KR101046218B1 - Free acid concentration analysis method of mixed acid pickling solution of stainless steel - Google Patents

Free acid concentration analysis method of mixed acid pickling solution of stainless steel Download PDF

Info

Publication number
KR101046218B1
KR101046218B1 KR1020080129913A KR20080129913A KR101046218B1 KR 101046218 B1 KR101046218 B1 KR 101046218B1 KR 1020080129913 A KR1020080129913 A KR 1020080129913A KR 20080129913 A KR20080129913 A KR 20080129913A KR 101046218 B1 KR101046218 B1 KR 101046218B1
Authority
KR
South Korea
Prior art keywords
acid
mixed
electrical conductivity
concentration
conductivity
Prior art date
Application number
KR1020080129913A
Other languages
Korean (ko)
Other versions
KR20100071260A (en
Inventor
최상교
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020080129913A priority Critical patent/KR101046218B1/en
Publication of KR20100071260A publication Critical patent/KR20100071260A/en
Application granted granted Critical
Publication of KR101046218B1 publication Critical patent/KR101046218B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Water specific anions in water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

본 발명의 목적은 혼합산 중의 각각의 산의 농도를 신속하고 간편하며 저렴하게 측정하는 방법을 제공하여 스테인리스 산세 공정에 쉽게 응용할 수 있도록 하는 것이다. 본 발명에 따른 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법은, (a) 혼합산이 희석되는 단계; (b) 상기 희석된 혼합산의 제 1 전기전도도가 측정되는 단계; (c) Fe 3가가 포함된 첨가제가 상기 희석된 혼합산에 첨가되는 단계; (d) 상기 첨가제가 첨가된 혼합산의 제 2 전기전도도가 측정되는 단계; 및 (e) 불산의 농도가 상기 제 2 전기전도도와 제 1 전기전도도의 차이에 비례하여 계산되는 단계를 포함하는 것을 특징으로 한다.It is an object of the present invention to provide a method for quickly, simply and inexpensively measuring the concentration of each acid in a mixed acid so that it can be easily applied to a stainless pickling process. According to the present invention, a method for analyzing the free acid concentration of a mixed acid mixed with hydrofluoric acid and a strong acid includes: (a) diluting a mixed acid; (b) measuring a first electrical conductivity of the diluted mixed acid; (c) adding an additive containing Fe trivalent to the diluted mixed acid; (d) measuring a second electrical conductivity of the mixed acid to which the additive is added; And (e) calculating the concentration of hydrofluoric acid in proportion to the difference between the second electrical conductivity and the first electrical conductivity.

혼합산, 스테인리스, 산세공정 Mixed Acid, Stainless Steel, Pickling Process

Description

스테인리스강의 혼합산 산세 용액의 유리산 농도 분석 방법{Analysis method of free acid in mixed acid pickling solution for stainless steel}Analysis method of free acid in mixed acid pickling solution for stainless steel}

본 발명은 스테인리스강의 혼합산 산세 용액의 유리산 농도 분석 방법에 관한 것으로, 더욱 상세하게는 스테인리스강 산세(Pickling)시에 사용되는 혼합산 (질산-불산 또는 황산-불산 등) 중의 각 산의 자유산 농도를 매우 간편하고 정확하게 측정할 수 있도록 하는 유리산 농도 분석 방법에 관한 것이다.The present invention relates to a method for analyzing the free acid concentration of a mixed acid pickling solution of stainless steel, and more particularly, free of each acid in a mixed acid (such as nitric acid-fluoric acid or sulfuric acid-fluoric acid) used in pickling stainless steel. The present invention relates to a free acid concentration analysis method, which makes measuring acid concentration very simple and accurate.

스테인리스 강은 철에 크롬과 니켈 등 내식성 금속을 합금하여 만든 강종으로 합금에 의하여 높은 내식성을 나타내는데, 제조과정에서 압연 후에 균일한 조직을 얻기 위해 열처리를 수행하며, 이 과정에서 강표면에 다량의 산화스케일을 형성하게 된다. 이러한 산화스케일을 화학적으로 제거하는 과정이 산세과정이며, 산화스케일은 크롬 함량이 높아 일반적인 단일 산 용액으로는 이를 제거할 수 없으므로 주로 불산과 질산 혹은 불산과 황산 및 과산화수소와 같은 혼합산을 사용하게 된다. 그러나 혼합산의 농도에 따라서 산세 후의 제품 품질이 다양하게 변하므로 그 농도를 정확하게 측정 및 관리하는 것이 매우 중요한 기술이다. Stainless steel is a type of steel made by alloying corrosion-resistant metals such as chromium and nickel with iron. It shows high corrosion resistance by alloys. In the manufacturing process, heat treatment is performed to obtain uniform structure after rolling. To form a scale. The process of chemically removing the oxidized scale is a pickling process, and since the oxidized scale has a high chromium content, it cannot be removed by a general single acid solution. Therefore, a mixed acid such as hydrofluoric acid and nitric acid or hydrofluoric acid and sulfuric acid and hydrogen peroxide is mainly used. . However, since the product quality after pickling varies according to the concentration of mixed acid, it is very important to accurately measure and control the concentration.

이를 위해 종래에는 첫째, 불소선택적 전극과 수소선택적 전극을 이용하여 산용액 중의 총산과 불산을 분리 분석하는 방법(미국특허 제4,060,717호)이 있는데, 이 방법으로는 총산의 농도를 구하고 여기에서 불소이온 농도를 구한 값을 제거하여 각각의 농도를 환산하는 방법이나, 상호 간섭이 크고 장비가 고가이며, 이온 선택적 전극의 수명이 길지 않아 유지관리에 많은 비용이 소요된다.To this end, first, a method of separating and analyzing total acid and hydrofluoric acid in an acid solution using a fluorine-selective electrode and a hydrogen-selective electrode (US Pat. No. 4,060,717), in which the concentration of total acid is obtained and fluorine ion It is a method of converting each concentration by removing the concentration value, but the mutual interference is large, the equipment is expensive, and the life of the ion-selective electrode is not long.

둘째, 가성소다에 의해 중화적정을 하면서 용액의 온도와 전기전도도를 동시에 모니터링하여 불산과 혼합산 및 메탈의 농도를 결정하는 방법(미국특허 제 5,518,933)이 있으나, 역시 고가의 Thermo titrator가 필요하며, 적정시에 상당한 시간이 소요되어 한 시료를 측정하는데, 많은 시간이 걸리는 단점이 있다.Second, there is a method of determining the concentration of hydrofluoric acid, mixed acid and metal by monitoring the temperature and electrical conductivity of the solution simultaneously with neutralization titration by caustic soda (US Pat. No. 5,518,933), but also requires an expensive thermo titrator. It takes a considerable time at the time of titration, there is a disadvantage that takes a lot of time to measure a sample.

셋째, J.P. McKaveney 가 흡광도 분석방법(Analytical Chemistry, Vol. 40, No. 8, 1968, “Spectrophotometric Method for Hydrofluoric Acid in Stainless Steel Pickling Batshs)을 발표하여 이 방법을 자동화 시킨 사례 (Masahiko ITO et al., ISIJ, Vol 37., No. 1, pp. 47-54, 1997, “Development of an Automatic Analyzer for a Mixed Nitric Acid, Hydrofluoric Acid, and Iron Ion in the Pickling Process”)가 있으나, 자동화한 과정이 복잡하고 고가의 분석장비를 필요로 한다. 또한, 시간에 따라 흡광도가 변하고 여러 가지 이온 물질에 의해 영향을 받는 등 실효성이 떨어지는 방법이다. Third, J.P. McKaveney published an analysis of absorbance (Analytical Chemistry, Vol. 40, No. 8, 1968, “Spectrophotometric Method for Hydrofluoric Acid in Stainless Steel Pickling Batshs” to automate this method (Masahiko ITO et al., ISIJ, Vol. 37., No. 1, pp. 47-54, 1997, “Development of an Automatic Analyzer for a Mixed Nitric Acid, Hydrofluoric Acid, and Iron Ion in the Pickling Process”), but the automated process is complex and expensive. Requires analytical equipment Moreover, it is a method inferior in effectiveness, such as absorbance changes with time and is influenced by various ionic substances.

그 외에도 다양한 시도가 있었으나, 대부분 실용적이지 못한 방법이며 실제로 사용되는 경우는 상기의 세 종류의 응용 정도가 전부이다.In addition, various attempts have been made, but most of them are not practical methods, and all of the above three kinds of applications are practically used.

본 발명의 목적은 혼합산 중의 각각의 산의 농도를 신속하고 간편하며 저렴하게 측정하는 방법을 제공하여 스테인리스 산세 공정에 쉽게 응용할 수 있도록 하는 것이다.It is an object of the present invention to provide a method for quickly, simply and inexpensively measuring the concentration of each acid in a mixed acid so that it can be easily applied to a stainless pickling process.

본 발명에 따른 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법은, (a) 혼합산이 희석되는 단계; (b) 상기 희석된 혼합산의 제 1 전기전도도가 측정되는 단계; (c) Fe 3가가 포함된 첨가제가 상기 희석된 혼합산에 첨가되는 단계; (d) 상기 첨가제가 첨가된 혼합산의 제 2 전기전도도가 측정되는 단계; 및 (e) 불산의 농도가 상기 제 2 전기전도도와 제 1 전기전도도의 차이에 비례하여 계산되는 단계를 포함하는 것을 특징으로 한다.According to the present invention, a method for analyzing the free acid concentration of a mixed acid mixed with hydrofluoric acid and a strong acid includes: (a) diluting a mixed acid; (b) measuring a first electrical conductivity of the diluted mixed acid; (c) adding an additive containing Fe trivalent to the diluted mixed acid; (d) measuring a second electrical conductivity of the mixed acid to which the additive is added; And (e) calculating the concentration of hydrofluoric acid in proportion to the difference between the second electrical conductivity and the first electrical conductivity.

또한, 본 발명에 따른 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법은, (a) 혼합산이 희석되는 단계; (b) 상기 희석된 혼합산의 제 1 전기전도도 및 측정온도가 측정되는 단계; (c) Fe 3가가 포함된 첨가제가 상기 희석된 혼합산에 첨가되는 단계; (d) 상기 첨가제가 첨가된 혼합산의 제 2 전기전도도가 측정되는 단계; (e) 상기 측정온도에서의 상기 제 1 전기전도도를 기준온도에서의 전기전도도로 보상한 제 3 전기전도도가 계산되는 단계; (f) 상기 측정온도에서의 상기 제 2 전기전도도를 기준온도에서의 전기전도도로 보상한 제 4 전기전도도가 계산되는 단계; (g) 강산의 농도가 [A × (제 3 전기전도도) + B] 에 의해 계산되되, 상기 A 및 B는 각각, 상기 혼합산의 강산에 대한 전기전도도와 농도의 검량선의 기울기 및 y절편값으로 결정되는 단계; 및 (h) 불산의 농도가 [C × (제 4 전기전도도 - 제 3 전기전도도) + D] 에 의해 계산되되, 상기 C 및 D는 각각, 상기 혼합산의 불산에 대한 전기전도도와 상기 혼합산의 강산에 대한 전기전도도의 차이와 농도의 검량선의 기울기 및 y절편값으로 결정되는 단계를 포함하는 것을 특징으로 한다.In addition, the method of analyzing the free acid concentration of the mixed acid in which the hydrofluoric acid and the strong acid are mixed according to the present invention includes: (a) diluting the mixed acid; (b) measuring a first electrical conductivity and a measurement temperature of the diluted mixed acid; (c) adding an additive containing Fe trivalent to the diluted mixed acid; (d) measuring a second electrical conductivity of the mixed acid to which the additive is added; (e) calculating a third electrical conductivity which compensates the first electrical conductivity at the measurement temperature with the electrical conductivity at a reference temperature; (f) calculating a fourth electrical conductivity which compensates the second electrical conductivity at the measurement temperature with the electrical conductivity at a reference temperature; (g) The concentration of the strong acid is calculated by [A × (third conductivity) + B], where A and B are the inclination and y-intercept values of the calibration curve of the conductivity and the concentration with respect to the strong acid of the mixed acid, respectively. The determined step; And (h) the concentration of hydrofluoric acid is calculated by [C x (fourth conductivity-third conductivity) + D], wherein C and D are the electrical conductivity for the hydrofluoric acid and the mixed acid of the mixed acid, respectively. It characterized in that it comprises the step of determining the difference between the electrical conductivity for the strong acid and the slope of the calibration curve and the y-intercept value of the concentration.

상기 (a) 단계에서, 상기 혼합산은 50 내지 100배로 희석되고, 상기 Fe 3가가 포함된 첨가제는 Fe(NO3)3·9H2O, FeCl3, Fe2(SO4)3 또는 이들의 혼합물이며, 상기 첨가제의 농도는 Fe 기준으로 50g/L 내지 200g/L인 것이 바람직하다.In the step (a), the mixed acid is diluted by 50 to 100 times, and the additive containing Fe trivalent is Fe (NO 3 ) 3 · 9H 2 O, FeCl 3 , Fe 2 (SO 4 ) 3 or a mixture thereof The concentration of the additive is preferably 50g / L to 200g / L on the basis of Fe.

상기 (e) 단계에서, 제 3 전기전도도가 [α × (제 1 전기전도도)]에 의해 계산되되, 상기 α는 상기 혼합산에 대한, 온도차이와 전도도 변화율의 검량선의 기울기로 결정되며, 상기 온도 차이는 (측정온도 - 기준온도)이며, 상기 (f) 단계에서, 제 4 전기전도도가 [β × (제 2 전기전도도)]에 의해 계산되되, 상기 β는 상기 첨가제가 첨가된 혼합산에 대한, 온도차이와 전도도 변화율의 검량선의 기울기로 결정되며, 상기 온도 차이는 (측정온도 - 기준온도)인 것이 바람직하다. In the step (e), the third electrical conductivity is calculated by [α × (first electrical conductivity)], wherein α is determined as the slope of the calibration curve of the temperature difference and the conductivity change rate with respect to the mixed acid, The temperature difference is (measurement temperature-reference temperature), and in the step (f), the fourth electrical conductivity is calculated by [β × (second electrical conductivity)], wherein β is added to the mixed acid to which the additive is added. It is determined by the slope of the calibration curve between the temperature difference and the conductivity change rate, and the temperature difference is preferably (measurement temperature-reference temperature).

종래의 혼합산 중의 유리산 농도 측정 방법은 고가의 분석 장비와 숙련된 분석자를 통해 분석해야 하므로, 측정 시간이 많이 소요되고 시료 분석을 위해 특정 장소로 이송해야 하는 불편함이 있어 공정에서 직접 활용이 곤란하였으며, 유지관리비용도 많이 소요되는 단점이 존재하였다. Since conventional methods for measuring the concentration of free acid in mixed acid have to be analyzed by expensive analysis equipment and skilled analysts, it takes much time to measure and transfers to a specific place for sample analysis. It was difficult, and there was a disadvantage that a lot of maintenance costs are required.

본 발명에 따르면 용이하게 혼합산 중의 각각의 유리산 농도 측정이 가능하게 되어, 스테인리스강 산세용액의 정밀한 관리가 가능하며, 비숙련자에 의한 분석도 가능하여 업무 효율을 향상시킬 수 있는 효과가 있고, 유지관리 비용이 거의 소요되지 않아 매우 경제적이고 효과적인 방법이다. According to the present invention, it is possible to easily measure the concentration of each free acid in the mixed acid, and it is possible to precisely manage the stainless steel pickling solution, and to analyze by an unskilled person, thereby improving work efficiency. It is very economical and effective because it requires little maintenance cost.

일반적으로, 불산과 다른 강산이 혼합되면 불산은 약산으로 작용하여 그 해리도가 크지 않으며, 강산인 황산 또는 질산은 그 해리도가 커서 혼합된 용액의 전기전도도를 측정하면, 그 값은 주로 강산의 농도에 의하여 크게 변하고 불산의 농도에 의해서는 그 변화가 미미하다. 이러한 관계는 하기 화학식으로 알 수 있다. In general, when hydrofluoric acid and other strong acids are mixed, hydrofluoric acid acts as a weak acid, and its dissociation degree is not large. The strong acid sulfuric acid or nitric acid has a large dissociation degree, and when the electrical conductivity of the mixed solution is measured, the value is mainly determined by the concentration of the strong acid. It varies greatly and the change is minimal due to the concentration of hydrofluoric acid. This relationship can be seen by the following formula.

HF + H2SO4 (또는 HNO3) + H2O → HF (대량)+ H+ + F-(소량) + SO4 2-(또는 NO3 -)(대량)HF + H 2 SO 4 (or HNO 3) + H 2 O → HF ( mass) + H + + F - (small) + SO 4 2- (or NO 3 -) (volume)

HF + Fe(NO3)3·9H2O → FeF3 + H+ + 3(NO3 -) (HF에 비례하여 전도도는 상승됨) HF + Fe (NO 3) 3 · 9H 2 O → FeF 3 + H + + 3 (NO 3 -) ( relative to the HF conductivities sangseungdoem)

이러한 원리를 응용하여 먼저 혼합산을 적절한 비율로 희석하고 (50~100배) 그 전도도를 측정하여 기록한다. 이때의 전도도를 제 1 전도도라고 한다. Applying this principle, first dilute the mixed acid in an appropriate proportion (50-100 times) and measure and record its conductivity. The conductivity at this time is called first conductivity.

불산의 경우에, Fe 3가 이온과 결합하여 FeF3 혼합물을 만들므로, Fe 3가가 포함된 용액을 불산이 포함된 용액에 첨가하게 되면, HF로 존재하던 불산 중의 F성분이 Fe와 결합하면서 H+ 이온을 유리시키고, 첨가제에 포함되어 있던 음이온(NO3, Cl, SO4 등)도 유리되어 불산의 농도에 비례하여 전기전도도가 큰 폭으로 상승하게 된다. In the case of hydrofluoric acid, Fe 3 ions are combined to form a FeF 3 mixture. Therefore, when a solution containing Fe trivalent is added to a solution containing hydrofluoric acid, the F component in hydrofluoric acid, which was present as HF, binds to Fe The ions are liberated, and the anions (NO 3 , Cl, SO 4, etc.) contained in the additive are also released, and the electrical conductivity is greatly increased in proportion to the concentration of hydrofluoric acid.

이 원리를 이용하여, 제 1 전기전도도를 측정한 후, Fe 3가가 포함된 혼합물 [Fe(NO3)3·9H2O, FeCl3, Fe2(SO4)3 등]을 첨가하여 전기전도도의 변화를 기록한다. 이때의 전도도를 제 2 전기전도도라 한다. Using this principle, the electrical conductivity is measured by adding a mixture containing Fe trivalent [Fe (NO 3 ) 3 · 9H 2 O, FeCl 3 , Fe 2 (SO 4 ) 3, etc.] after measuring the first electrical conductivity. Record the change in. The conductivity at this time is referred to as a second electrical conductivity.

그 후, 제 2 전기전도도에서 제 1 전기전도도를 빼면, 순수하게 불산의 존재에 의해서만 증가된 전기전도도의 증가분을 알 수 있으며, 이 증가분은 불산의 농도에 비례하게 된다. 따라서, 이 원리를 응용하여, 혼합산 용액의 각각의 유리산의 농도를 신속하고 정확하게 계산할 수 있다.Subsequently, by subtracting the first electrical conductivity from the second electrical conductivity, it can be seen that the increase in electrical conductivity increased only by the presence of pure hydrofluoric acid, which is proportional to the concentration of hydrofluoric acid. Therefore, by applying this principle, the concentration of each free acid in the mixed acid solution can be calculated quickly and accurately.

도 1은 본 발명에 따른 혼합산의 유리산 농도 분석 방법의 순서도를 도시하며, 이하에는 본 발명을 예시적인 수치를 사용하여 설명한다.1 shows a flow chart of a method for analyzing the free acid concentration of mixed acid according to the present invention, hereinafter, the present invention will be described using exemplary numerical values.

본 발명의 혼합산의 유리산 농도 분석 방법을 살펴보면, 혼합산 중의 유리산 농도 분석을 위해, 온도 측정이 가능한 전기전도도 미터와 전기전도도 전극 (0~200mS/cm)을 준비한다. Looking at the method for analyzing the free acid concentration of the mixed acid of the present invention, for analyzing the free acid concentration in the mixed acid, an electric conductivity meter and an electric conductivity electrode (0 to 200 mS / cm) capable of measuring temperature are prepared.

전기전도도 전극의 범위는 너무 낮은 범위를 사용하면 혼합산의 전도도 범위 를 초과하거나 지나치게 많은 희석을 해야 하므로 불리하며, 너무 높은 범위의 전도도 전극은 감도가 떨어져 정확도를 감소시킨다. If the range of the conductivity electrode is too low, it is disadvantageous because the conductivity range of the mixed acid must be exceeded or too much dilution is required, and the conductivity electrode of the too high range decreases the sensitivity and decreases the accuracy.

이어서, 증류수 100mL를 취하여 플라스틱 비이커에 넣고 여기에 혼합산 용액 2mL를 취하여 증류수에 희석시킨다. 본 실시예에서는 희석 비율이 51배로 하였으나 희석비율은 10~1000배까지 사용할 수도 있으며, 다만, 희석비율이 너무 낮으면 높은 전도도를 나타내게 되어 전극의 수명을 단축시키고, Fe용액의 첨가제 투입 양이 많아져 실용적이지 못하다. 희석비율이 너무 높으면 측정 감도가 떨어져서 정확도를 확보하기 어렵다. Subsequently, 100 mL of distilled water is taken into a plastic beaker, and 2 mL of the mixed acid solution is taken and diluted in distilled water. In this embodiment, the dilution ratio is 51 times, but the dilution ratio may be used from 10 to 1000 times. However, if the dilution ratio is too low, the dilution ratio is too high, resulting in high conductivity, shortening the life of the electrode, and adding a large amount of additives into the Fe solution. Not practical. If the dilution ratio is too high, the measurement sensitivity is low and accuracy is difficult to secure.

따라서, 바람직하게는 50~100배 사이에서 희석을 수행한다. 본 실시예에서는 설명의 편의를 위해 51배의 희석비율을 사용하였다. 이렇게 희석된 혼합산의 전기전도도(제 1 전기전도도)와 측정온도를 정확하게 측정하여 기록한다.Therefore, dilution is preferably performed between 50 and 100 times. In this example, a dilution ratio of 51 times was used for convenience of explanation. Accurately measure and record the electrical conductivity (first electrical conductivity) and measured temperature of the diluted acid.

이어서, 희석된 혼합산에 Fe 3가 용액, 예를 들어 (Fe(NO3)3·9H2O, FeCl3, Fe2(SO4)3 등을 5mL 취하여 투입한다. Fe 3가 용액의 첨가제는 상기 어느 것으로 제조하여도 무방하나, 산세용액과 상호간섭이 적고 용해도가 큰 Fe(NO3)3·9H2O 용액이 가장 바람직하다. 첨가제의 농도는 Fe 기준으로 약 50~200g/L를 사용한다. 이 농도가 낮으면 많은 양을 투입해야 하므로 용액이 희석되어 상관관계가 깨어지며, 너무 높은 농도를 사용하면 제조가 어렵고 전도도 변화가 너무 커서 정확도를 감소 시킨다. Subsequently, 5 mL of a Fe trivalent solution, such as (Fe (NO 3 ) 3 .9H 2 O, FeCl 3 , Fe 2 (SO 4 ) 3, etc.), is added to the diluted mixed acid. May be prepared by any of the above, but a Fe (NO 3) 3 · 9H 2 O solution having a low solubility and high solubility with the pickling solution is most preferable.The concentration of the additive is about 50 to 200 g / L based on Fe. If this concentration is low, the solution will be diluted due to the high volume of the solution, and too high concentrations will be difficult to manufacture and the conductivity change will be so large that the accuracy will be reduced.

이렇게 Fe 3가 첨가제를 투입하고 나서 동일한 방식으로 전기전도도(제 2 전 기전도도)를 측정하며, 하기의 상관관계 식을 이용하여, 각 산의 온도 보상 및 유리산 농도를 계산한다.Thus, after the addition of the Fe 3 additive, the electrical conductivity (second conductivity) is measured in the same manner, and the temperature compensation and free acid concentration of each acid are calculated using the following correlation equation.

[혼합산 용액 자체의 온도 보상][Temperature compensation of mixed acid solution itself]

제 3 전기전도도 = α × 제 1 전기전도도 3rd conductivity = α × 1st conductivity

[첨가제 투입된 혼합산 용액의 온도 보상][Temperature Compensation of Mixed Acid Solution Added as Additive]

제 4 전기전도도 = β × 제 2 전기전도도 4th conductivity = β × 2nd conductivity

상기 식에서 온도변화상수 α, β는 제 1 전기전도도 및 제 2 전기전도도가 측정된 온도인 측정온도에서 얻어진 전기전도도를 25 ℃(기준온도)에서의 전기전도도로 변환하기 위한 상수이다.In the above equations, the temperature change constants α and β are constants for converting the electrical conductivity obtained at the measured temperature at which the first and second electrical conductivity are measured to the electrical conductivity at 25 ° C. (reference temperature).

온도변화상수 α, β는, x축을 온도차이(측정온도 - 기준온도)(℃)로 하고 y축을 전도도 변화율(%)로 하는 검량선을, 첨가제 투입 전의 황산-불산 혼합산 및 첨가제 투입 후의 황산-불산 혼합산에 대해 각각 작성하고, 이들 곡선의 기울기를 각각 취함에 의해 결정된다. The temperature change constants α and β represent calibration curves where the x axis is the temperature difference (measurement temperature-reference temperature) (° C.) and the y axis is the conductivity change rate (%). It is determined by creating each of the hydrofluoric acid mixed acids and taking the slopes of these curves, respectively.

도 2는 첨가제가 투입되기 전의 황산-불산 혼합산의 온도에 따른 전기전도도 변화율을 도시하며, 여기서, 곡선의 기울기인 1.0212가 α로 결정된다. 동일한 방식으로, 첨가제가 투입된 후의 황산-불산 혼합산의 온도에 따른 전기전도도 변화율의 검량선을 그린 후, 곡선의 기울기를 취하면, 그 값이 β로 결정된다.Figure 2 shows the electrical conductivity change rate according to the temperature of the sulfuric acid-fluoric acid mixed acid before the additive is added, wherein the slope of the curve 1.0212 is determined as α. In the same manner, after drawing the calibration curve of the electrical conductivity change rate according to the temperature of the sulfuric acid-fluoric acid mixed acid after the additive is added, taking the slope of the curve, the value is determined to be β.

이하에서는, 유리산의 농도를 계산하는 방법을 설명한다. 혼합산의 유리산은 하기의 식을 이용하여 계산된다.Hereinafter, a method for calculating the concentration of free acid will be described. The free acid of the mixed acid is calculated using the following formula.

[강산의 농도 계산][Calculation of concentration of strong acid]

강산 농도 = A × 제 3 전기전도도 + B Strong Acid Concentration = A × Third Conductivity + B

[불산의 농도 계산][Calculation of concentration of hydrofluoric acid]

불산 농도 = C × (제 4 전기전도도 - 제 3 전기전도도) + D Hydrofluoric acid concentration = C × (4th conductivity-3rd conductivity) + D

여기서, A, B는 혼합산의 강산에 대한 전기전도도와 농도의 검량선에서 계산된 상수이며, C, D는 혼합산의 불산에 대한 전기전도도와 혼합산의 강산에 대한 전기전도도의 차이와 농도의 검량선에서 계산된 상수이다.Here, A and B are constants calculated from the calibration curves of the electrical conductivity and the concentration of the strong acid of the mixed acid, and C and D are the calibration curves of the difference between the electrical conductivity of the hydrofluoric acid of the mixed acid and the electrical conductivity of the strong acid of the mixed acid. Calculated constant.

상기 상수 A, B, C, D를 계산하기 위하여, 혼합산의 강산에 대하여 x축을 제 3 전기전도도로 하고, y축을 강산 농도로 하는 검량선을 작성하고, 이 곡선의 기울기 및 y절편을 A 및 B로 각각 결정한다. 또한, 혼합산의 불산에 대하여 x축을 첨가제 투입에 의한 전기 전도도 차이(즉, 제 4 전기전도도 - 제 3 전기전도도)로 하고, y축을 불산 농도로 하는 검량선을 작성하고, 이 곡선의 기울기 및 y절편을 C 및 D로 각각 결정한다. In order to calculate the constants A, B, C, and D, a calibration curve is prepared in which the x-axis is the third electrical conductivity with respect to the strong acid of the mixed acid and the y-axis is the strong acid concentration, and the slopes and y-intercepts of the curve are A and B. Determine each. In addition, for the hydrofluoric acid of the mixed acid, the x-axis is set as the electrical conductivity difference (ie, the fourth electrical conductivity-the third electrical conductivity) due to the addition of additives, and the calibration curve is prepared with the y-axis as the hydrofluoric acid concentration. Determine the sections with C and D, respectively.

도 3a는 황산-불산 혼합산에 있어서, 25℃에서의 황산의 전기전도도와 농도의 검량선을 도시하며, 도 3b는 황산-불산 혼합산에 있어서, 25℃에서의 불산의 전기전도도와 농도의 검량선을 도시한다. 도 3a 및 도 3b에서, A, B, C, D를 구하면, A=10.588, B=-19.083, C=5.0506, D=-102.29로 결정된다.FIG. 3A shows the calibration curve for the conductivity and concentration of sulfuric acid at 25 ° C. in sulfuric acid-fluoric acid mixed acid. FIG. 3B shows the calibration curve for the conductivity and concentration of hydrofluoric acid at 25 ° C. in sulfuric acid-fluoric acid mixed acid. To show. 3A and 3B, when A, B, C, and D are found, A = 10.588, B = -19.083, C = 5.0506, and D = -102.29 are determined.

도 4a는 질산-불산 혼합산에 있어서, 25℃에서의 질산의 전기전도도와 농도의 검량선을 도시하며, 도 4b는 질산-불산 혼합산에 있어서, 25℃에서의 불산의 전기전도도와 농도의 검량선을 도시한다. 도 4a 및 도 4b에서, A, B, C, D를 구하면, A=8.5844, B=-6.0634, C=4.7581, D=-91.614로 결정된다.FIG. 4A shows a calibration curve of the electrical conductivity and concentration of nitric acid at 25 ° C. in nitric acid-fluoric acid mixed acid. FIG. 4B shows the calibration curve of the conductivity of hydrofluoric acid at 25 ° C. in nitric acid-fluoric acid mixed acid. To show. In Figs. 4A and 4B, when A, B, C, and D are found, A = 8.5844, B = -6.0634, C = 4.7581, and D = -91.614.

이렇게 구해진 상수 A, B, C, D 및 온도 보상된 제 3 전기전도도와 제 4 전기전도도를 이용하면, 각 유리산의 농도를 쉽고 빠르게 구할 수 있다. Using the constants A, B, C, D and the temperature-compensated third and fourth electrical conductivity, the concentration of each free acid can be easily and quickly obtained.

본 발명에 의한 방법으로 혼합산 표준용액을 제조하여 그 농도를 분석한 결과를 비교하여 보았다. 표 1에 그 결과를 나타내었으며, 본 발명에 의한 측정결과 에러율은 최대 2.15% 이내에서 정확한 측정이 가능하였다.The mixed acid standard solution was prepared by the method according to the present invention and the results of analyzing the concentration were compared. The results are shown in Table 1, and the measurement result error rate according to the present invention was able to accurately measure within a maximum of 2.15%.

[표 1] 표준용액 제조에 의한 농도 측정 결과TABLE 1 Concentration measurement results by standard solution preparation

황산농도 (g/L)Sulfuric acid concentration (g / L) 불산농도 (g/L)Folic acid concentration (g / L) 측정 결과Measurement result 에러율 (%)Error rate (%) 황산 (g/L)Sulfuric acid (g / L) 불산 (g/L)Foshan (g / L) 황산Sulfuric acid 불산Foshan 2020 2020 20.1420.14 19.9219.92 0.700.70 0.400.40 4040 2020 40.2640.26 19.9519.95 0.650.65 0.250.25 6060 2020 59.8759.87 20.4320.43 0.220.22 2.152.15 8080 2020 79.8479.84 19.6719.67 0.200.20 1.651.65 8080 4040 80.0480.04 39.8739.87 0.050.05 0.330.33 8080 6060 81.0281.02 60.2460.24 1.281.28 0.400.40 8080 8080 81.0181.01 79.9879.98 1.261.26 0.020.02

도 5는 황산-불산 혼합산을 이용한 산세 공정에 있어서, 1개월 조업시의 산농도 변화 측정 결과의 그래프이다.FIG. 5 is a graph of measurement results of acid concentration change during one month operation in a pickling process using a sulfuric acid-fluoric acid mixed acid. FIG.

실제 스테인리스강의 산세공정에 사용된 용액을 1개월간 연속 분석하여 본 발명의 효용성을 살펴보았다. 실 공장은 스테인리스 후판을 산세 할 경우에 있어서 초기 산농도로 황산 60g/L, 불산 40g/L를 사용하고 사용에 따라 농도가 감소하면 필요한 만큼 보충하여 지속적으로 산세하는 과정을 반복하였다. 그 결과는 도 5에 도시되었으며, 초기 농도는 산세의 진행에 따라 각각의 산 농도가 감소하며 신산을 첨가시에 다시 원래 농도로 복귀되고 다시 감소하는 과정을 반복하였다. Actually, the solution used in the pickling process of stainless steel was analyzed for one month to examine the utility of the present invention. In the case of pickling stainless steel plates, 60 g / L sulfuric acid and 40 g / L hydrofluoric acid were used as initial acid concentrations. The results are shown in Figure 5, the initial concentration of each acid concentration decreases with the progress of pickling, and when the acid is added, the process returns to the original concentration again and decreases again.

본 발명에 의한 방법으로 1개월간 산세용액을 측정하고 관리해본 결과 제품의 품질이 매우 균일하고 안정적인 생산성으로 조업이 가능하였다. As a result of measuring and managing the pickling solution for 1 month by the method according to the present invention, it was possible to operate the product with a very uniform and stable productivity.

상기 설명한 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시되었다. 따라서, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다. Preferred embodiments of the invention described above have been disclosed for purposes of illustration. Therefore, those skilled in the art having ordinary knowledge of the present invention will be capable of various modifications, changes, and additions within the spirit and scope of the present invention, and such modifications, changes and additions should be regarded as belonging to the following claims.

도 1은 본 발명에 따른 혼합산의 유리산 농도 분석 방법의 순서도이다.1 is a flowchart of a method for analyzing the free acid concentration of mixed acid according to the present invention.

도 2는 첨가제가 투입되기 전의 황산-불산 혼합산의 온도에 따른 전기전도도 변화율을 도시한다.Figure 2 shows the electrical conductivity change rate according to the temperature of the sulfuric acid-fluoric acid mixed acid before the additive is added.

도 3a는 황산-불산 혼합산에 있어서, 25℃에서의 황산의 전기전도도와 농도의 검량선을 도시한다.FIG. 3A shows a calibration curve of the electrical conductivity and concentration of sulfuric acid at 25 ° C. in a sulfuric acid-fluoric acid mixed acid.

도 3b는 황산-불산 혼합산에 있어서, 25℃에서의 불산의 전기전도도와 농도의 검량선을 도시한다.FIG. 3B shows calibration curves of the electrical conductivity and concentration of hydrofluoric acid at 25 ° C. in a sulfuric acid-fluoric acid mixed acid.

도 4a는 질산-불산 혼합산에 있어서, 25℃에서의 질산의 전기전도도와 농도의 검량선을 도시한다.FIG. 4A shows a calibration curve of the electrical conductivity and concentration of nitric acid at 25 ° C. for nitric acid-fluoric acid mixed acid.

도 4b는 질산-불산 혼합산에 있어서, 25℃에서의 불산의 전기전도도와 농도의 검량선을 도시한다.FIG. 4B shows calibration curves for the electrical conductivity and concentration of hydrofluoric acid at 25 ° C. in nitric acid-fluoric acid mixed acid.

도 5는 황산-불산 혼합산을 이용한 산세 공정에 있어서, 1개월 조업시의 산농도 변화 측정 결과의 그래프이다.FIG. 5 is a graph of measurement results of acid concentration change during one month operation in a pickling process using a sulfuric acid-fluoric acid mixed acid. FIG.

Claims (5)

삭제delete 스테인리스강의 산세 용액으로 사용되는, 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법에 있어서,In the analysis method of free acid concentration of mixed acid mixed with hydrofluoric acid and strong acid, used as a pickling solution of stainless steel, (a) 혼합산이 희석되는 단계;(a) diluting the mixed acid; (b) 상기 희석된 혼합산의 제 1 전기전도도 및 측정온도가 측정되는 단계;(b) measuring a first electrical conductivity and a measurement temperature of the diluted mixed acid; (c) Fe 3가가 포함된 첨가제가 상기 희석된 혼합산에 첨가되는 단계;(c) adding an additive containing Fe trivalent to the diluted mixed acid; (d) 상기 첨가제가 첨가된 혼합산의 제 2 전기전도도가 측정되는 단계;(d) measuring a second electrical conductivity of the mixed acid to which the additive is added; (e) 상기 측정온도에서의 상기 제 1 전기전도도를 기준온도에서의 전기전도 도로 보상한 제 3 전기전도도가 계산되는 단계;(e) calculating a third electrical conductivity that compensates the first electrical conductivity at the measurement temperature with the electrical conductivity at a reference temperature; (f) 상기 측정온도에서의 상기 제 2 전기전도도를 기준온도에서의 전기전도도로 보상한 제 4 전기전도도가 계산되는 단계;(f) calculating a fourth electrical conductivity which compensates the second electrical conductivity at the measurement temperature with the electrical conductivity at a reference temperature; (g) 강산의 농도가 [A × (제 3 전기전도도) + B] 에 의해 계산되되, 상기 A 및 B는 각각, 상기 혼합산의 강산에 대한 전기전도도와 농도의 검량선의 기울기 및 y절편값으로 결정되는 단계; 및(g) The concentration of the strong acid is calculated by [A × (third conductivity) + B], where A and B are the inclination and y-intercept values of the calibration curve of the conductivity and the concentration with respect to the strong acid of the mixed acid, respectively. The determined step; And (h) 불산의 농도가 [C × (제 4 전기전도도 - 제 3 전기전도도) + D] 에 의해 계산되되, 상기 C 및 D는 각각, 상기 혼합산의 불산에 대한 전기전도도와 상기 혼합산의 강산에 대한 전기전도도의 차이와 농도의 검량선의 기울기 및 y절편값으로 결정되는 단계를 포함하는 것을 특징으로 하는, 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법.(h) The concentration of hydrofluoric acid is calculated by [C × (fourth conductivity-third conductivity) + D], where C and D are the electrical conductivity for the hydrofluoric acid of the mixed acid and the A method for analyzing the free acid concentration of a mixed acid mixed with hydrofluoric acid and a strong acid, characterized in that it comprises the step of determining the difference between the electrical conductivity for the strong acid and the slope of the calibration curve of the concentration and the y-intercept value. 제 2 항에 있어서, The method of claim 2, 상기 (a) 단계에서, 상기 혼합산은 50 내지 100배로 희석되는 것을 특징으로 하는 것을 특징으로 하는, 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법.In the step (a), the mixed acid is characterized in that diluted 50 to 100 times, free acid concentration analysis method of the mixed acid mixed with hydrofluoric acid and strong acid. 제 2 항에 있어서, The method of claim 2, 상기 Fe 3가가 포함된 첨가제는 Fe(NO3)3·9H2O, FeCl3, Fe2(SO4)3 또는 이들의 혼합물이며, 상기 첨가제의 농도는 Fe 기준으로 50g/L 내지 200g/L인 것을 특징으로 하는, 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법.The additive containing Fe 3 is Fe (NO 3 ) 3 · 9H 2 O, FeCl 3 , Fe 2 (SO 4 ) 3 or a mixture thereof, the concentration of the additive is 50g / L to 200g / L on the basis of Fe The free acid concentration analysis method of the mixed acid which hydrofluoric acid and the strong acid were mixed, characterized by the above-mentioned. 제 2 항에 있어서, The method of claim 2, 상기 (e) 단계에서, In the step (e), 제 3 전기전도도가 [α × (제 1 전기전도도)]에 의해 계산되되, The third electrical conductivity is calculated by [α × (first electrical conductivity)], 상기 α는 상기 혼합산에 대한, 온도차이와 전도도 변화율의 검량선의 기울기로 결정되며, Α is determined by the slope of the calibration curve of the temperature difference and the conductivity change rate with respect to the mixed acid, 상기 온도 차이는 (측정온도 - 기준온도)이며,The temperature difference is (measurement temperature-reference temperature), 상기 (f) 단계에서, In the step (f), 제 4 전기전도도가 [β × (제 2 전기전도도)]에 의해 계산되되, The fourth electrical conductivity is calculated by [β × (second electrical conductivity)], 상기 β는 상기 첨가제가 첨가된 혼합산에 대한, 온도차이와 전도도 변화율의 검량선의 기울기로 결정되며, Β is determined by the slope of the calibration curve of the temperature difference and the conductivity change rate with respect to the mixed acid to which the additive is added, 상기 온도 차이는 (측정온도 - 기준온도)인 것을 특징으로 하는, 불산과 강산이 혼합된 혼합산의 유리산 농도 분석 방법. The temperature difference is (measurement temperature-reference temperature), characterized in that the free acid concentration analysis method of the mixed acid mixed with hydrofluoric acid and strong acid.
KR1020080129913A 2008-12-19 2008-12-19 Free acid concentration analysis method of mixed acid pickling solution of stainless steel KR101046218B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080129913A KR101046218B1 (en) 2008-12-19 2008-12-19 Free acid concentration analysis method of mixed acid pickling solution of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080129913A KR101046218B1 (en) 2008-12-19 2008-12-19 Free acid concentration analysis method of mixed acid pickling solution of stainless steel

Publications (2)

Publication Number Publication Date
KR20100071260A KR20100071260A (en) 2010-06-29
KR101046218B1 true KR101046218B1 (en) 2011-07-04

Family

ID=42368779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080129913A KR101046218B1 (en) 2008-12-19 2008-12-19 Free acid concentration analysis method of mixed acid pickling solution of stainless steel

Country Status (1)

Country Link
KR (1) KR101046218B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077651A (en) 2017-12-26 2019-07-04 주식회사 포스코 Analysis method of metal in pickling solution
KR20200011755A (en) 2018-07-25 2020-02-04 주식회사 포스코 Analytical apparatus of component concentration of mixed acid solution for pickling of metal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264769B (en) * 2021-12-23 2024-02-20 江阴江化微电子材料股份有限公司 Component concentration detection method of electronic grade mixed acid system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081587A (en) * 1999-09-13 2001-03-27 Parker Corp Method for measuring componential concentration of sulfuric acid-hydrofluoric acid series steel pickling solution
JP2004077256A (en) * 2002-08-15 2004-03-11 Nippon Steel Corp Measuring method for acid concentration
KR100549865B1 (en) * 2003-12-24 2006-02-08 재단법인 포항산업과학연구원 A Method of Measuring Acid Concentration in Acid Pickling Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081587A (en) * 1999-09-13 2001-03-27 Parker Corp Method for measuring componential concentration of sulfuric acid-hydrofluoric acid series steel pickling solution
JP2004077256A (en) * 2002-08-15 2004-03-11 Nippon Steel Corp Measuring method for acid concentration
KR100549865B1 (en) * 2003-12-24 2006-02-08 재단법인 포항산업과학연구원 A Method of Measuring Acid Concentration in Acid Pickling Process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077651A (en) 2017-12-26 2019-07-04 주식회사 포스코 Analysis method of metal in pickling solution
KR20200011755A (en) 2018-07-25 2020-02-04 주식회사 포스코 Analytical apparatus of component concentration of mixed acid solution for pickling of metal

Also Published As

Publication number Publication date
KR20100071260A (en) 2010-06-29

Similar Documents

Publication Publication Date Title
US8008087B1 (en) Analysis of silicon concentration in phosphoric acid etchant solutions
KR102131004B1 (en) Analytical apparatus of component concentration of mixed acid solution for pickling of metal
KR20010049720A (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
KR101046218B1 (en) Free acid concentration analysis method of mixed acid pickling solution of stainless steel
JP4434026B2 (en) Isotope ratio analysis method using plasma ion source mass spectrometer
KR100923860B1 (en) Method of making portable analysis kit for rapid measurement of HF concentration in mixed solution
CN103776953A (en) Determination method of content of cobalt in lithium battery ternary positive electrode material
Bernhart Determination of Hypophosphite in Presence of Phosphite
US20020146348A1 (en) Universal pickle liquor acid analyzer
Jayachandran et al. A novel biamperometric methodology for thorium determination by EDTA complexometric titration
Terentiev et al. Application of coulometric titration for the certification of primary reference materials of pure substances
Kakabadse et al. Method for the determination of methanol in binary methanol-water mixtures by use of ion-selective electrodes
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
Ni et al. Determination of mixed metal ions by complexometric titration and nonlinear partial least squares calibration
Lazarou et al. Kinetic study of the iron (II)-induced perbromate-iodide reaction with an iodide ion selective electrode and kinetic determination of iron, perbromate, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and ethylene glycol-bis (2-aminoethyl ether)-N, N, N', N'-tetraacetic acid
KR102031316B1 (en) Analysis method of metal in pickling solution
US3923608A (en) Method of detecting low levels of cyanide
CN110763749B (en) Method for detecting fluorine ions in acid-containing etching solution
Lindroos Determination of free hydrofluoric and nitric acids in pickling bath liquors using a fluoride-selective electrode and alkalimetric titration
KR100345694B1 (en) Method for measuring free acidity of pickling solution
Partanen et al. Determination of the glass electrode parameters by means of potentiometric titration of acetic acid in aqueous sodium or potassium chloride solutions at 25° C
CN114264769B (en) Component concentration detection method of electronic grade mixed acid system
CN113984475B (en) Digestion liquid and method for determining element content in tungsten-copper material
Johansson et al. Automatic titration by stepwise addition of equal volumes of titrant. Part VIII. Determination of alkalinity and total carbonate in sea water
Pezzatini et al. Potentiometric titration of diprotic systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140625

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150526

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 9