KR101048645B1 - 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법 - Google Patents

고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법 Download PDF

Info

Publication number
KR101048645B1
KR101048645B1 KR1020080046029A KR20080046029A KR101048645B1 KR 101048645 B1 KR101048645 B1 KR 101048645B1 KR 1020080046029 A KR1020080046029 A KR 1020080046029A KR 20080046029 A KR20080046029 A KR 20080046029A KR 101048645 B1 KR101048645 B1 KR 101048645B1
Authority
KR
South Korea
Prior art keywords
cellulose
ionic liquid
hydrolysis
hydrolysis reaction
acid
Prior art date
Application number
KR1020080046029A
Other languages
English (en)
Other versions
KR20090120139A (ko
Inventor
서영웅
서동진
박태진
윤영현
김수진
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020080046029A priority Critical patent/KR101048645B1/ko
Publication of KR20090120139A publication Critical patent/KR20090120139A/ko
Application granted granted Critical
Publication of KR101048645B1 publication Critical patent/KR101048645B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/24Hydrolysis or ripening
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials

Abstract

고체 산 촉매와 이온성 액체를 사용하여 셀룰로오스를 가수분해하는 방법이 개시된다. 상기 가수분해 방법은 셀룰로오스의 가수분해 반응의 효율을 향상시켜 높은 수율의 글루코오스 생성이 가능하다.
이온성 액체, 고체 산 촉매, 셀룰로오스, 가수분해, 글루코오스

Description

고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스 가수분해 방법{Method for Hydrolyzing Cellulose Using Solid Acid Catalyst and Ionic Liquid}
본 발명은 고체 산 촉매 이용한 셀룰로오스 가수분해 반응의 효율을 향상시키는 방법에 관한 것이다.  더욱 상세하게는, 고체 산 촉매를 이용하여 셀룰로오스를 가수분해하는 반응에 있어서, 이온성 액체의 첨가를 통해 글루코오스의 수율을 향상시키는 방법에 관한 것이다.
화석연료의 고갈에 따른 가격 인상과 지구 온난화 현상이 가속화됨에 따라 천연 자원으로부터 연료와 화학물질의 제조를 위한 알코올의 생성이 고려되고 있다.  바이오매스(biomass) 중 약 40%를 차지하는 셀룰로오스(cellulose)는 자연계에 풍부히 존재하는 재생 가능한 천연 자원이다.  셀룰로오스는 β-1,4-글리코시딕 결합을 갖는 D-글루코오스의 집합체로서, α-1,4-글리코시딕 결합을 갖는 녹말(starch)과는 달리 매우 강한 결정형 물질로서 물이나 유기 용매에 쉽게 용해되지 않아서 연료 또는 화학물질로의 활용에 어려움이 있다.  이러한 셀룰로오스의 활용상의 한계로 인하여, 알코올 생산의 주요 과정 중 하나인 글루코오스로의 전환, 즉 당화 과정에 어려움이 있다.
현재까지 알려진 셀룰로오스를 가수분해하는 기술들은, 주로 효소 혹은 액체 산을 촉매로 사용하였다.  그러나, 액체 산 촉매를 사용하여 셀룰로오스 가수분해 반응을 수행하게 되면, 여러 가지 문제점들이 발생하게 된다.  즉, 주생성물인 글루코오스 이외에도 하이드록시메틸퍼프랄 (hydroxymethyl furfural), 레불린산(levulinic acid), 포름산(formic acid) 등과 같은 2차 생성물이 생성되며, 이에 따른 환경적인 문제가 발생할 뿐만 아니라 연속식 공정이 불가능하다는 문제가 있다.  한편, 효소를 사용하여 셀룰로오스 가수분해 반응을 수행하는 경우, 셀룰로오스의 비수용성 때문에 효소가 셀룰로오스와 접촉하기 어려워 반응속도가 낮은 단점을 가진다.
상기 액체 산 및 효소 촉매의 문제점을 고체 산 촉매를 사용하여 부분적인 개선을 도모하기도 하였다.  그러나, 고체 산 촉매가 갖는 온도 제한적 특성과 산성도(acidity), 그리고 활성점(active site density)의 제약으로 인하여 실제 공정에 도입하기에는 글루코오스의 수율이 만족할 수준에 도달하지 못하였다.  한편, 주로 수용액 상에서 진행되는 셀룰로오스의 가수분해 반응에 있어서 물로 인하여 셀룰로오스의 결정성이 증가하므로 고체 산 촉매와 셀룰로오스의 접촉이 원활하지 않아 글루코오스의 수율이 제한을 받게 된다.
이상에서 살펴본 바와 같이, 셀룰로오스를 가수분해하여 글루코오스를 생산하기 위한 종래의 방법들은 사용상의 여러 문제점들이 해결되지 못하고 있는 실정 이다.
본 발명의 일실시예의 목적은, 셀룰로오스를 가수분해하는 반응에 있어서, 고체 산 촉매와 이온성 액체를 이용하여 글루코오스의 수율을 향상시키는 방법을 제공하는 것이다.
본 발명에 따른 셀룰로오스 가수분해 방법은, 고체 산 촉매와 이온성 액체를 이용하여 셀룰로오스를 가수분해하는 것을 특징으로 한다.
본 발명에 따른 셀룰로오스 가수분해 방법은, 고체 산 촉매와 이온성 액체를 이용하여 셀룰로오스의 가수분해 반응의 효율을 향상시켜 높은 수율의 글루코오스 생성이 가능하다.
따라서, 본 발명에 따른 셀룰로오스 가수분해 방법은, 이온성 액체와 고체 산 촉매를 사용하여 셀룰로오스의 가수분해 효율을 향상시키는 것으로 구성된다.
하나의 바람직한 예에서, 상기 가수분해 방법을 간략히 설명하면 다음과 같다.  먼저, 전처리된 셀룰로오스를 증류수에 첨가한다.  해당 용액을 오토클레이 브(autoclave)에 넣고, 상기 고체 산 촉매와 이온성 액체를 첨가한다.  이후 질소 분위기에서, 상기 혼합액의 온도를 승온시킨 상태에서 가수분해 반응을 진행하게 된다.
전처리 과정을 거치지 않은 셀룰로오스를 고체 산 촉매로 가수분해 하였을 때에는, 글루코오스의 생성이 현저히 저하된다. 따라서, 고체 산 촉매를 이용하여 셀룰로오스를 가수분해하는 반응에 앞서, 셀룰로오스의 전처리 과정을 거치는 것이 바람직하다. 즉, 수소결합에 의하여 강하게 결합되어 있어 셀룰로오스의 결정형 구조를 비결정형 구조로 변형시키는 전처리 과정이 필요하다.
하나의 바람직한 예에서, 상기 셀룰로오스에 대한 전처리 과정은, 순수한 이온성 액체를 용매로 사용하여 수행할 수 있다.  이는 이온성 액체가, 다른 용매에 비하여, 셀룰로오스의 결정형 구조를 보다 효과적으로 무정형 구조로 변형시키기 때문이다.
상기 고체 산 촉매는 액체 산 촉매와 비교할 때 여러 장점을 가진다. 이는 액체 산 촉매를 사용하여 셀룰로오스 가수분해 반응을 수행하게 되면, 글루코오스 이외의 2 차 생성물의 발생으로 인한 환경 문제와 연속적 공정 설계가 어렵다는 문제점이 있기 때문이다.
상기 고체 산 촉매를 사용할 경우에는, 다음과 같은 장점들이 있다.  첫째, 촉매를 반응 시스템에서 쉽게 분리할 수 있다.  둘째, 재생 또는 재농축이 불필요하고, 연속 반응이 가능하다.  셋째, 반응 선택성이 높아 부산물이 적게 발생한다.  또한, 장치의 부식성이 낮아 재질 선택이 용이하다는 장점이 있다.
하나의 바람직한 예에서, 상기 고체 산 촉매는 제올라이트(zeolite), 실리카-알루미나(silica-alumina), 양이온 교환 수지(cation exchange resin), 황산이 담지된 금속산화물 또는 헤테로폴리산(heteropoly acid) 등 일 수 있다.
상기 고체 산 촉매에 대하여 구체적으로 살펴보면 다음과 같다.
먼저, 상기 제올라이트로는 8개의 산소원자로 구성된 고리, 10개의 산소원자로 구성된 고리, 12개의 산소원자로 구성된 고리, 또는 상기 고리들이 혼재된 혼성고리로 구성된 세공 입구를 갖는 것이 바람직하다. 따라서, 하나의 바람직한 예에서, 상기 제올라이트로는 ZSM-5, 제올라이트 Y, 제올라이트 베타(β), 모데나이트(mordenite) 또는 페리어라이트(ferrierite) 등이 사용될 수 있다.
또한, 상기 양이온 교환 수지로는 강산성 양이온 교환 수지가 사용 가능하다. 상기 강산성 양이온 교환 수지로는, 스티렌(Styrene)계 수지, 퍼플루오르화 술폰산(Perfluorinated Resinsulfonic Acid)계 수지, 또는 퍼플루오르화 술폰산계 수지와 실리카(Silica)의 복합물질 등이 사용 가능하다. 상기 스티렌계 수지는 술폰산기(-SO3H)를 교환기로 가지고 있고 골조는 스티렌과 디비닐 벤젠의 공중합체로 이루어져 있다. 그리고, 상기 퍼플루오르화 술폰산계 수지는 테트라플루오르에틸렌(tetrafluoroethylene)과 퍼플루오르-2-(플루오르술폰닐에톡시)프로필 비닐 에테르 (perfluoro-2-(fluorosulfonyl- ethoxy)propyl vinyl ether)의 공중합체로 이루어져 있다.
상기 양이온 교환 수지로 사용 가능한 시판되는 수지로는, 나피온(Nafion® 계열, 도웩스(Dowex® 계열, 엠버리스트(Amberlyst® 계열 또는 다이아이온(Diaion® 계열 등이 있다. 상기 시판되는 수지 가운데, 엠버리스트 계열, 도웩스 계열 및 다이아이온 계열의 양이온 교환 수지는 술폰화된 폴리스티렌(Sulfonated polystyrene)으로 이루어져 있고, 나피온 계열은 퍼플루오르화 술폰산 또는 나피온/실리카 나노합성물로 이루어져 있다.
상기 황산이 담지된 금속산화물은, 예를 들어, 황산이 담지된 지르코니아, 타이타니아 및 란타니아로 구성되는 군으로부터 선택되는 하나 또는 그 이상의 혼합물일 수 있다. 또한, 상기 헤테로폴리산으로는 포스포몰리브덴산(phosphomolybdic acid), 포스포바나듐산(phosphovanadoic acid) 또는 포스포몰리브도바나듐산(phosphomolybdovanadoic acid) 등이 사용 가능하다.
상기 이온성 액체는 셀로비오스의 강한 수소결합을 가수분해 되기 쉬운 형태로 비결정화 시키는 효과가 있다. 또한, 비휘발성이면서 열적으로 안정적일 뿐만 아니라 환경 친화적 용매라는 장점을 갖는다.
본 발명에서 “이온성 액체”라 함은, 유기 양이온과 무기 음이온으로 구성된 액을 의미하며, 700℃ 이상의 온도에서 용융되는 용융염(molten salt)과는 달리 100℃ 이하의 낮은 온도에서 용융되는 성질을 갖는 것을 특징으로 한다.
하나의 바람직한 예에서, 상기 이온성 액체는 다른 환 구조와 융합되지 않은 단일 5원 또는 6원 환을 함유하는 양이온 및 음이온으로 구성된 것일 수 있다. 바람직하게는, 상기 이온성 액체는 1-부틸-3- 메틸이미다졸륨 클로라이드이다.
상기 이온성 액체에 대해 구체적으로 살펴보면, 상기 양이온은 피리디늄, 피리다지늄, 피리미디늄, 피라지늄, 이미다졸륨, 피라졸륨, 옥사졸륨, 1,2,3-트리아졸륨 또는 1,2,4-트리아졸륨 양이온이고, 상기 음이온은 아세테이트, 할로겐, 슈도할로겐 또는 C1 -6 카복실레이트 음이온일 수 있다.
보다 바람직하게는, 상기 양이온은 이미다졸륨 양이온이고, 상기 음이온은 할로겐 또는 슈도할로겐 음이온이다.  이는, 이미다졸륨 양이온과 할로겐 또는 슈도할로겐 음이온은 각각 셀룰로오스 하이드록시기의 산소원자와 수소원자에 영향을 주어 결합 세기를 약화시키기 때문이다. 또한, 이온성 액체의 염기 성질로 인하여 잉여 전자가 셀룰로오스 내부에 구성되어 있는 수소결합과 상호 반응하여 셀룰로오스의 전반적인 수소결합의 세기를 약화시키게 된다.
이하, 본 발명에 따른 가수분해 방법의 구체적인 반응조건에 대하여 살펴본다.
본 발명의 일실시예에 따른 셀룰로오스 가수분해 방법에 있어서, 상기 가수분해 반응은 질소 분위기의 오토클레이브에서 수행되며, 온도는 130 내지 170℃가 바람직하고, 더 바람직하게는 140 내지 160℃이다.  그 이유는, 반응 과정에서 수소의 영향을 최소화하기 위함이며, 가수분해 반응 온도가 130℃ 미만인 경우에는 셀룰로오스의 가수분해가 미미하고, 170℃를 초과하는 경우에는 이온 교환 수지의 한계 온도를 넘게 되어 가수분해 반응을 효과적으로 수행할 수 없기 때문이다.
상기 가수분해 반응에 있어서, 반응 시간은 2 내지 6시간인 것이 바람직하 다.  반응 시간이 2시간 미만인 경우에는 생성되는 글루코오스의 수율이 충분하지 못하고, 반대로 6 시간을 초과하는 경우에는 반응 시간에 따른 글루코오스 수율의 증가 비율이 비효율적이고 글루코오스의 재분해 가능성이 높아지기 때문이다.
또한, 상기 가수분해 반응의 반응 압력은 0.3 내지 1 MPa인 것이 바람직하고, 더 바람직하게는 0.45 내지 0.65 MPa이다.  압력이 0.3 MPa 미만이면 글루코오스가 제대로 생성되지 않고, 1 MPa을 초과하면 글루코오스의 재분해 가능성이 높아지기 때문이다.
또한, 상기 가수분해 반응에 있어서 첨가하는 이온성 액체의 양은 2 내지 20 mmol인 것이 바람직하다. 이를 농도로 환산하면 0.1 내지 1 M인 것이 바람직하다. 이온성 액체의 농도가 0.1 M 미만이면 생성되는 글루코오스의 수율이 충분하지 못하고, 1 M을 초과하는 경우에는 이온성 액체가 가지는 염기성 때문에 고체 산 촉매가 제 역할을 수행하지 못하여, 셀룰로오스의 분해가 잘 이루어지지 않기 때문이다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기의 실시예들은 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
[실시예 1]
0.2 g의 셀룰로오스를 1-부틸-3-메틸이미다졸륨 클로라이드 3.8 g과 함께 130℃, 0.03 MPa의 조건에서 교반과 함께 2시간 동안 처리하였다. 이후, 원심분리 기를 사용하여 증류수로 세척하는 과정을 5회 반복하였다. 
상기 과정을 통해 전처리 된 셀룰로오스를 20 ml 증류수, 160℃, 0.55 MPa의 조건 하에서, 4시간 동안 0.1 g의 고체 산 촉매를 이용하여 가수분해 시켰다.  사용한 촉매에 따른 글루코오스의 수율 변화는 하기 표 1과 같다.
고체산 촉매 이온성 액체의 양(mmol) 글루코오스 수율(mol%)
ZSM-5 4.0 28.4
제올라이트 베타(Zeolite Beta) 2.2 44.2
나피온(Nafion®)SAC-13 3.0 6.2
나피온(Nafion®) NR-50 3.9 27
술폰화된 지르코니아
(Sulfated Zirconia)
2.0 14.3
포스포몰리브덴 산
(Phosphomolybdic Acid)
2.2 21.1
엠버리스트(Amberlyst®) 15 2.2 44.2
상기 표 1을 참조하면, 전처리 후 셀룰로오스의 가수분해 반응에 사용되는 이온성 액체의 양은, 정확히 일치하지 않으나, 소량만이 가수분해 반응에 참여하는 것을 확인할 수 있었다. 또한, 양이온 교환 수지인 Amberlyst-15를 촉매로 사용한 경우, 생성된 글루코오스의 수율이 가장 높음을 확인하였다.
[실시예 2]
고체 산 촉매로 HZSM-5를 사용하고 전처리 후 잔존하는 이온성 액체의 양을 달리한 것을 제외하고는, 상기 실시예 1과 동일한 조건에서 가수분해를 수행하였다.  잔존 이온성 액체의 양에 따른 글루코오스의 수율 변화는 하기 표 2와 같다.
이온성 액체의 양(mmol) 글루코오스 수율(mol%)
0.0 4.6
1.8 19.2
2.2 26.8
4.0 28.4
6.0 29.2
20.0 32.1
상기 표 2를 참조하면, 전처리 후 셀룰로오스 가수분해 반응액에 잔존하는 이온성 액체의 양이 증가할수록 글루코오스의 수율이 향상되는 것을 확인하였다.
[실시예 3]
고체 산 촉매로 Amberlyst® 15를 사용하고 전처리 후 잔존하는 이온성 액체의 양을 달리한 것을 제외하고는, 상기 실시예 1과 동일한 조건에서 가수분해를 수행하였다.  잔존 이온성 액체의 양에 따른 글루코오스의 수율 변화는 하기 표 3과 같다.
이온성 액체의 양(mmol) 글루코오스 수율(mol%)
0 10.8
4.3×10-3 18.3
2.2 44.2
18.7 49.0
상기 표 3를 참조하면, 실시예 2에서와 마찬가지로 전처리 후 셀룰로오스 가수분해 반응액에 잔존하는 이온성 액체의 양이 증가할수록 글루코오스의 수율이 향상되는 것을 확인하였다.
[실시예 4]
0.2 g의 셀룰로오스를 1-부틸-3-메틸이미다졸륨 클로라이드 3.8 g과 함께 130℃, 0.03 MPa의 조건에서 교반하면서, 2시간 동안 처리하였다.  이후, 원심분리기를 사용하여 증류수로 세척하는 과정을 5회 이상 반복하여 이온성 액체를 완벽히 제거하였다. 
전처리된 셀룰로오스를 20 ml 증류수, 160℃, 0.55 MPa의 조건 하에서, 4시간 동안 0.1 g의 Nafion® NR-50 및 이온성 액체를 첨가하여 가수분해 시켰다.  첨가한 이온성 액체의 양에 따른 글루코오스의 수율 변화는 하기 표 4와 같다.
이온성 액체의 양(mmol) 글루코오스 수율(mol%)
0 24.0
1.5 28.9
4.0 29.9
8.0 32.3
20.0 38.1
상기 표 4를 참조하면, 실시예 2 및 3에서와 마찬가지로 셀룰로오스 가수분해 반응액에 첨가한 이온성 액체의 양이 증가할수록 글루코오스의 수율이 향상되었음을 확인할 수 있었다.

Claims (19)

  1. 고체 산 촉매 및 이온성 액체를 이용하여 셀룰로오스를 가수분해하는 방법으로,
    가수분해 반응 이전에 셀룰로오스를 이온성 액체로 전처리하며,
    상기 이온성 액체는 다른 환 구조와 융합되지 않은 단일 5 원 또는 6 원 환을 함유하는 양이온 및 음이온으로 구성되는 셀룰로오스 가수분해 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 고체 산 촉매는 제올라이트, 실리카-알루미나, 양이온 교환 수지, 황산이 담지된 금속산화물 및 헤테로폴리산으로 구성된 군으로부터 선택된 것임을 특징으로 하는 셀룰로오스 가수분해 방법.
  4.  제 3 항에 있어서,
    상기 제올라이트는 8개의 산소원자로 구성된 고리, 10개의 산소원자로 구성된 고리, 12개의 산소원자로 구성된 고리 또는 상기 고리들이 혼재된 혼성고리로 구성된 세공 입구를 갖는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  5.  제 4 항에 있어서,
    상기 제올라이트는 ZSM-5, 제올라이트 Y, 제올라이트 베타(β), 모데나이트(mordenite) 또는 페리어라이트(ferrierite)인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  6.  제 3 항에 있어서,
    상기 양이온 교환 수지는 강산성 양이온 교환 수지인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  7.  제 6 항에 있어서,
    상기 강산성 양이온 교환 수지는 스티렌계 수지, 퍼플루오르화 술폰산계 수지, 또는 퍼플루오르화 술폰산계 수지와 실리카의 복합물질인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  8.  제 3 항에 있어서,
    상기 황산이 담지된 금속산화물은 황산이 담지된 지르코니아, 타이타니아 및 란타니아로 구성되는 군으로부터 선택되는 하나 또는 그 이상의 혼합물인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  9.  제 3 항에 있어서,
    상기 헤테로폴리산은 포스포몰리브덴산, 포스포바나듐산 또는 포스포몰리브 도바나듐산인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  10. 삭제
  11.  제 1 항에 있어서,
    상기 양이온은 피리디늄, 피리다지늄, 피리미디늄, 피라지늄, 이미다졸륨, 피라졸륨, 옥사졸륨, 1,2,3-트리아졸륨 또는 1,2,4-트리아졸륨 양이온이고, 상기 음이온은 아세테이트, 할로겐 또는 C1-6 카복실레이트 음이온인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  12.  제 11 항에 있어서,
    상기 양이온은 이미다졸륨 양이온이고, 상기 음이온은 할로겐 음이온인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  13. 제 1 항에 있어서,
    상기 이온성 액체는 1-부틸-3-메틸이미다졸륨 클로라이드인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  14. 제 1 항에 있어서,
    상기 이온성 액체의 농도는 0.1 내지 1 M인 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  15. 제 1 항에 있어서,
    상기 가수분해 반응이 130 내지 170℃의 온도에서 수행되는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  16. 제 15 항에 있어서,
    상기 가수분해 반응이 140 내지 160℃의 온도에서 수행되는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  17. 제 1 항에 있어서,
    상기 가수분해 반응이 0.3 내지 1 MPa의 압력하에서 수행되는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  18. 제 17 항에 있어서,
    상기 가수분해 반응이 0.45 내지 0.65 MPa의 압력하에서 수행되는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
  19. 제 1 항에 있어서,
    상기 가수분해 반응이 2 내지 6 시간 동안 수행되는 것을 특징으로 하는 셀룰로오스 가수분해 방법.
KR1020080046029A 2008-05-19 2008-05-19 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법 KR101048645B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080046029A KR101048645B1 (ko) 2008-05-19 2008-05-19 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080046029A KR101048645B1 (ko) 2008-05-19 2008-05-19 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법

Publications (2)

Publication Number Publication Date
KR20090120139A KR20090120139A (ko) 2009-11-24
KR101048645B1 true KR101048645B1 (ko) 2011-07-12

Family

ID=41603513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080046029A KR101048645B1 (ko) 2008-05-19 2008-05-19 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법

Country Status (1)

Country Link
KR (1) KR101048645B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158443B1 (ko) * 2010-04-02 2012-06-22 서울대학교산학협력단 양이온 치환된 헤테로폴리산 촉매를 이용한 리그닌 화합물 분해방법
CN110357972A (zh) * 2018-04-09 2019-10-22 株式会社大赛璐 乙酸纤维素的制造方法
KR102219915B1 (ko) 2019-04-10 2021-02-23 부산대학교 산학협력단 가스-액체 계면 플라즈마 공정을 이용한 술폰화된 고체산 촉매의 제조방법
KR102193018B1 (ko) 2019-04-23 2020-12-18 부산대학교 산학협력단 셀룰로오스 가수분해를 위한 -Cl 및 -SO3H의 이중 기능성을 갖는 탄소계 고체산 촉매 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125369A1 (en) * 2005-02-07 2007-06-07 Olson Edwin S Process for converting anhydrosugars to glucose and other fermentable sugars
KR20080006549A (ko) * 2005-04-15 2008-01-16 바스프 악티엔게젤샤프트 아미노 염기가 첨가된 이온성 액체 중의 셀룰로오스의가용성
US20080033187A1 (en) 2006-08-07 2008-02-07 Haibo Zhao Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125369A1 (en) * 2005-02-07 2007-06-07 Olson Edwin S Process for converting anhydrosugars to glucose and other fermentable sugars
KR20080006549A (ko) * 2005-04-15 2008-01-16 바스프 악티엔게젤샤프트 아미노 염기가 첨가된 이온성 액체 중의 셀룰로오스의가용성
US20080033187A1 (en) 2006-08-07 2008-02-07 Haibo Zhao Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Advanced Synthesis & Catalysis(2007, 349권, page 1847~1850)*

Also Published As

Publication number Publication date
KR20090120139A (ko) 2009-11-24

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in the catalytic production of glucose from lignocellulosic biomass
Chen et al. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass‐Derived 5‐Hydroxymethylfurfural
US10173994B2 (en) Conversion of biomass
Liu et al. Hydrolysis of cellulose into reducing sugars in ionic liquids
CA2698652C (en) A method for the conversion of cellulose
KR101048645B1 (ko) 고체 산 촉매 및 이온성 액체를 이용한 셀룰로오스가수분해 방법
Zhang Catalytic transformation of carbohydrates and lignin in ionic liquids
Guo et al. Mechanism of glucose conversion into 5-ethoxymethylfurfural in ethanol with hydrogen sulfate ionic liquid additives and a Lewis acid catalyst
CN112608289B (zh) 一种有机溶剂-离子液体复合体系催化生物基果糖高效制取5-羟甲基糠醛的方法
CN105793329A (zh) 加工含纤维素的生物质的方法
CN108855135A (zh) 一种碳基固体酸催化剂及其在木质纤维素解聚中的应用
Yuan et al. Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides
Zhang et al. Upgrading of cellulose to biofuels and chemicals with acidic nanocatalysts
Gautam et al. A comparative study on the performance of acid catalysts in the synthesis of levulinate ester using biomass‐derived levulinic acid: a review
Mthembu et al. Advances in Biomass-Based Levulinic Acid Production
KR100887563B1 (ko) 고체 산 촉매에 의한 셀룰로오스의 가수분해 방법
CN101864344B (zh) 一种塔尔油制备生物柴油的方法
Zhang et al. Chemocatalytic production of lactates from biomass-derived sugars
Fang et al. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis
KR100954166B1 (ko) 이온성 액체 및 산성용 이온 교환 수지를 이용한셀로비오스의 가수분해 방법
CN104651542B (zh) 一种用杂多酸型离子液体催化水解浮萍制备还原糖的方法
CN105175746A (zh) 一种木质纤维均相转酯化改性方法
Krishnasamy et al. Dual-Acidity Catalysts for Alkyl Levulinate Synthesis from Biomass Carbohydrates: A Review
Klamrassamee et al. Comparison of Fractionated and Non-Fractionated Eucalyptus in Organic Solvent Subsequence Hydrolysis Reaction to Sugar Production
JP5561752B2 (ja) アルコールの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110131

Effective date: 20110624

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee