 이중 베인 벨트 시스템은 축방향으로 대향하는 측면들이 프로파일 벨트들(139)에 의해 서로 결합된다. 도 36에서 쉽게 확인 할 수 있는 것처럼, 단일 베인 벨트 시스템에서는 축방향으로 이격된 프로파일 벨트들(139)이 아크 베어링들(156) 장착에 사용되는 벨트 핀들(365)을 중심으로 장착되고, 이중 베인 벨트 시스템에서는 축방향으로 이격된 프로파일 벨트들(139)이 아크 베어링들(158) 쌍을 장착하기 위해 사용되는 핀들(159)을 중심으로 장착된다. 도 36에 도시된 바와 같이, 프러파일 벨트들(139)은 핀들(365, 159)의 끝단을 중심으로 연장되어 제한단 플레이트들(limit end plates)(157) 내측으로 연장된다. 플레이트들(157)은 로터 베인들(116) 사이의 로터 베인 세그먼트들(310)에 고정된다.
이하, 엔진의 상세한 구조, 소듐 증기 챔버와 연소 챔버의 상호 작용, 및 하우징 내부면에 대하여 밀봉을 유지하면서 베인의 반지름 방향으로 이동을 가능하게 하는 벨트 시스템을 첨부된 도면을 참조하여 보다 상세히 설명한다.
수소 지-사이클 엔진(1)은 온수와 수소가스를 분사하는 방식을 이용하여 작동된다. 도 1, 2 및 3을 참조하면, 로터 압축 영역(31) 초기에, 2개의 액체 분사 레귤레이터들(57)이 수소 지-사이클 엔진(1)의 연소 캐버티(34)로 물을 공급한다. 2개의 수소 분사 레귤레이터들(26)은 압축 영역(31)에서 로터 연소 캐버티(34)에 수소를 공급한다. 2개의 점화 플러그들(29)이 수소/공기/물 혼합물을 점화시킨다. 활성 냉각 시스템은 냉수 저장 탱크(미도시)에서 엔진의 하우징(2)의 저부, 흡입 영역(30), 압축 영역(31), 드라이브 샤프트 베어링/팽창 영역(19), 로터(183), 및 슬라이딩 베인들(52)을 거쳐 다시 냉수 저장 탱크로 이어지는 냉각유로를 따라 탈이온수(deionized water)를 순환시킨다. 초기 연소/팽창 연소 챔버 분사단계(60)에서는 압축 영역(31) 시작부에서 온수가 액체 분사 레귤레이터들(57)을 통해 수소 지-사이클 엔진(1)으로 분사되고, 후기 연소/팽창 챔버 냉수 분사단계(61)에서는, 냉수가 분사된다. 로터 연소 캐버티(34)에서 발생되는 모든 수증기는 배기 포트(9) 및 배기 파이프(10)를 통해 엔진(1)에서 배기수 응축기(미도시)로 배출된다. 배기수 응축기로 배출된 수증기는 물로 응축되어 냉수 저장 탱크로 다시 보내진다. 이때, 응축기 배기 파이프를 통해 공기가 배출된다. 화씨 32도 이하의 온도에서 엔진이 정지된 경우, 결빙에 의한 엔진(1)과 그 부품들의 손상을 방지하기 위해 에틸 알코올 저장 탱크(미도시)에 저장된 에틸 알코올을 물과 함께 물/에틸 알코올 혼합물 형태로 엔진(1) 내부로 순환 시킨다. 전자 제어 유닛(electronic control unit, ECU)(미도시)는 모든 레귤레이터들과 가변 속도 펌프들(미도시)을 제어한다. 이러한 제어를 위해 전자 제어 유닛은 온도 센서들과 수위(water level) 센서들을 모니터 한다. 따라서, 엔진(1)이 정상적으로 작동할 수 있다.
수소/물 분사
지-사이클 엔진(1)이 작동하는 동안, 물이 엔진(1)의 로터 연소 캐버티(34) 내로 액체 분사 레귤레이터들(57) 및 액체 튜브(308)를 통해 분사된다. 수소 가스는 수소 분사 레귤레이터(293), 수소 튜브(294), 및 수소 레귤레이터(280)를 통해 엔진(1)의 로터 연소 캐버티(34)로 분사된다. 수소 가스는 수소 레귤레이터(280)로부터 수소 튜브들(28, 27)과 수소/물 분사 레귤레이터들(26)을 거쳐 로터 연소 캐버티(34)로 분사된다. 이때, 수소 가스는 압축 영역(31)의 분사 위치(38)에 분사된다.
수소 가스가 고압으로 압축된 상태에서 낮은 분사 압력에 의해 팽창하면서 주위에서 열을 흡수한다. 따라서, 수소 분사 레귤레이터(293), 수소 튜브(294), 및 수소 레귤레이터(280)가 결빙에 의한 손상을 입을 수 있다. 이를 방지하기 위해, 수소 레귤레이터(280)에 근접한 수소 튜브(294)를 감싸고 있는 튜브로 탈이온화 온수를 펌핑한다. 온수의 열이 수소 튜브내의 수소 가스로 전달되어 수소 레귤레이터(280)와 수소 분사 레귤레이터(26)가 결빙에 의해 손상되는 것이 방지된다. 수소 레귤레이터는 수소 혼합물의 평형을 적절히 유지하고 수소 혼합물을 수소 튜브들(28, 27) 및 수소 분사 레귤레이터들(26)을 통해 로터 연소 캐버티(34)의 압축 영역(31)내의 분사 위치(38)로 분사한다.
활성수 냉각 시스템(Active Water Cooling System)
냉수 저장 탱크(미도시)에 저장된 탈이온수는 외측 하우징의 흡입/팽창 영 역(2), 드라이브 샤프트 베어링 및 팽창 영역(19), 그리고 내측 로터(183) 및 슬라이딩 베인들9116)을 냉각하는데 이용된다. 탈이온수는 엔진(1)의 부품 내부로 침투해 오염을 유발할 수 있는 불순물이 없는 순수한 물의 형태이고, 표면 장력이 낮아 튜브를 통해 펌핑되는 동안이나 하우징 스테이터들(2, 4)의 내부면(37)을 따라 로터 케버티(363) 내부로 이동되는 동안 낮은 마찰 저항을 유발하므로 냉각수로 이용하기에 적합하다. 엔진(1)의 외측 하우징(2)의 흡입 영역(30)과 압축 영역(31)을 냉각하기 위해, 냉수 저장 탱크에 저장된 탈이온화 냉각수는 가변 속도 물 펌프에 의해 펌핑된다. 펌핑된 냉각수는 냉각수 튜브(321), T-형상 튜브 피팅(56), 스플릿 냉각수 튜브(48), 및 하우징 90-도 피팅(54)를 거쳐 하우징 흡입/압축 영역 냉각수 인렛(62)으로 유입된다. 하우징 흡입/압축 영역 냉각수 인렛(62)에서 냉각수는 흡입/압축 영역 냉각수 통로(63)를 통해 흡입/압축 아웃렛(64)로 흐른다. 그 후, 냉각수는 하우징 90-도 피팅(54), 스플릿 냉각수 회수 튜브(49), T-형상 튜브 피팅(56), 단일 냉각수 회수 튜브(322), 및 온수 필터를 거쳐 온수 저장 탱크로 안내된다.
엔진(1)의 드라이브 샤프트 베어링(19)과 팽창 영역(31)을 냉각하기 위해서, 가변 속도 펌프를 이용하여 냉수 저장 탱크에 저장된 탈이온화 냉각수를 펌핑한다. 펌핑된 탈이온화 냉각수는 냉각수 튜브(323), T-형상 튜브 피팅(56), 스플릿 냉각수 튜브(50), 하우징 스트레이트 피팅(55), 드라이브 샤프트 베어링/팽창 영역 냉각수 인렛(65), 드라이브 샤프트 베어링/팽창 영역 냉각수 통로(66), 드라이브 샤프트 베어링/팽창 영역 냉각수 통로 아웃렛(67), 하우징 스트레이트 피팅(55), 스 플릿 냉각수 회수 튜브(51), T-형상 튜브 피팅(56), 단일 냉각수 회수 튜브(324), 및 온수 필터를 거쳐 온수 저장 탱크로 유입된다.
내측 로터 어셈블리(183) 및 슬라이딩 베인들(116)을 냉각하기 위해, 가변 속도 펌프를 이용하여 냉수 저장 탱크에 저장된 탈이온화 냉각수를 펌핑한다. 펌핑된 탈이온화 냉각수는 냉각수 튜브(325), T-형상 튜브 피팅(56), 스플릿 냉각수 분사 튜브(52), 하우징 90-도 피팅(54), 내측 로터/베인 물 분사 인렛(334), 외측 로터 응축기(202), 및 슬라이딩 베인 응축기(132)로 안내된다. 이후, 슬라이딩 베인들(116)을 움직여 내측 하우징 내부면(37)의 측면들을 따라 냉각수를 수거한다. 수거된 냉각수는 내측 하우징 냉각수 회수 리세스(44) 및 냉각수 회수 커버(45)에 형성된 냉각수 회수 슬롯(47)으로 안내된다. 도 5에 도시된 바와 같이, 냉각수 회수 커버(45)는 냉각수 회수 커버 리세스(276)에 냉각수 회수 커버 스큐류(46)을 이용하여 고정된다.
그 후, 냉각수는 내측 로터/베인 물 아웃렛(335), 하우징 90-도 피팅(56), 스플릿 냉각수 회수 튜브(53), T-형상 튜브 피팅(56), 단일 냉각수 회수 튜브(326), 및 온수 필터를 거쳐 온수 저장 탱크로 안내된다.
후기 연소/팽창 챔버 냉수 분사단계(61)에서, 냉수 저장 탱크에 저장된 탈이온화 냉각수(320)은 고압 펌프에 의해 펌핑되어 고압 냉수 튜브(328), 고압 T-형상 튜브 피팅(59), 고압 스플릿 튜브(279), 고압 90-도 하우징 피팅(58), 및 후기 냉수 스프레이 노즐(337)을 거쳐 로터 연소 캐버티(34)의 후기 압축/팽창 분사 위치(61)로 유입된다.
활성수 냉각 시스템에서 사용된 모든 가변 속도 펌프들은 펌핑시 최소의 전기 에너지를 소모하도록 전기적으로 제어되고 조정된다.
온수 분사(Hot Water Injection)
엔진(1)의 동작 단계중 초기 연소/팽창 연소 챔버 분사단계(60)에서, 온수 분사 레귤레이터(57)를 이용하여 압축 영역(31)의 시작부에 온수를 분사한다. 압축 영역(31)에 온수를 분사하기 위해, 온수 저장 탱크에 저장된 탈이온화 온수(320)를 고압 펌프를 이용하여 온수 분사 튜브(308) 및 액체 분사 레귤레이터(57)를 통해 펌핑한다. 액체 분사 레귤레이터(57)는 압축 영역(31) 상에 위치된 로터 연소 캐버티(34)로 분사되는 온수의 양을 조절한다. 압축 영역(31)으로 분사된 탈이온화 온수(320)에 의해 유효 압축비가 조정되며, 분사된 탈이온화 온수(320)의 일부는 분사된 수소 가스(336)와 혼합된다. 초기 연소/팽창 온수 분사를 위해, 다른 고압 펌프를 이용하여 온수 저장 탱크에 저장된 탈이온화 온수를 펌핑한다. 펌핑된 온수는 고압 온수 튜브(327), T-형상 튜브 피팅(59), 고압 스플릿 튜브(278), 고압 90-도 하우징 피팅(58), 하우징 온수 분사 통로(42), 및 연결 튜브(42)를 거쳐 로터 연소 캐버티(34)의 초기 압축/팽창 분사 위치(60)로 안내된다. 초기 단계(60)에서의 로터 연소 캐버티(34)로의 연소/팽창 온수 분사는 수소 연소에 영향을 주어 피크 연소 온도를 조정하는데 도움을 준다. 또한, 분사된 탈이온수는 소듐 증기 챔버 하우징 스테이터 표면(4)을 따라 나트륨 증기 챔버에서 방출되는 열을 흡수한다. 또한, 분사된 탈이온수는 하우징 내부면(37)을 따라 유동하며 슬라이딩 베인(116)과 스플 릿 베인 실링들(79)에 대하여 윤활 및 밀봉 효과를 제공한다.
탈이온수 증기는 연소 챔버(34)내의 다른 가스들보다 무겁다. 따라서, 로터 어셈블리(183)의 회전에 따른 원심력에 의해 무거운 탈이온수 증기는 로터 어셈블리(183)에서 멀어지는 반지름 방향으로 힘을 받는다. 그 결과, 탈이온수 증기는 하우징 내부면(37)을 따라 유동하여 배기 포트(9) 및 배기 파이프(10)를 통해 연소 챔버(34)로부터 배출된다. 이는 탈이온수가 나트륨 증기 챔버 스테이터와 양호한 접촉을 유지하며 열교환을 하느데 도움이 되고, 탈이온수가 연소 챔버(34)로부터 배기 포트(9) 및 배기 파이프(10)를 통해 완전히 배출되는데 큰 역할을 한다.
찌그러진 타원형 하우징 스테이터 형상
도 1은 본 발명에 따른 로터리 베인 엔진(1)의 측 단면도이다. 도 3은 엔진(1)의 부분 절개도를 도시한다. 엔진(1)은 스테이터(37), 로터(183), 및 다수의 슬라이딩 베인들(116)을 포함한다. 슬라이딩 베인들(116)은 로터 베인 통로들(184)을 통해 나오고 들어올 수 있다. 하측 스테이터 하우징(2)과 상측 소듐 증기 챔버 스테이터(4)는 매끄러운 내부면(37)을 갖는 찌그러진 타원 모양을 형성한다. 유니폼한 피팅(fitting)과 밀봉을 위해 하측 스테이터 하우징(2)과 상측 소듐 증기 챔버 스테이터(4) 사이에는 금속 가스켓(5)이 개재되어 있다. 스테이터 내부면(37)과 슬라이딩 베인들(116) 사이의 밀봉을 위해 전후 베인 실링(80)로 구성된 스플릿 베인 실링들(79)이 사용된다. 연소 챔버(34)는 인접한 두 개의 슬라이딩 베인들(116)과 두 개의 로터축 실링들(102)에 의하여 정의된다. 또한, 엔진(1)은 공기 흡입을 위해 흡입 포트(6)를 포함한다. 흡입 영역(30)은 전방의 연소 챔버 베인(116)의 후방 베인 실링(80)가 크랭크 앵글 0도에서 흡입 포트(30)을 통과하여 계속 회전축을 따라 회전하여 후방의 연소 챔버 베인(116)의 전방 베인 실링(80)가 크랭크 앵글 약 60도에서 흡입 포트(30)의 통과를 마치기까지의 영역이다. 크랭크 앵글 약 60도에서, 내측 스테이터 하우징(37)은 로터면(185)으로부터 흡입 최대 거리에 있게되고, 다시 로터면(185)쪽으로 굽어서 압축 영역(31)을 형성한다. 압축 영역(31)은 크랭크 앵글 105도에 위치한 점화 플러그(29)의 위치에 도달하기 까지 약 45도의 크랭크 앵글 범위를 갖는다. 상사점(top dead center, TDC)는 크랭크 앵글 약 110도에 위치한다. 연소 영역(32)은 점화 플러그(29)의 위치에서 시작하여 초기 물 분사(60)가 이루어지는 약 크랭크 앵글 약 145도까지의 영역이다. 팽창 영역(33)은 연소 영역(32) 이 후부터 시작하여 전방의 슬라이딩 베인(116)의 후방 베인 실링(80)가 크랭크 앵글 약 270도에서 최대 팽창점을 지나기 시작하는 위치까지의 영역이다. 따라서, 연소 및 팽창 변위량은 크랭크 앵글로 약 160도가 된다. 내측 스테이터 하우징(37)은 로터면(185)과 가장 크게 이격되는 크랭크 앵글 약 270도 까지는 연소 영역(32)과 팽창 영역(33)에서 로터면(185)에서 멀어지는 외측 방향으로 곡률을 갖는다. 크랭크 앵글 약 270도 지점에서 내측 스테이터 하우징(37)은 로터면(185)를 향하는 방향으로 그 곡률이 급격히 변하며, 이러한 곡률은 크랭크 앵글 338도 지점의 하사점(bottom dead center, BDC)까지 유지된다. 후기 물 분사 단계(61)은 내측 스테이터 하우징(37)이 로터면(185)로부터 가장 크게 이격되는 크랭크 앵글 약 275도에서 이루어진다. 연소 챔버(34)에 대한 배기행정는 전방의 슬라 이딩 베인(116)의 후방 베인 실링(80)가 배기 포트(9)를 지나기 시작하는 크랭크 앵글 약 280도에서 시작하여 후방 슬라이딩 베인(116)의 전방 베인 실링(80)가 배기 포트(9)를 완전히 지나는 크랭크 앵글 약 360도까지 수행된다. 따라서, 연소 챔버(34)에 대한 배기행정은 크랭크 앵글 약 80도 동안 수행된다. 연소 챔버(34)에서 배기 가스가 배출된 후, 전방 슬라이딩 베인(116)의 후방 베인 실링(80)가 흡입 포트(6)를 지나면서 다음 사이클이 시작된다.
상측 소듐 증기 챔버 스테이터(4)는 상사점 위치인 크랭크 앵글 110도에서 크랭크 앵글 255도까지의 범위에서 연소 영역(32)과 팽창 영역(33)에 걸쳐 위치한다. 열차단 코팅(36)이 수소/물분사 위치인 크랭크 앵글 85도 직전부터 초기 물분사 단계(60) 위치인 크랭크 앵글 약 160도를 약간 지나는 위치까지의 영역에서 내측 하우징 스터이터면(37)에 형성된다.
로터 및 베인들을 갖는 내측 하우징 스테이터
도 3은 하우징 스테이터(2)의 하측 절반을 도시한다. 하우징 스테이터들(2, 4)의 내부 부품들을 보여주기 위해, 하측 스테이터(2)의 미러 이미지(mirror image)인 소듐 증기 챔버 스테이터(4)의 상측 절개부 절반은 도시하지 않았다. 로터(183)은 원형 디스크 형상을 갖으며, 외측면(185)와 둘레를 따라 수직하게 배치된 다수의 베인 슬롯들(184)(도 4 참조)을 포함한다. 슬라이딩 베인들(116) 각각은 베인 슬롯(184) 내에 위치한다. 로터(183)는 엔진(1)의 크기에 따라 6, 8, 9, 또는 12개의 베인 슬롯들(184)과 슬라이딩 베인들(116)을 갖는다. 본 실시예에서는, 8개 의 베인 슬롯들(184)에 대응하는 8개의 슬라이딩 베인들(116)이 각각 배치된다. 이러한 구성에 의하여 로터(183)의 내측면(185), 하우징 스테이터들(2, 4)의 내부면(37), 및 슬라이딩 베인들(116)에 의하여 나누어지는 8개의 개별 연소 챔버들(34)이 형성된다. 슬라이딩 베인들(116) 각각은 하우징 스테이터들(2, 4)의 내부면(37)과 대응하는 반타원형이면서 대체로 평평한 전후면들을 갖는다. 엔진(1) 동작시, 로터(183)는 드라이브 샤프트(18)를 중심으로 회전하며, 이에 따라 슬라이딩 베인들(116)이 하우징 스테이터들(2, 4)의 내부면(37)과 접촉을 유지하며 연속적으로 회전하게 된다. 따라서, 연소 챔버들(34)이 연속적으로 로터(183)을 중심으로 회전하게 된다. 이러한 동작중에, 원형의 배열된 슬라이딩 베인들(116)이 베인 슬롯들(184)에서 들어오고 나가는(toggle in and out) 운동을 하여 슬라이딩 베인들(116)과 하우징 스테이터들(2, 4)의 타원형의 내부면(37)이 면접촉을 유지 한다.
연소 챔버 실링들(Combustion Chamber Seals)
엔진(1)의 효과적이고 효율적인 구동을 위하여, 연소 챔버(34)를 형성하는 로터(183)와 하우징 스테이터37) 사이, 로터(183)와 슬라이딩 베인들(116) 사이, 및 슬라이딩 베인들(116)과 하우징 스테이터 내부면(37) 사이에 밀봉이 유지되어야 한다. 도 7은 연소 챔버들(34) 각각을 분리하고, 분리된 각각의 연소 챔버들(34)에서의 적절한 연소 가스 압력을 유지하기 위한 연소 챔버 실링들(78)을 보여 준다.
축 실링들( Axial Seals)
도 3 및 도 7에 도시된 축 실링들(102)은 로터(183)과 하우징 스테이터의 내부면(37)과의 밀봉을 위한 것이다. 축 실링들(102)은 활 형태의 세그먼트들이다. 축 실링들(102)은 또한 로터(183)과 베인 실링의 축 실링 접촉면(95)을 따라 배치된 하측 베인 스플릿 실링 세그먼트(82) 사이를 밀봉하는 역할을 한다. 축 실링(102)은 중앙 축 실링 섹션(103)과 2개의 축 실링 엔드 섹션들(104)로 이루어 진다. 축 실링 엔드 섹션들(104)은 축 중앙 및 엔드 실링 인터페이스(105)를 따라 서로 연결된다. 중앙 축 실링 섹션(103)은 텅 인터페이스(tongue interface)(106)를 포함하고, 축 실링 엔드 섹션(104)은 그루브 인터페이스(107)을 포함한다. 축 중앙 및 엔드 실링 인터페이스(105)는 전방 실링면에 대하여 소정 각도를 이룬다. 이러한 구조에 의하여, 중앙 축 실링 섹션(103)과 축 실링 엔드 섹션(104) 모두가 인터페이스(105)를 따라 자유로이 움직일 수 있고 스테이터 내부면(37)과 접촉하며 밀봉을 유지할 수 있다. 축 실링 엔드 섹션(104)의 인접한 그루브 인터페이스(107)가 만나는 중앙 축 실링 섹션(103)의 텅 인터페이스(106)의 면들은 고체 윤활제(35)로 코팅되어 있다. 고체 윤활제(35)는 고온에서의 윤활특성 및 내구성이 우수한 산화물들을 포함하여 축 중앙 및 엔드 실링 인터페이스(105)에 대한 미끄럼 저항을 최소화 할 수 있으며 밀봉 상태에서의 동작 스피드를 증가 시킬 수 있다.
축 실링(102)의 상면(358)은 전방에서 후방으로 갈수록 폭이 약간 줄어 들게 형성된다. 이러한 구조에 의해, 연소 챔버(34)에서 가압되는 가스들이 상면(358)을 따라 이동하여 축 실링(102)를 외측으로 바이어스 시킬 수 있다. 따라서, 하우징 스테이터의 내부면(37)과 밀봉 접촉이 가능해 진다.
주름진 스프링들(110)이 축 실링(102)의 중앙 축 실링 섹션(103)의 뒤에 배치된다. 주름진 스프링들(110)은 중앙 축 실링 섹션(103)에 초기 압력을 가하기 위해 사용되며, 이에 의해서 축 중앙 및 엔드 실링 인터페이스(105)를 따라 슬라이딩력이 가해져 축 실링 엔드 섹션(104)이 하우징 스테이터의 내부면(37)에 대하여 축 방향으로 외측으로 힘을 받고 하측 스플릿 베인 실링(82)의 하측 베인 실링 세그먼트면(95)에 대하여 반지름 방향으로 힘을 받게 된다. 주름진 스프링들(110)은 제한된 크기의 힘만을 작용하여 축 실링(102)과의 초기 밀봉을 가능하게 한다. 연소 챔버(34)의 가스 압력은 연소 챔버(34)를 밀봉하는 주된 힘이다. 이 가스 압력이 적절히 분배되어 하우징 스테이터들(2, 4)의 내부면(37)에 대하여 축 실링(102)의 중앙 축 실링 섹션(103)과 축 실링 엔드 섹션(104)이 적절한 밀봉 상태를 유지하게 된다.
중앙 축 실링 섹션(103)과 축 실링 엔드 섹션(104)의 실링면 전체 길이에 걸쳐 형성된 축 실링 스트립 그루브(108) 내에 작은 크기의 축 실링 스트립(109)이 배치된다. 축 실링 스트립(109)은 축 실링 트립 그루브(axial seal trip groove)(107) 위의 상측 축 실링 립(lip)을 통과하는 연소 챔버 가스를 밀봉하는 역할을 한다. 축 실링 스트립(109)의 상측 후단에는 작은 크기의 베벨(bevel)(351)이 제공된다. 축 실링 스트립(109)이 하우징 스테이터 내부면(37)에 대하여 외측 방향으로 바이어스 되도록 하기 위하여 베벨(351)은 축 실링 스트립(109)의 전체 길이에 걸쳐 배치되어 있다. 축 실링(102)와 축 실링 스트립(109)의 밀봉 접촉면들은 고온 동작특성 및 내구성을 갖는 산화물들을 포함하는 고체 윤활제로 코팅되어 있다.
축 실링(102)의 축 중앙 세그먼트(103)와 축 엔드 세그먼트(104), 축 실링 스트립(109), 및 주름진 스프링(110)은 로터(183)의 형상에 대응하는 곡률을 갖는다.
베인면 실링들
도 8은 베이면 실링 스트립(113)이 분해되어 있는 연소 챔버 실링 시스템(78)의 측면 사시도이다.
베인면 실링들(111)은 로터 베인 통로(184)에 위치 하여 로터(183)과 슬라이딩 베인들(116) 사이의 밀봉을 유지한다. 베인면 실링들(111)은 대체로 역 U 자형의 반타원 형상을 갖는다. 이러한 베인면 실링들(111)의 형상은 슬라이딩 베인들(116) 끝단의 곡선형과 대체로 대응된다. 따라서, 바람직한 실시예에 따르면, 16개의 베인면 실링들(111)이 제공되며, 각각의 베인면 실링(111)은 8개의 슬라이딩 베인들(116) 중에서 해당하는 슬라이딩 베인들(116)의 양측 베인면(349)에 인접한다. 베인면 실링들(111)은 약간 테이퍼진(tapered) 상면(359)를 갖는다. 테이퍼진 상면(359)은 베인면 실링들(111)의 후방 에지들을 향한다. 이러한 구조에 의해서, 연소 챔버(34)의 가스 압력에 의해 베인면 실링들(111)이 외측으로 바이어스 되며 베인면(349)에 대해서 밀봉된다.
베인면 실링(111)은 주름진 스프링(114)에 의해서 또한 외측으로 바이어스된다. 주름진 스프링(114)는 로터 베인면 실링 스프링 리세스(189) 내에 배치된다. 베인면 실링(111)은 실링 스트립(113)을 포함한다. 실링 스트립(113)은 작은 실링 스트립 그루브(112)에 위치 한다. 실링 스트립 그루브(112)는 베인면 실링(111)의 전체 길이에 걸쳐 형성되어 베인면(349)에 대해서 추가적인 밀봉작용이 가능하게 한다. 베인면 실링 스트립(113)의 상면 후단에는 작은 베벨(bevel)(352)이 제공된다. 베벨(352)은 베인면 실링 스트립(113)의 전체 길이에 대하여 배치되어 베인면 실링 스트립(113)이 베인면(349)에 대하여 외측으로 바이어스 되는 것을 가능하게 한다. 베인면 실링(111)과 베인면 실링 스트립(113)의 접촉 밀봉면은 고온 윤활 특성 및 내구성이 우수한 산화물들을 포함하는 고체 윤활제(35)로 코팅된다. 베인면 실링(115)의 끝단들은 주 베인면 실링(111)에서 약 90도의 각도로 외측 연장되어 하측 스플릿 베인 축 실링 세그먼트(82)와의 접촉 및 밀봉이 가능하여 면(95)와 밀봉 접촉하며, 축 실링 엔드 피스(axial seal end piece)(104)를 지지하도록 피팅(fitting) 된다.
베인면 실링(111), 베인면 실링 스트립(113), 및 주름진 스프링(114)은 대체로 역 U 자형의 반타원 형상이다. 이러한 반타원의 형상은 슬라이딩 베인들(116) 끝단의 곡선형과 대체로 대응된다.
스플릿 베인 실링들
도 8 내지 11을 참조하면, 스플릿 베인 실링(87) 내의 2개의 베인 실링들(80) 각각은 슬라이딩 베인(116) 상에서 앞뒤로 토글링(toggling) 되며 하우징 스테이터들(2, 4)의 내부면(37)의 형상과 매칭되며 원하는 밀봉 효과를 제공한다. 그러나, 흡입-압축 영역들은 상태적으로 차가운 상태로 지속적으로 유지되며 연소-팽창 영역들은 상대적으로 뜨거운 상태로 지속적으로 유지되는 엔진 2극성 열 분포(bipolar engine thermal profile) 때문에, 하측 베일 실링 세그먼트(82) 또는 스플릿 베인 실링(87) 각각의 측면 직선부는 외측으로 확대되어 슬라이딩 베인(116)의 축 방향으로의 밀봉을 제공할 필요가 있다. 이를 위하여, 스플릿 베인 실링(87) 각각은 하나의 상부 중앙 세그먼트(81)와 2개의 측면 하부 세그먼트들(82)로 나누어 진다. 상측 중앙 세그먼트(81)의 끝단들에는 2개의 경사진 주축 인터페이스 그루브들(84)이 형성된다. 하부 세그먼트들(82) 각각은 경사진 주축 인터페이스 그루브와 대응하는 형상을 가지는 텅 인터페이스 연장부(tongue interface extension)(85)를 갖는다. 베인 실링들(80) 각각의 상측 중앙 세그먼트(81)와 하부 세그먼트들(82)은 경사진 주축 텅 및 그루브 인터페이스(83)에서 서로 맞물린다. 인터페이스(83)에서 하부 세그먼트들(82)은 약간 내외로 슬라이드할 수 있다. 따라서, 엔진(1) 회전시 내외로 움직이며 스테이터의 내부면(37)과 접촉하는 슬라이딩 베인(116)과 스테이터 내부면(37) 사이의 밀봉이 유지될 수 있다. 베인 실링 하부 세그먼트(82)의 후측에 제공된 측면 가스 채널들(97)을 통해서 연소 챔버(34)내의 가스 압력이 전달되어 하부 세그먼트(82)가 스테이터 내부면(37)에 대하여 가압된다. 베인 실링들(80)이 세그멘트되어 있기 때문에, 스테이터 내부면(37)의 형상 변동 및 연소에 의한 변화에도 불구하고 슬라이딩 베인들(116)이 우수한 밀봉 효과를 제공할 수 있을 뿐만 아니라, 마모에도 불구하고 베인 실링(80)이 내구성 있게 작동할 수 있게 한다. 베인 실링 하부 세그먼트(82)의 외부면이 스 테이터 내부면(37)에 대하여 슬라이딩하는 동안 작용하는 마찰력에 의하여 하부 세그먼트(82)가 마모될 수 있기 때문에, 베인 실링 하부 세그먼트(82)가 베인 실링 세그먼트 인터페이스(83)를 따라 외측으로 슬라이딩하며 하우징 스테이터 내부면(37)과 밀봉 접촉을 할 수 있도록 구성된다. 이러한 구성에 의하여 베인 실링(80)의 동작 내구성이 크게 증가하며 밀봉 불량 가능성을 줄인다.
컨튜어드 스넙 노우즈 베인 실링 팁(Contoured Snub Nose Vane Seal Tip)
도 9 및 14를 참조하면, 베인 실링(80)은 스넙 노우즈 팁(90)을 포함한다. 스넙 노우즈 팁(90)은 작고 둥근 형상이다. 스넙 노우즈 팁(90)은 하우징 스테이터의 내부면(37)의 형상에 따라 부드럽게 슬라이드 가능하다. 스넙 노우즈 팁(90)은 표면 밀봉을 위해 너무 과도하게 접촉하는 것을 방지하도록 구성된다. 연소 과정중에, 큰 스트레스와 진동이 발생한다. 그러나, 스넙 노우즈 실링은 하우징 스테이터 내부면에서 이격되어 진동할 수 있다. 이러한 동작은 하우징 스테이터의 내부면에 채터링 마크 데미지(chattering mark damage)를 초래할 수 있다. 그러나, 스넙 노우즈 팁(90)을 약간 넓게 형성함으로써, 이러한 충격이 스넙 노우즈 팁(90)의 넓은 표면으로 분산되어 채터링 마크 데미지를 줄일 수 있다. 스넙 노우즈 팁(90)이 곡선형으로 형성되기 때문에, 슬라이딩 베인들(116)과 로터(183)이 하우징 스테이터들(2, 4)에 대하여 회전하는 동안, 스넙 노우즈 팁(90)은 하우징 스테이터의 내부면(37)과 다양한 각도에서도 좋은 접촉을 유지할 수 있다. 또한, 이러한 스넙 노우즈 팁(90)의 형상 덕분에 밀봉 접촉점이 스넙 노우즈 팁(90)에 고루 분포하게 한 다. 결과적으로, 베인 실링(80)의 동작 내구성이 향상되며 밀봉 불량이 최소화된다. 스넙 노우즈 팁(90)은 베인 실링(80)의 중앙 세그먼트(81)의 상측 형상에 따라 곡선형 모양을 가지며, 다시 베인 실링(80)의 하부 세그먼트(82)를 따라 베인 실링 외측면들(92) 방향으로 전이되는 형상이다. 측면 스넙 노우즈 실링(92)은 베인 실링 하부 세그먼트(82) 및 하우징 스테이터들(2, 4)의 내부면(37)에 대하여 양호한 밀봉을 제공한다. 또한, 베인 실링(80)은 축 실링(102) 및 베인면 실링(111)과 빌봉 접촉을 한다. 평평한 하측 베인 실링 세그먼트면(95)은 축 엔드 세그먼트들(104) 및 베인면 실링 인터페이스 연장부들(115)과 평평한 면접촉한다. 가스들이 스넙 노우즈 팁(90)을 지나 베인 실링들(80)을 사이를 통과하여 로터(183) 내부로 유입되는 것을 방지하기 위해, 스넙 노우즈 팁(90)은 베인 실링들(80)의 하측 테두리(93)를 감싸도록 형성될 수 있다. 그런 후, 스넙 노우즈 팁(90)은 2개의 베인 실링들(80)이 슬라이딩 가능하게 접해 있는 베일 실링 내부 테두리(94)를 따라 다시 감기는 형상이다. 베일 실링 내부 테두리(94)는 베인 실링들(80)이 서로 중첩되며 토글링하여 가스들이 베인 실링들(80)의 저부의 간극(gap)을 통해 누출되는 것을 방지할 수 있도록 충분한 길이로 형성된다. 활성 냉각 시스템에 의해 분사된 물은 스넙 노우즈 팁들(90) 사이로 유동하여 스넙 노우즈 실링들 및 하우징 스테이터들(2, 4)에 대하여 슬라이딩 윤활제로서의 역할을 한다. 분사된 물의 일부는 증발하여 베인 실링들(80) 사이의 공간을 채우면서 압력을 높인다. 따라서, 연소 챔버들(34) 사이로 가스가 누출되는 블로-바이(blow-by) 현상이 방지될 수 있다.
베인 실링들(80)의 스넙 노우즈 팁들(90), 측면 테두리들(92), 하측 테두리 들(93), 내축 테두리들(94), 및 평평한 면들(95)은 고온 동작특성 및 내구성을 갖는 산화물들을 포함하는 고체 윤활제로 코팅되어 있다.
베인 실링 가스 바이어싱(Vane Seal Gas Biasing)
도 14를 참조하면, 엔진(1)이 구동되는 동안, 연소 챔버(34)내의 연소 가스들이 베인 실링들(80)과 스테이터의 내부면(37) 사이의 간극들(355)로 밀려들어 가려는 경향이 있어 베인 실링들(80)이 스테이터 내부면(37)에서 멀어지는 방향으로 힘을 받는다. 따라서, 연소 챔버들(34)의 밀봉이 저하될 수 있다. 이러한 강력한 연소 가스 압력에 효과적으로 대처하기 위하여, 바람직하게는, 베인 실링들(80) 각각이 가스-바이어스 된다. 즉, 베인 실링들(80)을 스테이터 내부면(37)로부터 분리하려는 연소 챔버들(34)의 가스의 압력들이 같아 지도록 베인 실링들(80)이 가스-바이어스 된다. 바람직한 실시예에 따르면, 2가지 방법으로 달성될 수 있다. 즉, 각진면(256) 및 바닥면(257)을 갖는 연장된 베인 실링 팁(91)을 이용하는 방법과 베인 실링들(80)의 베인 실링 가스 통로들(96)을 이용하는 방법이다.
각지고 연장된 베인 실링 팁(Angled Extended Vane Seal Tip)
도 14를 참조하면, 가스 간극들(355) 내의 가스 압력을 상쇄하기 위한 첫 번째 바이어싱 방법에 따르면, 각진 외측면(356) 및 바닥면(357)을 갖는 연장된 베인 실링 팁(91)을 베인 실링들(80) 각각에 형성한다. 각진 외측면(356)은 스테이터 내부면(37)을 향하는 방향으로 베인 실링(80)의 폭을 증가시키는 효과를 제공한다. 따라서, 연장된 베인 실링 팁(91)의 각진 외측면(356)과 바닥면(357)은 외측으로 각진 표면들을 제공하여 팽창하는 연소 가스들에 의하여 베인 실링들(80)이 하우징 스테이터들(2, 4)의 내부면(37) 쪽으로 가압되도록 한다. 그 결과, 연소 챔버들(34)이 보다 효과적으로 밀봉된다.
열차단 코팅(thermal barrier coating, TBC)이 연장된 베인 실링 팁(91)의 상면들과 베인 실링들(80)의 각진 외측면들(356)에 형성되어 스플릿 베인 실링(79)의 열적 스트레스와 변형을 최소화한다. 따라서, 스플릿 베인 실링(79)의 하우징 스테이터 내부면(37)에 대한 밀봉력 및 그 내구성이 향상될 수 있다.
베인 실링 가스 통로들(Vane Seal Gas Passages)
도 14를 참조하면, 가스 간극들(355) 내의 가스 압력을 상쇄하기 위한 두 번째 바이어싱 방법에서는 가스 통로들(96)이 이용된다. 복수의 가스 통로들(96)이 각각의 베인 실링(80)을 관통한다. 베인 실링(80)에서 가스 통로들(96)은 각진 외측면(356)에서 슬라이딩 베인(116)의 지지 리지(ridge)(118) 위쪽의 베인 실링 내부면(354)까지 형성된다. 슬라이딩 베인(116)의 지지 리지(118) 측까지 형성된 가스 통로들(96)을 통해서 연소 가스들은 베인 실링(80)을 상측의 스테이터 내부면(37) 방향으로 바이어스 시킬 수 있다. 따라서, 연소 챔버(34)가 보다 효과적으로 밀봉된다. 도 11 내지 13에서 도시된 바와 같이, 가스 통로들(96)은 곡선형의 베인 실링 중앙 섹션(81)의 전체에 배열된다. 상술한 바이어싱 방법들 모두 또는 어느 하나가 이용될 수 있다.
축 가스 채널들(97)은 베인 실링들(80)의 내부에 형성되어 연소 가스들을 베인 지지 리지들(118)의 측면 상부를 가로질러 슬라이딩 베인(116)의 하부 세그먼트(82) 뒤쪽 방향으로 안내한다. 이에 의하여, 베인 실링 하부 세그먼트(82)는 하우징 스테이터 내부면(37)에 밀착되는 외측 방향으로 힘을 받는다. 따라서, 슬라이딩 베인(116)의 하부 세그먼트들(82)과 하우징 스테이터들(2, 4)의 내부면(37) 사이에 밀봉이 보다 확실해 진다. 그 결과, 스플릿 베인 실링들(87)을 통한 연소 가스의 누출이 초소화된다. 또한, 이러한 구조에 의해서 작은 크기의 마찰력이 발생하여, 짧게 강력한 연소 동작중 발생할 수 있는 스플릿 베인 실링들(87)의 갑작스런 동작을 줄인다.
스플릿 베인 실링들(87)을 가스 통로들(96) 및 측면 가스 채널들(97)과 함께 사용함으로써, 밀봉 성능을 높일 뿐만 아니라, 스플릿 베인 실링(87) 내의 베인 실링(80) 각각이 인접한 연소 챔버(34)부터 분리될 수 있고 각각의 연소 챔버(34)의 압력 조건에 맞는 밀봉력을 제공할 수 있게 된다. 즉, 전후의 연소 챔버들(34)의 슬라이딩 베인들(116)은 다른 압력 및 밀봉 조건들에 처하게 되지만, 스플릿 베인 실링들(87), 가스 통로들(96), 및 측면 가스 채널들(97)을 함께 이용함으로써, 이러한 다른 압력 및 밀봉 조건들에 맞게 자동적으로 밀봉력이 조절될 수 있다. 연소 챔버(34)의 연소 가스를 이용하여 챔버 밀봉력을 조절하는 것은 연소 챔버(34)를 밀봉하기 알맞을 정도로 하우징 스테이터 내부면(37)에 대하여 밀봉력을 제공하기 위한 것으로 과도한 밀봉력을 제공하여 마찰력으로 인해 엔진(1)의 성능을 저하시키고 베인 실링(80)과 하우징 스테이터 내부면(37)의 마모를 초래하기 위함은 아니 다. 베인 실링(80)의 가스 통로들(96) 및 측면 가스 채널들(97)은 연소 가스 점화시 발생하는 압력을 흡수하고 보상하여 하우징 스테이터 내부면(37)에 발생할 수 있는 채터 마크(chatter marks) 및 이로 인한 베인 실링들(80)의 손상을 방지한다. 베인 실링들(80)에 대한 가스 바이어싱을 통한 부드러운 슬라이딩 동작으로 연소 챔버(34)에 대한 밀봉 성능이 최적화 되고, 베인 실링(80)과 하우징 스테이터들(2, 4)의 내부면(37)의 내구성이 향상된다.
베인 실링 토글링 동작(Vane Seal Toggling Action)
엔진(1)의 동작중, 스플릿 베인 실링(79) 각각에 배치된 2개의 베인 실링들(80)은 대체로 디스크 형상을 갖는 로터(183)의 평면(plane)을 따라 로터(183)의 측면 방향으로 나오고 들어오면서(toggle in and out) 서로에 대하여 왕복 슬라이딩된다. 이러한 토글링 동작은 슬라이딩 베인들(116) 자체의 토글링 동작을 보충하고 하우징 스테이터 내부면(37)의 기하학적 형상에 대한 더 좋은 매칭을 제공함으로써 연소 챔버(34)에 대한 추가적인 밀봉 능력을 제공한다.
스플릿 베인 롤러 베어링(Split Vane Roller Bearing)
도 15는 베인 실링 내측 어셈블리(351)와 실링 베인 외측 어셈블리(352)를 보여주기 위하여 스플릿 베인 실링(79)의 베인 실링들(80)이 분해되어 있는 슬라이딩 베인 어셈블리(116)의 사시도이다. 스플릿 베인 실링(79)의 베인 실링들(80)의 토글링 동작을 촉진하기 위하여 베인 실링 내측 베어링 어셈블리(351) 및 베인 실 링 외측 베어링 어셈블리(352)가 이용된다. 내측 베어링 어셈블리(351)는 작은 롤러 베어링들(98)을 포함한다. 롤러 베어링들(98)은 베어링 실링 내측 롤러 베어링 채널들(99)에 배치된다. 내측 롤러 베어링 채널들(99)은 스플릿 베인 실링(79) 각각에 배치된 2개의 베인 실링들(80)이 서로 만나고 토글링 동작하는 베어링 실링 내부면(353)을 따라 스플릿 베인 실링들(79)에 형성된다. 외측 베어링 어셈블리(352)는 작은 롤러 베어링들(100)로 구성된다. 롤러 베어링(100)은 롤러 베어링(98) 보다 작고, 슬라이딩 베인(116)의 내측 베인 그루브면(117)과 접촉하는 베어링 실링 외측면(354)를 따라 스플릿 베인 실링들(79)의 베어링 실링 외측 베어링 채널들(101)에 배치된다.
내측 롤러 베어링들(98)과 내측 롤러 베어링 채널들(99)의 위치는 베인 실링(80)의 외측 롤러 베어링들(100) 및 외측 베어링 채널들(101)의 위치로부터 오프셋(offset) 되어 있어서, 베인 실링(80)의 구조적 강도를 약화시키지 않는다.
베인 실링들(80)의 베인 실링 내측면들(353)은 고온 동작특성 및 내구성을 갖는 산화물들을 포함하는 고체 윤활제로 코팅되어 있다. 산화물들로 구성된 고체 윤활제(35)는 슬라이딩 베인(116)의 지지 리지들(118)의 외면에도 형성되어 베인 실링들(80)과 슬라이딩 베인(116) 사이의 토글링 마찰력을 줄인다.
베인 실링 지지 리지들(Vane Seal Support Ridges)
도 22, 24, 및 27을 참조하면, 동작중에 베인 실링들(80)의 하부에 위치한 스플릿 베인 그루브(117) 및 지지 리지들(118) 상부면에서 연소 가스들이 엔진(1) 안쪽으로 더 침투하는 것을 방지하기 위해서 베인 실링(80)의 하부 세그먼트(82)의 하측 테두리는 차단되어야 한다. 이를 위해, 하부 세그먼트(82)의 바닥 안쪽 테두리에는 스프링 실링(86)이 마련된다. 스프링 실링(86)은 스프링 실링 리세스 채널(87)에 안착된다. 스플릿 베인 그루브(117)의 바닥을 밀봉하기 위하여 스프링 실링(86)은 슬라이딩 베인(116)을 향해 안쪽으로 가압된다. 스프링 실링(86)의 전방 실링면은 고온 동작특성 및 내구성을 갖는 산화물들을 포함하는 고체 윤활제(35)로 코팅되어 있다. 슬라이딩 베인(116)의 바닥은 지지 리지들(118)은 리지 스프링 실링들(119)에 의해 밀봉된다. 리지 스프링 실링들(119)은 지지 리지들(118)의 바닥에서 가까운 곳에 위치한 리지 스프링 리세스들(12)에 안착된다. 리지 스프링 실링(119)은 지지 리지(118)의 외측 방향으로 가압되어 축 가스 채널(97)을 밀봉하는 하부 세그먼트(82)의 내면에 접촉한다. 따라서, 가스 채널(97)을 통행 연소 가스들이 하부 세그먼트(82)에서 유출되어 로터(183)의 내측으로 흐르는 것이 방지된다. 리지 스프링 실링(119)의 밀봉면은 고온 동작특성 및 내구성을 갖는 산화물들을 포함하는 고체 윤활제(35)로 코팅되어 있다.
배수 통로(Water Drain Passage)
도 18을 참조하면, 스플릿 베인 실링(79)의 베인 실링들(80)의 바닥 테두리는 슬라이딩 베인(116)을 향해 뒤쪽으로 각진(angled) 형상이다. 이러한 구조에 의해서, 베인 실링들(80)이 슬라이딩 베인(116)의 상면에서 이탈되지 않고 안정적으로 안착될 수 있다. 또한, 이러한 구조에 의해 배수 통로(125)가 형성된다. 배수 통로(125)를 통해 활성 냉각 시스템(362)의 베인 냉각 영역(361) 및 내측 로터부터 공급된 소량의 탈이온수(320)가 베인 지지 리지들(118)을 따라 베인 실링들(80)의 바닥 하측에 도달할 수 있다. 베인 실링들(80)의 바닥 하측에서 탈이온수(320)은 상면의 연소 가스와 바닥의 이온화수(320)를 밀봉하는 베인 리지 스프링 실링(119)까지 도달한다. 활성 냉각 시스템(362)에서 공급되어 배수 통로(125)를 흐르는 탈이온수(320)는 연소, 하우징 스테이터들(2, 4)의 내부면(37)과의 슬라이딩 접촉, 및 베인 실링(80)의 전후 토글링에 의해 스플릿 베인 실링(79)의 베인 실링들(80)에 가해지는 충격과 진동을 완화한다. 따라서, 엔진(1)은 보다 부드럽게 구동되며 베인 실링(80)의 밀봉 성능과 내구성이 향상된다.
고체 윤활제(Solid Lubricants)
도 8 내지 28을 참조하면, 산화물 기반의 고체 윤활제들이 모든 연소 챔버 실링들(78)의 하중면들을 코팅하는데 사용된다. 이는 모든 가동 부품들 사이의 마찰력을 줄이고 마찰에 의한 발열을 줄이기 위한 것이다. 또한, 연소 챔버(34) 내의 연소 과정에 혼입되거나 연소 가스를 오염시키지 문제가 없는 윤활 시스템이 이러한 고체 윤활제들에 의해서 제공된다. 국립 아르곤 연구소(Argonne National Laboratory)에서 개발된 초경질 나노합성물(superhard nanocomposite, SHNC) 윤활제 코팅 및 특수한 이성분계 산화물 윤활제 코딩이 사용될 수 있다. 바람직하게는, 최대 작동 온도가 섭씨 900도인 플라즈마 스프레이 산화물 PS 304계 산화물 고체 윤활제들(plasma sprayed oxides PS 304 oxide solid lubricants)이 사용될 수 있 다.
슬라이딩 베인 구조(Sliding Vane Structure)
도 18 내지 27을 참조하면, 슬라이딩 베인(116)은 역 U 자형의 반타원 형상을 갖는다. 슬라이딩 베인(116)은 전체적으로 하우징 스테이터들(2, 4)의 내부면(37)의 기하학적 형상과 비슷한 형상을 갖는다. 슬라이딩 베인(116)은 베인 실링들(80)을 수용하기 위한 스플릿 베인 그루브(117)를 포함한다. 또한 슬라이딩 베인(116)은 지지 리지들(118)을 포함한다. 지지 리지들(118)은 스플릿 베인 실링(79)의 베인 실링들(80)이 하우징 스테이터들(2, 4)의 내부면(37)과의 접촉 밀봉 위치에서 벗어나 비틀리고/비틀리거나 변형되는 것을 방지한다.
역 U 자형 중앙 섹션(Upside Down U-shaped Center Section)
도 18을 참조하면, 슬라이딩 베인(116)의 뒤집힌 또는 역 U 자형의 중앙부(360)를 무게를 줄이기 위하여 잘라낸다. 슬라이딩 베인(116)이 하우징 스테이터 내부면(37)을 따라 회전함에 따라, 슬라이딩 베인(116)의 무게로 인해 상당한 원심력이 스플릿 베인 실링들(79)과 하우징 스테이터 내부면(37)에 가해지게 된다. 이로 인해 마찰력이 과도하게 증가하여 엔진(1)의 성능이 저하되고, 슬라이딩 베인(116)이 변형되고, 스플릿 베인 실링(79)이 마모될 수 있다. 슬라이딩 베인(116)에서 역 U 자형의 중앙부(360)를 제거함으로써 슬라이딩 베인(116)의 무게를 상당히 줄이고 과도한 마찰력이 발생하는 것을 방지할 수 있다. 따라서, 엔진(1)의 성 능, 슬라이딩 베인(116)의 내구성, 스플릿 베인 실링(79)의 밀봉 성능과 내구성이 향상된다. 큰 역 U 자형의 중앙부(360)를 제거한 후 슬라이딩 베인(116)이 변형되지 않게 하기 위하여, 역 U 자형의 중앙부(360)가 제거되어 형성되는 개구부에 작은 크기의 수직 지지바(121)과 수평 지지바(122)가 형성된다. 슬라이딩 베인(116)의 수평 지지바(122)에는 무게를 줄이기 위해 드릴링으로 복수의 홀들(123)을 형성한다. 또한, 수평 지지바(122)에 형성된 복수의 홀들(123)을 통해 활성수 냉각 시스템(362)의 슬라이딩 베인 영역(361) 및 로터 내측으로부터의 탈이온수(320)이 자유롭게 이동 가능하다. 슬라이딩 베인(116)의 바닥 끝면들(126)은 슬라이딩 베인(116)의 중앙부에서 하우징 스테이터들(2, 4)을 향하는 외측으로 경사 또는 각지게(angled) 형성되어 로터(183) 내측의 활성수 냉각 시스템(362)으로부터의 탈이온수(320)가 하우징 물 회수 리세스들(44)은 하측 하우징 시테이터(2)의 양측면에 위치하는 하우징 물 회수 리세스들(44) 내측을 향해 안내되어 온수 저장 탱크(300)으로 안내될 수 있다.
열차단 코팅(Thermal Barrier Coating)
도 18 및 28을 참조하면, 열차단 코팅(TBC)(36)은 슬라이딩 베인들(116)의 전후면들(349)에 형성된다. 열차단 코팅(36)은 연소 챔버(34)의 고온 연소 가스로부터 슬라이딩 베인들(116)을 보호하여 슬라이딩 베인들(116)이 손상되거나 무르게 되고 변형되는 것을 방지한다. 연소 챔버(34)에서의 연소 압력 및 슬라이딩 베인들(116)이 하우징 스테이터들(2, 4)의 내부면(37)과 접촉에 의하여 슬라이딩 베인 들(116)이 변형될 수 있다. 이러한 경우 베인 실링들(80)과 하우징 내부면(37)과의 정렬이 어긋나서 베인 실링들(80) 및/또는 하우징 내부면(37)이 손상될 수 있으며 밀봉 불량이 발생할 수 있다. 열차단 코팅(36)은 고온의 연소 가스들로부터 슬라이딩 베인(116)을 보호하여 슬라이딩 베인(116)의 열변형을 방지한다. 따라서, 슬라이딩 베인(116)과 스플릿 베인 실링(79)의 베인 실링들(80)이 하우징 스테이터들(2, 4)의 내부면(37)을 따라 연소 챔버(34)를 더 잘 밀봉할 수 있다.
열차단 코팅들(36)은 또한 기판 물질들의 산화를 방지한다. 산화물들로 도핑된 이트륨 안정화 지르코늄(yttrium stablilized zirconium, YSZ)으로 형성된 저열전도도의 열차단 코팅들을 사용할 수 있다. 이러한 저열전도도 열차단 코딩들은 적절한 산화물 도핑으로 열역학적으로 안정화되고 제어가능한 결함-클러스터 사이즈(tailored ranges of defect-cluster size)를 갖는 고편향성 격자 구조로 형성될 수 있다. 이 경우, 열전도도는 낮아지고 로터 표면에 대하여 결합력은 향상된다. 이러한 결함 클러스터 YSZ 기반의 열차단 코팅은 섭씨 400도에서 1400도 범위에서 1.55 내지 1.65 W/m℃의 열전도도를 갖는다.
히트 파이프 채널
도 18 내지 27을 참조하면, 슬라이딩 베인들(116) 각각의 내측에는 히트 파이프 채널(127)이 형성되어 있다. 히트 파이프 채널(127)은 슬라이딩 베인(116)의 경계부(350)와 비슷한 형상의 역 U 자형 형상을 갖는다. 히트 파이프 채널(127)은 베인 실링 그루브(117) 바로 아래에 위치한다. 히트 파이프 채널(127)에는 작동 유 체로서 약간의 물이 채워져 있다. 히트 파이프 채널(127)에 채워진 물은 베인 히트 파이프 증발 영역(129)과 슬라이딩 베인(116)의 경계부(350)의 열을 베인 히트 파이프의 내측 응축기(130)로 전달하는 역할을 한다. 작동 유체인 물이 지속적으로 액상, 가스상, 다시 액상으로 변하도록 함으로써, 많은 양의 열이 음속의 레벨로 전달될 수 있다. 히트 파이프 채널(127)은 섭씨 24도에서 202도 사이의 범위, 즉 화씨 약 75도에서 397도 범위에서 작동한다. 베인 히트 파이프 증발 영역(129)과 내측 응축기(130) 사이의 온도차가 클수록 열전달율은 커진다.
베인 히트 파이프 증발 영역(129)은 연소 챔버(34)의 열을 흡수하여 전달하기 위한 영역이다. 베인 히트 파이프 증발 영역(129)으로 인해 슬라이딩 베인(116)의 경계부(350), 스플릿 베인 실링들(79)의 베인 실링들(80), 지지 리지들(118), 및 스플릿 베인 그루브(117)가 열충격을 받는 것이 방지된다. 또한 베인 히트 파이프 증발 영역(129)은 슬라이딩 베인들(116)의 전후면들(349)을 따라 열차단 코팅(36)을 통과하는 열이 잘 전달 되도록 한다. 이러게 부품들의 열을 부품 외부로 전달함으로써 부품들의 열손상 및 열변형을 방지할 수 있다. 따라서, 슬라이딩 베인(116) 및 스플릿 베인 실링들(79), 및 하우징 스테이터 내부면(37)이 손상되는 것을 보호하고, 밀봉 결함이나 부품의 결함을 방지한다.
히트 파이프 채널(127)이 동작중, 연소 챔버(34)에서 발생된 열은 슬라이딩 베인(116)의 경계부(350) 상측을 따라 형성된 베인 히트 파이프 증발 영역(129)에 의해 흡수된다. 즉, 슬라이딩 베인(116)의 전후면(349), 스플릿 베인 실링들(79), 지지 리지들(118), 및 스플릿 베인 그루브(117)에서 히트 파이프 채널(127)로 열이 전달된다. 따라서, 작동 유체인 물의 베인 히트 파이프 증발 영역(129)의 표면을 따라 흐르며 액상에서 증기상으로 상변화 할 수 있다. 이렇게 형성된 고온의 증기는 히트 파이프 채널(127)을 따라 슬라이딩 베인(116)의 바닥측 코너들에 위치한 2개의 내측 응축기들(130) 중 어느 하나로 유입되고, 내측 응축기(130)에서 고온의 증기는 열을 잃고 다시 물로 응축된 후 다시 히트 파이프 채널(127)로 안내된다. 내측 응축기(130)에서 열은 전도(conduction)를 통해 외측 베인 히트 파이프 응축기로 전달된다. 외측 베인 히트 파이프 응축기에서 열은 전도를 통해 탈이온수(320)로 전달된다. 탈이온수(320)은 활성수 냉각 시스템(362)에 의하여 로터 내부 및 베인 영역(361)으로 스프레이 된다. 가열된 탈이온수(320)는 내측의 하우징 물 회수 리세스(44)에 모이고 로터 내부 및 베인 회수 튜브(326)를 순환한 후 온수 저장 탱크(300)로 회수 된다.
탈이온수(320)는 히트 파이프 채널(127)에서 사용되는 작동 물질로 바람직하다. 일반적으로 히트 파이프들은 중력 또는 모세관 현상을 이용하여 작동한다. 중력에 의해 작동하는 경우, 베인 하측의 히트 파이프 채널 증발기에서 열이 흡수되어 그 내부의 작동 물질이 고체 또는 액채상에서 기체상으로 상변화하여 베인 상측의 히트 파이프 채널 응축기로 대류에 의하여 이동하여 열이 하측에서 상측으로 전달되게 된다. 그러나, 본 발명의 슬라이딩 베인(116)의 경우, 베인 히트 파이프 채널(127)이 로터(183) 내측에 배치된 상태에서 회전하므로 강력한 원심력에 의한 지-포스(G-force)가 베인 히트 파이프 채널(127)내에서 중력의 역방향으로 작용한다. 따라서, 열은 슬라이딩 베인(116)의 외측 경계부 또는 상면들(350)에서 베인 히트 파이프 증발 영역(129)을 따라 슬라이딩 베인(116)의 안쪽 측면 바닥단의 베인 히트 파이프 채널 내측 응축기(130)를 향하는 방향으로 전달된다. 즉, 드라이브 샤프트(18) 상의 로터(183) 중앙을 향하는 방향으로 열이 전달 된다.
슬라이딩 베인(116)의 경계면(349) 주위에는 엔진 연소시 발생하는 강력함 힘 및 하우징 스테이터 내부면(37)과의 면접촉에 의한 강력한 힘에 의해 열응력 및 기계적 응력이 발생하며, 베인 히트 파이프 채널(127)은 이러한 슬라이딩 베인(116)의 경계면(349) 둘레를 따라 형성된다. 베인 히트 파이프 채널(127)을 이용하여 슬라이딩 베인(116)을 냉각시킴으로써 이러한 열응력을 제어 할 수 있다. 또한, 베인 히트 파이프 채널(127)을 가압시킴으로써 슬라이딩 베인(116)의 구조적 강도를 강화시킬 수 있다. 베인 히트 파이프내의 물이 가열되어 고압의 증기로 변하면서 베인 히트 파이프 채널(127) 내의 압력을 상승시커 외측 연소 챔버(34)의 압력과 잘 매칭될 수 있다. 이러한 작용에 의해서 베인 히트 파이프 채널(127)에 의해 슬라이딩 베인(116)의 무게가 줄어들 더라도 슬라이딩 베인(116)의 구조적 강도는 유지될 수 있다.
내측 및 외측 베인 히트 파이프 채널 응축기들(Inner And Outer Vane Heat Pipe Channel Condensers)
도 27을 참조하면, 내측 베인 히트 파이프 채널 응축기(130)는 바람직하게는 알루미늄과 같이 높은 열전도도를 갖고 물 및 수소에 의한 산화에 견디는 물질로 형성된다. 내측 베인 히트 파이프 채널 응축기(130)은 베인 히트 파이프 채널 들(127)을 밀봉하고 감싸도록 베인 히트 파이프 채널들(127)의 끝단에 납땜된다(braised). 내측 베인 히트 파이프 채널 응축기(130)의 열은 전도(conduction)에 의해서 외측 베인 히트 파이프 채널 응축기(132)로 전달된다. 외측 베인 히트 파이프 채널 응축기(132)의 전면에는 각진 리지들(angled ridges)과 그루브들(134)이 형성된다. 외측 베인 히트 파이프 채널 응축기(132)의 열은 활성수 냉각 시스템(362)의 탈이온수(320)로 전달된다.
외측 베인 히트 파이프 채널 응축기(132) 또한 바람직하게는 알루미늄과 같이 높은 열전도도를 갖는 물질로 형성된다. 외측 베인 히트 파이프 채널 응축기(132)는 내측 베인 히트 파이프 채널 응축기(130)의 리지 및 그루브 섹션(131)에 납땜된다. 외측 베인 히트 파이프 채널 응축기(132)의 바닥면은 하우징 스테이터들(2, 4)를 향하는 외측 방향으로 각 또는 경사진다(angled or sloped). 이러한 구조로 인해 로터(183)의 내측 중앙부에 배치된 활성수 냉각 시스템(362)의 탈이온수(320)이 하우징 스테이터들(2, 4) 쪽으로 용이하게 안내되고 하측 내부 하우징 스테이터(2)에 형성된 하우징 물 회수 리세스들(44)로 용이하게 회수 될 수 있다. 외측 베인 히트 파이프 채널 응축기(132)의 각진 하측면은 슬라이딩 베인(116)의 각진 바닥면(126)과 매칭된다. 따라서, 탈이온수(320)가 하우징 스테이터들(2, 4)과 인접하는 이러한 매칭면들을 통해 부드럽게 공급될 수 있다.
베인 히트 파이프 채널 다공성 심지/결빙 튜브(Vane Heat Pipe Channel Porous Wick/Freeze Tube)
도 27을 참조하면, 베인 히트 파이프 채널(127) 내부에는 다공성 심지/결빙 튜브(128)가 배치된다. 다공성 심지/결빙 튜브(128)은 한쪽의 내측 베인 히트 파이프 채널 응축기(130)에서 다른 쪽의 내측 베인 히트 파이프 채널 응축기(130)에 이르는 베인 히트 파이프 채널(127)의 전체 길이에 걸쳐 형성된다. 다공성 심지/결빙 튜브(128)는 스테인리스 스틸 메쉬(stainless steel mesh)를 이용하여 형성된다. 바람직하게는, 다공성 심지/결빙 튜브(128)은 구리/아연/알루미늄(CuZnAl) 기반의 형상 금속 합금(shape metal alloys, SMA)으로 형성된 직물을 납땜하거나 스폿 용접(spot welding)하여 형성한다. 베인 히트 파이프 채널(127)은 내부의 작동 유체는 완전히 밀봉되어 있기 때문에, 엔진(1)이 화씨 32도 이하의 온도에 노출되는 경우 작동 유체의 결빙에 의한 팽창으로 베인 히트 파이프 채널(127)이 손상될 수 있다. 이러한 결빙문제를 방지하기 위해, 다공성 심지/결빙 튜브(128)의 중앙 일부를 다공성 튜브로 절연한다. 작동 유체가 결빙되어 팽창하기 시작할 때, 아직 결빙되지 않은 다공성 심지/결빙 튜브(128) 중앙부의 작동 유체는 모세관 현상에 의해 다공성 심지/결빙 튜브(128)를 따라 상승한다. 이 경우, 작동 유체인 물은 외측 보다는 내측으로 팽항하려는 경향을 보여 팽창 압력에 의한 베인 히트 파이프 채널(127) 또는 슬라이딩 베인(116)의 손상을 방지할 수 있다. SMA를 이용하여 다공성 심지/결빙 튜브(128)을 형성함으로써, 작동 유체인 물이 팽창하여 베인 히트 파이프 채널(127)을 내파(imploding) 시킴에 따라 다공성 심지/결빙 튜브(128)의 아래 부분이 변형될 수 있다. 그러나, 베인 히트 파이프 채널(127)의 온도가 화씨 약 32도까지 상승하여 결빙되었던 작동 유체 물이 녹으면 다공성 심지/결빙 튜브(128) 은 원래의 형상으로 돌아 온다.
로터(183)이 멈쳐 있는 경우, 슬라이딩 베인들(116)은 다양한 각도에 위치하고 작동 유체 물은 2개의 위치 중 어느 한 위치에 있게 된다. 하나의 위치는 2개의 내측 베인 히트 파이프 채널 응축기들(130)의 바닥을 따라 형성되는 위치이과, 다른 한 위치는 베인 히트 파이프 증발 영역(129)의 표면을 따라 형성되는 위치이다. 다공성 심지/결빙 튜브(128)가 베인 히트 파이프 채널(127)의 전체 길이에 걸쳐 형성되어 있으므로, 다공성 심지/결빙 튜브(128)의 끝단들을 통해 내측 베인 히트 파이프 채널 응축기들(130)에 모여 있는 작동 유체 물이 결빙되는 것을 조절할 수 있다. 다공성 심지/결빙 튜브(128)가 베인 히트 파이프 채널(127)을 감싸도록 형성되어 있기 때문에, 베인 히트 파이프 증발 영역(129)의 중간부분의 상면 또는 외측면과 다공성 심지/결빙 튜브(128)가 직접 접촉할 수 있다. 따라서, 베인 히트 파이프 증발 영역(129)을 따라 결빙되는 작동 유체가 다공성 심지/결빙 튜브(128)의 중앙부에서 양끝단 쪽으로 모세관 현상에 의해 이동된다. 즉, 로터의 어느 각도 위치에서라도 결빙되는 작동 유체를 다공성 심지/결빙 튜브(128)를 이용하여 제어할 수 있다.
베인 벨트 토글 시스템(Vane Belt Toggle System)
도 18, 25, 27, 및 29를 참조하면, 슬라이딩 베인(116) 바닥 부분의 U 자형 개구부에는 베인 벨트 토글바 시스템(363)이 배치된다. 베인 벨트 토글바 시스템(363)은 베인 벨트 시스템(136)의 단일 중앙 베인 벨트(137)를 위한 단일 벨트 토글바 시스템(142)이거나 베인 벨트 시스템(136)의 2개의 외측 베인 벨트들(138)을 위한 이중 벨트 토글바 시스템(143)일 수 있다. 단일 벨트 토글바 시스템(142)와 이중 벨트 토글바 시스템(143)은 베인 벨트 시스템(136)의 단일 중앙 베인 벨트(137)와 외측 베인 벨트들(138)을 슬라이딩 베인들(116)에 연결한다. 단일 벨트 토글바 시스템(142)와 이중 벨트 토글바 시스템(143)의 토글링 동작에 의해서 베인 벨트 시스템(136)에서 단일 및 이중 벨트들이 보다 넓은 범위에서 하우징 스테이터들(2, 4)의 내부면(37)의 찌그러진 타원형 형상을 따라 연장되고 원위치로 들어갈 수 있다. 베인 벨트 토글바 시스템(363)은 중앙 지지 벨트 로드(145)를 포함한다. 중앙 지지 벨트 로드(145)는 벨트 토글 링크들(147)로 이루어진 하나 또는 두 개의 세트를 중앙 토글바 홀들(144)를 통해 지지한다. 벨트 토글 링크들(147)는 2개의 작은 베인 벨트 바들(vane belt bars)(146)을 홀딩하기 위해 끝단에 베인 벨트 홀들(148)을 포함한다. 토글바 부싱(149)은 베인 벨트 바들(146)에서 슬라이딩한다. 토글바 부싱(149)은 단일 중앙 베인 벨트(137)와 외측 베인 벨트들(138)의 벨트 루프 인터페이스들(367) 보다 더 토글링 동작에 의한 마모의 영향을 받는다. 중앙 토글바 홀들(144)과 작은 베인 벨트 바들(146)은 고체 윤활제로 코팅된다. 고속의 토글링 동작을 향상시키고 벨트 토글 링크들(147)과 메탈 베인 바 부싱들(148)의 마모를 감소시키기 위하여, 고체 윤활제는 바람직하게는 카본 윤활제와 같이 무마찰 카본 또는 다이어몬드를 포함한다. 단일 및 이중 베인 벨트 세그먼트들(140, 141)을 슬라이딩 베인들(116)의 베인 벨트 바 부싱들(148)에 교대로 결합함으로써, 단일 또는 이중의 베인 벨트 폐루프 시스템을 형성하여, 슬라이딩 베인들(116)이 로 터(183)과 함께 스테이터 내부면(37) 안쪽에서 회전시 슬라이딩 베인들(116)의 위치를 효과적으로 제어할 수 있다. 단일 벨트 토글바 시스템(142) 및 이중 벨트 토글바 시스템(143)은 베인 벨트 세그먼트들의 끝단들이 서로 연결되도록하여 연속적인 벨트 시스템을 제공한다. 즉, 베인 벨트 세그먼들이 일체로 형성될 필요가 없다. 이 경우, 좁은 로터 베인 통로(184) 내에 배치된 슬라이딩 베인(116) 각각의 아래에서 단일 중앙 베인 벨트(137)와 외측 베인 벨트(138)가 타이트하게 구부러져서 스트레스를 받거나 파괴될 수 있다.
베인 벨트 장력 조절 시스템(Vane Belt Tension Adjustment System)
도 18, 27 및 29를 참조하면, 베인 벨트 시스템(136)의 단일 중앙 베인 벨트(137) 또는 이중 외측 베인 벨트들(138)의 장력을 적절히 유지하기 위하여 슬라이딩 베인(116) 바닥 부분의 U 자형 개구부에는 베인 벨트 장력 조절 시스템(150)이 배치된다. 베인 벨트 장력 조절 시스템(150)을 이용하여 메인 벨트 로드(145)의 위치를 조정하여 연결된 단일 중앙 베인 벨트(137) 또는 이중 외측 베인 벨트(138)의 장력을 제어할 수 있다. 메인 벨트 로드(145)는 지지 베인 벨트 로드 홀들(152)을 통해 2개의 끝단 지지 베인 벨트 로드 홀더들(151)에 연결된다. 베인 벨트 로드 홀더들(151)은 슬라이딩 베인(116)의 역 U 자형의 중앙부(360)의 하측 양단에 위치한 베인 벨트 장력 조절 채널들의 하측에 안착되어 있다. 2개의 장력 조절 스크류들(153)이 슬라이딩 베인(116)의 바닥부에 형성된 장력 조절 스크류 홀들(154)을 통해 메인 벨트 로드(145)와 베인 벨트 로드 홀더들(151)에 삽입된다. 장력 조절 스크류들(153)은 슬라이딩 베인(116)에 나사산이 없이 형성된 장력 조절 스크류 홀들(154)을 자유롭게 지나 메인 벨트 로드(145) 및 베인 벨트 로드 홀더들(151)에 형성된 나사산이 있는 장력 조절 스크류 홀들(154)에 삽입된다. 따라서, 메인 벨트 로드(145)와 베인 벨트 로드 홀더들(151)의 베인 벨트 장력 조절 채널(124) 내에서의 위치를 장력 조절 스크류들(153)을 이용하여 상하로 조절할 수 있다. 적절한 벨트 장력이 설정된 후에는, 장력 스크류 잠금 너트들(155)을 이용하여 장력 조절 스크류들(153)을 고정한다. 이와 달리, 베인 벨트 로드 홀더들(151)의 세트를 이용하여 베인 벨트 로드(145)를 다른 위치에 고정할 수도 있다. 이 경우, 베인 벨트 로드 홀더(151) 아래에 작은 심(shim)을 두어 메인 벨트 로드(145)의 위치를 더 정밀하게 제어할 수 도 있다.
베인 반원심력 시스템들(Vane Anti-Centrifugal Systems)
베인 벨트 시스템(Vane Belt System)
도 29를 참조하면, 반원심력 베인 벨트 시스템(136)은 하우징 스테이터 내부면(37)의 비대칭적 또는 찌그러진 타원형 프로파일을 따라 슬라이딩 베인들(116)이 회전하는 것을 가능하게 하고 슬라이딩 베인들(116)을 밀봉하는 효과를 주는 원심력이 과도하게 작용하는 것을 방지한다. 엔진(1) 회전수에 상관없이, 하우징 스테이터 내부면(37)에 대하여 슬라이딩 베인들(116)을 밀봉하는 힘은 전체 하우징 스테이터 내부면(37)에 걸쳐서 대체로 일정하게 작용한다.
베인 벨트 시스템(136)은 단일 중앙 벨트(137), 이중 외측 벨트들(138), 및 프로파일 벨트(139)를 포함한다. 도 44를 참조하면, 단일 중앙 벨트(137)는 4개의 교호 슬라이딩 베인들(116)의 단일 벨트 토글바 시스템들(142)의 베인 벨트 바 부싱들(148)에 연결된다. 도 46을 참조하면, 이중 외측 베인 벨트(138)의 폭은 단일 중앙 벨트(137)의 폭의 반이고 4개의 교호 슬라이딩 베인들(116)의 이중 벨트 토글바 시스템들(143)의 베인 벨트 바 부싱들(148)에 연결된다. 베인 벨트 시스템(136)의 동작중에, 단일 중앙 벨트(137)은 로터(183)의 중앙부에서 작동하고 2개의 이중 외측 베인 벨트들(138)은 단일 중앙 벨트(137)의 양측 외부에서 작동하므로 단일 중앙 벨트(137)과 이중 외측 베인 벨트들(138)은 서로 간섭되지 않고 적절한 밸런스를 유지한다.
베인 벨트 시스템(136)은 매우 다이나믹하게 하우징 스테이터 내부면(37)의 찌그러진 타원형 프로파일과 매칭 동작을 수행한다. 단일 벨트 토글바 시스템(142)와 이중 벨트 토글바 시스템(143)은 각각 단일 중앙 벨트(137)과 이중 외측 베인 벨트들(138)이 큰 작동 범위로 로터(183)으로부터 연장되고 다시 원위치로 돌아 갈 수 있게 하여 슬라이딩 베인(116)의 스트레스를 줄인다.
도 29 내지 36을 참조하면, 단일 중앙 벨트(137) 또는 이중 외측 베인 벨트들(138)의 동작중, 슬라이딩 베인들(116)에 연결된 4개의 벨트들 중에서 하나 이상이 로터(183)의 중앙에서 멀어지는 방향으로 연장되는 경우, 슬라이딩 베인들(116)에 연결된 나머지 벨트들은 로터(183)의 중심 방향으로 당겨지게 되어 외측 방향으로 작용하는 원심력과 내측 방향으로 작용하는 원심력의 밸런스가 유지되고 하우징 스테이터 내부면(37)에 대해서 비교적 일정한 밀봉력이 작용할 수 있다. 그러나, 슬라이딩 베인들(116)이 로터(183)의 중심에서 가장 먼 위치로 연장되는 지점인 최도 팽창 위치(33)에서는 여전히 원심력의 피크점이 나타날 수 있다. 이러한 피크 원심력을 최소화하기 위해, 도 41 및 48에 도시된 바와 같이, 교호하는 단일 중앙 벨트들(137) 및 이중 외측 베인 벨트들(138)의 아크 지지바들(159)의 외측 끝단들에 2개의 작은 프로파일 벨트들(139)을 부착한다. 프로파일 벨트들(139)은 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)의 동작을 연결하여 베인 벨트 시스템(136)의 통합된 동작으로 만들어 준다. 물론, 하우징 스테이터 내부면(37)에 대하여 슬라이딩 베인들(116)이 연장되거나 원위치로 돌아가는 매칭 동작을 위하여 단일 중앙 벨트(137)와 이중 외측 베인 벨트(138)이 독립적으로 동작하는 것도 가능하며, 보다 제한적이고 일반적인 방법에 의하여, 하우징 스테이터 내부면(37)의 프로파일에 대한 매칭 동작이 보다 부드럽게 수행되도록 할 수도 있다. 하우징 스테이터 내부면(37)에 매칭 동작을 위해 단지 4개의 교호하는 슬라이딩 베인들(116)을 사용하는 대신에, 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)로 이루어진 벨트 시스템에 의해 작동하는 8개의 슬라이딩 베인들(116) 모두를 프로파일 벨트들(139)을 이용하여 연결하여 하우징 스테이터 내부면(37)에 대한 매칭 동작을 수행 할 수도 있다. 이 경우, 최대 팽창 위치(33)에서의 원심력 피크를 상당히 줄일 수 있다. 하지만, 이러한 경우라고 최대 팽창 위치(33) 원심력 피크는 베인 벨트 시스템(136) 전체를 당기고 교란할 정도 여전히 크다. 이러한 문제를 해결하기 위하여, 도 29를 참조하면, 벨트 아크 제한 스프링들(212)이 내측 로터 캐버티(363)에 프로파일 벨트 측면 아크(176)와 일렬로 형성된다. 프로파일 벨트 측면 아크(176)는 벨트 아크 지지바들(159) 각각의 끝단들에 부착된다. 슬라이딩 베인들(116)이 하우징 스테이터 내부면(37)에 대하여 슬라이딩하며 회전할 때, 벨트 아크 제한 스프링들(169)은 슬라이딩 베인들(116)의 최대 팽창 위치 대응되는 지점에 고정되어 있다. 프로파일 벨트 측면 아크(176) 각각은 2개의 벨트 아크 제한 스프링들(212)을 벨트 아크 지지바(159) 각각에 갖는다. 총 4개의 벨트 아크 제한 스프링들(212)이 벨트 아크 지지바(159) 각각에 대하여 구비된다. 슬라이딩 베인들(116) 각각의 아래에는 하나의 벨트 아크 지지바(159)가 배치된다. 슬라이딩 베인(116)이 팽창 영역(33)의 최대 팽창 위치에 도달하는 경우, 2개의 프로파일 벨트 측면 아크들(176)이 대응하는 4개의 아크 제한 스프링들(212)을 가압하여 벨트 아크 지지바들(159) 및 슬라이딩 베인들(116)의 연장 동작을 제한한다. 이러한 구조에 의하여, 엔진(1)의 회전수에 상관없이, 모든 슬라이딩 베인들(116)이 하우징 스테이터들(2, 4)의 내부면(37)을 따라 균일하게 작용하는 일정한 원심력과 밸런스를 유지할 수 있다. 이러한 일정한 원심력에 의해서, 하우징 스테이터 내부면(37)과 대한 슬라이딩 베인들(116) 사이의 전체 마찰력이 상당히 줄어들게 된다. 이러한 효과는 연소 팽창 단계의 후기에 연소 가스 압력이 떨어지고 슬라이딩 베인(116)이 로터(183)로부터 멀어지는 외측으로 최대로 연장되어 원심력이 최대될 때 매우 유용하다.
벨트 아크 제한 스프링들(212)은 또한 슬라이딩 베인들(116) 및 베인 벨트 시스템(136)의 거친 진동들을 흡수하고 줄이는 역할을 한다.
아크 베인 벨트 지지부(Arched Vane Belt Support)
도 32 및 34를 참조하면, 슬라이딩 베인들(116)을 교대로 연결하기 위하여, 인접하는 2개의 슬라이딩 베인들(116) 사이에서 단일 중앙 벨트(137)와 이중 외측 베인 벨트(138)는 90도로 꺾인 형상을 가져야 한다. 이러한 구조와 관련된 문제점들 중의 하나는 고속에서 벨트재가 코너 부분에서 꺾인다는 것이다. 이에 대처하기 위하여, 단일 및 이중 아크 베어링 시스템들(156, 157)이 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138) 각각에 대하여 구비된다.
도 38 및 39를 참조하면, 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)를 위한 아크 베어링 시스템들(156, 157)은 바람직하게는 중앙 아크 베인 벨트 지지부(158), 일련의 다중 베인 벨트 롤러 베어링들(178), 및 슬라이딩 리지들(161)을 포함한다.
중앙 아크 지지부(Center Arch Support)
단일 및 이중 베인 벨트들 각각의 아크 지지부(158)의 상면은 큰 호를 그리며 굽어 있다. 이는 단일 중앙 벨트(137)와 이중 외측 베인 벨트(138)이 교호하는 슬라이딩 베인들(116) 사이에서 급격하게 90도로 꺾이게 하지 않기 위함이다. 아크 지지부 각각은 벨트 롤러 베어링들(178)을 홀딩하기 위한 3개의 롤러 베어링 리세스들(160), 롤러 베어링들(178) 각각의 사이에 형성된 4개의 베인 벨트 슬라이딩 리지들(161), 배수홀들을 포함한다. 배수홀들을 통해 로터 캐버티(363), 활성수 냉각 시스템(362)에서 유입되는 활성수(320)를 배수하여 롤러 베어링 리세스(160)에 물이 고이는 것을 방지한다. 탈이온수(320)는 어느 정도의 윤활 작용과 냉각 작용을 베인 벨트 시스템(136)과 베인 벨트 롤러 베어링들에 대해서 한다. 따라서, 벨트 마찰력이 줄어 들고, 벨트 내구성과 강도가 향상되는 효과가 있다.
측면 아크 잠금 플레이트들(Side Arch Lock Plates)
벨트 아크 지지부(158)의 상면에 베인 벨트 롤로 베어링들(178)을 사용함으로써, 베인 벨트 시스템(136)의 동작을 개선할 수 있다. 베인 벨트 롤로 베어링들(178)은 롤로 베어링(180)을 포함한다. 롤러 베어링(180)은 관성 모멘트를 줄이기 위해 작은 반지름을 갖도록 형성되어 벨트 아크 지지부(158)에서의 벨트 동작을 개선한다. 롤러 베어링들(180)은 드릴링으로 형성된 작은 홀들(181)을 갖는다. 홀들(181)을 통해 탈이온수(320)이 흐를 수 있어서 롤러 베어링(180) 및 롤러 베어링 스핀들(179)의 윤활 및 냉각에 도움이 된다. 스핀들(179)은 고제 윤활제(35)로 코팅된다. 고체 윤활제(35)는 무마찰 카본 또는 다이어몬드를 포함하는 카본 윤활제일 수 있다. 스핀들(179)의 끝단들은 롤러 베어링 스프링 지지부들(182)에 나사 결합된다. 베어링 스프링 지지부들(182)은 베인 벨트 아크 지지부(158)의 양측에 배치된 측면 아크 잠금 플레이트들(163) 상의 베어링 스프링 지지 개구부들(165)에 아착된다. 베어링 스프링 지지 개구부들(165)은 측면 아크 잠금 플레이트들(163)에 위치하여 롤러 베어링들(180)을 롤러 베어링 레세스(160)의 내측으로 적절히 위치시커 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)과의 접촉을 개선한다.
엔진(1)이 작동하는 중에, 엔진 회전수가 약 1000 rpm이하로 되는 경우, 베 인 벨트 시스템(136)의 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)는 베인 벨트 롤러 베어링들(180)의 표면과 접촉하므로 베인 벨트 아크 베어링 지지부들(158)에서 전후 방향으로 동작하는 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)의 속도을 향상시키고 운동 마찰력을 감소 시킨다. 베인 벨트 베어링 스핀들 스프링 지지부들(182)은 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)의 진동을 감쇄시커 부드럽게 동작하도록 한다.
베인 벨트 롤러 베어링(180)은 약 1000 rpm 이상의 고속 작동 중에 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)의 동작을 제한할 수 있는 큰 관성 모멘트를 갖는다. 그러나, 엔진의 고속 구동 중에 로터(183)의 회전에 따른 강한 원심력에 의하여 베인 벨트 롤러 베어링 스핀들 스프링 지지부들이 가압되므로 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)일 베인 벨트 롤러 베어링들(180)과 접촉하지 않고 베인 벨트 아크 베어링 지지부(158)를 가로질러 이동할 수 있다. 고속 구동 중에, 엔진(1)의 회전수가 약 1,000 rpm이하로 줄어들 때까지는 베인 벨트 롤러 베어링들(180)이 베인 벨트 아크 베어링 지지부(158)의 롤러 베어링 리세스(160)내에서 가압된 상태를 유지하고 그 후 베인 벨트 롤러 베어링들(180)은 베인 벨트 시스템(136)의 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)과 다시 접촉하게 된다. 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)의 동작을 개선하고 베인 벨트 아크 베어링 지지부(158)와의 마찰력을 줄이기 위하여 베인 벨트 슬라이딩 리지들(161)이 사용된다.
베인 벨트 슬라이딩 리지들(Vane Belt Sliding Ridges)
도 38 및 39를 참조하면, 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)이 베인 벨트 아크 베어링 지지부(158) 상에서 고속으로 이동하면서 베인 벨트 롤러 베어링들(180)은 롤러 베어링 리세스들(160) 내에서 가압되며 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)는 베인 벨트 슬라이딩 리지들(161)를 가로질러 이동한다. 베인 벨트 슬라이딩 리지들(161)은 거의 마찰이 없는 카본(near frictionless carbon, NFC) 또는 다이어몬드와 같은 카본 윤활제를 포함하는 고체 윤활제(35)로 코팅된다. 바람직하게는, 국립 아르곤 연구소(Argonne National Laboratory)에서 개발된 초경질 나노합성물(superhard nanocomposite, SHNC)를 고체 윤활제(35)로 사용할 수 있다. 베인 벨트 슬라이딩 리지들(161)와 롤러 베어링 리세스들(160)은 공기의 흐름을 난류로 만들고 이에 의해서 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)와 베인 벨트 아크 베어링 지지부(158)의 상면 사이에 에어 쿠션이 형성되는 효과가 발생한다. 따라서, 단일 중앙 벨트(137)과 이중 외측 베인 벨트(138)이 고속으로 움직이더라도 베인 벨트 슬라이딩 리지들(161)와는 적은 마찰의 접촉을 유지할 수 있다.
다이나믹 아크 지지바(Dynamic Arch Support Bar)
벨트 아크 지지바(159)는 단일 베인 벨트 아크 베이링들(156) 또는 이중 베인 벨트 아크 베어링들(157)를 홀딩(holding)한다. 단일 베인 벨트 아크 베이링(156)과 이중 베인 벨트 아크 베이링(157)은 벨트 아크 지지바(159)의 적절한 위치에 아크 지지 클립(172)을 이용하여 적절한 위치에 배치된다. 아크 지지 클 립(172)은 베인 벨트 아크 베어링 지지부들 양측에 형성된 아크 클립 리세스(173) 내에 위치한다.
벨트 아크 지지바들(159) 각각의 끝단들은 프로파일 벨트 와셔(washer)(174)를 홀딩(holding)하여 프로파일 벨트들(139)이 프로파일 벨트 베어링들(175)의 내측 테두리를 따라 제 위치에 배치되도록 한다. 따라서, 프로파일 벨트들(139)은 프로파일 벨트 베어링들(175) 상에서 자유롭게 반지름 방향으로 운동 가능하다. 프로파일 벨트 아크(176)는 프로파일 벨트들(139)이 프로파일 벨트 베어링(175)을 따라 제 위치에 배치되도록 프로파일 벨트들(139)을 홀딩(holding)한다.
로터(183)의 회전 속도가 약 1,000 rpm 이상이 되는 엔진(1)의 고속 구동 중에, 벨트 아크 지지 스프링들(169)은 가압되며 벨트 아크 지지바(159)는 아크 지지바 개구(168), 측면 아크 지지 플레이트들(163), 및 아크 지지바 채널(368) 내에서 아래로 이동한다. 따라서, 단일 및 이중 베인 벨트 아크 지지부들(156, 157)이 외측으로 연장되어 베인 벨트 슬라이딩 리지들(161)이 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)와 적절한 접촉을 유지하게 한다. 엔진(1)의 회전수가 약 1,000 rpm 이하로 떨어지는 경우, 벨인 벨트 롤러 베어링 지지부 스프링들(182) 뿐만 아니라 벨트 아크 지지 스프링들(169)이 확장되고 벨트 아크 지지바(159)가 아크 지지바 개구(168), 측면 아크 지지 플레이트들(163), 및 아크 지지바 채널(368) 내에서 외측으로 이동한다. 따라서, 베인 벨트 롤러 베어링들(180)이 단일 중앙 벨트(137) 및 이중 외측 베인 벨트(138)과 프라이머리(primary) 접촉한다. 벨트 아크 지지 스프링들(169)은 엔진 구동 중의 진동을 감쇄시커 베인 벨트 시스템(136)이 부드럽게 동작할 수 있게 한다.
베인 벨트 재료들(Vane Belt Materials)
도 36을 참조하면, 베인 벨트들(137, 138)은 바람직하게는 고장력 섬유 직물로 형성된다. 넥스텔 610(Nextel 610)과 AGY 933-S2 글래스 섬유가 사용될 수 있다. 섬유를 양단(367)에 2개의 루프를 갖는 평평한 표면의 벨트 형태로 직조해서 단일 벨트 토글바 시스템(142) 및 이중 벨트 토글바 시스템(143)의 스플릿 베인 토글 베인 벨트 부싱(148)과 접촉하도록 형성할 수 있다. 탈이온수(320)를 로터 캐버티(363) 내측으로 순환시키는 활성수 냉각 시스템(362)과 함께, 베인 벨트 시스템(136)은 화씨 약 250도의 최대 작동 온도를 갖는다. 따라서, 섬유의 강도가 유지될 수 있고 섬유의 열팽창을 최소화할 수 있다. 대안으로, 유리섬유(fiberglass) 또는 케블라 섬유(Kevlar fibers)을 벨트 형태로 직조해서 베인 벨트 시스템(136)에 사용할 수 있다. 이러한 재료들은 가볍고 높은 인장 강도를 갖으며 연신율이 낮은 반면 최대 연속 작동 온도가 화씨 450도에 이른다.
벨트의 성능과 내구성을 개선하기 위하여 베인 벨트들(137, 138)는 복수의 섬유층을 서로 접합해 사용할 수 있다. 이 경우, 메인 상층(main top layer)은 큰 사이즈의 섬유질을 갖는 강도층(strength layer)(169)가 된다. 즉, 강도층9169)는 거친 충진물을 포함하는 덮개 직물층이다. 이러한 직물 구조는 지지 아크 리지 구조(161) 상에서 슬라이딩시 큰 마찰력, 진동 및 마모를 유발한다. 이를 해결하기 위해, 얇은 바닥층(bottom sheer layer)(171)이 상측 강도층(169)에 결합된다. 바 람직하게는, 바닥층(171)은 미세한 섬유조직을 기지는 미세 충진물 덮게 직물층이다.
벨트 섬유들은 마찰과 마모를 줄이기 위해 테프론(Teflon) 또는 거의 마찰이 없는 카본(near frictionless carbon, NFC)과 같은 고체 윤활제로 코팅될 수 있다. 예를 들어, 테프론 PTFE 코팅은 0.06의 마찰 계수를 갖는다. 거의 마찰이 없는 카본(near frictionless carbon, NFC)의 경우 0.02의 마찰 계수를 갖는다.
베인 벨트 핀 힌지 심들(Vane Belt Pin Hinge Seams)
도 32 내지 36을 참조하면, 아크 베인 벨트 베어링(158)은 단일 중앙 베인 벨트(137)과 이중 외측 베인 벨트(138)이 이동할 수 있도록 크고 평평한 아크형 표면을 제공한다. 이는 베인 벨트 재료에 가해지는 벤딩 스트레스를 상당히 줄이는 효과를 준다. 베인 벨트들(137, 138)과 프로파일 벨트의 유연성을 증대시키기 위해서, 힘지 심들(366)을 갖는 링크 핀들(365)을 단일 베인 벨트 세그먼트(140), 이중 베인 벨트 세그먼트(141), 및 프로파일 베인 벨트 세그먼트(364) 내에 배치할 수 있다. 링크 핀들(365)은 스테인리스 스틸이나비금속 재료로 형성될 수 있다. 링크 핀들(365)은 테프론, 거의 마찰이 없는 카본(near frictionless carbon, NFC), 다이어몬드와 같은 카본으로 이루어진 고체 윤활제로 코팅될 수 있다. 이 경우, 링크 핀들(365)의 마모가 줄어 들고, 힌지 심들(366)의 동작가 증대되고 마모가 줄어든다. 추가적으로 내구성을 증대시키기 위해서, 핀 힌지들(366)은 바람직하게는 스테인리스 스틸로 형성될 수 있다.
도 33, 35, 및 37을 참조하면, 핀 힌지들(366)이 벨트들에 포함되는 경우, 벨트면과 일치하지 않는 작은 인터페이스면이 형성된다. 이러한 인테페이스면에 의해 벨트의 동작이 거칠어 질 수 있다. 이를 해결하기 위해서, 핀 힌지(366)의 두께와 대응되는 두께를 갖는 얇은 충진층(sheer fill layer)(170)이 추가적으로 사용될 수 있다. 충진층(170)은 상측 강도층(169)와 얇은 바닥층(171) 사이에 베치될 수 있다. 이경우 모든 층들은 서로 결합된다. 따라서, 바닥층(171)의 아크 지지 리지들(161) 상에서의 동작이 매우 부드럽게 된다.
벨트와 토글의 부싱 연결(Belt and Toggle Bushing Connection)
단일 베인 벨트(137)과 이중 베인 벨트(138)를 단일 토클(142)과 이중 토글(143)에 부착하기 위해서, 합성 벨트들이 금속 롤러 부싱(149) 주위를 감싸게 배치된 후 벨트 부싱 잠금 커버(369)에 의하여 제 위치에 고정되다. 벨트 부싱(149) 주위에서의 벨트의 벤딩을 최소로 하기 위해서 작은 삼각형 모양의 벨트 부싱 쐐기(belt bushing wedge)(370)(미도시)가 삽입 되어 벨트 부착 각도를 점진적으로 만들어 벨트의 스트레스를 줄인다.
로터 구조(Rotor Structure)
도 3을 참조하면, 로터 어셈블리(183)는 엔진의 구성에 따라 6개 또는 8개의 로터 세그먼트 어셈블리들(310)로 이루어 진다. 바람직한 실시예에 따르면, 로터 어셈블리(183)는 8개의 로터 세그먼트 어셈블리들(310)로 이루어 진다. 슬라이딩 베인들(116)은 로터 세그먼트 어셈블리들(310) 사이 내측에 형성된 베인 통로 들(184)에 이동 가능하게 배치된다. 모든 로터 세그먼트 어셈블리들(310)은 측면 잠금 플레이트들(215)에 의하여 결합되어 로터 어셈블리(183)를 형성한다.
로터 세그먼트 어셈블리(Rotor Segment Assembly)
도 40을 참조하면, 각각의 로터 세그먼트 어셈블리(310)는 상측 로터 연소 세그먼트(311), 로터 열제어 시스템, 로터 측면 플레이트들(209), 잠금 탭들(208), 내측 플레이트 커버(210), 베인면 실링들(111), 로터축 실링들(102), 및 베인 프로파일 벨트 제한 스프링들(212).
로터 연소 세그먼트(Rotor Combustion Segment)
로터 어셈블리(183)의 외측면(185)과 로터 연소 리세스들(186)에서 열차단 코팅이 형성된다. 열차단 코팅은 연소에 의해 발생되는 로터 연소 세그먼트(311), 로터 수증기 챔버(190), 및 내측 로터 캐버티(363)로 침투하는 것을 방지한다. 따라서, 로터 어셈블리(183), 슬라이딩 베인들(116), 또는 베인 벨트 시스템(136)이 열에 의해 손상되거나 변형되는 것이 방지된다.
로터축 및 베인면 실링들(Rotor Axial and Vane Face Seals)
도 40 및 50을 참조하면, 로터 연소 세그먼트(311)는 축 베인 실링 리세스(187) 및 축 스프링 리세스(378)를 포함한다. 축 베인 실링 리세스(187)과 축 스프링 리세스(378)의 로터 연소 세그먼트(311)의 측면을 따라 곡선형으로 형성되어 축 실링(102)와 축 실링 스프링(110)을 수용한다. 베인면 실링 리세스(188)와 베인 실링 스프링 리세스(189)는 로터 연소 세그먼트(311)의 로터 슬라이딩 베인면들(371)의 전후에 배치되어 베인면 실링들(111)과 베인면 실링 스프링들(114)를 홀딩한다.
슬라이딩 베인 접선 베어링 시스템(Sliding Vane Tangential Bearing System)
도 40 및 47을 참조하면, 슬라이딩 베인들(116)이 로터(183)에서 나오고 들어가는 동작은 개선하기 위해서, 로터 슬라이딩 베인 슬롯들(184)을 형성하는 로터 연소 세그먼트들(311)의 전후 로터 슬라이딩 베인면들(371)에 작은 크기의 롤러 베어링들(223)이 배치된다. 각각의 롤러 베어링(223)은 롤러 베어링 스핀들(227)을 포함한다. 롤러 베어링 스핀(227)은 산화물을 이용하여 형성되는 고체 윤활제로 코팅되어 높은 내구성과 작동 온도를 갖는다. 외측 롤러 베어링(225)은 중공형(hollow)이다. 외측 롤러 베어링(225)는 롤러 베어링 스핀(227)상에 배치되어 슬라이딩 베인들(116)의 전후면들(349)과 직접 접촉하며 함께 회전한다. 외측 롤러 베어링(225)은 그 표면에 작은 홀들(226)을 갖는다. 따라서, 활성수 냉각 시스템(362)으로부터 공급된 물/증기(320)가 외측 접선 베어링(225)과 롤러 베어링 스핀들(227)에 대하여 윤활 작용 및 냉각 작용을 원활히 할 수 있다. 바람직하게는, 스핀들(227)은 고강도 합금으로 형성되고, 산화물 윤활제로 코팅된다. 롤러 베어링 스핀들 스프링 지지부들(228)들이 롤러 베어링 스핀들(227)의 양단에 부착된다.
롤러 베어링들(223)은 로터(183)의 회전 방향에 대하여 45도 내지 90도의 각도 범위내에서 위치한다. 바람직하게는, 롤러 베어링들(223)은 45도의 각도로 배치되어 슬라이딩 베인들(116)이 로터(183)의 슬라이딩 베인 통로(184) 내에서의 원활히 전후로 움직이도록 한다. 엔진 구동 중에, 로터(183)의 회전수가 약 1,000 rpm 이하가 되는 경우, 외측 롤러 베어링들(225)은 슬라이딩 베인들(116)의 전후면들(349)과 직접 접촉하여 슬라이딩 베인들(116)이 로터 베인 통로들(184) 내에서 적은 마찰과 마모 상태에서 전후로 움직일 수 있게 한다. 엔진(1)이 고속으로 동작하여 로터(183)의 회전수가 약 1,000 rpm을 초과하는 경우, 외측 롤러 베어링들(225)의 회전 관성력이 상당히 커져서 작동 중인 슬라이딩 베인들(116)에 더 큰 마찰력을 가하게 된다. 그러나, 이때 베인 접선 롤러 베어링 스프링 지지부들이 가압되며 베인 접선 롤러 베어링들(223)을 베인 접선 롤러 베어링 리세스들(224) 방향으로 원위치 시킴으로써, 외측 롤러 베어링들(225)과 슬라이딩 베인들(116)의 전후면들(349)이 떨어지게 한다. 따라서, 슬라이딩 베인들(116)은 돌출된 지그재그형의 베인 슬라이딩 리지들(221)을 따라 로터 베인 통로들(184) 내에서 더 큰 속도 및 더 적은 마찰력하에서 이동하게 된다.
지그재그 베인 슬라이딩 리지들(Zigzag Vane Sliding Ridges)
도 40을 참조하면, 베인 슬롯들(184) 내에서의 슬라이딩 베인들(116)의 들어오고 나가는 동작을 더욱 개선하기 위하여, 지그재그 리지들(221)이 전후 로터 베인 슬라이딩면들(371)에 수직한 방향으로 형성된다. 지그재그 리지들(221)의 상측 은 고온 윤활 특성 및 내구성을 개선하기 위해 산화물을 포함하는 고체 윤활제로 코팅된다. 예를 들어, 초경질 나노합성물(superhard nanocomposite, SHNC)을 고체 윤활제(35)로 사용할 수 있다. 이러한 산화물 윤활제는 0.2 이하의 마찰 계수를 갖으므로 마모율을 낮춘다.
물/증기 채널들(Water/Steam Channels)
도 40을 참조하면, 물/증기 채널들(222)이 지그재그 리지들(221) 사이에 형성된다. 슬라이딩 베인들(116)이 로터(183)의 슬라이딩 베인 통로(184) 내측에서 들어오고 나가는 동작을 함에 따라, 지그재그 리지들(221)은 물/증기 채널들(222) 내에 강한 와류를 형성하여 접촉면들 사이에 에어 쿠션을 형성하는 효과를 제공한다. 또한, 이러한 효과에 의해 슬라이딩 베인들(116)이 더욱 원활히 동작하며 마찰력이 줄어 든다. 로터 내측 및 활성수 냉각 시스템(362)의 슬라이딩 베인 영역(361)로부터 유입된 탈이온수(320)가 물/증기 채널들(222) 내로 유입되고 흐름에 따라, 연소 챔버(34)내의 연소 가스에 노출되어 가열된 슬라이딩 베인들(116)의 전후면들(349)이 이러한 탈이온수(320)의 흐름에 의해 냉각되며, 탈이온수(320)는 증기로 변한다. 즉, 가열된 슬라이딩 베인들(116)의 전후면들(349)을 냉각시키면 가열된 탈이온수(320)는 고압의 증기로 된다. 고압의 증기는 물/증기 채널들(222) 내에서 더욱 팽창하여 슬라이딩 베인들(116)의 전후면들(349)이 지그재그 리지들(221)에서 이격되게 살짝 들어올리게 된다. 이 경우, 슬라이딩 베인들(116)을 마모시키는 마찰력이 줄어 들어 슬라이딩 베인들(116)이 슬라이딩 베인 통로(184) 내 에서 더욱 자유롭게 이동한다. 또한, 탈이온수(320)는 진동을 흡수하여 엔진(1) 손상이나 마모들 줄이고 엔진(1)이 부드럽게 구동되도록 한다. 고온의 증기 및/또는 응축수는 하우징 스테이터들(2, 4)을 따라 로터(183)의 외측으로 순환하여 물/증기 회수 리세스(44)를 통해 활성수 냉각 시스템(362)의 온수 저장 탱크로 회수 된다.
로터 열제어 시스템들(Rotor Thermal Control Systems)
연소 과정 동안, 열은 로터(183)의 표면을 통과하여 로터 연소 세그먼트(311)와 로터 중앙 캐버티(363)로 침투하여 베인 벨트 시스템(136)과 로터 세그먼트 어셈블리(310)의 부품에 열손상을 가한다. 로터 연소 세그먼트(311)와 로터 캐버티(363)에서 과도한 열을 방출시키기 위해, 로터 증기 챔버 시스템(190)이 활성수 냉각 시스템(362)과 함께 사용된다.
로터 고온 합금들(Rotor High Temperature Alloys)
바람직하게는, Haynes 230 또는 188과 같이 고온에 견디는 합금 재료들이 로터 연소 세그먼트(311)를 형성하는데 사용된다. 이러한 재료들은 고온에서도 강도 특성을 유지하며, 섭씨 600도의 연소 환경에 35,000 시간 이상 노출되어도 그 강도 특성을 유지한다. 이러한 합금들은 약 8.2*10-6/℉의 낮은 열팽항 계수를 갖는다. 즉, 열에 의한 변형이나 피로파괴의 가능성이 낮다.
로터 열차단 코팅(Rotor Thermal Barrier Coating)
열차단 코팅(36)을 사용하여 기판 재료의 산화를 방지할 수 있다. 산화물들로 도핑된 이트륨 안정화 지르코늄(yttrium stablilized zirconium, YSZ)으로 형성된 저열전도도의 열차단 코팅들을 사용할 수 있다. 이러한 저열전도도 열차단 코딩들은 적절한 산화물 도핑으로 열역학적으로 안정화되고 제어가능한 결함-클러스터 사이즈(tailored ranges of defect-cluster size)를 갖는 고편향성 격자 구조로 형성될 수 있다. 이 경우, 열전도도는 낮아지고 로터 표면에 대하여 결합력은 향상된다.
이러한 결함 클러스터 YSZ 기반의 열차단 코팅은 섭씨 400도에서 1400도 범위에서 1.55 내지 1.65 W/m℃의 열전도도를 갖는다.
로터 증기 챔버 시스템들(Rotor Vapor Chamber Systems)
도 43, 44, 45, 47, 48, 49, 50, 및 51을 참조하며, 로터 연소 세그먼트(311)와 같이 고온의 연소 환경에 직접 노출되는 엔진(1)의 부품들을 고온 합금으로 형성하고 열차단 코팅(36)을 형성하는 것은 열손상 가능성을 크게 낮추고 열이 로터 캐버티(363) 내측으로 침투하는 속도를 줄인다. 하지만, 이러한 경우에도, 열은 로터(183)의 표면을 통과하여 로터 세그먼트 어셈블리(310)의 로터 캐버티(363) 내측으로 전도되므로 과도하게 전도된 열을 방출할 필요가 여전히 있다. 로터 수증기 챔버들(190)이 로터 상측면(185) 및 로터 연소 세그먼트(311)의 연소 캐버티 리세스(186) 바로 아래에 배치된다. 이러한 면들로 침투한 열은 반지름 방향 및 축방향의 곡률을 갖는 로터(183)의 상측면의 형상과 대응하는 상부 및 측부 의 증발기면(191)을 따라 로터 수증기 챔버들(190) 내의 물을 가열한다. 로터 증기 챔버 증발기면(191)을 따라 물이 가열된 물은 액상에서 증기상으로 변하면서 많은 양의 열을 증발기면(191)에서 흡수한다. 챔버내의 압력에 의하여 가열된 수증기는 로터 세그먼트 어셈블리(310)의 축 양단에 위치한 로터 내측 응축기들(200)로 안내된다. 내측 응축기들(200)에서 가열 증기는 열을 방출하며 응축되고 다시 증발기면(191)으로 안내된다.
탈이온수는 로터 수증기 챔버(190)의 작동 유체로 사용하기에 적합하다. 작동 유체인 물이 연속적으로 액상과 증기상으로 변하고 다시 액상으로 변하도록 함으로써, 많은 양의 열을 음속의 수준으로 전달할 수 있다. 로터 수증기 챔버(190)는 섭씨 24도 내지 202도 범위에서 작동한다. 즉, 화씨 약 75도 내지 397도 범위에서 작동한다. 로터 증기 챔버 증발기면(191)과 로터 내측 응축기(200)의 온도차가 클수록 열전달율은 커진다.
로터 수증기 챔버는 작동 유체가 중력 또는 모세관 현상에 의하여 순환하는 히트 파이프와 같은 원리로 동작한다. 중력을 이용하는 경우, 수증기 챔버의 하측 증발기 표면을 따라 흡수된 열에 의해서 내부의 작동 유체가 고체 상태 또는 액체 상태에서 기체 상태로 변하여 대류에 의하여 상측의 증기 챔버 응축기로 이동하여 열을 방출하면 응축된다. 그러나, 본 발명의 로터(183)에 있어서는, 로터 수증기 챔버(190)가 로터(183) 내측에서 회전하므로 강력한 원심력에 의한 지-포스(G-force)가 로터 수증기 챔버(190)내에서 중력의 역방향으로 작용한다. 이러한 역방향성 열전달에 의하면, 열은 로터(183)의 외측면(185) 바로 아래의 수증기 챔 버(190)의 상측 증발기면(191)에서 로터 수증기 챔버(190)의 하측 바닥단을 거쳐 로터 내측 응축기(200)로 전달된다. 로터 내측 응축기(200)에서, 수증기 상태의 작동 유체는 열을 로터 내측 응축기(200)로 방출하며 응축된다. 응축된 물은 다시 로터 수증기 챔버(190)의 증발기면(191)을 향해 외측으로 순환하게 된다.
도 44와 50을 참조하면, 로터 수증기 챔버(190)의 증발기 표면(191) 근처에서의 작동 유체인 물을 모세관 유동을 개선하기 위하여, 바람직하게는, 미세 심지 메쉬(192)로 이루어진 층을 사용한다. 이 경우, 고압의 작은 물방울이 외측 로터 증발기면(191)을 따라 흘러서 쉽게 증발할 수 있다. 성긴 심지 메쉬층(193)을 로터 내측 응축기(200)에서 로터 수증기 챔버(190)의 양측을 따라 배치하여 미세 심지 메쉬(192)와 접촉하도록 할 수 있다. 이 경우, 저압의 큰 물방울이 성긴 심지 메쉬층(193)에서 외측 증발기면(191)을 따라 수증기 챔버(190)의 어느 위치로든 쉽게 흘러 갈 수 있다. 성긴 심지 메쉬(193)는 미세 심지 메쉬(192)의 아래까지 약간 연장되어 메쉬 인터페이스(369)에 도달한다. 이러한 구조에 의해서, 큰 물방울이 로터 증기 챔버 증발기면(191) 근처까지 흘러갈 수 있다. 또한, 작은 물방울이 로터 내측 응축기(200)로 다시 돌아 갈 수 있게 한다. 미세 심지 메쉬(192)와 성긴 심지 메쉬(193) 모두는 미세한 주변 메쉬(194)에 의해 감싸져 있다. 미세한 주변 메쉬(194)는 로터 수증기 챔버(190)의 모든 면들로 작동 유체가 흘러 가도록 한다. 또한, 작동 유체가 로터 세그먼트 어셈블리(310)의 전후면들로 흐르게 해서 슬라이딩 베인 통로(184)와 베인면 실링(111)에서 전달된 열을 흡수 하도록 한다.
작동 유체의 기체상 순환을 개선하기 위하여, 하측 로터 증기 챔버 커 버(195)의 내측의 증기 챔버 연장 리지들(196)은 미세 심지 메쉬(192)와 성긴 심지 메쉬(193)을 지지하고 가압한다. 증기 챔버 연장 리지들(196) 사이에는 큰 보이드(void) 또는 채널들(197)이 형성되어 기체 상태의 작동 유체가 쉽게 흐를 수 있도록 한다.
로터 수증기 챔버는 로터(183)의 면과 연소 캐버티(184)를 적절한 연소 온도 레벨로 유지하는데 도움을 준다. 또한, 로터 수증기 챔버는 표면 온도를 균일하게 하여 열점(hotspot)의 발생을 최소화하고, 열손상을 최소화하며, 연소 챔버(34)내의 연소 조건을 안정화한다.
내측 및 외측 로터 증기 챔버 응축기들(Inner and Outer Rotor Vapor Chamber Condensers)
도 41, 43, 및 50을 참조하면, 바람직하게는, 로터 증기 챔버 내측 응축기(200)는 알루미늄과 같은 높은 열전도도를 갖는 물질로 형성되어 로터 연소 세그먼트(311)의 끝단에 납땜되어 로터 수증기 챔버(190)를 감싸고 밀봉한다. 바람직하게는, 로터 내측 응축기(200)의 외측 표면은 알루미늄과 같은 높은 열전도도를 갖는 물질로 형성되고 수직 리지들과 그루브들(201)을 포함한다. 로터 내측 응축기(200)의 외측 표면의 수직 리지들과 그루브들(201)은 로터 증기 챔버 외측 응축기(202)의 리지들 및 그루브들(203)과 접촉한다. 외측 응축기(202)의 전면은 곡선 리지들 및 그루브들(204) 그리고 방사형 직선 리지들 및 그루브들(205)로 덮여 있다. 이러한 구조에 의하여 탈이온수(320)와의 열교환을 위해 접촉 면적을 늘려 외 측 응축기(202)로부터의 열을 쉽게 흡수할 수 있다.
로터 수증기 챔버 다공성 심지/결빙 튜브(Rotor Water Vapor Chamber Porous Wick/Freeze Tube)
도 43 및 45를 참조하면, 축방향 다공성 심지/결빙 튜브(198)와 반지름 방향 다공성 심지/결빙 튜브(199)가 로터 수증기 챔버(190)내에 배치된다. 축방향 다공성 심지/결빙 튜브(198)는 한쪽의 로터 내측 응축기(200)에서 다른 쪽의 로터 내측 응축기(200)에 이르는 로터 수증기 챔버(190)의 전체 길이를 따라 형성된다. 반지름 방향 다공성 심지/결빙 튜브(199)는 내측 로터 수증기 챔버(190)의 상측 중앙부를 가로질러 반지름 방향으로 형성된다. 축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)는 스테인리스 스틸 와이어 메쉬로 형성된다. 바람직하게는, 구리/아연/알루미늄(Cu/Zn/Al) 기반의 형상 금속 합금(shape metal alloys, SMA)으로 형성된 직물을 튜브 형상으로 납땜하거나 스폿 용접(spot welding)하여 형성한다. 반지름 방향 다공성 심지/결빙 튜브(199)는 로터 수증기 챔버(190)의 상면을 가로질러 반지름 방향으로 물이 모세관 현상에 의하여 이동하도록 한다. 더욱이, 로터 수증기 챔버(190)내의 작동 유체인 물은 완전히 밀봉되어 있으므로, 엔진(1)의 온도가 화씨 32도 이하로 떨어지는 경우 결빙에 의한 손상이 발생할 수 있다. 이러한 결빙에 의한 물의 팽창으로 인한 손상을 방지하기 위해, 축방향 다공성 심지/결빙 튜브(198)와 반지름 방향 다공성 심지/결빙 튜브(199) 내의 작동 유체인 물을 다공성 튜브로 절연한다. 작동 유체가 결빙되어 팽창함에 따 라, 다공성 심지/결빙 튜브의 중앙 부분의 아직 결빙되지 않은 작동 유체는 심지 현상에 의하여 상측으로 이동한다. 이 경우, 작동유체는 다공성 심지/결빙 튜브내에서 외폭(exploding outward) 보다는 내폭(imploding inward)하면서 팽창하여, 로터 수증기 챔버(190) 또는 로터(183)의 로터 세그먼트 어셈블리(310)에 대한 손상을 줄인다. 축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)를 SMA를 이용하여 형성하는 경우, 작동 유체가 내부에서 내폭하며 결빙 팽창하여 축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)을 변형시키더라도, 로터 수증기 챔버(190)의 온도가 화씨 약 32도 이상으로 상승하여 작동 유체가 다시 녹으면 축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)는 원래의 형상으로 돌아 간다.
축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)는 채널 축 및 반지름 방향 개구부들(264, 265) 그리고 미세 심지 메쉬(192), 성긴 심지 메쉬(193), 및 미세한 주변 메쉬(194)의 관통공들 내에 배치된다. 이러한 구조 덕분에 엔진(1)의 구동 중에도 모세관 재료들 및 튜브들을 정 위치를 유지할 수 있다. 또한, 이러한 구조 덕분에 축방향 다공성 심지/결빙 튜브(198)과 반지름 방향 다공성 심지/결빙 튜브(199)가 작동 유체인 물이 모이는 모든 바닥 코너들과 표면들로 연결될 수 있다.
로터 수증기 챔버 커버(Rotor Water Vapor Chamber Cover)
도 50을 참조하면, 로터 수증기 챔버 커버(195)는 로터 연소 세그먼트(311) 의 바닥에 배치된다. 로터(183)의 내측에는 리지 연장부들(196)이 형성된다. 리지 연장부들(196)은 로터 수증기 챔버 보이드들(197)을 형성하여 로터 수증기 챔버(190) 내로의 수증기의 빠른 이동이 가능하게 한다. 또한, 내면 리지들은 미세 심지 메쉬(192)와 성긴 심지 메쉬(193)가 엔진(1) 구동 중에 제 위치에 있도록 한다.
로터 수증기 챔버 커버(195)의 수증기 챔버 리지들(196) 및 채널들(197)의 내부면에는 열차단 코팅(36)이 형성된다. 열차단 코팅(36)은 로터 수증기 챔버(190) 내부의 열이 로터 수증기 챔버 커버(195)를 통해 로터 캐버티(363)로 전달되는 것을 방지한다.
내측 로터 커버 플레이트(Inner Rotor Cover Plate)
도 42, 45, 및 69를 참조하면, 내측 로터 커버 플레이트(210)는 로터 수증기 챔버(197)의 커버와 잠금 탭(208) 위를 지나는 연소 캐버티 세그먼트(311)의 바닥에 용접되어 있다. 또한, 내측 로터 커버 플레이트(210)는 로터 측면 플레이트들(209)의 내면을 따라 용접되어 있다. 로터 커버(210)는 로터 세그먼트 어셈블리(310)의 구조적 강도를 강화한다. 또한, 로터 커버(210)은 열적 절연 보이드를 생성하여 열이 로터면(185)과 로터 수증기 챔버(190)에서 로터 캐버티(363)내의 침투하는 것을 방지한다. 또한, 로터 커버(210)은 로터 캐버티(363)의 큰 개구 영역을 밀페하는 역할을 한다. 따라서, 활성수 냉각 시스템(362)의 탈이온수(320)가 슬라이딩 베인 통로(184)의 전후 로터 슬라이딩 베인면들(371)을 따라 물/증기 채 널(222)의 주요 영역으로 유입되는 것을 방지한다. 또한, 로터 커버(210)는 슬라이딩 베인들(116) 및 베인 벨트 시스템(136)의 움직임을 이용하여 로터 캐버티(363) 내에 강한 와류 채널을 형성한다. 이러한 강력한 와류 채널은 활성수 냉각 시스템(362)의 탈이온수(320)를 로터 캐버티(363) 내측으로 고르게 분산시키는데 도움을 준다.
내측 로터 커버 플레이트(210)의 외면은 로터 캐버티(363)의 중앙부로부터 로터(183)외측 방향으로 기울어진다.
베인 프로파일 벨트 제한 스프링들(Vane Profile Belt Limit Springs)
도 42, 48, 및 46을 참조하면, 베인 프로파일 벨트 제한 스프링들(212)은 주축 연장부들(keystone extensions)(213)을 포함한다. 주축 연장부(213)는 로터 캐버티(363) 영역의 내측 로터측 플레이트(209)에 형성된 주축 리세스(214)에 결합된다. 베인 프로파일 벨트 제한 스프링 주축 연장부들(213)은 정위치에 택-웨딩되어(tack-welded) 로터 측면 플레이트들(209)의 주출 리세스들(214)에 단단히 고정된다. 베인 프로파일 벨트 제한 스프링들(212)은 측면 프로파일 베인 벨트 아트들(176)의 최대 연장을 제한하여 프로파일 벨트들(139), 베인 벨트 시스템(136)의 나머지 부분, 및 슬라이딩 베인들(116)이 하우징 스테이터들(2, 4)의 내부면(37)에 잘 정렬되도록 한다.
소듐 증기 챔버 시스템(Sodium Vapor Chamber System)
도 3, 6, 및 71을 참조하면, 엔진(1)은 소듐 증기 챔버 열전달 시스템(229)을 이용하여 고온의 연소 영역(32)에서 중간 및 후기 스테이지의 팽창 영역(33)으로 열을 전달한다. 소듐 증기 챔버 열전달 시스템(229)은 소듐을 작동 유체로 이용하여 섭씨 600도에서 1,100도 범위에서 작동한다. 바람직하게는, 섭씨 900도에서 작동한다. 엔진(1)에서 소듐 증기 챔버 열전달 시스템(229)은 연소 영역(32)과 팽창 영역(33)의 소듐 증기 챔버 스테이터(4)의 온도를 섭씨 약 600도의 작동 온도로 등온화한다. 연소 과정 중에, 수소/물/공기 혼합물은 연소 챔버(32)에서 점화되어 최대 온도 켈빈 약 1,800도 또는 섭씨 약 1,526도에 도달한다. 소듐 증기 챔버 스테이터(4)의 내부면(37)을따라 열차단 코팅 리세스(277)에 열차단 코팅(36)이 형성되어 지속적인 고온 환경으로부터 소듐 증기 챔버를 보호한다. 연소열의 일부는 열차단 코팅(36)과 소듐 증기 챔버 스테이터(4)를 통과하여 작동 유체인 소듐이 증발하는 증발기 섹션(379)를 따라 소듐 증기 챔버(229) 내로 침투할 것이다. 팽창 챔버(33) 영역내에서의 연소-팽창 중간 및 후기 단계에서, 팽창하는 가스의 온도가 소듐 증기 챔버(229)의 온도보다 낮아 져서 소듐이 기체 상태에서 액체 상태로 변할 수 있다. 이 경우 열은 응측기 영역(380)을 따라 소듐 증기 챔버 스테이터(4) 통해 소듐 증기 챔버(229)로부터 연소 챔버(34)로 전달되어 후기 단계의 가스 압력을 고압으로 유지할 수 있게 한다. 액화된 소듐은 증발 영역(379)으로 심지 및 모세관 압력에 의해 되 돌아 간다.
소듐 증기 챔버 심지 메쉬들(Sodium Vapor Chamber Wicking Meshes)
도 57 내지 62를 참조하면, 소듐 증기 챔버(229)는 일렬의 심지 메쉬들을 사용하여 작동 유체 소듐의 유동을 원할히 한다. 소듐 증기 챔버(229)의 외측 증발기 표면 영역(379)에서의 작동 유체 소듐의 모세관 유동을 개선하기 위하여, 미세 심지 200-메쉬로 이루어진 층(230)이 사용된다. 이를 통하여 고압은 작은 액상 소듐 방울들이 외측 증발기 표면 영역(379)을 따라 쉽게 흐르게 하여 소듐 방울들의 기화를 촉진한다. 응축기 영역(380)을 따라 다른 쪽의 소듐 증기 챔버(229)에는 성긴 심지 모세관 100-메쉬층(232)가 사용된다. 이를 통하여, 저압의 큰 액상 소듐 방울들이 증발기 영역(379)으로 쉽게 되돌아 갈 수 있다. 소듐 작동 유체의 메세관 유동을 더욱 개선하기 위하여, 중간 크기의 심지 모세관 150-메쉬층(231)이 미세 심지 메쉬층(230)과 성긴 심지 메쉬층(232) 사이에 배치되어 중간 크기의 액상 소듐 방울의 이동을 촉진한다.
3개의 메쉬층들(230, 231, 232) 모두는 미디엄 주변 150-메쉬(234)롤 둘려 싸여 있다. 주변 심지 메쉬(234)는 소듐 증기 챔버(229)의 모든 면에 작동 유체가 고루 분포되도록 한다. 또한, 증발기 영역(379)에 작은 액상 소듐 풀(pool)을 제공하여 소듐 결빙 시작 조건을 개선한다. 증기 챔버 시동 문제 및 손상은 증발기 영역(379)에 충분한 작동 유체가 없는 경우 발생한다. 이 경우, 증발기 영역(379)의 건조점(dry spots)이 과열된다. 엔진(1)에서, 소듐 증기 챔버(229)의 곡선형 형상에 의하여, 소듐 증기 챔버(229)의 양단 근처에서 증발기 끝단(379)과 응측기 끝단(380) 쪽으로 소듐 작동 유체가 모인다. 따라서, 엔진 시동시(startup), 증발기 영역(379)로 쉽게 소듐 작동 유체가 유이될 수 있고, 중간 크기 심지 주변 메쉬를 이용함으로써 증발기 영역(379) 주변으로 소듐 작동 유체를 잘 분포 시키고 소듐 증기 챔버 스테이터(4)와 직접 접촉하게 할 수 있다.
도 57, 61, 및 62를 참조하면, 소듐 작동 유체의 기체상태 순환을 개선하기 위하여, 소듐 증기 챔버 리지들(252)이 외측 소듐 증기 챔버 커버(251)의 내면측에서 연장된다. 소듐 증기 챔버 리지들(252)은 심지 메쉬층들(230, 231, 232)이 소듐 증기 챔버(229)내에서 정위치에 있도록 한다. 또한, 큰 소듐 증기 챔버 보이드들 또는 채널들(253)이 소듐 증기 챔버 리지들(252) 사이에 형성되므로 가스 상태 소듐 작동 유체가 쉽게 흐롤 수 있다.
도 52 및 59 내지 64를 참조하면, 소듐 증기 챔버 커버(251)의 외측면에는 일렬의 측방향 및 반지름 방향 지지 리브들(257)이 형성되어 소듐 증기 챔버 커버(251)의 구조적 강도를 보강한다. 보강 리지들(257)은 소듐 증기 챔버 커버(251)와 외측 절연 물질(258) 사이에 빈 공간을 형성하여 열전달을 차단한다. 따라서, 소듐 증기 챔버(229)의 소듐 증기 챔버 커버(251)을 통한 열손실을 방지한다.
소듐 증기 챔버 압력 조절 파열 챔버(Sodium Vapor Chamber Pressure Adjustment Rupture Chamber)
도 52, 57, 60, 및 62 내지 64를 참조하면, 소듐은 물과의 반응성이 아주 높고, 엔진(1)내에서 가열되는 경우 소듐 증기 챔버(229)내의 압력을 상당히 높이게 된다. 소듐 증기 챔버(229)가 사고에 의한 강한 충격 또는 그 내부의 과도한 압력에 의하여 파열되는 것을 방지하기 위해서, 소듐 증기 챔버 커버(251)의 외측면에 는 파열 챔버 시스템(245)가 포함된다. 파열 챔버 시스템(245)은 소듐 증기 챔버(229)의 압력을 낮추고 소듐 증기 챔버(229)가 파열되어 소듐이 누출되는 것을 방지한다. 파열 챔버 시스템(245)은 파열 실린더(246), 가스 챔버(248), 소듐 압력 조절 디스크(247), 파열 신호 디스크(249) 및 파열 신호 플래그(250)를 포함한다. 파열 실린더(246)는 소듐 증기 챔버 커버(251)의 상측에 나사 결합된다. 파열 실린더(246)가 나사 결합된 소듐 증기 챔버 커버(251)의 상측에서, 소듐 압력 조절 디스크(247)가 내측의 소듐 증기 챔버(229)에 노출되어 있다. 파열 실린더(246)의 상측은 파열 신호 디스크(249)에 의해 닫히며, 파열 신호 디스크(249)와 소듐 압력 조절 디스크(247)의 사이에는 가스 공간(248)이 형성된다. 가스 공간(248)은 아르곤 바람직하게는 크립톤(krypton)과 같은 압축성 불활성 가스로 채워져 있다. 소듐 증기 챔버(229)의 외면으로 강한 충격이 가해지거나 소듐 증기 챔버(229) 내부의 압력이 과도하게 상승하는 경우, 소듐 압력 조절 디스크(247)가 가스 공간(248)쪽으로 가압되어 불활성 가스가 압축된다. 소듐 증기 가스가 또한 파열 실린더(246)의 가스 공간(248) 내로 유입될 것이다. 따라서, 소듐 증기 챔버(229) 내부의 전체 압력은 떨어지게 되어 소듐 증기 챔버 커버(251)를 통한 소듐 유출이 방지된다. 가스 압력이 과도하게 증가하여 파열 신호 디스크(249) 외측으로 밀리는 경우, 압력 조절 디스크(247)가 파손되어 교체되어야 한다는 신호로써 파열 신호 플래그(250)가 파열 신호홀(267)을 통해 절연 재질(258)의 외측으로 밀려 올라 간다. 파열 챔버 시스템(245)의 가스 공간(248)으로 소듐 증기 챔버(229)의 소듐이 유입될 수 있으므로 소듐 증기 챔버(229)는 안전한 낮은 압력에서 작동할 수 있다.
소듐 증기 챔버 압력 조절 시스템(245)은 소듐 증기 챔버(229)의 내부 압력을 조절하여 이상적인 증기 챔버 동작 조건을 유지하는 데 도움을 준다. 열이 소듐 증기 챔버(229)로 전달됨에 따라, 온도와 압력이 상승한다. 이상적인 증기 흐름을 유지하기 위해서는 저압 조건이 유리하다. 이를 위해, 소듐 압력 조절 디스크(247)가 파열 실린더(246)쪽으로 이동하여 가스 공간(248)의 가스를 압축하여 소듐 증기 챔버(229)내의 압력을 상대적으로 낮출 수 있다.
알칼리 금속 열전기 컨버터(Alkaline Metal Thermal Electrical Converter, AMTEC)
도 62 내지 64를 참조하면, 소듐 증기 챔버(229)의 소듐 작동 유체, 작동 온도, 및 소듐 순환 프로파일은 알칼리 금속 열전기 컨버터 (AMTEC)(235)의 작동 조건들과 동일하다. 소듐은 액체 금속으로서, 소듐 증기 챔버(229) 내에서 액체 상태에서 기체 상체 다시 액체 상태로 상변화 가능하다. 또한, 소듐의 이온을 베타 알루미나 고체 전극(beta alumina solid electrode, BASE)(236)으로 흐르게 하여 전기를 생성할 수 있다. 베타 알루미나 고체 전극(236)은 표면적을 늘리고 전기 생산 능력을 향상시키기 위하여 주름진 포면은 가진 감자칩 모양의 U자형 형상으로 형성된다. 베타 알루미나 고체 전극(236)의 끝단들은 외측면들(381)에 의해 마감되어 고압의 소듐 가스가 베타 알루미나 고체 전극(236) 아래에 모이기 쉽게 되어 있다. 따라서, 소듐 이온들이 베타 알루미나 고체 전극(236) 바닥의 양극 캐소드면(237)을 통과하여 상측의 애노드면(238)으로 쉽게 이동할 수 있다. 베타 알루미나 고체 전극(236)은 소듐 증기 챔버 커버(251)의 내면에 부착된다. BASE 스크류(241)을 베타 알루미나 고체 전극(236)을 관통하여 소듐 증기 챔버 커버(251)의 스크류 홀(241)에 고정함으로써 베타 알루미나 고체 전극(236)을 소듐 증기 챔버 커버(251)에 부착할 수 있다.
베타 알루미나 고체 전극(236)을 전기적으로 이온적으로 절연하기 위해서, BASE 스크류(241)는 지르코늄(zirconium)과 같은 전기적 이온적 불활성 재료로 형성된다. 따라서, 전기적 단락을 방지한다. 소듐 증기 챔버(229)의 내면에는 이트륨 안정화 지르코늄(yttrium stablilized zirconium, YSZ)과 같은 열차단 코팅(36)이 형성되어 베타 알루미나 고체 전극(236)의 상측 애노드(238) 면의 전기적으로 이온적으로 절연을 돕는다. 베타 알루미나 고체 전극(236)의 바닥 캐소드(237)을 전기적 이온적으로 절연하기 위하여, 실리카 섬유(233)로 이루어진 얇은 심지 메쉬를 베타 알루미나 고체 전극(236)과 미세 및 중간 크기 심지 메쉬(230, 2310 사이에 배치한다. 외측 주번 심지 메쉬(234)는 실리카 섬유와 같은 전기적으로 이온적으로 불활성 재질로 형성되거나 펠트(felt) 재료로 덮여 베타 알루미나 고체 전극(236)을 절연한다. 베타 알루미나 고체 전극(236)을 전기적으로 이온적으로 절연함으로써, 전기적 이온적 전도성 물질과 접촉시 손실이나 단락없이 최대 전력을 생산할 수 있다.
도 53, 54, 및 59를 참조하면, 내측 전기 커넥터(242)가 베타 알루미나 고체 전극(236)의 외측 테두리(381) 상의 슬롯 리세스(244) 내로 슬라이딩 가능하다. 상측 애노드(238)와 바닥 캐소드(237)는 슬롯 리세스(244)와 연결되고, 내측 전기 커 넥터(242)의 바닥 테두리는 상측 애노드(238)과 접촉하고, 내측 전기 커넥터(242)의 상측은 바닥 캐소드(237)과 접촉하여 베타 알루미나 고체 전극(236)의 전기적 회로를 형성한다. 내측 전기 커넥터(242)는 소듐 증기 챔버 커버(251)에 형성된 BASE 케넥터 홀(239)을 통과한 후 소듐 증기 챔버(229)를 밀봉하기 위하여 용접되거나 납땜된다. 베타 알루미나 고체 전극(236)의 외측 전기 커넥터(244)는 내측 전기 커넥터(242)와 연결된다. 그 후, 외측 전기 커넥터(244)는 소듐 증기 챔버 절연(258)에 형성된 커넥터 홀(266)을 통과한다. 와이어가 외측 전기 커넥터(244)와 전력 인버터(370)에 연결되어 베타 알루미나 고체 전극(236)과 회로를 구성하고 알칼리 금속 열전기 커버터 시스템(235)의 베타 알루미나 고체 전극(236)에서 발생하는 전력을 제어한다.
외측 소듐 증기 챔버 커버 및 절연(Outer Sodium Chamber Cover And Insulation)
도 56 내지 64를 참조하면, 소듐 증기 챔버(229)에서 대기로의 열손실을 더욱 줄이기 위하여, 소듐 증기 챔버 커버(251) 내면의 리지 연장부들(252) 및 채널들(253)을 따라 YSZ 열차단 코팅(36)이 형성된다. 지르코늄은 수소를 모으는 작용을 통해 소듐 증기 챔버 스테이터(4)를 통과하거나 소듐 증기 챔버 스테이터(4)에서 떨어지는 자유 수소를 흡수한다. 추가적으로, 소듐 증기 챔버 커버(251)의 외측면에는 열적 절연물(258)을 두껍게 형성한다. 예를 들어, 열적 절연물(258)은 절연 블랭킷(blanket), 금속 또는 세라믹 폼(foam), 또는 외측 셀(shell)에 담겨있는 절연볼 또는 절연 알갱이(pellets) 일 수 있다. 열적 절연물(258)은 소음과 진동이 소듐 증기 챔버 커버(251)를 통하여 전파되는 것을 방지하는 기능도 있다.
도 53 내지 64를 참조하면, 소듐 증기 챔버 커버(251)은 소듐 증기 챔버 스테이터(4)에 용접되어 있다. 작은 와이어 가스켓(254)이 와이어 가스켓 채널(255)에 결합되어 있다. 가스켓 채널(255)는 소듐 증기 챔버(229)의 외주를 따라 형성된다. 와이어 가스켓(254)는 소듐 증기 챔버 커버(251)를 통해 소듐이 누설되는 것을 방지한다.
외측 하우징 수증기 챔버들(Outer Housing Water Vapor Chambers)
도 67 및 70을 참조하면, 분할된 흡입-압축 및 연소-팽창 영역들로 인하여, 엔진(1)내에는 2극성 고온/저온 구배가 존재한다. 이는 하우징 스테이터들(2, 4)의 열적 변형을 일으키는 큰 원인일 것이다. 상측의 소듐 증기 챔버 스테이터(4)는 섭씨 약 600도 내지 900도의 작동 온도 범위를 갖는다. 하측 하우징 스테이터(2)는 활성수 냉각 시스템(362)에 의하여 냉각되므로 최대 작동 온도가 섭씨 98도 정도이다. 열차단 코팅이 상측 소듐 증기 챔버 스테이터(4)의 볼트면을 따라 형성되어 하측 하우징 스테이터(2)로의 연전달을 최소화 한다. 하측 하우징 스테이터(2)의 열변형을 최소화하기 위하여, 2개의 하우징 수증기 챔버 시스템들(68)이 하측 하우징 스테이터(2)내에 배치된다. 하우징 수증기 챔버 시스템(68)은 상측 소듐 증기 챔버 스테이터(4)와의 경계면을 따라 배치된다.
하우징 수증기 챔버들은 상측 소듐 증기 챔버 스테이터(4)의 볼트 면을 따라 하측 하우징 스테이터(2)의 표면 온도를 등온화(isothermalize)하기 위해 제공된다. 이는 볼트면을 따라 균일한 온도를 유지하는 데 도움을 주어 열변형의 원인이 되는 열점(hot spots)의 발생을 최소화 한다.
하우징 수증기 챔버(68)의 작동 유체인 물은 인접한 상측 소듐 증기 챔버 스테이터(4)의 볼트 면을 따라 열차단 코팅(36)을 관통하는 상측 증발기 표면(69)로부터 열을 흡수하여 활성수 냉각 시스템(362)의 흡입/압축(63) 및 베어링/팽창(66) 물 순환 통로에 인접한 하측의 응측기 표면(77)으로 전달한다. 물은 하우징 증발 챔버 상측 증발기 표면(69)을 따라 가열되어 증발하면서 상측 증발기 표면(69)로부터 많은 양의 열을 흡수하여 전달한다. 챔부 내부 압력에 의하여 가열된 수증기는 하우징 증기 챔버 응측기 표면(77)으로 이동된다. 응측기 표면(77)에서 수증기는 열을 방출하며 응축되고 그 후 다시 상측 증발기 표면(69)으로 이동한다.
하우징 수증기 챔버들(68)은 섭씨 24도 내지 202도 범위 또는 화씨 75도 내지 397도 범위에서 작동한다. 상측 소듐 증기 챔버 스테이터(4)를 따라 배치된 상측 증발기 표면(69)의 온도와 활성수 냉각 시스템(362)의 흡입/압축(63) 및 베어링/팽창(66) 물 순환 통로를 따라 형성된 하측의 응측기 표면(77)의 온도가 크게 차이 날수록, 열전달율은 증가한다.
하우징 수증기 챔버들(69)은 상대적으로 길고 가는 형상이다. 상측 증발기 표면(69)에서 좁은 하우징 수증기 챔버를 가로질러 응측기 표면(77)으로 열을 전달하는 것도 중요하지만, 하측 하우징 스테이터(2)를 등온화하여 열점이나 열변형이 발생하는 것을 방지하기 위해 하우징 수증기 챔버(68)의 길이 방향으로 열을 전달 하는 것도 또한 중요하다. 물 작동 유체의 모세관 유동을 개선하기 위하여, U 자형 주변 심지 메쉬(72)로 미세 모세관 심지 메쉬(71)과 성긴 모세관 심지 메쉬(72)를 감싼다. U 자형 주변 심지 메쉬(72)는 하우징 수증기 챔버 상측 증발기 표면(69)과 직접 접촉되도록 하우징 수증기 챔버(68)의 양측 끝단면을 따라 배치된다. U 자형 주변 심지 메쉬(72)는 미세 메쉬로 형성되어 고압의 작은 물방울이 하우징 수증기 챔버 상측 증발기 표면(69)의 길이를 따라 쉽게 흘러 증발할 수 있게 한다. 미세 심지 메쉬(71)는 하우징 수증기 챔버 리세스(270)의 바닥면의 따라 배치된다. 미세 심지 메쉬(71)는 고압의 작은 물방울이 하우징 수증기 챔버(68)의 길이를 따라 상측 증발기 표면(69)로 쉽게 흘러 증발되도록 한다. 성긴 심지 모세관 메쉬층(70)은 미세 심지 메쉬(71)의 상측으로 배치된다. 성긴 심지 모세관 메쉬층(70)은 저압의 큰 물방울이 하우징 수증기 챔버(68)의 길이를 따라 하측의 미세 심지 메쉬(71)로 쉽게 흐르도록 한다.
도 67을 참조하면, 기체 상태의 작동 유체 순환을 개선하기 위하여, 하우징 수증기 챔버 보이드들 또는 채널들(75)이 하우징 수증기 챔버 연장 리지들(74) 사이에 형성된다. 연장 리지들(74)은 하우징 챔버 커버(73)의 내측에 형성된다. 또한 연장 리지(74)는 미세 심지 메쉬층(71)와 성긴 심지 메쉬층(70)이 제 위치에 있도록 지지하고 가압한다. 연장 리지들(74)은 하우징 수증기 챔버 응축기를 향하는 방향으로 형성된 큰 리지 연장 태두리(382)를 포함한다. 리지 연장 태두리(382)에 의해서 연장 리지(74)는 전체적으로 L 자형 모양을 갖는다. 리지 연장 태두리(382)에 의하여 미세 심지 메쉬층(71)와 성긴 심지 메쉬층(70) 및 하우징 수증기 챔버 응측 기 표면(77) 다음에 보이드 영역(void area)이 형성된다. 따라서, 가열된 수증기가 쉽게 응측기 표면(77)과 접촉하여 열을 방출하고 응축될 수 있다.
하우징 수증기 챔버 심지/결빙 튜브(Housing Water Vapor Chamber Wicking/Freeze Chamber)
도 65 내지 67을 참조하면, 수증기 챔버(76) 내의 물 작동 유체는 완전히 밀봉되기 때문에, 엔진(1)이 화씨 32도 이하의 온도에 노출되는 경우 작동 유체의 결빙 팽창에 의한 손상이 발생할 수 있다. 물의 결빙 팽창에 대처하기 위하여, 하우징 수증기 챔버(68) 내에 다공성 심지/결빙 튜브(76)를 배치한다. 다공성 심지/결빙 튜브(76)는 형상 금속 합금(shape metal alloys, SMA) 직물을 튜브 형상으로 감고 납땜하거나 스폿 용접하여 형성할 수 있다. 다공성 심지/결빙 튜브(76)의 중앙부의 물 작동 유체는 절연된다. 따라서, 작동 유체가 결빙되어 팽창하기 시작하면, 다공성 심지/결빙 튜브(76) 중앙부의 결빙되지 않은 작동 유체는 모세관 현상에 의하여 상측으로 이동된다. 이 경우, 작동 유체는 외폭(exploding outward) 보다는 내폭(imploding inward)하면서 팽창하여, 하우징 수증기 챔버(68) 또는 하측 하우징 스테이터(2) 대한 손상을 줄인다. 다공성 심지/결빙 튜브(76)를 SMA를 이용하여 형성하는 경우, 작동 유체가 내부에서 내폭하며 결빙 팽창하여 다공성 심지/결빙 튜브(76)의 하측이 변형되더라도, 하우징 수증기 챔버(68)의 온도가 화씨 약 32도 이상으로 상승하여 작동 유체가 다시 녹으면 다공성 심지/결빙 튜브(76) 는 원래의 형상으로 돌아 간다.
다공성 심지/결빙 튜브들(76)은 성긴 심지 메쉬층(70)의 슬롯 개구부들(268) 내에서 지지된다. 성긴 심지 메쉬층(70)상으로 팽창 결빙될 큰 물방울이 흐를 가능성이 많다. 다공성 심지/결빙 튜브들(76)의 끝단들은 주변 심지 메쉬(72)의 관통 홀들(269)을 통과하여 작동 유체가 고이는 하우징 수증기 챔버(68)의 바닥 테두리들에 근접한다.
내측 하우징 열차단 코팅(Inner Housing Thermal Barrier Coating)
도 67을 참조하면, 작동중 연소 챔버(34) 내는 고온이기 때문에, 연소 영역(32) 및 팽창 영역(33)의 테두리를 따라 하측 하우징 스테이터(2)의 내부면(37)에 열차단 코팅(36)이 형성된다. 열차단 코팅(36)은 하측 하우징 스테이터(2)와 하우징 수증기 챔버(68)로의 과도한 열전달을 차단한다.
외측 열절연 커버(258)는 하우징 스테이터들(2, 4) 상면의 연결 볼트들(13), 너트들(14), 및 와셔들(15) 위로 결합되기 위하여 주변(260)을 따라 작은 채널 개구를 갖는다. 외측 열절연 커버(258)는 엔진(1)에 나사 결합된다. 육각 스크류들(16)을 외측 열절연 커버(258)에 형성된 스크류 홀들(262)을 관통하여 하측 하우징 스테이터(2)의 외주를 따라 형성된 스크류 홀들(17)에 결합함으로써 외측 열절연 커버(258)를 엔진(1)에 결합한다. 외측 열절연 커버(258)에 스크류 리세스들(261)를 형성하여 육각 스크류들(16)이 외측 절연면과 동일한 높이로 고정되게 한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (132)

  1. 흡입 영역, 압축 영역, 팽창 영역, 및 배기 영역을 포함하는 찌그러진 타원형 캐버티를 정의하는 내부면을 포함하는 스테이터를 포함하며;
    상기 캐버티 내에서 회전 가능하게 배치되며, 외측면과 외주를 따라 형성되는 복수의 연소 캐버티들 및 복수의 슬롯들을 포함하는 로터를 포함하며;
    상기 슬롯들에 배치되고, 상기 스테이터의 내부면쪽으로 연장되어 상기 스테이터 내부면과 맞물려서 복수의 회전 가능한 챔버들을 형성하는 반지름 방향으로 돌출된 복수의 가동(movable) 베인들을 포함하며, 여기서, 상기 회전 가능한 챔버 내에서는 연료 혼합물이 상기 로터의 상기 복수의 연소 캐버티들 내에서 점화되기 위하여 압축되며;
    상기 타원형 캐버티의 일부분과 중첩되며, 상기 연료 혼합물이 상기 연소 캐버티들에서 점화되며 발생하는 열을 흡수하고 상기 연소 캐버티들이 회전하여 상기 팽창 영역을 통과할 때 흡수한 열을 상기 연소 캐버티들로 방출하는 유체를 포함하는 증기 챔버를 포함하며; 그리고
    과도한 열로부터 내연 로터리 기관을 보호하고, 상기 스테이터, 상기 복수의 베인들, 및 상기 로터 내에 배치된 냉각/열전달 시스템을 포함하는 활성 냉각 시스템을 포함하는 내연 로터리 기관.
  2. 청구항 1에 있어서,
    차가운 공기를 상기 복수의 회전 가능한 챔버들 각각으로 흡입하기 위한 흡기 포트를 더 포함하며, 상기 흡입 포트는 상기 스테이터의 외측면 외주를 따라 상기 흡입 영역에 선행하여 위치하며(preceding); 그리고
    상기 복수의 회전 가능한 챔버들 각각에서 연소 가스를 배출하기 위한 배기 포트를 더 포함하며, 상기 배기 포트는 상기 스테이터의 외측면 외주를 따라 상기 팽창 영역의 다음에 위치하는 내연 로터리 기관.
  3. 청구항 1에 있어서,
    상기 로터의 회전 중심이 되는 드라이브 샤프트를 더 포함하는 내연 로터리 기관.
  4. 청구항 1에 있어서,
    상기 증기 챔버의 유체는 점화 과정에서 열을 흡수하여 액체 상태에서 기체 상태로 상변화하고 열을 상기 연소 캐버티들로 방출하며 기체 상태에서 액체 상태로 상변화하는 내연 로터리 기관.
  5. 청구항 1에 있어서,
    상기 증기 챔버의 유체는 알칼리 액체 금속인 내연 로터리 기관.
  6. 청구항 5에 있어서,
    상기 증기 챔버의 유체는 소듐(sodium), 칼륨(potassium), 황(sulphur)로 이루어진 알칼리 액체 금속들 중에서 선택되는 내연 로터리 기관.
  7. 청구항 1에 있어서,
    상기 스테이터의 내부면은 실질적으로 매끈하고(smooth), 상기 로터가 상기 스테이터의 내부에서 회전하는 동안 상기 복수의 베인들은 상기 스테이터의 내부면과 슬라이딩 가능하게 맞물리는 내연 로터리 기관.
  8. 청구항 1에 있어서,
    상기 복수의 베인들은 교호하는(alternating) 슬라이딩 베인들로 이루어진 제1 그룹과 교호하는 슬라이딩 베인들로 이루어진 제2 그룹을 포함하며, 각각의 베인은 실질적으로 평평하고 연장된 반타원형 형상이며 외측 주변(outer perimeter) 및 두 면들을 갖는 내연 로터리 기관.
  9. 청구항 1에 있어서,
    상기 복수의 베인들 각각과 상기 스테이터의 내부면 사이에 복수의 실링들을 더 포함하는 내연 로터리 기관.
  10. 청구항 9에 있어서,
    상기 복수의 베인들과 상기 스테이터의 내부면 사이에 상기 실링들의 마모를 줄이기 위하여 상기 복수의 베인들에 작용하는 원심력을 줄이는 베인 벨트 시스템을 더 포함하는 내연 로터리 기관.
  11. 청구항 10에 있어서,
    상기 베인 벨트 시스템은 상기 복수의 베인들이 상기 로터의 외측면 주변과 상기 스테이터의 내부면 주변과의 거리의 변동에 맞게 반지름 방향으로 움직이도록 하기 위한 제1 및 제2 벨트 세트들을 포함하는 내연 로터리 기관.
  12. 청구항 10에 있어서,
    상기 베인 벨트 시스템은,
    교호하는 슬라이딩 베인들로 이루어진 제1 그룹을 서로 연결하는 복수의 제1 베인 벨트 세그먼트들;
    교호하는 슬라이딩 베인들로 이루어진 제2 그룹을 서로 연결하는 복수의 제2 베인 벨트 세그먼트들;
    그 위에서 상기 복수의 제1 베인 벨트 세그먼트들이 슬라이딩하는 제1 아크형 베인 벨트 플레이트; 및
    그 위에서 상기 복수의 제2 베인 벨트 세그먼트들이 슬라이딩하는 제2 아크형 베인 벨트 플레이트를 포함하는 내연 로터리 기관.
  13. 청구항 12에 있어서,
    상기 베인 벨트 세그먼트들을 상기 슬라이딩 베인들에 부착하는 연장된 베인 바들을 더 포함하는 내연 로터리 기관.
  14. 청구항 12에 있어서,
    상기 제1 아크형 베인 벨트 플레이트를 다이나믹하게 내측으로 가압하기 위한 제1 스프링; 및
    상기 제2 아크형 베인 벨트 플레이트를 다이나믹하게 내측으로 가압하기 위한 제2 스프링을 더 포함하는 내연 로터리 기관.
  15. 청구항 12에 있어서,
    상기 제1 아크형 베인 벨트 플레이트와 제2 아크형 베인 벨트 플레이트의 적어도 일부 표면에는 복수의 둥근 리지들(ridges)이 돌출되고, 상기 제1 아크형 베인 벨트 플레이트와 제2 아크형 베인 벨트 플레이트는 고체 윤활제로 코팅되는 내연 로터리 기관.
  16. 청구항 15에 있어서,
    상기 복수의 둥근 리지들에 의해 상기 제1 아크형 베인 벨트 플레이트와 제2 아크형 베인 벨트 플레이트의 폭들이 연장되는 내연 로터리 기관.
  17. 청구항 13에 있어서,
    상기 베인 벨트 세그먼트들은 중앙 베인 벨트 세그먼트들과 측면 베인 벨트 세그먼트들을 포함하는 내연 로터리 기관.
  18. 청구항 12에 있어서,
    상기 제1 아크형 베인 벨트 플레이트는 제1 중앙 아크형 베인 벨트 플레이트 및 적어도 하나의 제1 측면 아크형 베인 벨트 플레이트를 포함하며, 상기 제2 아크형 베인 벨트 플레이트는 제2 중앙 아크형 베인 벨트 플레이트 및 적어도 하나의 제2 측면 아크형 베인 벨트 플레이트를 포함하는 내연 로터리 기관.
  19. 청구항 12에 있어서,
    상기 내연 로터리 기관은,
    상기 베인 벨트 세그먼트들과 가로로 정렬된 복수의 스핀들들을 더 포함하며;
    상기 스핀들들에 배치된 복수의 중공형 분할된 롤러 베어링들을 더 포함하며, 여기서, 상기 중공형 분할된 롤러 베어링들은 상기 스핀들들을 중심으로 자유롭게 회전할 수 있으며 상기 베인 벨트 세그먼트들과 접촉하고;
    상기 제1 아크형 베인 벨트 플레이트에 부착된 복수의 제1 스핀들 스프링들을 더 포함하며; 그리고
    상기 제2 아크형 베인 벨트 플레이트에 부착된 복수의 제2 스핀들 스프링들 을 더 포함하며,
    상기 제1 및 제2 스핀들 스프링들은 상기 베인 벨트 세그먼트들에 평행하게 정렬되고 상기 스핀들들을 지지하는 내연 로터리 기관.
  20. 청구항 19에 있어서,
    상기 복수의 제1 스핀들 스프링들은 상기 제1 아크형 베인 벨트 플레이트 내측에 스폿 용접되며, 상기 복수의 제2 스핀들 스프링들은 상기 제2 아크형 베인 벨트 플레이트 내측에 스폿 용접되는 내연 로터리 기관.
  21. 청구항 12에 있어서,
    상기 베인 벨트 세그먼트들 내에 배치된 복수의 심들(seams)을 더 포함하는 내연 로터리 기관.
  22. 청구항 21에 있어서,
    상기 심들은 핀 심들(pin seams)인 내연 로터리 기관.
  23. 청구항 21에 있어서,
    상기 심들은 힌지 심들(hinge seams)인 내연 로터리 기관.
  24. 청구항 13에 있어서,
    상기 베인 벨트 세그먼트들은 2개의 끝단들을 갖는 중앙 베인 벨트 세그먼트들 및 2개의 끝단들을 갖는 측면 베인 벨트 세그먼트들을 포함하며,
    상기 베인 벨트 시스템은:
    상기 연장된 베인 바들에 부착된 복수의 중앙 토글바들을 더 포함하며;
    상기 제1 아크형 베인 벨트 플레이트에서 절개 형성된 복수의 제1 베인 벨트 바 통로들을 더 포함하며, 여기서 상기 제1 베인 벨트 바 통로들 각각은 상기 연장된 베인 바들 중 다른 어느 하나와 정렬되며;
    상기 제2 아크형 베인 벨트 플레이트에서 절개 형성된 복수의 제2 베인 벨트 바 통로들을 더 포함하며, 여기서, 상기 제2 베인 벨트 바 통로들 각각은 상기 연장된 베인 바들 중 다른 어느 하나와 정렬되며;
    복수의 중앙 베인 벨트 바들을 더 포함하며, 여기서 상기 중앙 베인 바들 중 2개는 상기 중앙 토클바들 각 하나에 부착되며;
    복수의 측면 베인 벨트 바들을 더 포함하며, 여기서 상기 측면 베인 바들 중 2 쌍은 상기 중앙 토클바들 각 하나에 부착되며;
    상기 중앙 베인 벨트 바들 및 상기 측면 베인 벨트 바들을 덮는 복수의 금속 롤러 부싱들을 더 포함하며, 여기서, 상기 중앙 베인 벨트 세그먼트들 각각의 끝단은 상기 중앙 베인 벨트 바들을 덮는 메탈 롤러 부싱들 중에서 다른 하나에 걸리고 상기 측면 베인 벨트 세그먼트들 각각의 끝단은 상기 측면 베인 벨트 바들을 덮는 메탈 롤러 부싱들 중에서 다른 하나에 걸리며; 그리고
    슬라이딩 베인들에 부착되며 슬라이딩 베인들을 상기 베인 벨트 시스템으로부터 열적으로 절연하는 복수의 열절연 스트립들(strips)을 더 포함하는 내연 로터리 기관.
  25. 청구항 11에 있어서,
    상기 내연 로터리 기관은 상기 제1 및 제2 벨트 세트들의 양측에 위치하는 벨트들의 외측 시리즈를 더 포함하며, 상기 벨트들의 외측 시리즈는 상기 제1 및 제2 벨트 세트들을 연결하는 벨트 아크 지지 바들의 끝단들에서 작은 아크 지지부들에 오르고(riding) 상기 제1 및 제2 그룹들이 상기 스테이터 면의 프로파일과 매칭되도록 하는 내연 로터리 기관.
  26. 청구항 1에 있어서,
    상기 로터의 외측면 주변에서 상기 스테이터의 내측면 주변까지의 거리는 상기 로터가 상기 흡입 영역, 압축 영역, 팽창 영역, 및 배기 영역을 통과하며 회전함에 따라 변하며, 상기 복수의 가동 베인들은 상기 거리의 변동에 맞추어 반지름 방향으로 움직여 로터가 회전하는 동안에도 상기 스테이터의 내부면과 슬라이딩 가능하게 맞물리는 내연 로터리 기관.
  27. 청구항 1에 있어서,
    상기 증기 챔버에 연결된 압력 해제 시스템을 더 포함하는 내연 로터리 기관.
  28. 청구항 1에 있어서,
    상기 연료 혼합물은 수소, 물, 및 공기는 포함하는 내연 로터리 기관.
  29. 청구항 1에 있어서,
    상기 내연 로터리 기관의 압축비를 제어하기 위하여 압축비에 따라 변하는 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분사하는 제1 물 분사기;
    점화를 위하여 상기 복수의 연소 캐버티들 각각에 연료를 분사하는 연료 분사기;
    상기 복수의 회전 가능한 챔버들 각각에 제2 양의 물을 분사하여 상기 회전 가능한 챔버 내에 위치하는 상기 로터 연소 캐버티에서 점화되는 연료로부터 발생하는 가스를 부분적으로 쿠엔칭(quenching)하여 가스의 온도를 낮추는 제2 물 분사기; 및
    상기 팽창 영역과 중첩되는 상기 증기 챔버로부터 상기 회전 가능한 챔버로 전달되는 열에 반응하여 상기 회전 가능한 챔버를 포함하여 상기 로터, 베인들, 및 실링들을 냉각하기 위해 제3 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분사하는 제3 물 분사기를 더 포함하는 내연 로터리 기관.
  30. 청구항 1에 있어서,
    상기 내연 로터리 기관은 상기 회전 가능한 챔버들 각각을 밀봉하기 위하여 복수의 실링들을 더 포함하고, 상기 복수의 실링들은:
    상기 로터의 제1 및 제2 측면들을 따라 축방향으로 배치되고 상기 로터의 외측면의 원형 프로파일 대응하게 곡선형을 형성된 제1 및 제2 실링들을 포함하며;
    여기서 상기 축 실링들은 중앙 섹션 및 2개의 엔드 섹션들(end sections)로 세그먼트되며; 상기 축 실링의 중앙 섹션은 양끝단을 따라 각진 텅 연장부(tongue extension)를 갖으며, 상기 각진 텅 연장부는 상기 축 엔드 실링 세그먼트들의 각진 그루브 리세스와 대응하며;
    상기 축 실링 중앙 섹션은 및 엔드 세그먼트들 각각은 챔버 가스 압력에 의해 상기 축 실링이 상기 스테이터의 내부면을 향하는 방향으로 바이어스(bias)되도록 경사진 상면을 포함하며;
    축 실링 스트립을 위한 리세스를 형성하기 위해 상기 축 실링의 전체 길이에 걸쳐 절개 혀성된 그루브를 포함하는 상기 축 실링 중앙 및 엔드 세그먼트들 각각의 외측 실링면을 포함하며; 그리고
    상기 축 실링 중앙 세그먼트의 뒤에 위치하고 상기 축 실링들을 외측으로 바이어싱하는 주름진 스프링을 포함하고, 상기 축 실링 중앙 세그먼트가 가스 압력 및 상기 주름진 스프링에 의하여 외측으로 가압됨에 따라, 상기 축 실링 중앙 세그먼트는 상기 축 실링 엔드 세그먼트들을 외측으로 가압하여 상기 스테이터의 내부면을 따라 밀봉 효과를 제공하고 상기 로터 위에 배치된 상기 베인 실링들의 하측 세그먼트를 따라 밀봉 효과를 제공하는 내연 로터리 기관.
  31. 청구항 30에 있어서,
    상기 복수의 베인들 중 하나의 전후면과 상기 로터의 외측면의 바로 인접하는 영역 사이의 실질적으로 신장된 반타원형의 링 모양 영역에서의 연속적인 밀봉을 제공하기 위한 복수의 베인면 실링들; 및
    상기 복수의 베인들 중 하나의 외측 주변과 상기 스테이터의 내부면 사이에서 연속적인 밀봉을 제공하기 위한 복수의 베인 실링들을 더 포함하는 내연 로터리 기관.
  32. 청구항 31에 있어서,
    상기 복수의 베인들 각각은 곡선형 베인 실링 표면을 포함하고, 상기 내연 로터리 기관은:
    상기 베인 실링들 사이와 상기 베인 실링들 각각과 대응하는 베인 사이에 형성된 복수의 롤러 베어링 체널들을 더 포함하며;
    상기 롤러 베어링 채널들 내에 배치된 복수의 롤러 베어링들을 더 포함하며,
    여기서 상기 베인 실링들 각각은 가스 바이어싱을 위한 각진 외측면들을 포함하여 상기 내연 로터리 기관의 작동 중에 상기 스테이터의 내부면을 향해 다이나믹하게 가압될 수 있으며; 그리고
    상기 베인 실링들을 관통하는 복수의 가스 통로들을 더 포함하며,
    여기서 상기 가스 통로들 각각의 면적은 상기 내연 로터리 기관의 작동 중 상기 가스 통로가 다이나믹하게 외측으로 연장되고 상기 스테이터의 내부면 방향으 로 가압됨에 따라 증가하는 내연 로터리 기관.
  33. 청구항 32에 있어서,
    상기 베인들 각각은 실질적으로 평평하고 연장된 반타원형 형상이며 외측 주변 및 두 면들을 갖으며,
    상기 외측 주변은:
    상기 외측 주변의 전체 길이의 중앙을 따라 연장되는 그루브을 포함하며;
    상기 외측 주변의 전체 길이를 따라 연장되는 2개의 지지 리지들(support ridges)을 포함하며, 상기 베인 그루브는 상기 지지 리지들에 의하여 경계가 정해지며, 상기 지지 리지들은 상기 베인 그루브를 넘어 반지름 방향으로 돌출되며, 그리고
    상기 외측 주변의 전체 길이를 따라 연장되는 2개의 지지 레지들(support ledges)을 포함하며, 상기 지지 레지들은 상기 지지 레지들에 의해서 경계가 정해지며, 상기 지지 레지들은 반지름 방향으로 상기 베인 그루브보다는 많이 상기 지지 리지들 보다는 적게 돌출하는 내연 로터리 기관.
  34. 청구항 33에 있어서,
    상기 복수의 측면 가스 통로들은 상기 챔버들에서 상기 지지 리지들에 이르는 오픈 채널을 형성하는 내연 로터리 기관.
  35. 청구항 31에 있어서,
    상기 베인 실링들 각각은 2개의 인터페이스들에 의하여 상측 중앙 세그먼트 및 2개의 축 방향으로 연장 가능한 측면 하측 세그먼트들로 나누어지는 내연 로터리 기관.
  36. 청구항 35있어서,
    상기 2개의 측면 하측 세그먼트들은 축 방향으로 바이어스 되어 상기 스테이터의 내부면을 향해 가압되고 반지름 방향으로 바이어스 되어 상기 상측 중앙 세그먼트 방향으로 가압되는 내연 로터리 기관.
  37. 청구항 35에 있어서,
    상기 인터페이스들 각각은 적어도 하나의 키스톤 형상의 슬라이딩 텅 및 그루브 연결부(sliding keystone shaped tongue and groove connection)를 포함하는 내연 로터리 기관.
  38. 청구항 1에 있어서,
    상기 베인들 각각은 실질적으로 평평하고 연장된 반타원형 형상이며 외측 주변 및 두 면들을 갖으며, 상기 내연 로터리 기관은 상기 베인들 각각이 반지름 방향으로 용이하게 움직이도록 하는 베어링 시스템을 포함하며, 상기 베어링 시스템은:
    상기 베인면들 각각에 축 방향으로 배치된 복수의 롤러 베어링 채널들, 및
    상기 복수의 롤러 베어링 채널들 내에 배치된 복수의 롤러 베어링들을 포함하는 내연 로터리 기관.
  39. 청구항 38에 있어서,
    상기 베어링 시스템은 복수의 로터 베인 플레이트들을 더 포함하며, 상기 로터 베인 플레이트들 각각은 상기 베인들이 배치된 상기 로터의 슬롯들 각각의 2개의 측면들 중 어느 하나에 부착되며, 상기 로터 베인 플레이트들 각각의 적어도 일부 표면에는 다이어몬드 형상의 리지들 또는 지그재그 리지들이 형성되며, 상기 복수의 베인들의 각면의 적어도 일부는 다이어몬드 형상의 리지들 또는 지그재그 리지들이 형성되며, 상기 리지들은 열차단 코팅 및 산화물 윤활제로 덮여 있는 내연 로터리 기관.
  40. 청구항 39에 있어서,
    상기 베어링 시스템은,
    축 방향으로 배치된 복수의 중앙 스핀들들;
    상기 중앙 스핀들들을 중심으로 자유롭게 회전되도록 상기 중앙 스핀들들 상에 배치되는 복수의 중공형 분할된 롤러 베어링들; 및
    상기 로터 베인 플레이트들 각각에 부착되고 반지름 방향으로 배치되는 복수의 롤러 베어링 지지 스프링들을 더 포함하며, 상기 중앙 스핀들들은 상기 롤러 베 어링 지지 스프링들에 부착되는 내연 로터리 기관.
  41. 청구항 8에 있어서,
    교호하는 슬라이딩 베인들로 이루어진 상기 제1 그룹에 부착된 외측 베인 벨트 및 교호하는 슬라이딩 베인들로 이루어진 상기 제2 그룹에 부착된 내측 베인 벨트를 포함하는 베인 벨트 시스템을 더 포함하는 내연 로터리 기관.
  42. 청구항 41에 있어서,
    상기 외측 베인 벨트와 상기 내측 베인 벨트 각각은 복수의 벤드부들를 포함하고, 상기 베인 벨트 시스템은 상기 벤드부들에 접촉하는 복수의 롤러 베어링들을 더 포함하는 내연 로터리 기관.
  43. 청구항 41에 있어서,
    상기 베인 벨트 시스템은 상기 외측 베인 벨트를 교호하는 슬라이딩 베인들로 이루어진 상기 제1 그룹에 부착하고 상기 내측 베인 벨트를 교호하는 슬라이딩 베인들로 이루어진 상기 제2 그룹에 부착하는 복수의 베인 벨트 핀들을 포함하는 내연 로터리 기관.
  44. 청구항 41에 있어서,
    상기 외측 베인 벨트와 상기 내측 베인 벨트 각각은 복수의 고 인장 강도 섬 유들로 만들어 지고 서로 핀들과 링크들을 이용하여 연결되는 내연 로터리 기관.
  45. 청구항 1에 있어서,
    상기 내연 로터리 기관은 로터 열전달 시스템을 더 포함하며, 상기 로터 열전달 시스템은:
    상기 로터 내에서 베인 슬롯들 사이에 배치되는 복수의 로터 증기 챔버들을 포함하며;
    상기 로터 증기 챔버들의 내부 작동 유체를 포함하며;
    반지름 방향으로 연장되고 상기 로터 외측면 프로파일에 따라 상기 로터 내부에서 만곡되는 복수의 로터 증기 챔버들을 포함하며, 여기서 상기 로터 증기 챔버들 각각은 상기 로터의 외측면 아래에 그 중심이 있는 내측 증발 영역 및 2개의 축 방향 내측 응축기 끝단들을 포함하며;
    상기 로터 증기 챔버의 증발기 섹션에 걸쳐 배치되는 복수의 미세 심지 메쉬(fine wicking mesh)를 포함하며;
    상기 내측 응축기 영역들에 걸쳐 배치되고 상기 복수의 로터 증기 챔버들에서 미세 심지 메쉬와 연결되는 복수의 성긴 심지 메쉬를 포함하며;
    상기 로터 증기 챔버의 내측 주변 표면을 따라 배치되고 상기 증발기 섹션쪽의 미세 심지 메쉬와 상기 내측 응축기쪽의 성긴 심지 메쉬와 접촉하는 복수의 주변 중간 심지 메쉬를 포함하며;
    외측 연소면의 아래 면 반대측의 로터 증기 챔버 내측 커버를 따라 배치되며 로터 증기 챔버를 축 방향으로 관통하는 복수의 줄로 배열되는 복수의 리지들을 포함하며;
    상기 로터 증기 챔버 리지들 사이에 배치되는 복수의 로터 증기 챔버 보이드 스페이스들(void spaces)을 포함하며;
    로터 증기 챔버를 반지름 방향으로 통과하고, 미세 심지 메쉬 및 주변 중간 심지 메쉬를 관통하는 복수의 심지 결빙 튜브들을 포함하며;
    하나의 내측 응축기에서 다른 내측 응축기 쪽으로 상기 로터 증기 챔버를 축 방향으로 통과하고, 상기 성긴 심지 메쉬, 미세 심지 메쉬, 및 주변 중간 심지 메쉬를 관통하는 복수의 심지 결빙 튜브들을 포함하며; 그리고
    상기 로터 증기 챔버의 상기 내측 응축기들로부터의 열을 상기 활성 냉각 시스템의 냉각수로 전달하는 복수의 로터 증기 챔버 외측 응축기들을 포함하는 내연 로터리 기관.
  46. 청구항 41에 있어서,
    상기 로터 증기 챔버의 내부 작동 유체는 물을 포함하는 내연 로터리 기관.
  47. 청구항 1에 있어서,
    상기 내연 로터리 기관을 과도한 열로부터 보호하기 위한 스테이터 열전달 시스템을 더 포함하는 내연 로터리 기관.
  48. 청구항 47에 있어서,
    상기 내연 로터리 기관은 흡입 포트와 배기 포트를 더 포함하며, 상기 스테이터 열전달 시스템은 스테이터 액체 냉각 시스템을 더 포함하며, 상기 스테이터 액체 냉각 시스템은:
    상기 흡입 포트 근처에서 상기 내연 로터리 기관으로 진입하고, 상기 흡입 포트 근처에서 구불구불하게 진행하며, 드라이브 샤프트 둘레로 돌아 진행하고, 상기 배기 포트 근처에서 상기 내연 로터리 기관으로 인출되는 스테이터 액체 냉각 튜브;
    상기 스테이터 액체 냉각 튜브내의 스테이터 냉각수;
    스테이터 냉각수 온도 모니터; 및
    상기 스테이터 냉각수의 흐름을 조절하기 위한 수단을 포함하는 내연 로터리 기관.
  49. 청구항 48에 있어서,
    상기 스테이터 냉각수는 물을 포함하는 내연 로터리 기관.
  50. 청구항 3에 있어서,
    상기 내연 로터리 기관은 흡입 포트와 배기 포트를 더 포함하고, 상기 증기 챔버는 상기 내연 로터리 기관의 상기 연소 및 팽창 영역을 등온화(isothermalizing)하기 위한 소듐 증기 챔버이고, 상기 소듐 증기 챔버는 실질적 으로 상기 흡입 포트와 배기 포트의 반대측에서 상기 스테이터 둘레의 상당 부분을 따라 연장되는 내연 로터리 기관.
  51. 청구항 50에 있어서,
    상기 소듐 증기 챔버는,
    내부의 소듐 유체;
    상기 소듐 증기 챔버의 증발기 섹션내에서 상기 내연 로터리 기관의 점화 및 연소 영역을 향해 배치되는 미세 심지 메쉬층;
    상기 소듐 증기 챔버의 응축기 섹션내에서 상기 내연 로터리 기관의 팽창 영역의 끝을 향해 배치되는 성긴 심지 메쉬층;
    상기 미세 심지 메쉬층과 상기 성긴 심지 메쉬층 사이에서 층을 이루며 상기 내연 로터리 기관의 상기 팽창 영역 중간에 위치하는 중간 심지 메쉬; 및
    상기 스테이터 소듐 증기 챔버의 전체 둘레에 라이닝(lining) 되고, 상기 미세, 성긴, 중간 메쉬들을 감싸는 중간 심시 메쉬를 포함하는 내연 로터리 기관.
  52. 청구항 51에 있어서,
    상기 내연 로터리 기관은 상기 소듐 증기 챔버의 외측 커버를 더 포함하고, 상기 외측 커버는:
    내면을 덮고 소듐 증기 챔버의 길이 방향으로 형성되는 평행하게 분할된 복수의 연장 리지들;
    상기 소듐 증기 챔버의 내부에서 상기 연장 리지들 사이에 형성되는 복수의 빈 공간들; 및
    상기 외측 커버의 내면에 형성되는 열차단 코팅을 포함하는 내연 로터리 기관.
  53. 청구항 50에 있어서,
    상기 내연 로터리 기관은 상기 스테이터 내의 상기 드라이브 샤프트의 둘레로 정렬되는 외측 스테이터 수증기 챔버를 더 포함하며, 상기 스테이터 수증기 챔버는:
    내부에 저장된 물 유체;
    주변부에 라이닝되는 미세 심지 메쉬;
    내부에 배치되는 미세 심지 메쉬층;
    내부에 배치되는 성긴 심지 메쉬층; 및
    상기 소듐 증기 챔버와 상기 스테이터 활성 냉각 시스템의 물 채널 사이에 배치되는 스테이터 물 챔버를 포함하는 내연 로터리 기관.
  54. 청구항 30에 있어서,
    상기 로터는 8개의 베인 슬롯들을 포함하며, 실링 배열은 16개의 베인면 실링들 및 8개의 베인 실링들을 포함하는 내연 로터리 기관.
  55. 청구항 1에 있어서,
    상기 연료 혼합물은 적어도 하나의 점화 플러그에 의해 점화되는 내연 로터리 기관.
  56. 청구항 1에 있어서,
    상기 연료 혼합물은 자기착화에 의해 점화되는 내연 로터리 기관.
  57. 청구항 1에 있어서,
    수소를 상기 로터의 연소 캐버티들에 직접 분사하기 위한 분사기를 더 포함하는 내연 로터리 기관.
  58. 청구항 2에 있어서,
    배기 가스에 포함된 수분을 응축시키고, 필터링하고, 재순환시키기 위한 활성 냉각 시스템을 더 포함하며 내연 로터리 기관.
  59. 적어도 압축 영역과 팽창 영역을 포함하는 찌그러진 타원형 캐버티를 정의하는 내부면을 포함하는 스테이터를 포함하며;
    상기 캐버티 내에서 회전 가능하게 배치되며, 외측면과 외주를 따라 형성되는 복수의 연소 캐버티들 및 복수의 슬롯들을 포함하는 로터를 포함하며;
    상기 슬롯들에 배치되고, 상기 스테이터의 내부면쪽으로 연장되어 상기 스테 이터 내부면과 슬라이딩 가능하게 맞물려서 복수의 회전 가능한 챔버들을 형성하는 반지름 방향으로 이동 가능한 복수의 베인들을 포함하며, 여기서, 상기 회전 가능한 챔버 내에서는 연료 혼합물이 상기 로터의 상기 복수의 연소 캐버티들 내에서 점화되기 위하여 압축되며; 그리고
    상기 타원형 캐버티의 일부분과 중첩되며, 상기 연료 혼합물이 상기 연소 캐버티들에서 점화되며 발생하는 열을 흡수하고 상기 연소 캐버티들이 회전하여 상기 팽창 영역을 지날 때 흡수한 열을 상기 연소 캐버티로 방출하는 유체를 포함하는 증기 챔버를 포함하는 내연 로터리 기관.
  60. 청구항 59에 있어서,
    차가운 공기를 상기 복수의 회전 가능한 챔버들 각각으로 흡입하기 위한 흡기 포트 및 상기 복수의 회전 가능한 챔버들 각각에서 연소 가스를 배출하기 위한 배기 포트를 더 포함하는 내연 로터리 기관.
  61. 청구항 59에 있어서,
    상기 복수의 베인들이 상기 로터의 외측면 주변과 상기 스테이터의 내부면 주변과의 거리의 변동에 맞게 반지름 방향으로 움직이도록 하기 위한 베인 벨트 시스템을 더 포함하는 내연 로터리 기관.
  62. 청구항 59에 있어서,
    상기 로터의 외측면 주변에서 상기 스테이터의 내측면 주변까지의 거리는 상기 로터가 회전함에 따라 변하며, 상기 복수의 반지름 방향으로 이동 가능한 베인들은 상기 거리의 변동에 맞추어 반지름 방향으로 움직여 로터가 회전하는 동안에도 상기 스테이터의 내부면과 슬라이딩 가능하게 맞물리는 내연 로터리 기관.
  63. 청구항 59에 있어서,
    상기 연료 혼합물은 수소, 물, 및 공기는 포함하는 내연 로터리 기관.
  64. 청구항 59에 있어서,
    상기 내연 로터리 기관의 압축비를 제어하기 위하여 압축비에 따라 변하는 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분사하는 제1 물 분사기;
    점화되는 연료의 일부인 수소를 상기 복수의 연소 캐버티들 각각에 분사하는 연료 분사기;
    상기 복수의 회전 가능한 챔버들 각각에 제2 양의 물을 분사하여 상기 회전 가능한 챔버 내에 위치하는 상기 로터 연소 캐버티에서 점화되는 연료로부터 발생하는 가스를 부분적으로 쿠엔칭(quenching)하여 가스의 온도를 낮추는 제2 물 분사기; 및
    상기 팽창 영역과 중첩되는 상기 증기 챔버로부터 상기 회전 가능한 챔버로 전달되는 열에 반응하여 상기 회전 가능한 챔버를 포함하여 상기 로터, 베인들, 및 실링들을 냉각하기 위해 제3 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분 사하는 제3 물 분사기를 더 포함하는 내연 로터리 기관.
  65. 청구항 59에 있어서,
    상기 내연 로터리 기관은 상기 회전 가능한 챔버들 각각을 밀봉하기 위하여 복수의 실링들을 더 포함하고, 상기 복수의 실링들은:
    상기 로터의 제1 및 제2 측면들을 따라 축방향으로 배치되고 상기 로터의 외측면의 원형 프로파일 대응하게 곡선형을 형성된 제1 및 제2 실링들;
    상기 복수의 베인들 중 하나의 전후면과 상기 로터의 외측면의 바로 인접하는 영역 사이의 실질적으로 신장된 반타원형의 링 모양 영역에서의 연속적인 밀봉을 제공하기 위한 복수의 베인면 실링들; 및
    상기 복수의 베인들 중 하나의 외측 주변과 상기 스테이터의 내부면 사이에서 연속적인 밀봉을 제공하기 위한 복수의 베인 실링들을 더 포함하는 내연 로터리 기관.
  66. 청구항 59에 있어서,
    상기 베인들 각각의 반지름 방향 이동을 용이하게 하는 베어링 시스템을 더 포함하며 내연 로터리 기관.
  67. 청구항 59에 있어서,
    상기 내연 로터리 기관을 과도한 열로부터 보호하기 위한 스테이터 열전달 시스템을 더 포함하는 내연 로터리 기관.
  68. 청구항 59에 있어서,
    상기 내연 로터리 기관을 과도한 열로부터 보호하기 위한 로터 열전달 시스템을 더 포함하는 내연 로터리 기관.
  69. 청구항 59에 있어서,
    상기 복수의 베인들은 8개의 베인들을 포함하는 내연 로터리 기관.
  70. 청구항 59에 있어서,
    상기 복수의 베인들은 6개의 베인들, 8개의 베인들, 9개의 베인들, 및 12개의 베인들로 이루어진 군에서 선택된 어느 개수의 베인들을 포함하는 내연 로터리 기관.
  71. 청구항 59에 있어서,
    상기 복수의 회전 가능한 챔버들은 6개의 챔버들, 8개의 챔버들, 9개의 챔버들, 및 12개의 챔버들로 이루어진 군에서 선택된 어느 개수의 챔버들을 포함하는 내연 로터리 기관.
  72. 청구항 59에 있어서,
    상기 복수의 로터 연소 캐버티들은 6개의 로터 연소 캐버티들, 8개의 로터 연소 캐버티들, 9개의 로터 연소 캐버티들, 및 12개의 로터 연소 캐버티들로 이루어진 군에서 선택된 어느 개수의 로터 연소 캐버티들을 포함하는 내연 로터리 기관.
  73. 적어도 압축 영역과 팽창 영역을 포함하는 찌그러진 타원형 캐버티를 정의하는 내부면을 포함하는 하우징 스테이터를 포함하며;
    상기 캐버티 내에서 회전 가능하게 배치되며, 외측면과 외주를 따라 형성되는 복수의 연소 캐버티들 및 복수의 슬롯들을 포함하는 로터를 포함하며;
    상기 슬롯들에 배치되고, 상기 스테이터의 내부면쪽으로 연장되어 상기 스테이터 내부면과 슬라이딩 가능하게 맞물려서 복수의 회전 가능한 챔버들을 형성하는 반지름 방향으로 돌출된 복수의 가동(movable) 베인들을 포함하며, 여기서, 상기 회전 가능한 챔버 내에서는 연료 혼합물이 상기 로터의 상기 복수의 연소 캐버티들 내에서 점화되기 위하여 압축되며; 그리고
    상기 타원형 캐버티의 일부분과 중첩되며, 상기 연료 혼합물이 상기 연소 캐버티들에서 점화되며 발생하는 열을 흡수하고 상기 연소 캐버티들이 회전하여 상기 팽창 영역을 지날 때 흡수한 열을 상기 연소 캐버티로 방출하는 유체를 포함하는 증기 챔버를 포함하는 내연 로터리 기관.
  74. 청구항 1에 있어서,
    상기 연소 및 팽창 영역들은 상기 흡입 및 압축 영역들 보다 크게 형성되어, 내연 로터리 기관의 연소 챔버의 압력이 회전 마찰력과 같아 질 때 까지 연소 가스들은 팽창하며 최대로 일을 할 수 있는 내연 로터리 기관.
  75. 청구항 29에 있어서,
    상기 내연 로터리 기관은 소듐 증기 열전달, 활성수 냉각 시스템 열회수, 열차단 코팅, 및 연장된 팽창 행정(extended expansion stroke)을 이용하여 정미 열효율(brake thermodynamic efficiency)을 향상시키는 내연 로터리 기관.
  76. 청구항 9에 있어서,
    상기 베인들과 상기 스테이터의 내부면 사이의 상기 복수의 실링들 각각은 작고, 알맞게 만들어지고(contoured), 둥근 끝단 갖으며 상기 스테이터의 내부면을 따라 부드럽게 슬라이드 할 수 있는 스넙 노우즈 팁을 포함하는 내연 로터리 기관.
  77. 청구항 1에 있어서,
    하우징, 고체 윤활제들, 열적인 스트레스와 변형에 견디는 열차단 코팅, 복수의 증기 챔버 시스템들, 및 외측 엔진 하우징의 등온화(isothermalization)하기 위해 과도한 열을 이동시키는 활성수 냉각 시스템을 더 포함하는 내연 로터리 기관.
  78. 청구항 1에 있어서,
    고온 합금으로 형성되며 열손실 및 엔진 소음을 줄이기 위해 두꺼운 열 블랭킷(thermal blanket)으로 덮이는 하우징을 더 포함하는 내연 로터리 기관.
  79. 청구항 9에 있어서,
    상기 스테이터의 내부면은 상기 내연 로터리 기관이 작동하는 동안의 베인 및 실링의 변형을 최소화하는 기하학적인 형상을 갖는 내연 로터리 기관.
  80. 청구항 2에 있어서,
    상기 내연 로터리 기관은 상기 복수의 베인들 각각 및 상기 스테이터의 내부면 사이에 다수의 실링들을 더 포함하고, 상기 흡입 포트와 상기 배기 포트 각각은 상기 스테이터의 내부면 배치되는 개구부이며, 각각의 포트는 상기 내연 로터리 기관의 두 조각과 같이 두 개의 조각으로 분할되며, 각각의 포트 조각은 지지 리브를 포함하며, 상기 지지 리브는 포트 조각의 중간까지 연장되며 포트 개구부에서 약간 각진 형상으로 되어 상기 복수의 베인들과 실링들이 지나갈 때 지지하여 변형을 방지하는 내연 로터리 기관.
  81. 청구항 10에 있어서,
    상기 복수의 베인들 각각은 베인 벨트 토글바 시스템을 포함하며, 상기 베인 벨트 토글바 시스템은 상기 베인이 상기 스테이터의 내부면에 대하여 이동하는 동 안 토클링(toggling)될 수 있게 하여 대응하는 회전 가능한 챔버가 상기 스테이터 내부면에 대하여 더욱 잘 밀봉되도록 하는 내연 로터리 기관.
  82. 청구항 81에 있어서,
    상기 베인 벨트 토글바 시스템은 상기 베인 벨트 시스템의 단일 중앙 베인 벨트를 위한 단일 벨트 토글바 시스템인 내연 로터리 기관.
  83. 청구항 81에 있어서,
    상기 베인 벨트 토글바 시스템은 상기 베인 벨트 시스템의 2개의 외측 베인 벨트들를 위한 이중 벨트 토글바 시스템인 내연 로터리 기관.
  84. 청구항 10에 있어서,
    상기 베인 벨트 시스템과 함께 사용되는 단일 베인 벨트 또는 이중 베인 벨트의 장력을 조절하기 위한 베인 벨트 장력 조절 시스템을 더 포함하는 내연 로터리 기관.
  85. 내연 로터리 기관에 있어서,
    흡입 영역, 압축 영역, 팽창 영역, 및 배기 영역을 포함하는 찌그러진 타원형 캐버티를 정의하는 내부면을 포함하는 스테이터를 포함하며;
    상기 캐버티 내에서 회전가능하며, 외측면, 복수의 연소 캐버티들, 및 외주를 따라 형성된 복수의 슬롯들을 포함하는 로터를 포함하며;
    상기 로터가 그 주위로 회전하는 드라이브 샤프트를 포함하며;
    상기 슬롯들에 배치되고, 상기 스테이터의 내부면쪽으로 연장되어 상기 스테이터 내부면과 맞물려서 복수의 회전 가능한 챔버들을 형성하는 반지름 방향으로 돌출된 복수의 가동(movable) 베인들을 포함하며, 여기서, 상기 회전 가능한 챔버 내에서는 수소를 포함하는 연료 혼합물이 상기 로터의 상기 복수의 연소 캐버티들 내에서 점화되기 위하여 압축되며;
    상기 타원형 캐버티의 일부분과 중첩되며, 상기 연료 혼합물이 상기 연소 캐버티들에서 점화되며 발생하는 열을 흡수하고 상기 연소 캐버티들이 회전하여 상기 팽창 영역을 통과할 때 흡수한 열을 상기 연소 캐버티들로 방출하는 유체를 포함하는 증기 챔버를 포함하며; 그리고
    차가운 공기를 상기 복수의 회전 가능한 챔버들 각각으로 흡입하기 위한 흡기 포트를 포함하며, 상기 흡입 포트는 상기 스테이터의 외측면 외주를 따라 상기 흡입 영역에 선행하여 위치하며(preceding);
    상기 복수의 회전 가능한 챔버들 각각에서 연소 가스를 배출하기 위한 배기 포트를 포함하며, 상기 배기 포트는 상기 스테이터의 외측면 외주를 따라 상기 팽창 영역의 다음에 위치하며;
    상기 복수의 베인들과 상기 스테이터의 내부면 사이에서 실링들의 마모를 줄이기 위하여 상기 복수의 베인들에 작용하는 원심력을 줄이는 베인 벨트 시스템을 포함하며;
    상기 회전 가능한 챔버들 각각을 밀봉하기 위한 복수의 실링들을 포함하며;
    로터 온도 조절의 위한 수증기 챔버 냉각/열전달 시스템을 포함하며;
    상기 내연 로터리 기관의 외측 하우징, 압축 행정에서 상기 내연 로터리 기관 하우징의 내부, 상기 드라이브 샤프트의 베어링 영역, 및 상기 로터 및 상기 복수의 베인들에서 열을 흡수하여 상기 내연 로터리 기관 엔진 사이클에서 재사용하도록 되돌려 주기 위한 활성수 냉각/열전달 시스템을 포함하며;
    상기 내연 로터리 기관의 압축비를 제어하기 위하여 압축비에 따라 변하는 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분사하는 제1 물 분사기를 포함하며;
    점화를 위하여 상기 복수의 연소 캐버티들 각각에 연료를 분사하는 연료 분사기를 포함하며;
    상기 복수의 회전 가능한 챔버들 각각에 제2 양의 물을 분사하여 상기 회전 가능한 챔버 내에 위치하는 상기 로터 연소 캐버티에서 점화되는 연료로부터 발생하는 가스를 부분적으로 쿠엔칭(quenching)하여 가스의 온도를 낮추는 제2 물 분사기를 포함하며; 그리고
    상기 팽창 영역과 중첩되는 상기 증기 챔버로부터 상기 회전 가능한 챔버로 전달되는 열에 반응하여 상기 회전 가능한 챔버를 포함하여 상기 로터, 베인들, 및 실링들을 냉각하기 위해 제3 양의 물을 상기 복수의 회전 가능한 챔버들 각각에 분사하는 제3 물 분사기를 포함하는 내연 로터리 기관.
  86. 청구항 2에 있어서,
    상기 흡입 포트를 통한 공기 유입을 증가시키기 위해 흡입 압축기를 구동하는 가변형 터보 차져 터빈(variable geometry turbo charger turbine)을 더 포함하는 내연 로터리 기관.
  87. 청구항 1에 있어서,
    상기 증기 챔버는 상기 연소 영역과 상기 팽창 영역과 중첩되어 이들 영역들의 복수의 제1 로터 연소 캐버티들 및 복수의 제2 로터 연소 캐버티들과 중첩되며, 상기 증기 챔버는 연료 점화가 일어나는 제1 로터 연소 캐버티들에서 흡수한 열을 제2 로터 연소 캐버티들에 방출하는 내연 로터리 기관.
  88. 청구항 1에 있어서,
    상기 증기 챔버에 의해 흡수한 열에 의해 상기 연소 영역을 회전하며 통과하는 복수의 제1 로터 연소 캐버티들 내의 연료 혼합물이 점화되고, 연료 혼합물의 점화에 의해 제1 로터 연소 캐버티들에서 발생된 열은 흡수되고, 상기 팽창 영역을 회전하며 통과하는 복수의 제2 로터 연소 캐버티들로 상기 제1 로터 연소 캐버티들로부터 흡수한 열이 전달되는 내연 로터리 기관.
  89. 청구항 29에 있어서,
    상기 제3 물 분사기에서 상기 회전 가능한 챔버로 분사된 물은 다음의 흡입 사이클을 위하여 상기 챔버의 표면을 냉각시키는 내연 로터리 기관.
  90. 청구항 29에 있어서,
    상기 제1 물 분사기에 의하여 분사된 물의 양에 의하여 자기 착화가 일어나는 유효 압축비(effective compression ratio)가 결정되는 내연 로터리 기관.
  91. 청구항 1에 있어서,
    상기 스테이터의 내부면에는 페로스크바이트(peroskvite) 열차단 코팅이 형성되어 상기 스테이터를 지속적인 연소 점화 환경으로부터 보호하고 연소열이 스테이터로부터 소실되는 것을 방지하는 내연 로터리 기관.
  92. 청구항 28에 있어서,
    상기 연료 혼합물은 수소와 공기 혼합물에 의해 형성되는 전반부에 층과 분사된 물에 의해 형성되는 후반부 층을 이루어져서 전반부의 수소 공기 혼합물이 쉽게 착화될 수 있는 내연 로터리 기관.
  93. 청구항 29에 있어서,
    상기 회전 가능한 챔버를 포함하여 상기 로터의 세그먼트들, 상기 베인들, 상기 실링들을 냉각하는 경우, 상기 캐버티 내에서 회전하는 상기 로터에 의해 발생하는 원심력에 의해 냉각제와 무거운 물방울들이 상기 스테이터의 내부면 쪽으로 이동하여 상기 증기 챔버의 열을 흡수하고 상기 증기 챔버에서 상기 회전 가능한 챔버로의 열전달을 가속화하여 상기 회전 가능한 챔버의 고압 증기 상태와 평균 유효 압력을 일을 수행하도록 유지하는 내연 로터리 기관.
  94. 청구항 1에 있어서,
    상기 증기 챔버는 소듐을 점화에 의한 열을 흡수하기 위한 상기 유체로 사용하며, 상기 소듐은 상기 증기 챔버의 증발기 영역에서 상기 연소 영역으로부터 열을 흡수하여 액체 상태에서 기체 상태로 상변화하며, 그 후 상기 증기 챔버를 따라 증기 챔버의 응축기 영역으로 음속으로 이동하여 상기 팽창 영역을 따라 회전하는 상기 로터의 연소 캐버티들로 열을 방출하며 기체 상태에서 다시 액체 상태로 상변화하는 내연 로터리 기관.
  95. 청구항 94에 있어서,
    상기 소듐 증기 챔버는 복수의 심지 메쉬들을 더 포함하며, 상기 심지 메쉬들은 액상의 소듐이 상기 소듐 증기 챔버의 상기 응축기 영역에서 상기 증발기 영역으로 균일하게 모세관 현상에 의하여 이동하게 하여 상기 증발기 영역에서 상기 액상의 소듐이 고온의 상기 연소 영역에서 열을 추가적으로 흡수할 수 있게 하는 내연 로터리 기관.
  96. 청구항 1에 있어서,
    상기 활성 냉각 시스템과 사기 증발 챔버가 열교환을 수행함으로써 상기 내 연 로터리 기관에서 연료 혼합물이 연소시 발생하는 열의 상당 부분이 다시 내연 로터리 기관으로 전달되어 양의 일을 수행하는 효과(positive energy work benefit)가 있는 내연 로터리 기관.
  97. 청구항 1에 있어서,
    상기 로터의 외측면에는 열차단 코팅이 형성되어 상기 로터가 연소 열에 의해 손상되는 것을 방지하고 상기 로터의 표면을 통한 열전달의 최소화 하는 내연 로터리 기관.
  98. 청구항 97에 있어서,
    상기 로터는 외측면 하부에는 연소에 의해 발생하여 로터의 외측면에 형성된 열차단 코팅을 통해 전달되는 열을 흡수하는 수증기 챔버를 더 포함하는 내연 로터리 기관.
  99. 청구항 98에 있어서,
    상기 로터의 수증기 챔버는 로터에 형성된 상기 열차단 코팅을 통해 전달되는 열을 물을 이용하여 흡수하는 증발기 영역이며, 증발기 영역에서 열을 흡수하여 수증기 상태로 된 물은 상기 로터의 양측에 위치한 응축로 열을 전달하는 내연 로터리 기관.
  100. 청구항 99에 있어서,
    상기 활성 냉각 시스템은 상기 로터가 회전시 상기 로터의 응축기들에 물을 분사하여 상기 응축기의 열을 흡수하며, 상기 로터 증기 챔버에서 냉각되어 액화된 물은 원심력에 의해 상기 증발기 영역으로 다시 순환되는 내연 로터리 기관.
  101. 청구항 98에 있어서,
    상기 로터의 수증기 챔버는 상기 로터의 외측면 전체에 열이 고루 분포하게 하여 등온화 되도록 하는 내연 로터리 기관.
  102. 청구항 1에 있어서,
    상기 스테이터의 내부면은 상기 연소 및 팽창 영역들이 상기 흡입 및 압축 영역보다 크도록 형성되어 상기 내연 로터리 기관의 동작 열역학적 사이클 성능이 개선되는 내연 로터리 기관.
  103. 청구항 1에 있어서,
    상기 내연 로터리 기관은 베인 냉각 열전달 시스템을 더 포함하고, 상기 베인 냉각 열전달 시스템은:
    베인 각각의 내측에 위치한 복수의 베인 히트 파이프 챔버들을 포함하며;
    내부 작동 유체로 물을 갖는 베인 히트 파이프 챔버를 포함하며;
    베인의 외측 프로파일에 따라 만곡된 상기 베인의 외측 주변을 따라 연장되는 복수의 베인 히트 파이프 챔버들을 포함하며, 상기 각각의 베인 히트 파이프 챔버는 상기 베인의 외측면 아래에 중심을 둔 내측 증발기 영역 및 상기 로터의 축 실링들 바로 아래의 축 측면들을 따라 배치된 2개의 내측 축 방향 응축기 엔드들 포함하며;
    하나의 내측 응축기에서 다른 내측 응축기 쪽으로 상기 로터 증기 챔버를 축 방향으로 통과하고 복수의 심지 결빙 튜브들을 포함하며; 그리고
    상기 로터 증기 챔버의 상기 내측 응축기들로부터의 열을 상기 활성 냉각 시스템의 냉각수로 전달하는 복수의 베인 히트 파이트 챔버 외측 응축기들을 포함하는 내연 로터리 기관.
  104. 청구항 103에 있어서,
    상기 베인 히트 파이프 챔버의 내부 작동 유체는 물을 포함하는 내연 로터리 기관.
  105. 청구항 103에 있어서,
    상기 베인 히트 파이프 챔버의 상기 중앙 증발기 섹션에서 점화 및 연소시 발생하는 열을 흡수하여 상기 물 작동 유체는 액체에서 기체 상태로 상변화하고, 상기 응축기에서 상기 물 작동 유체는 기체에서 액체 상태로 상변화하면서 상기 활성 냉각 시스템의 냉각수로 열을 방출하는 내연 로터리 기관.
  106. 청구항 89에 있어서,
    상기 내연 로터리 기관은 소듐 증기 챔버 압력 조절 파열 시스템을 더 포함하며, 상기 소듐 증기 챔버 압력 조절 파열 시스템은:
    불활성 압축 가스로 채워진 압력 챔버;
    압력 조절 디스크;
    파열 디스크; 및
    파열 신호 플래그를 포함하는 내연 로터리 기관.
  107. 청구항 106에 있어서,
    상기 불활성 압축 기체는 질고, 아르곤, 또는 크립톤(Krypton)인 것인 내연 로터리 기관.
  108. 청구항 59에 있어서,
    상기 복수의 베인 벨트들은 2개 및 3개인 내연 로터리 기관.
  109. 청구항 108에 있어서,
    상기 2개의 베인 벨트 시스템은 각 벨트마다 3개 또는 4개의 베인들을 배치하여 구성하여 상기 내연 로터리 기관이 6개 또는 8개의 베인들을 갖도록 구성되는 내연 로터리 기관.
  110. 청구항 108에 있어서,
    상기 3개의 베인 벨트 시스템은 각 벨트마다 3개 또는 4개의 베인들을 배치하여 구성하여 상기 내연 로터리 기관이 9개 또는 12개의 베인들을 갖도록 구성되는 내연 로터리 기관.
  111. 청구항 110에 있어서,
    상기 3개의 베인 벨트 시스템의 제3 벨트는 제1 이중 벨트 시스템의 바로 외측에 위치하는 제2 이중 벨트, 아크, 및 베인 토글 시스템인 내연 로터리 기관.
  112. 청구항 1에 있어서,
    상기 활성 냉각 시스템의 물에 의해 흡수된 열은 상기 압축 영역에서의 제1 물 분사 및 압축/팽창 영역의 초기에서의 제2 물 분사를 통해 다시 상기 로터 챔버들로 전달되는 내연 로터리 기관.
  113. 청구항 76에 있어서,
    상기 복수의 둥근 스넙 노우즐 실링들은 고체 윤활제로 코팅된 내연 로터리 기관.
  114. 삭제
  115. 청구항 1에 있어서,
    상기 로터 표면의 열차단 코팅은 로터 냉각 시스템으로의 열손실을 줄이는 내연 로터리 기관.
  116. 청구항 1에 있어서,
    전력을 직접 생산하기 위한 알칼리 금속 열전기 컨버터를 포함하는 증기 쳄버를 더 포함하는 내연 로터리 기관.
  117. 청구항 116에 있어서,
    상기 알칼리 금속 열전기 컨버터는 베타 알루미나 고체 전극를 포함하는 내연 로터리 기관.
  118. 청구항 117에 있어서,
    상기 베타 알루미나 고체 전극은 큰 표면적을 갖는 얇은 형태로 형성되는 내연 로터리 기관.
  119. 청구항 117에 있어서,
    상기 베타 알루미나 고체 전극의 엔진 챔버 열원을 행햐는 내면에는 캐소드 재료가 코팅되고 외측 증기 챔버 커버를 향하는 반대쪽 외면에는 아노드 재료가 코팅되는 내연 로터리 기관.
  120. 청구항 117에 있어서,
    상기 베타 알루미나 고체 전극은 작동 유체인 액상 소듐 및 다른 전도성 있는 메탈 콘택으로부터 전기적으로 이온적으로 절연되는 내연 로터리 기관.
  121. 청구항 117에 있어서,
    상기 베타 알루미나 고체 전극은 불활성 실리콘 또는 몰리브덴 절연 섬유 메쉬를 내면에 형성하고 이트륨 안정화 지르코늄(yttrium stablilized zirconium)으로 형성된 열차단 코팅을 외면에 형성함으로써 추가적으로 이온적으로 전기적으로 절연되며, 절연 불활성 지르코늄 스크류들을 이용하여 상기 베타 알루미나 고체 전극은 소듐 증기 챔버내의 위치에 고정되는 내연 로터리 기관.
  122. 청구항 117에 있어서,
    가열된 소듐 증기 이온들이 캐소드면에서 애노드면으로 상기 베타 알루미나 고체 전극을 통과 함에 따라 상기 알칼리 금속 열전기 컨버터가 전력을 생산하는 내연 로터리 기관.
  123. 청구항 117에 있어서,
    상기 알칼리 금속 열전기 컨버터의 베타 알루미나 고체 전극은 전극 커넥터를 포함하며, 상기 전극 커넥터는 전극의 캐소드면과 애노드면과 독립적으로 연결되어 물리적 전기적 연결 회로를 구성하며, 상기 전기적 연결회로는 소듐 증기 챔버 외측 커버의 외측을 통하여 전기 장치와 연결된 외부 전기 커넥터와 연결되어, 상기 전기 장치와 상기 베타 알루미나 고체 전극 사이에서 직접 캐소드 및 애노드 전기 회로 연결을 형성하여 상기 전기 장치로 전력을 공급하며, 이때, 전자는 캐소드 회로를 통해 상기 전기 장치로 애노드 회로 패스를 통해 상기 전기 장치에서 상기 알칼리 금속 열전기 컨버터의 상기 베타 알루미나 고체 전극으로 흐르는 내연 로터리 기관.
  124. 청구항 1에 있어서,
    상기 증기 챔버의 커버 내면에는 열차단 코팅이 형성되어 상기 증기 챔버로부터 주변 대기로 손실되는 열을 줄이는 내연 로터리 기관.
  125. 청구항 91에 있어서,
    상기 열차단 코딩은 이트륨 안정화 지르코늄을 포함하는 내연 로터리 기관.
  126. 청구항 125에 있어서,
    상기 지르코늄은 상기 연소 캐버티에서 상기 스테이터를 통과하는 수소 가스 와 스테이터 하우징 합급 재료에서 나오는 수소가스를 흡수하는 내연 로터리 기관.
  127. 청구항 50에 있어서,
    미세, 중간, 및 성긴 심지 메쉬 구조들이 스테인리스, 실리카, 또는 몰리브덴 섬유를 다른 밀도로 직조하여 만들어지는 내연 로터리 기관.
  128. 청구항 50에 있어서,
    미세, 중간, 및 성긴 심지 메쉬 구조들을 섬유 또는 니켈-티타늄(NiTi)을 포함하는 형상 금속 합금(shape metal alloy)의 소결 파우더를 다른 밀도로 형성함으로써 제공하여 상기 소듐 증기 챔버의 작동 유체의 모세관 유동을 최적화하는 내연 로터리 기관.
  129. 청구항 106에 있어서,
    상기 소듐 증기 챔버 압력 조절 파열 시스템은 상기 증기 챔버의 증기 압력을 연속적으로 조정하기 위한 압력 조절 시스템을 더 포함하는 내연 로터리 기관.
  130. 청구항 106에 있어서,
    상기 소듐 증기 챔버 압력 조절 파열 시스템은 압력 파열 제어 및 파열 신호를 더 포함하는 내연 로터리 기관.
  131. 청구항 1에 있어서,
    상기 로터 챔버로 분사되고 점화되어 열을 발생시킬 수 있는 어떠한 연료도 사용될 수 있는 내연 로터리 기관.
  132. 청구항 1에 있어서,
    상기 연료는 수소인 내연 로터리 기관.
KR1020087010418A 2005-09-29 2006-09-29 수소 지-사이클 로터리 내연 기관 KR101059342B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72152105P 2005-09-29 2005-09-29
US60/721,521 2005-09-29
PCT/US2006/037868 WO2007041224A2 (en) 2005-09-29 2006-09-29 Hydrogen g-cycle rotary internal combustion engine

Publications (2)

Publication Number Publication Date
KR20080059271A KR20080059271A (ko) 2008-06-26
KR101059342B1 true KR101059342B1 (ko) 2011-08-24

Family

ID=37906706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087010418A KR101059342B1 (ko) 2005-09-29 2006-09-29 수소 지-사이클 로터리 내연 기관

Country Status (14)

Country Link
US (1) US7707987B2 (ko)
EP (1) EP2126314B1 (ko)
JP (1) JP4824760B2 (ko)
KR (1) KR101059342B1 (ko)
CN (1) CN101316999B (ko)
AU (1) AU2006297265C1 (ko)
BR (1) BRPI0617559B1 (ko)
CA (1) CA2648920C (ko)
IL (1) IL190517A (ko)
MX (1) MX2008004331A (ko)
NZ (1) NZ567804A (ko)
RU (1) RU2448262C2 (ko)
WO (1) WO2007041224A2 (ko)
ZA (1) ZA200803695B (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523547B2 (en) * 2005-03-09 2013-09-03 Merton W. Pekrul Rotary engine expansion chamber apparatus and method of operation therefor
US8689765B2 (en) * 2005-03-09 2014-04-08 Merton W. Pekrul Rotary engine vane cap apparatus and method of operation therefor
US8833338B2 (en) * 2005-03-09 2014-09-16 Merton W. Pekrul Rotary engine lip-seal apparatus and method of operation therefor
US8647088B2 (en) * 2005-03-09 2014-02-11 Merton W. Pekrul Rotary engine valving apparatus and method of operation therefor
US8360759B2 (en) * 2005-03-09 2013-01-29 Pekrul Merton W Rotary engine flow conduit apparatus and method of operation therefor
US8955491B2 (en) * 2005-03-09 2015-02-17 Merton W. Pekrul Rotary engine vane head method and apparatus
US8360760B2 (en) 2005-03-09 2013-01-29 Pekrul Merton W Rotary engine vane wing apparatus and method of operation therefor
US8794943B2 (en) * 2005-03-09 2014-08-05 Merton W. Pekrul Rotary engine vane conduits apparatus and method of operation therefor
US8800286B2 (en) 2005-03-09 2014-08-12 Merton W. Pekrul Rotary engine exhaust apparatus and method of operation therefor
US9057267B2 (en) 2005-03-09 2015-06-16 Merton W. Pekrul Rotary engine swing vane apparatus and method of operation therefor
US7694520B2 (en) * 2005-03-09 2010-04-13 Fibonacci International Inc. Plasma-vortex engine and method of operation therefor
US8517705B2 (en) * 2005-03-09 2013-08-27 Merton W. Pekrul Rotary engine vane apparatus and method of operation therefor
EP2318781A1 (en) * 2008-07-04 2011-05-11 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
KR101007850B1 (ko) * 2008-07-25 2011-01-14 한국에너지기술연구원 히트파이프가 설치된 amtec장치
WO2012096642A1 (en) * 2010-08-11 2012-07-19 Clearvalue Technologies, Inc. Zero carbon emissions from hydrocarbon fuels
US9038594B2 (en) * 2011-07-28 2015-05-26 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
KR101318409B1 (ko) * 2012-01-19 2013-10-16 제이엠모터스 주식회사 이동이 용이한 간이 소방차
US8905736B2 (en) * 2012-03-22 2014-12-09 Pratt & Whitney Canada Corp. Port for rotary internal combustion engine
JP5315490B1 (ja) * 2012-06-13 2013-10-16 武史 畑中 ロータリー熱機関及びロータリー熱機関駆動発電装置
KR20140008483A (ko) * 2012-07-10 2014-01-21 주식회사 만도 모터 구조체
US9881706B2 (en) * 2013-08-23 2018-01-30 Global Energy Research Associates, LLC Nuclear powered rotary internal engine apparatus
US11450442B2 (en) 2013-08-23 2022-09-20 Global Energy Research Associates, LLC Internal-external hybrid microreactor in a compact configuration
US11557404B2 (en) 2013-08-23 2023-01-17 Global Energy Research Associates, LLC Method of using nanofuel in a nanofuel internal engine
US9947423B2 (en) 2013-08-23 2018-04-17 Global Energy Research Associates, LLC Nanofuel internal engine
DE102013222047B3 (de) * 2013-10-30 2014-12-31 Magna Powertrain Ag & Co. Kg Drehflügelmaschine
US9534502B2 (en) 2014-03-26 2017-01-03 General Electric Company Individually compliant segments for split ring hydrodynamic face seal
US9611749B2 (en) 2014-03-26 2017-04-04 General Electric Company Face seal with locally compliant hydrodynamic pads
US10202849B2 (en) * 2014-08-10 2019-02-12 Merton W. Pekrul Rotary engine vane drive method and apparatus
US10527007B2 (en) 2015-06-29 2020-01-07 Russel Energy Corporation Internal combustion engine/generator with pressure boost
US10047606B2 (en) * 2015-07-21 2018-08-14 Hamilton Sundstrand Corporation Vane pump
EP3252268A1 (en) * 2016-06-02 2017-12-06 Welltec A/S Downhole power supply device
US10309242B2 (en) * 2016-08-10 2019-06-04 General Electric Company Ceramic matrix composite component cooling
IT201600123578A1 (it) * 2016-12-06 2018-06-06 Ruggero Libralato Motore a vapore, con statore e pistone a doppio centro di rotazione
CN107061048B (zh) * 2017-03-10 2018-06-01 王明忠 双缸双离心板外燃机系列
US10839966B2 (en) * 2017-05-10 2020-11-17 Westinghouse Electric Company Llc Vortex driven passive hydrogen recombiner and igniter
US10570739B2 (en) * 2017-06-04 2020-02-25 Robert A Grisar Circle ellipse engine
AU2019302674B2 (en) * 2018-07-12 2023-08-10 Abilene Christian University Apparatus, systems, and methods for non-invasive measurement of flow in a high temperature pipe
CN109765119B (zh) * 2019-01-14 2021-11-26 北京工业大学 一种用于测量热障涂层系统表面热应力的原位装置
CN109931182B (zh) * 2019-04-25 2024-02-20 西安航空学院 偏心滑片式燃气轮机
US11128197B2 (en) 2019-09-20 2021-09-21 Hts Llc Linear electric device having reciprocating movement linked to rotational movement of a shaped cam
KR102318367B1 (ko) * 2020-02-05 2021-10-29 (주)테너지 하우징의 열부하 불균형이 개선된 로터리 엔진
CN111997747B (zh) * 2020-07-20 2022-05-24 北京工业大学 一种可回收氧气的零排放压燃式二冲程转子机及其控制方法
RU199209U1 (ru) * 2020-08-09 2020-08-21 Андрей Алексеевич Спиридонов Двигатель внутреннего сгорания
RU199203U1 (ru) * 2020-08-09 2020-08-21 Андрей Алексеевич Спиридонов Поршневой двигатель внутреннего сгорания
CN112621532B (zh) * 2020-12-22 2021-11-19 佛山市拓润精密五金科技有限公司 一种增强五金机械加工切割机安装架散热效果装置
CN114934813B (zh) * 2022-04-28 2023-12-01 西北工业大学 部分进气轴流冲动涡轮机及其叶顶间隙损失主动控制方法
CN116183485B (zh) * 2023-04-25 2023-08-15 常州市蓝博氢能源科技有限公司 一种绿色氢能用储气罐表面氧化程度的检测装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU31705A1 (ru) * 1930-08-22 1933-08-31 М.В. Максимов Устройство дл охлаждени коловратных двигателей
US2382259A (en) * 1943-04-16 1945-08-14 Fred H Rohr Rotary combustion engine
CH452276A (de) * 1960-07-11 1968-05-31 Eickmann Karl Drehkolben-Brennkraftmaschine
US3429301A (en) * 1967-04-28 1969-02-25 Othel W Sandidge Rotary engine
US3745979A (en) * 1971-09-27 1973-07-17 R Williams Rotary combustion engine
JPS5749741B2 (ko) * 1972-03-23 1982-10-23
US3838668A (en) * 1972-12-26 1974-10-01 L Hays Combustion engine heat removal and temperature control
JPS5083647A (ko) * 1973-11-30 1975-07-07
FR2272266A1 (en) * 1974-05-21 1975-12-19 Marie G R P Rotary internal combustion engine - runs on oxygen hydrogen mixture obtained from nuclear dissociation of water
FR2299509A1 (fr) * 1974-10-21 1976-08-27 Guiol Jean Paul Moteur rotatif en metal inoxydable a hydrogene et oxygene pre-comprime
DE2927973A1 (de) * 1979-07-11 1981-01-15 Herbert Ahlgrimm Kreiskolbenmotor
JPS5641409A (en) * 1979-09-10 1981-04-18 Mazda Motor Corp Exhaust gas purifying catalyst protector for rotary piston engine
DE3045569A1 (de) * 1980-11-28 1982-07-15 Reinhard Ing.(grad.) 8458 Sulzbach-Rosenberg Eckert Heissgas-rotationsmotor
US5711268A (en) * 1995-09-18 1998-01-27 C & M Technologies, Inc. Rotary vane engine
US5634783A (en) * 1995-10-10 1997-06-03 Beal; Arnold J. Guided-vane rotary apparatus with improved vane-guiding means
CN1055517C (zh) * 1996-03-29 2000-08-16 唐禾天 叶片转子式发动机
RU2120043C1 (ru) * 1996-12-23 1998-10-10 Юрий Борисович Кашеваров Роторный двигатель кашеварова рдк-16
FI990083A (fi) * 1999-01-18 2000-07-19 Veikko Kalevi Rantala Vipumäntäkone
DE10058738A1 (de) * 2000-10-31 2002-05-02 Heinz Anton Selic Rotationskolbenmotor Verringerung der Leckage
ES2222069B1 (es) * 2002-07-19 2006-03-16 Balbino Fernandez Garcia Motor rotativo de explosion o de combustion interna.
US6776136B1 (en) * 2003-03-31 2004-08-17 Shahroukh M Kazempour Elliptical rotary engine
JP2005042563A (ja) * 2003-07-23 2005-02-17 Seiji Kubo 水素エンジン及びその駆動方法
RU2261346C1 (ru) * 2003-12-15 2005-09-27 Стенин Валерий Александрович Способ работы двигателя внутреннего сгорания
US7055327B1 (en) * 2005-03-09 2006-06-06 Fibonacci Anstalt Plasma-vortex engine and method of operation therefor

Also Published As

Publication number Publication date
RU2448262C2 (ru) 2012-04-20
WO2007041224A3 (en) 2007-06-21
KR20080059271A (ko) 2008-06-26
CA2648920C (en) 2011-06-07
IL190517A (en) 2011-07-31
US20080247897A1 (en) 2008-10-09
CN101316999B (zh) 2011-11-16
BRPI0617559B1 (pt) 2021-06-15
US7707987B2 (en) 2010-05-04
BRPI0617559A2 (pt) 2011-07-26
AU2006297265C1 (en) 2010-11-18
ZA200803695B (en) 2009-03-25
EP2126314A2 (en) 2009-12-02
JP2009510328A (ja) 2009-03-12
AU2006297265A1 (en) 2007-04-12
MX2008004331A (es) 2008-10-09
CA2648920A1 (en) 2007-04-12
EP2126314A4 (en) 2013-11-20
NZ567804A (en) 2011-07-29
JP4824760B2 (ja) 2011-11-30
IL190517A0 (en) 2008-11-03
WO2007041224A2 (en) 2007-04-12
RU2008114597A (ru) 2009-11-10
CN101316999A (zh) 2008-12-03
EP2126314B1 (en) 2019-07-17
AU2006297265B2 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
KR101059342B1 (ko) 수소 지-사이클 로터리 내연 기관
US10428732B2 (en) Rotor assembly for an open cycle engine, and an open cycle engine
RU2142568C1 (ru) Двигатель, тепловой насос и устройство охлаждения для двигателя
US5522356A (en) Method and apparatus for transferring heat energy from engine housing to expansion fluid employed in continuous combustion, pinned vane type, integrated rotary compressor-expander engine system
RU2589557C2 (ru) Тепловой двигатель
KR20030037229A (ko) 왕복동 내연 기관의 운전 방법 및 그 시스템
US20110180032A1 (en) Insulated combustion chamber
WO2013008446A1 (ja) 複合発電システム
US20030163993A1 (en) Integrated cycle power system and method
KR102538228B1 (ko) 엔진의 폐열을 이용한 에너지 절감 장치 그리고 이를 포함하는 해양구조물
Yang Reduction of specific fuel consumption in gas turbine power plants
JP5004373B1 (ja) 回転型内燃機関
RU2263799C2 (ru) Способ работы теплового двигателя внутреннего сгорания мазеина и устройство для его осуществления
WO2003046347A1 (en) Two-stroke recuperative engine
JP2024044881A (ja) 有機ランキンサイクル冷却システム
JP2013130113A (ja) 作動ガス循環型エンジン
JP2013130112A (ja) 作動ガス循環型エンジン

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee