KR101051762B1 - Method for preparing high yield 5-ortho-tolinepentene - Google Patents

Method for preparing high yield 5-ortho-tolinepentene Download PDF

Info

Publication number
KR101051762B1
KR101051762B1 KR1020080135455A KR20080135455A KR101051762B1 KR 101051762 B1 KR101051762 B1 KR 101051762B1 KR 1020080135455 A KR1020080135455 A KR 1020080135455A KR 20080135455 A KR20080135455 A KR 20080135455A KR 101051762 B1 KR101051762 B1 KR 101051762B1
Authority
KR
South Korea
Prior art keywords
ortho
butadiene
reaction
xylene
alkali metal
Prior art date
Application number
KR1020080135455A
Other languages
Korean (ko)
Other versions
KR20100077502A (en
Inventor
오승준
김재식
송병준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020080135455A priority Critical patent/KR101051762B1/en
Publication of KR20100077502A publication Critical patent/KR20100077502A/en
Application granted granted Critical
Publication of KR101051762B1 publication Critical patent/KR101051762B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 오르토-크실렌과 1,3-부타디엔을 알케닐화 반응시켜 5-오르토-톨릴 펜텐을 제조하는 방법에 관한 것으로, 1,3-부타디엔에 의한 유기물 파울링을 방지하기 위하여 디에틸 히드록실아민이 반응물에 투입되고, 반응촉매로 알칼리금속 촉매가 사용된다.The present invention relates to a method for producing 5-ortho-tolyl pentene by alkenylation of ortho-xylene with 1,3-butadiene, and to prevent organic fouling by 1,3-butadiene in order to prevent diethyl hydroxylamine. It is charged to this reactant and an alkali metal catalyst is used as a reaction catalyst.

본 발명에 따라 5-오르토-톨릴펜텐을 제조하면, 1,3-부타디엔 중합에 의한 팝콘형 폴리머 형성을 억제하여 공정반응상의 막힘 현상을 방지하고, 알칼리금속 촉매의 사용량을 최소화하여 공정설비의 산에 의한 부식속도를 감소시킬 수 있다. When 5-ortho-tolylpentene is prepared according to the present invention, it is possible to prevent the formation of popcorn-type polymer by 1,3-butadiene polymerization to prevent clogging in the process reaction and to minimize the amount of alkali metal catalyst used in the process equipment. Can reduce the corrosion rate.

알케닐화 반응, 오르토-크실렌, 1,3-부타디엔, 5-오르토-톨릴-펜텐, 중합방지제, 알칼리금속 Alkenylation Reaction, Ortho-Xylene, 1,3-Butadiene, 5-Ortho-Tolyl-Pentene, Polymerization Agent, Alkali Metal

Description

고수율 5-오르토-톨린펜텐의 제조방법 {Method for producing 5-ortho-tolyl-pentene of high yield}Method for producing 5-ortho-tolylpentene {High yield}

본 발명은 1,3-부타디엔과 오르토-크실렌을 알칼리금속 촉매와 함께 알케닐화 반응시켜 5-오르토-톨릴펜텐(5-ortho-tolyl-pentene,이하에서 '5-OTP'라 한다)을 제조하는 방법에 관한 것이다. 보다 상세하게는 반응 중에 1,3-부타디엔의 중합을 억제하기 위하여 중합방지제를 투입하여 알케닐화반응의 효율을 높이고, 산성용액의 사용에 의한 공정설비의 부식을 억제할 수 있는 5-OTP의 제조방법에 관한 것이다.In the present invention, 5-ortho-tolyl-pentene (hereinafter referred to as '5-OTP') is prepared by alkenylating 1,3-butadiene and ortho-xylene together with an alkali metal catalyst. It is about a method. More specifically, in order to suppress the polymerization of 1,3-butadiene during the reaction, a polymerization inhibitor is added to increase the efficiency of the alkenylation reaction, and the production of 5-OTP which can suppress the corrosion of the process equipment by using an acidic solution. It is about a method.

5-OTP는 폴리에틸렌나프탈레이트(polyethylenenaphthalate)의 제조에 필요한 중간 원료로서, 고리화 반응(cyclization)을 통해 1,5-디메틸테트랄린(1,5-dimethyltetraline; 이하에서 '1,5-DMT'라 한다)으로 제조될 수 있다. 이렇게 제조된 1,5-DMT는 탈수소화반응(dehydrogenation)을 통해 1,5-디메틸나프탈렌(1,5-dimetylenaphthalene, 이하에서 '1,5-DMN'이라 한다)으로 전환될 수 있고, 1,5-DMN은 이성질화반응(isomerization)을 통해 2,6-디메틸나프탈렌(2,6-DMN)로 전환되어, 이를 산화시키면 폴리에틸렌나프탈레이트의 원료인 2,6-나프탈렌디카르복실산(2,6- naphthalene dicarboxylic acid)이 생성된다.5-OTP is an intermediate raw material for the production of polyethylenenaphthalate, and 1,5-dimethyltetraline (hereinafter referred to as '1,5-DMT') through cyclization. It can be prepared as). Thus prepared 1,5-DMT can be converted to 1,5-dimethylnaphthalene (1,5-dimetylenaphthalene, hereinafter referred to as '1,5-DMN') through dehydrogenation, 1, 5-DMN is converted to 2,6-dimethylnaphthalene (2,6-DMN) through isomerization, and oxidized to 2,6-naphthalenedicarboxylic acid (2, 6-naphthalene dicarboxylic acid) is produced.

폴리에틸렌나프탈레이트 제조 공정의 초기 단계인 오르토-크실렌(ortho-xylene)과 1,3-부타디엔(1,3-butadiene)을 알케닐화하여 5-OTP를 제조하는 과정은 이미 알려져 있다(미국특허 제3,244,758호, 미국특허 제3,766,288호, 미국특허 제3,953,535호, 및 미국특허 제3,904,702호). 상기 기술은 알케닐화 촉매로서 알칼리 금속을 제시하고 있는데 주로 나트륨(Na), 칼륨(K) 또는 나트륨/칼륨(NaK) 혼합액 등을 제시하고 있다. The process for preparing 5-OTP by alkenylating ortho-xylene and 1,3-butadiene, which is an early stage of the polyethylene naphthalate manufacturing process, is known (US Pat. No. 3,244,758). US Pat. No. 3,766,288, US Pat. No. 3,953,535, and US Pat. No. 3,904,702). The above technique suggests an alkali metal as an alkenylation catalyst, and mainly suggests sodium (Na), potassium (K), or sodium / potassium (NaK) mixture.

촉매를 열처리하는 방법(일본공개특허 제1972-027929호, 일본공개특허 제1972-031935호)에 관한 선행문헌은, 알킬방향족의 알킬화 반응에서 촉매의 초음파 처리반응을 통한 촉매의 분산도, 공정 반응율 및 선택도를 증가시키기 위한 기술(미국특허 제5,198,594호)을 기재하고 있다. 또한 초음파 처리 없이 아민 첨가로 알킬화 반응의 선택도를 증가시킬 수 있는 기술을 제시하고 있는 선행문헌도 있다(미국특허 제5,334,796호). Prior art regarding the method of heat treating the catalyst (Japanese Patent Laid-Open Publication No. 1972-027929, Japanese Patent Laid-Open Publication No. 1972-031935), the degree of dispersion of the catalyst through the sonication of the catalyst in the alkylation reaction of alkyl aromatics, process reaction rate And techniques for increasing selectivity (US Pat. No. 5,198,594). There is also a prior document suggesting a technique that can increase the selectivity of the alkylation reaction by addition of amine without sonication (US Pat. No. 5,334,796).

그러나, 상기 선행문헌들에는 1,3-부타디엔의 중합으로 생성되는 파울링으로 인한 공정반응 효율저하를 방지하기 위한 기술은 제시되어 있지 않고, 알칼리 금속촉매 적용 조건만 제시되어 고순도 5-오르토-톨릴펜텐의 제조에 있어서 불충분한 내용으로 구성되어 있다.However, the prior art documents do not disclose a technique for preventing the process reaction efficiency decrease due to fouling generated by the polymerization of 1,3-butadiene, and only high alkali 5-ortho-tolyl is presented due to the application conditions of the alkali metal catalyst. Insufficient contents in the production of pentene.

혼합 C4 유분 중 각종 고무 및 합성수지 원료가 되는 1,3-부타디엔은 불포화 탄화수소이기 때문에 자체가 쉽게 중합이 가능하여 정상 운전 중에도 공정 내에서 유기물 파울링(fouling) 문제를 일으킨다. 1,3-부타디엔의 중합으로 인해 발생되는 파울링은 주로 자유 라디칼에 의해 팝콘(popcorn) 형태의 폴리머가 생성되는 유기 파울링이며, 공정 내의 산소 등에 의해 촉진되어진다. 이렇게 공정상에서 중합되어 생성된 파울링은 공정 라인(line)을 막히게 하여 반응효율을 저하시키고, 최종 고순도 2,6-디메틸나프탈렌 제조에도 영향을 미치게 된다. 또한 유기물 파울링은 알케닐화반응 효율 저하를 야기시켜 알칼리금속 촉매의 사용량이 증가되고, 이에 알케닐화반응의 후단에서 금속촉매를 제거하기 위해 투입하는 산성용액의 사용량도 증가되어 공정설비의 부식속도를 증가되는 문제가 발생하게 된다. Since 1,3-butadiene, which is a raw material for various rubbers and synthetic resins in the mixed C4 fraction, is an unsaturated hydrocarbon, it can be easily polymerized and causes organic fouling in the process even during normal operation. The fouling caused by the polymerization of 1,3-butadiene is an organic fouling in which a popcorn polymer is produced by free radicals, and is promoted by oxygen in the process. The fouling produced by polymerization in the process is to block the process line (line) to reduce the reaction efficiency, and also affect the final high purity 2,6-dimethylnaphthalene production. In addition, organic fouling causes a decrease in the alkenylation reaction efficiency, which increases the amount of alkali metal catalyst used. Accordingly, the amount of acidic solution used to remove the metal catalyst at the end of the alkenylation reaction also increases, thereby reducing the corrosion rate of the process equipment. There is an increasing problem.

본 발명은 알케닐화 반응시 사용되는 1,3-부타디엔에 의한 파울링 발생을 억제하여 반응효율을 높이고, 알칼리 금속촉매의 사용량을 최소화하여 금속촉매 제거를 위한 산성용액 사용량을 감소시킴으로써 공정설비의 산에 의한 부식현상을 방지하는데 목적이 있다.The present invention improves the reaction efficiency by suppressing fouling caused by 1,3-butadiene used in the alkenylation reaction, and minimizes the amount of alkali metal catalyst, thereby reducing the amount of acidic solution used to remove the metal catalyst. The purpose is to prevent corrosion by

본 발명의 적절한 실시형태에 따르면, 5-OTP의 제조방법은 오르토-크실렌과 1,3-부타디엔을 반응시켜 이루어지고, 이때 1,3-부타디엔에 의한 유기물 파울링을 방지하기 위하여 디에틸 히드록실아민이 반응물에 투입되고, 반응촉매로 알칼리금속 촉매가 사용된다. According to a preferred embodiment of the present invention, the method for preparing 5-OTP is made by reacting ortho-xylene with 1,3-butadiene, wherein diethyl hydroxyl is used to prevent organic fouling by 1,3-butadiene. An amine is added to the reactant, and an alkali metal catalyst is used as the reaction catalyst.

본 발명의 다른 적절한 실시형태에 따르면, 5-OTP의 제조방법은, 디에틸 히드록실아민이 오르토-크실렌과 1,3-부타디엔의 전체중량 대비 50 내지 80ppm로 투 입되고, Li, Na, K, Rb, 및 Sc으로 구성된 그룹에서 선택된 적어도 하나의 알칼리금속 촉매가 오르토-크실렌과 1,3-부타디엔의 전체중량 대비 50 내지 100ppm으로 사용될 수 있다.According to another suitable embodiment of the present invention, the method for preparing 5-OTP is wherein diethyl hydroxylamine is introduced at 50 to 80 ppm relative to the total weight of ortho-xylene and 1,3-butadiene, and Li, Na, K At least one alkali metal catalyst selected from the group consisting of Rb, and Sc may be used at 50 to 100 ppm relative to the total weight of ortho-xylene and 1,3-butadiene.

본 발명의 또 다른 적절한 실시형태에 따르면, 5-OTP의 제조방법은, 중합방지제가 반응완결 후 회수되어 반응물에 재사용될 수 있다.According to another suitable embodiment of the present invention, the method for preparing 5-OTP may be recovered after completion of the reaction and reused in the reactant.

본 발명에 따라 5-OTP를 제조하면, 1,3-부타디엔의 중합으로 인한 팝콘형 폴리머 형성이 억제되어 공정반응상의 막힘 현상 발생이 덜 일어난다. 또한 본 발명의 5-OTP 제조방법은 알칼리금속 촉매의 사용량을 최소화하여 금속촉매 제거를 위한 산성용액 사용량을 줄일 수 있으므로, 공정설비의 산에 의한 부식속도를 감소시켜 전반전인 알케닐화 반응효율 향상 시킬 수 있는 유리한 효과를 가진다.When 5-OTP is prepared according to the present invention, the formation of popcorn polymer due to the polymerization of 1,3-butadiene is suppressed, so that clogging in the process reaction occurs less. In addition, the 5-OTP manufacturing method of the present invention can reduce the amount of acidic solution to remove the metal catalyst by minimizing the amount of alkali metal catalyst, thereby reducing the corrosion rate by acid in the process equipment to improve the alkenylation reaction efficiency of the first half. Has an advantageous effect.

본 발명의 5-OTP 제조방법은 오르토-크실렌과 1,3-부타디엔을 반응시켜 이루어진다. 이때 반응물에 중합방지제가 투입되어 1,3-부타디엔에 의한 유기물 파울링을 억제함으로써, 알케닐화 반응의 효율이 높아지고 알칼리금속 촉매의 사용량을 최소화하여 공정설비의 부식을 억제할 수 있다.5-OTP production method of the present invention is made by reacting ortho-xylene with 1,3-butadiene. At this time, the polymerization inhibitor is added to the reactants to suppress fouling of the organic material by 1,3-butadiene, thereby increasing the efficiency of the alkenylation reaction and minimizing the amount of the alkali metal catalyst to suppress corrosion of the process equipment.

오르토-크실렌과 1,3-부타디엔의 반응은 일반적으로 알려진 벤젠치환체와 다이엔(diene)간의 친전자성 치환반응이다. 그러나 통상적인 공정조건에서는 1,3-부타디엔 자체로 중합이 가능하여 유기물 파울링(Fouling) 문제가 발생될 수 있다. 본 발명에서는 디에틸 히드록실아민을 중합방지제로 반응물에 투입하여 1,3-부타디 엔간의 중합을 억제하는 것이다. 디에틸 히드록실아민은 화학 산업에서 보일러수 및 석유화학공정에서 탈산소제로 많이 사용되는 분자식 (C2H5)2NOH의 화합물이고, 상온에서 액체이다. 1,3-부타디엔에 의한 파울링은 주로 반응기 내의 산소에 의하여 촉진되어지고, 디에틸 히드록실아민은 공정 진행 중에 반응기 내의 산소 제거가 가능하므로 기체상태의 공정부분에서 중합방지 효과를 발휘 할 수 있다. 중합방지제는 1,3-부타디엔의 자체 중합을 방지하는 역할만을 하며 공정상이나 제품에는 영향을 끼치지는 않는다.The reaction of ortho-xylene with 1,3-butadiene is a commonly known electrophilic substitution reaction between benzene substituents and dienes. However, under normal process conditions, the polymer can be polymerized with 1,3-butadiene itself, which may cause organic fouling problems. In the present invention, diethyl hydroxylamine is added to the reactant as a polymerization inhibitor to inhibit polymerization between 1,3-butadiene. Diethyl hydroxylamine is a compound of molecular formula (C 2 H 5 ) 2 NOH which is widely used as a deoxidizer in boiler water and petrochemical processes in the chemical industry, and is liquid at room temperature. Fouling by 1,3-butadiene is mainly promoted by oxygen in the reactor, and diethyl hydroxylamine can remove the oxygen in the reactor during the process, thus exhibiting anti-polymerization effect in the gaseous process part. . The polymerization inhibitor only serves to prevent the self polymerization of 1,3-butadiene and does not affect the process or the product.

이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 알케닐화 반응물인 오르토-크실렌과 1,3-부타디엔의 공급양은, 오르토-크실렌의 몰비율이 1,3-부타디엔의 몰수 대비 3 내지 20배, 바람직하게는 5 내지 15배가 적당하다. 이러한 오르토-크실렌의 몰비율은 1,3-부타디엔을 최대로 중합하고 과반응으로 인한 불순물의 생성을 억제하며, 생성된 5-OTP의 선택도를 높이기 위함이다. 반응기에 공급되는 1,3-부타디엔은 전단의 히터를 통해 중합방지제와 함께 125℃ 내지 130℃로 예열되어 액체상태에서 기체상태로 변환되고, 중합방지제는 액상으로 각 알케닐화 반응기 하부로 투입된다.In the present invention, the supply amount of ortho-xylene and 1,3-butadiene, which is an alkenylation reactant, has a molar ratio of ortho-xylene. 3 to 20 times, preferably 5 to 15 times, relative to the number of moles of 1,3-butadiene. The molar ratio of ortho-xylene is for maximizing polymerization of 1,3-butadiene, suppressing generation of impurities due to overreaction, and increasing selectivity of 5-OTP. The 1,3-butadiene supplied to the reactor is preheated to 125 ° C to 130 ° C together with the polymerization inhibitor through a heater of the front end, converted into the gaseous state from the liquid state, and the polymerization inhibitor is introduced into the lower portion of each alkenylation reactor in the liquid phase.

본 발명의 중합방지제인 디메틸 히드록실아민은 오르토-크실렌과 1,3-부타디엔 반응혼합물의 50 내지 80ppm으로 투입되는 것이 바람직하다. 알케닐화 반응에 투입되는 1,3-부타디엔의 양은 4 내지 5 L/hr이고, 오르토-크실렌과 1,3-부타디엔의 반응혼합물 양은 40 내지 60L/hr이다. 디에틸 히드록실아민은 수분정제 컬 럼(column) 후단 및 1,3-부타디엔 상전이 히터 전단에서 1,3-부타디엔과 함께 반응기로 투입된다.Dimethyl hydroxylamine as the polymerization inhibitor of the present invention is preferably added at 50 to 80 ppm of the ortho-xylene and 1,3-butadiene reaction mixture. The amount of 1,3-butadiene introduced into the alkenylation reaction is 4 to 5 L / hr, and the amount of the reaction mixture of ortho-xylene and 1,3-butadiene is 40 to 60 L / hr. Diethyl hydroxylamine is introduced into the reactor with 1,3-butadiene at the end of the water purification column and at the front of the 1,3-butadiene phase transition heater.

본 발명에서 사용되어진 알칼리 금속촉매는 Na 와 K의 혼합물이고, 경우에 따라 Li, Na, K, 및 Rb 중 적어도 어느 하나가 사용될 수도 있다. 상기 알칼리 금속촉매는 제1 초음파기 및 제2 초음파기를 통해 알케닐화 반응기로 투입된다. 이때, 제1 초음파기 반응시간은 상기 알칼리금속 촉매 50 내지 200g과 탈수된 상기 오르토-크실렌 45L 당 0.5 내지 12시간이다. 알칼리금속 촉매의 두터운 산화막과 불순물은 장시간 초음파 처리하여 제거하여야 하므로, 상기 반응시간의 범위는 일반적인 공정에서 바람직하나, 상기 범위를 벗어나는 반응시간도 제조공정을 조절하면 적용 가능하다. 제2 초음파기 반응시간은 상기 오르토-크실렌 함량 대비 상기 알칼리금속 촉매 비율 10 내지 500ppm 당 10분 내지 6시간이다. 상기 반응시간 범위는 일반적인 공정에서 바람직하나, 상기 범위를 벗어나는 반응시간도 제조공정을 조절하면 적용 가능하다.The alkali metal catalyst used in the present invention is a mixture of Na and K, and optionally at least one of Li, Na, K, and Rb may be used. The alkali metal catalyst is introduced into the alkenylation reactor through the first and second ultrasonicators. In this case, the first sonicator reaction time is 0.5 to 12 hours per 50 to 200 g of the alkali metal catalyst and 45 L of the ortho-xylene dehydrated. Since the thick oxide film and impurities of the alkali metal catalyst have to be removed by sonication for a long time, the range of the reaction time is preferable in a general process, but the reaction time outside the above range can be applied by adjusting the manufacturing process. The second sonicator reaction time is 10 minutes to 6 hours per 10 to 500 ppm of the alkali metal catalyst ratio to the ortho-xylene content. The reaction time range is preferable in a general process, but a reaction time outside the range may be applied by adjusting the manufacturing process.

반응기의 반응온도는 최소 130℃로 균일하게 유지하였다. 이로써 중합방지제를 기화시켜 중합방지제를 반응기 상부로 재회수 하였고, 이를 응축시켜 1,3-부타디엔 상변이 전단히터로 재사용하는 방법으로, 1,3-부타디엔과 오르토-크실렌은 알케닐화 반응을 하여 5-오르토-톨릴펜텐으로 제조하였다. 상기 반응온도를 준수함으로써, 너무 높은 반응온도로 인한 고분자 물질의 생성을 최대한 억제하였다. 1,3-부타디엔의 전단 히터 온도는 최소 중합방지제의 끊는점 온도인 125 내지 130℃로 하여 1,3-부타디엔을 액상에서 기상으로 상변이 시키고, 중합방지제는 액상으로 알 케닐화 반응을 실시하였다.The reaction temperature of the reactor was kept uniform at a minimum of 130 ° C. As a result, the polymerization inhibitor was vaporized to recover the polymerization inhibitor to the upper part of the reactor, and then condensed and reused as a 1,3-butadiene phase change shear heater. The 1,3-butadiene and ortho-xylene were subjected to alkenylation. Prepared with ortho-tolylpentene. By adhering to the reaction temperature, the production of the polymer material due to the reaction temperature too high was suppressed as much as possible. The shear heater temperature of 1,3-butadiene was 125-130 ° C, the minimum temperature of the polymerization inhibitor, and the phase change of 1,3-butadiene from the liquid phase to the gaseous phase was carried out by the alkenylation reaction in the liquid phase. .

반응기의 반응압력은 반응조건 하에서 반응물인 오르토-크실렌과 1,3-부타디엔이 액상으로 유지될 수 있는 조건인 0.01 내지 10기압, 바람직하게는 0.1기압 내지 5기압 범위로 유지하였다. 알케닐화 반응의 반응시간은 반응기에서의 체류시간으로서 0.01 내지 50시간, 바람직하게는 0.1 내지 5시간으로 유지하였다.The reaction pressure of the reactor was maintained in the range of 0.01 to 10 atm, preferably 0.1 to 5 atm, which is a condition under which the reactants ortho-xylene and 1,3-butadiene can be maintained in the liquid phase. The reaction time of the alkenylation reaction was maintained at 0.01 to 50 hours, preferably 0.1 to 5 hours as the residence time in the reactor.

알케닐화 반응물인 오르토-크실렌의 전환율(%)은 5 내지 50% 이고, 바람직하게는 10 내지 25%이며, 생성된 5-OTP의 선택도(%)는 50 내지 100% 이고, 바람직하게는 90 내지 100% 이다. The percent conversion of ortho-xylene, the alkenylation reactant, is from 5 to 50%, preferably from 10 to 25%, and the selectivity (%) of the resulting 5-OTP is from 50 to 100%, preferably 90 To 100%.

미반응된 오르토-크실렌은 정제칼럼을 통해 재회수되며, 정제공정반응은 반응압력 130 내지 200 torr, 바람직하게는 145 내지 150 torr로 실시하고, 정제칼럼 하부온도는 145 내지 200℃, 바람직하게는 150 내지 160℃로 실시하며, 상부온도는 80 내지 120℃, 바람직하게는 90 내지 97℃ 로 실시하였다.Unreacted ortho-xylene is recovered through the purification column, and the purification process reaction is carried out at a reaction pressure of 130 to 200 torr, preferably 145 to 150 torr, and the lower temperature of the purified column is 145 to 200 ° C. It carried out at 150 to 160 ℃, the upper temperature was carried out at 80 to 120 ℃, preferably 90 to 97 ℃.

아래에서 본 발명의 실시예들과 비교예들을 이용하여 본 발명의 보다 상세하게 설명하고, 보다 명확하게 한다. 다만 이러한 실시예에 의하여 본 발명이 제한되는 것은 아니다.Hereinafter, the embodiments of the present invention and the comparative examples will be described in more detail and clarity. However, the present invention is not limited by these examples.

실시예 1 Example 1

1,3-부타디엔 투입량을 4L/hr로 디에틸 히드록실아민(중합방지제) 2.5L/hr (50ppm)양과 함께 예열온도 120℃인 1,3-부타디엔 히터 전단에 투입한 후 5개의 알 케닐화 반응기 하부로 각각 균일하게 투입하였다. 오르토-크실렌 투입량은 45L/hr로 알케닐화 반응기로 2차 초음파 처리를 거친 NaK 알칼리 촉매 오르토-크실렌 함량대비 100ppm 비율 양과 함께 알케닐 반응기로 투입하여 반응온도 130℃로 반응시켜 5-오르토-톨릴펜텐을 제조하였고, 반응기 후단 알칼리금속 촉매 제거를 위해 산성용액(HCl)을 100ml 투입하였다. 그 결과는 표 1에 나타내었다.1,3-butadiene input at 4L / hr, 2.5L / hr (50ppm) of diethyl hydroxylamine (polymerization inhibitor), and 5 alkenylated at the front end of a 1,3-butadiene heater with a preheating temperature of 120 ° C. The reactors were evenly fed to the bottom of the reactor. The ortho-xylene input was 45 L / hr, and the alkenyl reactor was added to the alkenyl reactor with the amount of 100 ppm relative to the NaK alkali catalyst ortho-xylene content subjected to the second sonication in the alkenylation reactor to react at 130 ° C. with 5-ortho-tolylpentene. 100 ml of an acid solution (HCl) was added to remove an alkali metal catalyst at the rear of the reactor. The results are shown in Table 1.

실시예 2Example 2

디에틸 히드록실아민(중합방지제) 투입량이 4.0L/hr(80ppm)인 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 1에 나타내었다.5-Ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 1 except that the diethyl hydroxylamine (polymerization inhibitor) was added in an amount of 4.0 L / hr (80 ppm). The results are shown in Table 1.

실시예 3Example 3

디에틸 히드록실아민(중합방지제) 투입량이 5.0L/hr(100ppm)인 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 1에 나타내었다.5-Ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 1, except that the diethyl hydroxylamine (polymerization inhibitor) was 5.0 L / hr (100 ppm). The results are shown in Table 1.

비교예 1Comparative Example 1

디에틸 히드록실아민(중합방지제) 투입량이 1.5L/hr(30ppm)인 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 1에 나타내었다.5-Ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 1 except that the diethyl hydroxylamine (polymerization inhibitor) was 1.5 L / hr (30 ppm). The results are shown in Table 1.

비교예 2Comparative Example 2

디에틸 히드록실아민(중합방지제)를 투입하지 않는 것을 제외하고는, 실시예 1과 같은 방법으로 하여 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 1에 나타내었다. Except not adding diethyl hydroxylamine (antipolymerization agent), the alkenylation reaction was implemented by the method similar to Example 1, and 5-ortho- tolylpentene was manufactured. The results are shown in Table 1.

Figure 112008089792962-pat00001
Figure 112008089792962-pat00001

상기 표 1의 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 2는 디에틸 히드록시아민(중합방지제)의 투입여무 및 투입량에 따른 5-오르토-톨릴펜텐의 전환율(%), 선택도(%), 알칼리금속 촉매제거를 위한 산성용액(HCl)의 투입량 및 1,3-부타디엔의 중합으로 인해 생성되는 팝콘형 폴리머로 공정 라인이 막히는 횟수에 대해 나타내고 있다. 중합방지제의 투입량이 1,3-부타디엔과 오르토-크실렌의 혼합양의 50~80 ppm 수준일 때가 중합 방지제를 사용하지 않을 때보다 반응 효율 및 공정 라인 막힘 횟수가 1회/1개월에서 1회/6개월 내지 1회/6.5개월 정도 약 6배 정도로 길어짐을 확인 할 수 있었다. 하지만, 중합방지제의 투입량이 50ppm 이하가 되면 사용하지 않을 때와 비슷한 수준으로 큰 영향을 미치지를 못했으며, 중합방지제의 투입량이 80ppm 이상이 되면 더 이상 알케닐화 반응효율이 증가하지 않는 현상을 보였다. Example 1 to Example 3 and Comparative Examples 1 to 2 of Table 1, the conversion rate (%), selectivity of 5-ortho-tolylpentene according to the charge and input amount of diethyl hydroxyamine (polymerization inhibitor) (%), The amount of acidic solution (HCl) to remove the alkali metal catalyst and the number of times the process line is clogged with the popcorn type polymer produced by the polymerization of 1,3-butadiene. When the dose of the polymerization inhibitor is 50 to 80 ppm of the mixed amount of 1,3-butadiene and ortho-xylene, the reaction efficiency and the number of process line clogging are once / monthly / than when the polymerization inhibitor is not used. 6 months to 1 times / 6.5 months or so was about 6 times longer. However, when the input amount of the polymerization inhibitor is less than 50ppm did not have a significant effect to the same level as when not used, and when the input amount of the polymerization inhibitor is more than 80ppm the alkenylation reaction efficiency does not increase any more.

실시예 4Example 4

2차 초음파 처리를 거친 NaK 알칼리 촉매를 오르토-크실렌 함량대비 60ppm 비율로 알케닐 반응기로 투입하는 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 2에 나타내었다.A 5-ortho-tolylpentene was prepared by performing an alkenylation reaction in the same manner as in Example 1, except that the NaK alkali catalyst subjected to the second sonication was introduced into the alkenyl reactor at a ratio of 60 ppm to the ortho-xylene content. It was. The results are shown in Table 2.

비교예 3Comparative Example 3

2차 초음파 처리를 거친 NaK 알칼리 촉매를 오르토-크실렌 함량대비 10ppm 비율로 알케닐 반응기로 투입하는 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 2에 나타내었다.A 5-ortho-tolylpentene was prepared by performing an alkenylation reaction in the same manner as in Example 1, except that the NaK alkali catalyst subjected to the second sonication was introduced into the alkenyl reactor at a ratio of 10 ppm to the ortho-xylene content. It was. The results are shown in Table 2.

비교예 4Comparative Example 4

2차 초음파 처리를 거친 NaK 알칼리 촉매를 오르토-크실렌 함량대비 200ppm 비율로 알케닐 반응기로 투입하는 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 2에 나타내었다.A 5-ortho-tolylpentene was prepared by performing an alkenylation reaction in the same manner as in Example 1 except that the NaK alkali catalyst subjected to the second sonication was introduced into the alkenyl reactor at a rate of 200 ppm relative to the ortho-xylene content. It was. The results are shown in Table 2.

비교예 5Comparative Example 5

2차 초음파 처리를 거친 NaK 알칼리 촉매를 오르토-크실렌 함량대비 250ppm 비율로 알케닐 반응기로 투입하는 것을 제외하고는, 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 2에 나타내었다.A 5-ortho-tolylpentene was prepared by performing an alkenylation reaction in the same manner as in Example 1 except that the NaK alkali catalyst subjected to the second sonication was introduced into the alkenyl reactor at a rate of 250 ppm relative to the ortho-xylene content. It was. The results are shown in Table 2.

Figure 112008089792962-pat00002
Figure 112008089792962-pat00002

상기 표 2의 실시예 1, 실시예 4, 비교예 3 내지 비교예 5는, 디에틸 히드록실아민(중합방지제)을 균일한 양으로 투입한 가운데, 알칼리금속 촉매의 양에 따른 반응효율, 공정 라인 막힘 횟수에 관하여 나타내고 있다. 실시예 1과 실시예 4에서와 같이 중합방지제를 사용함으로 해서 1,3-부타디엔의 파울링으로 인한 공정 라인 블로킹(blocking)으로 인한 반응효율 저하를 개선함으로서, 반응활성을 위해 투입되는 알칼리금속 촉매양 또한 100ppm에서 50ppm으로 감소 투입해도 동일한 수준의 반응성을 보이고 있다. 하지만, 비교예 3 내지 비교예 5에서와 같이 10ppm이하 또는 200ppm이상 알칼리금속 촉매 투입 시에는 적은 양에 의한 반응효과 영향이 없고, 많은 양에 의해 오히려 알칼리 촉매의 분산도가 저하되어 알케닐화 반응이 떨어지는 결과를 보였다.In Example 1, Example 4, and Comparative Examples 3 to 5 of Table 2, the reaction efficiency and the process according to the amount of the alkali metal catalyst while the diethyl hydroxylamine (polymerization inhibitor) in a uniform amount, The number of line clogs is shown. Alkali metal catalyst introduced for the reaction activity by using the polymerization inhibitor as in Examples 1 and 4 to improve the reaction efficiency degradation due to blocking of the process line due to fouling of 1,3-butadiene The amount also decreased from 100ppm to 50ppm, showing the same level of reactivity. However, when the alkali metal catalyst is less than 10ppm or more than 200ppm as in Comparative Examples 3 to 5, the reaction effect is not affected by a small amount, and the dispersibility of the alkali catalyst is lowered by a large amount, resulting in an alkenylation reaction. It showed a falling result.

실시예 5Example 5

알케닐화 반응기 후단에 알칼리금속 촉매 제거를 위해 산성용액(HCl) 50ml를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 3에 나타내었다.A 5-ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 1 except that 50 ml of an acid solution (HCl) was added to remove the alkali metal catalyst at the rear of the alkenylation reactor. The results are shown in Table 3.

실시예 6Example 6

알케닐화 반응기 후단에 알칼리금속 촉매 제거를 위해 산성용액(HCl) 50ml를 투입하는 것을 제외하고는 실시예 4와 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 3에 나타내었다.A 5-ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 4 except that 50 ml of an acid solution (HCl) was added to remove the alkali metal catalyst at the rear of the alkenylation reactor. The results are shown in Table 3.

비교예 6Comparative Example 6

알케닐화 반응기 후단에 알칼리금속 촉매제거를 위해 산성용액(HCl) 100ml를 투입하는 것을 제외하고는 실시예 4와 동일한 방법으로 알케닐화 반응을 실시하여 5-오르토-톨릴펜텐을 제조하였다. 그 결과는 표 3에 나타내었다.A 5-ortho-tolylpentene was prepared by performing the alkenylation reaction in the same manner as in Example 4, except that 100 ml of an acid solution (HCl) was added to the alkenylation reactor to remove the alkali metal catalyst. The results are shown in Table 3.

Figure 112008089792962-pat00003
Figure 112008089792962-pat00003

상기 표 3의 실시예 1, 실시예 5, 실시예 6 및 비교예 6은 디에틸 히드록실아민(중합방지제)의 균일한 양 투입과 함께, 알케닐화 반응의 알칼리 금속촉매의 제거를 위해 산성용액(HCl) 투입량에 따른 공정상의 영향에 대해 나타내고 있다. 이는 중합방지제를 사용함으로 해서 1,3-부타디엔의 중합으로 인한 파울링으로 공정상의 막힘 현상이 저하되고, 알칼리금속 촉매의 사용량이 중합방지제를 사용하지 않는 조건보다 감소되기 때문에 제거되어져야 할 알칼리금속 촉매량이 줄어듦으로 해서 사용되어져야 할 산성용액(HCl)의 투입량이 줄어들어 공정설비의 산에 의한 부식속도를 낮추게 됨을 보여주고 있다. 소량의 산성용액을 사용해도 알케닐화 반응공정의 촉매제거가 가능하게 되어져 공정설비의 교체주기 증가로 인해 경제적인 효과를 보일 수 있다.Example 1, Example 5, Example 6 and Comparative Example 6 of the Table 3 is an acid solution for the removal of the alkali metal catalyst of the alkenylation reaction, with a uniform amount of diethyl hydroxylamine (antipolymerization agent) The influence of the process on the (HCl) input amount is shown. This is due to fouling due to the polymerization of 1,3-butadiene by the use of the polymerization inhibitor, and the alkali metal to be removed because the amount of alkali metal catalyst used is reduced than the condition without using the polymerization inhibitor. As the amount of catalyst decreases, the amount of acidic solution (HCl) to be used is reduced, which lowers the corrosion rate of acid by the process equipment. Even a small amount of acid solution can be used to remove the catalyst in the alkenylation process, which can be economically effective due to the increased replacement cycle of the process equipment.

Claims (3)

오르토-크실렌과 1,3-부타디엔을 반응시켜 5-오르토-톨릴펜텐을 제조하는 방법에 있어서, 오르토-크실렌의 몰비율이 1,3-부타디엔의 몰수 대비 3 내지 20배이고, 1,3-부타디엔에 의한 유기물 파울링을 방지하기 위하여 디에틸 히드록실아민이 오르토-크실렌과 1,3-부타디엔의 전체중량 대비 50 내지 80ppm 투입되고, 반응촉매로 Li, Na, K 및 Rb으로 구성된 그룹에서 선택된 적어도 하나의 알칼리금속 촉매가 오르토-크실렌과 1,3-부타디엔의 전체중량 대비 50 내지 100ppm 사용되는 것을 특징으로 하는 5-오르토-톨릴펜텐의 제조방법.In the method for preparing 5-ortho-tolylpentene by reacting ortho-xylene with 1,3-butadiene, the molar ratio of ortho-xylene is 3 to 20 times the number of moles of 1,3-butadiene, and 1,3-butadiene In order to prevent organic fouling by diethyl hydroxylamine is added 50 to 80ppm relative to the total weight of ortho-xylene and 1,3-butadiene, at least selected from the group consisting of Li, Na, K and Rb as a reaction catalyst A method for producing 5-ortho-tolylpentene, wherein one alkali metal catalyst is used in an amount of 50 to 100 ppm relative to the total weight of ortho-xylene and 1,3-butadiene. 삭제delete 삭제delete
KR1020080135455A 2008-12-29 2008-12-29 Method for preparing high yield 5-ortho-tolinepentene KR101051762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080135455A KR101051762B1 (en) 2008-12-29 2008-12-29 Method for preparing high yield 5-ortho-tolinepentene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080135455A KR101051762B1 (en) 2008-12-29 2008-12-29 Method for preparing high yield 5-ortho-tolinepentene

Publications (2)

Publication Number Publication Date
KR20100077502A KR20100077502A (en) 2010-07-08
KR101051762B1 true KR101051762B1 (en) 2011-07-25

Family

ID=42638847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080135455A KR101051762B1 (en) 2008-12-29 2008-12-29 Method for preparing high yield 5-ortho-tolinepentene

Country Status (1)

Country Link
KR (1) KR101051762B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686422B2 (en) * 2000-04-03 2004-02-03 Baker Hughes Incorporated Inhibition of popcorn polymer growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686422B2 (en) * 2000-04-03 2004-02-03 Baker Hughes Incorporated Inhibition of popcorn polymer growth

Also Published As

Publication number Publication date
KR20100077502A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US6060632A (en) Process for producing ethylbenzene
KR100784741B1 (en) Continuous hydrogenation of aromatic nitrated compounds using a catalyst having a low aluminium content
US7906694B2 (en) Method of preparing mono-iodo benzene through transiodination
KR100980652B1 (en) A method for extending catalyst life in processes for preparing vinyl aromatic hydrocarbons
KR101051762B1 (en) Method for preparing high yield 5-ortho-tolinepentene
JP5155877B2 (en) Improved process for dehydrogenation of alkyl-aromatic hydrocarbons for the production of vinyl-aromatic monomers
JP3452079B2 (en) Method for producing aromatic carbodiimide
JPH04230226A (en) Cyclization of contact alkenyl benzene
JP7373557B2 (en) Method for producing bis(aminomethyl)cyclohexane
KR20100123719A (en) Process for production of ethylbenzene from toluene and methane
TW201514100A (en) Hydrogen cyanide manufacturing process with second waste heat boiler
JP2009269868A (en) Method for producing 2,6-diphenylphenol or derivative thereof
US7935856B2 (en) Preparation method of 1,5-dimethyltetralin using dealuminated zeolite beta catalyst
JPS6014004B2 (en) Alkenylation method of alkylbenzenes
US3651165A (en) Method for recovery and purification of isobutylene
JP5124905B2 (en) Method for producing metadiisopropylbenzene
EA009461B1 (en) Improved process for the production and purification of vinyl aromatic monomers
US2695324A (en) Hydrocarbon purification process
CN108623428B (en) Reaction method for alkylation of benzene and methanol
CN112041289B (en) Process for producing butadiene
JP5344808B2 (en) Method for producing cyclic olefin
JP2921544B2 (en) Purification method of monoalkenylbenzenes
JP4100138B2 (en) Catalyst for the production of isopropylbenzene compounds
JPH04210929A (en) Production of alkylnaphthalenes
GB2077723A (en) Process for the production of acrylamide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 9