KR100345694B1 - Method for measuring free acidity of pickling solution - Google Patents

Method for measuring free acidity of pickling solution Download PDF

Info

Publication number
KR100345694B1
KR100345694B1 KR1019970019070A KR19970019070A KR100345694B1 KR 100345694 B1 KR100345694 B1 KR 100345694B1 KR 1019970019070 A KR1019970019070 A KR 1019970019070A KR 19970019070 A KR19970019070 A KR 19970019070A KR 100345694 B1 KR100345694 B1 KR 100345694B1
Authority
KR
South Korea
Prior art keywords
pickling solution
pickling
concentration
sodium hydroxide
solution
Prior art date
Application number
KR1019970019070A
Other languages
Korean (ko)
Other versions
KR19980083687A (en
Inventor
곽영진
김상헌
김종국
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970019070A priority Critical patent/KR100345694B1/en
Publication of KR19980083687A publication Critical patent/KR19980083687A/en
Application granted granted Critical
Publication of KR100345694B1 publication Critical patent/KR100345694B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/221Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating pH value

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE: Provided is a method for measuring the free acidity of a pickling solution, by which it is possible to promptly and precisely measure the free acidity of a pickling solution which is used in pickling of steel plates. CONSTITUTION: The method includes the steps of preparing a pickling solution of any predetermined concentration and determining a lower limit amount, a target amount and an upper limit amount of sodium hydroxide needed for titration of the pickling solution, mixing a sample pickling solution to be measured for its free acidity with each of the determined lower limit amount, target amount and upper limit amount of sodium hydroxide, followed by measuring of pH, and processing the obtained data to determine the free acidity.

Description

산세용액의 유리산도 측정방법{Method for Measuring Free Acidity of Pickling Solution}Method for Measuring Free Acidity of Pickling Solution {Method for Measuring Free Acidity of Pickling Solution}

본 발명은 강판의 표면산화물 제거등에 사용되는 산세용액의 유리산도(free acidity)를 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring the free acidity of the pickling solution used for removing the surface oxide of the steel sheet.

산세처리는 표면에 형성된 산화물을 제거하기 위하여 실시되는 처리로써 철강업에서는 주로 열연판을 제조하는 과정중에 형성된 표면산화물을 냉간압연하기 전에 표면산화물을 제거하는데 이용된다.The pickling treatment is a treatment performed to remove oxides formed on the surface, and is mainly used in the steel industry to remove surface oxides before cold rolling the surface oxides formed during the manufacturing of hot rolled sheets.

산세처리에 있어서 주로 사용되는 용액으로는 질산, 염산 혹은 황산등이 많이 사용되며, 산세효율은 용액중의 수소이온농도가 높을수록 효과적이나 황산이나 질산은 일정농도를 넘으면 부식율을 저하하는 경향이 나타나서 그로인해 적정농도가 필요하다.In the pickling process, nitric acid, hydrochloric acid, or sulfuric acid are frequently used. The pickling efficiency is more effective when the hydrogen ion concentration in the solution is higher. However, when sulfuric acid or nitric acid exceeds a certain concentration, the corrosion rate tends to decrease. This requires an appropriate concentration.

산세용액의 온도에 의한 영향으로는 황산용액의 경우는 절대적인 영향을 미치지만 염산의 경우는 온도의 영향이 적은 편이다.In the case of sulfuric acid solution, the influence of the temperature of pickling solution has an absolute effect, but in the case of hydrochloric acid, the influence of temperature is small.

염산용액을 산세용액으로 사용하는 연속산세라인(Line)에서는 산세탱크내의 염산농도가 강판의 품질이나 염산의 원단위를 결정하기 때문에 조업상의 가장 중요한 관리항목의 하나로 되어 있다. 산세 용액은 고농도의 염산용액이고, 용액온도도 80℃ 이상의 고온이므로 염산농도를 pH 센서를 통해 직접 측정할 수 없다. 따라서 종래부터 비색+비중방식 혹은 전도도+비중방식등 각종의 간접측정법이 실용화되어 있지만, 항상 수작업 분석에 의해 염산농도를 보조관리하고 있다. 또한 작업의 편이성을 위해 적정법을 응용한 자동분석장치가 개발되었지만, 용액의 농도가 급변할때는 측정에 걸리는 10분 이상의 지연시간(dead time)으로 인하여 온라인(on-line)상의 실제용액을 정확히 측정하지 못하고, 또한 당량점을 얻기 위해 적정액의 양의 설정에 피드백 제어를 하게 됨에 따라 이를 위해 분석장치가 복잡해지는 문제점이 있다. 이러한 문제점으로 인하여 온라인(on-line)상에서는 실용화되지 못하고 있다.In a continuous pickling line that uses hydrochloric acid as the pickling solution, the concentration of hydrochloric acid in the pickling tank determines the quality of the steel sheet and the basic unit of hydrochloric acid, making it one of the most important management items in operation. The pickling solution is a high concentration hydrochloric acid solution, the solution temperature is also high temperature 80 ℃ or more can not be directly measured through the pH sensor. Therefore, conventionally, various indirect measuring methods such as colorimetric + specific gravity method or conductivity + specific gravity method have been put into practical use, but the hydrochloric acid concentration is always subsidiaryly managed by manual analysis. In addition, an automatic analysis device using titration method has been developed for ease of operation.However, when the concentration of solution changes rapidly, the actual solution on-line cannot be accurately measured due to the dead time of 10 minutes or more. In addition, there is a problem that the analysis device is complicated for this, as the feedback control is set to the amount of the titrant to obtain the equivalent point. Due to this problem, it has not been put to practical use on-line.

전도도 및 비중에 의한 간접 측정방식은 용액중의 이온농도에 따라 용액의 전도도가 증가하는 원리와 용액중의 철이온 농도가 증가할수록 비중이 증가하는 원리를 이용한 것으로서, 비교적 측정이 간단하여 산세액의 농도측정에 많이 사용하는 방법이다. 그러나 이 방법은 간접측정이고 공존성분의 영향을 받기 때문에 측정값과 실제값이 최대 2wt% HCl 이상의 정도차이가 나므로 작업자는 이 측정값을 참고치로만 활용하고 있고, 주기적인 수작업으로 실시한 분석값 및 작업자의 경험등을 종합하여 산세액 농도를 관리하고 있다.The indirect measurement method based on conductivity and specific gravity uses the principle that the conductivity of the solution increases with the ion concentration in the solution and the principle that the specific gravity increases as the iron ion concentration in the solution increases. It is a method frequently used for concentration measurement. However, since this method is an indirect measurement and affected by coexistence components, the difference between the measured value and the actual value is greater than or equal to 2 wt% HCl, so the operator uses this measurement only as a reference value. The concentration of pickled liquor is managed by incorporating experiences.

본 발명은 산세용액의 농도관리를 위해서 측정정도가 우수하고, 측정시간(real time)이 짧은 특성을 갖는 새로운 산세액 농도측정방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a new pickling solution concentration measuring method having excellent measurement accuracy and short measuring time (real time) for the control of the concentration of pickling solution.

도1은 산세용액의 pH 와 수산화나트륨 적정량과의 관계를 나타내는 그래프Figure 1 is a graph showing the relationship between the pH of the pickling solution and the appropriate amount of sodium hydroxide

도2는 본 발명에 따라 농도가 9.5% HCl 인 산세용액의 유리산도를 측정한Figure 2 is a measure of the free acidity of the pickling solution with a concentration of 9.5% HCl in accordance with the present invention

결과도Results

도3은 본 발명에 따라 농도가 10.8% HCl 인 산세용액의 유리산도를 측정한Figure 3 is measuring the free acidity of the pickling solution with a concentration of 10.8% HCl in accordance with the present invention

결과도Results

도4는 본 발명에 따라 농도가 11.5% HCl 인 산세용액의 유리산도를 측정한Figure 4 measures the free acidity of the pickling solution with a concentration of 11.5% HCl in accordance with the present invention

결과도Results

도5는 본 발명에 따라 농도가 8.8% HCl 인 산세용액의 유리산도를 측정한Figure 5 is a measure of the free acidity of the pickling solution with a concentration of 8.8% HCl in accordance with the present invention

결과도Results

본 발명은 산세용액의 유리산도를 측정하는 방법에 있어서,The present invention is a method for measuring the free acidity of the pickling solution,

염산의 농도를 변화시킨 산세용액에 수산화나트륨을 적정(titration)하면서 pH 변화를 측정하고, 측정된 pH와 적정시 투입된 수산화나트륨의 투입량과의 관계를 구하는 단계;Measuring a pH change while titrating sodium hydroxide to a pickling solution having a varying concentration of hydrochloric acid, and obtaining a relationship between the measured pH and the amount of sodium hydroxide added during titration;

상기 염산의 농도가 다른 산세용액으로 부터 다수개의 산세용액을 선택하고,이중 하나의 산세용액을 임의로 목표농도를 갖는 산세용액으로 설정하고, 나머지는 상기 목표 농도를 갖는 산세용액의 염산농도와 비교하여 하한 및 상한농도를 갖는 산세용액으로 분류하는 단계;A plurality of pickling solutions are selected from pickling solutions having different concentrations of hydrochloric acid, and one of these pickling solutions is arbitrarily set as a pickling solution having a target concentration, and the rest is compared with the hydrochloric acid concentration of the pickling solution having the target concentration. Classifying a pickling solution having a lower limit and an upper limit;

상기 목표, 하한 및 상한농도를 갖는 산세용액에 각각 대응하는 필요한 수산화나트륨의 적정 투입량을 상기에서 구한 pH와 적정시 투입된 수산화나트륨의 투입량과의 관계로 부터 결정하는 단계;Determining a proper dose of the required sodium hydroxide corresponding to the pickling solution having the target, the lower limit, and the upper limit from the relationship between the pH obtained above and the dose of sodium hydroxide added at the time of titration;

측정하고자 하는 임의의 산세용액에 상기에서 결정된 수산화나트륨의 적정 투입량을 투입하고 각 산세용액중의 pH 를 측정하는 단계; 및Adding an appropriate amount of sodium hydroxide determined above to any pickling solution to be measured and measuring the pH in each pickling solution; And

상기에서 측정된 산세용액의 pH 값을 비교하여 그 산세용액의 염산농도를 결정하는 단계를 포함하여 구성되는 산세용액중의 유리산도 측정방법에 관한 것이다.The present invention relates to a method for measuring free acidity in a pickling solution comprising the step of comparing the pH value of the pickling solution measured above to determine the hydrochloric acid concentration of the pickling solution.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 산 염기의 중화적정 반응을 응용하여 산세액, 물, NaOH 을 혼합하여 산-알카리 중화반응시의 급격한 pH 변화를 이용한 새로운 용액 관리용 농도 측정방법이다.The present invention is a new solution management method for concentration measurement using rapid pH change during acid-alkali neutralization reaction by applying acid base neutralization titration reaction.

즉, 본 발명은 산세용액의 유리산도를 측정하기 위하여 임의의 염산농도를 갖는 산세용액과 일정한 적정량(titration amount)을 갖는 수산화나트륨(NaOH)을 다수개 혼합하고, 이때 용액의 pH 를 측정하여 나온 출력값을 조합하여 그 산세용액의 유리산도를 측정하는 것이다.That is, the present invention mixes a plurality of pickling solutions having a certain hydrochloric acid concentration and sodium hydroxide (NaOH) having a certain titration amount in order to measure the free acidity of the pickling solution, and the pH of the solution is measured. The free acidity is measured by combining the output values.

이를 위해 먼저, 사전에 염산의 농도를 변화시킨 산세용액의 pH 와 수산화나트륨의 투입량과의 관계(곡선)을 준비한다.To this end, first prepare a relationship (curve) between the pH of the pickling solution with the concentration of hydrochloric acid and the amount of sodium hydroxide added in advance.

이 pH와 수산화나트륨의 투입량과의 관계(곡선)는 염산의 농도를 변화시킨 산세용액에 수산화나트륨을 적정하면서 pH의 변화를 측정하고, 이 측정된 pH와 적정시 투입된 수산화나트륨의 투입량을 이용하여 구해질 수 있다.The relationship between the pH and the amount of sodium hydroxide (curve) was measured by titrating sodium hydroxide in a pickling solution with varying concentrations of hydrochloric acid, and measuring the change in pH, using the measured pH and the amount of sodium hydroxide added at the titration. Can be saved.

그리고, 상기 산세용액의 염산농도에 따라 임의의 산세용액을 설정하고, 그 중 하나를 목표 농도를 갖는 산세용액으로, 그리고 그 목표농도를 갖는 산세용액의 농도보다 낮은 값을 갖는 산세용액은 하한농도를 갖는 산세용액으로, 그리고 높은 값을 갖는 산세용액은 상한 농도를 갖는 산세용액으로 한다.Then, an arbitrary pickling solution is set according to the hydrochloric acid concentration of the pickling solution, one of which is a pickling solution having a target concentration, and a pickling solution having a lower value than the concentration of the pickling solution having the target concentration. Pickling solution having a high value, and pickling solution having a high value is a pickling solution having an upper limit concentration.

이러한 상한 및 하한농도를 갖는 산세용액은 적어도 1개 이상이 바람직하다.At least one pickling solution having such an upper limit and a lower limit is preferable.

이후 상기 산세용액의 염산농도값, 즉 목표, 하한 및 상한 농도를 갖는 산세용액을 중화하기에 필요한 수산화나트륨의 투입량을 pH와 수산화나트륨의 투입량과의 관계(곡선)를 이용하여 결정하고, 정해진 수산화나트륨을 각각 측정하고자 하는 산세용액에 투입하는 것이다.Thereafter, the hydrochloric acid concentration value of the pickling solution, that is, the amount of sodium hydroxide required to neutralize the pickling solution having a target, a lower limit, and an upper limit concentration was determined using the relationship (curve) between the pH and the amount of sodium hydroxide, and Sodium is added to each pickling solution to be measured.

도1은 본 발명의 개념을 도식적으로 나타낸 그림이다. 즉, 산세액에 NaOH 를 첨가하면서 측정한 pH 변화를 나타낸 것으로, 그림에 표시한 하한 NaOH(1-e), 목표 NaOH(1-f) 및 상한 NaOH(1-g)는 상한, 목표, 하한 염산농도를 갖는 산세액을중화시키는데 소요되는 NaOH 량을 의미한다.1 is a diagram schematically illustrating the concept of the present invention. That is, the pH change measured by adding NaOH to the pickling solution is shown. The lower limit NaOH (1-e), target NaOH (1-f) and upper limit NaOH (1-g) shown in the figure are the upper limit, the target and the lower limit. It means the amount of NaOH required to neutralize the pickling liquid having a hydrochloric acid concentration.

즉, 임의의 농도를 갖는 산세액과 하한 NaOH 량, 목표 NaOH 량 및 상한 NaOH 량을 3개의 pH 측정셀에서 각각 혼합한 후에 용액의 pH 를 측정하면 출력값을 도 1에서 1-a, 1-b, 1-c 혹은 1-d 에 표시된 교차점이 된다. 즉, 산세액의 염산농도가 상한 설정치를 초과한 용액(1-a)에서 3개의 측정셀 모두에서 중화되고 남은 염산이 존재하므로 측정 pH 값은 모두 강한 산성을 나타내게 된다.That is, after mixing the pickling solution having an arbitrary concentration with the lower limit NaOH amount, the target NaOH amount and the upper limit NaOH amount in each of three pH measuring cells, the pH of the solution is measured. , At the intersection indicated by 1-c or 1-d. That is, since the hydrochloric acid concentration of the pickling solution is neutralized in all three measuring cells in the solution (1-a) having exceeded the upper limit setting value, the hydrochloric acid remaining in the pickling solution shows strong acidity.

산세액이 목표 염산농도 보다 크고 상한 농도 이하의 산세용액의 경우 (1-b)는 상한 NaOH 량을 첨가한 측정셀에서는 중화하고 남은 NaOH 가 존재하므로 용액의 pH 값은 알칼리를 나타내지만, 목표와 하한 NaOH 를 첨가한 측정셀에서는 NaOH 첨가량이 염산을 모두 중화시키기에는 부족하므로, 염산이 잔존하게 되고 따라서 pH 값은 산성을 나타낸다.In the case of pickling solution with a higher concentration than the target hydrochloric acid concentration and below the upper limit, (1-b) is neutralized in the measuring cell to which the upper limit of NaOH is added, so the pH value of the solution indicates alkali. In the measurement cell to which the lower limit NaOH was added, the amount of NaOH added was insufficient to neutralize all of the hydrochloric acid, so that hydrochloric acid remained and thus the pH value indicated acidity.

산세액이 하한 염산농도보다 크고 목표 염산농도 이하의 산세용액의 경우(1-c)는 하한 NaOH 를 첨가한 측정셀에서는 NaOH 첨가량이 염산을 모두 중화시키기에는 부족하므로, 염산이 잔존하게 되고 따라서 pH 값은 산성을 나타내고, 목표와 상한 NaOH 량을 첨가한 측정셀에서는 중화하고 남은 NaOH 가 존재하므로 용액의 pH 값은 알카리를 나타낸다. 상세액의 염산농도가 하한 설정치 미만인 용액(1-d)에서 3개의 측정셀 모두 다 중화되고 남은 NaOH 가 존재하므로 용액의 pH 값은 알카리를 나타낸다. 이러한 방식으로 3개의 pH 값을 측정 조합하여 산세액의 유리산도를 측정할 수 있다.In the case of the pickling solution having a higher pickling concentration than the lower limit hydrochloric acid concentration and lower than the target hydrochloric acid concentration (1-c), in the measurement cell to which the lower limit NaOH was added, the amount of NaOH added was insufficient to neutralize all of the hydrochloric acid, so that hydrochloric acid remained. The value indicates acidity, and in the measuring cell to which the target and the upper limit of NaOH were added, the pH value of the solution indicates alkali because the remaining NaOH was present. In the solution (1-d) where the hydrochloric acid concentration of the detail solution is less than the lower limit, all three measuring cells are neutralized and the remaining NaOH is present, so the pH value of the solution indicates alkali. In this way the three pH values can be measured and combined to determine the free acidity of the pickling solution.

즉, 본 발명의 경우 측정된 산세용액의 농도가 상기 목표, 하한 농도를 갖는 산세용액에 속하는 경우 목표 농도와 하한농도의 중간값으로 신속히 결정할 수 있는 것이다.That is, in the case of the present invention, if the measured concentration of the pickling solution belongs to the pickling solution having the target and the lower limit concentration, it is possible to quickly determine the intermediate value between the target concentration and the lower limit concentration.

한편, 본 발명에 적용되는 염산산세액은 고온강산이므로 순수 물로 일정 비율로 희석시켜 사용하면 pH 의 수명연장 및 오차범위를 줄일 수 있다.On the other hand, since the hydrochloric acid washing solution applied to the present invention is a high temperature strong acid, when diluted with pure water at a predetermined ratio, it can reduce the life span of the pH and the error range.

또한, 산세탱크내의 산세액은 Fe2+와 Fe3+가 공존하여 있다. Fe3+의 경우에는 pH 2.0 이상부터 반응하여 Fe(OH)3를 형성하고, Fe2+의 경우에는 pH 6.4 에서 반응하기 시작하여 Fe(OH)2를 형성한다.In addition, in the pickling liquid in the pickling tank, Fe 2+ and Fe 3+ coexist. In the case of Fe 3+ it reacts from pH 2.0 or higher to form Fe (OH) 3 , and in the case of Fe 2+ it starts to react at pH 6.4 to form Fe (OH) 2 .

따라서, 산세액은 용액중에 주로 Fe2+가 대부분이어서 Fe2+의 영향을 받지 않는 범위인 pH 6.4 이하의 적정곡선에서 pH 4 를 유리산도의 당량점으로 정함이 바람직하다.Therefore, the pickling solution is preferably set to pH 4 as the equivalent point of free acidity in a titration curve of pH 6.4 or lower, which is mostly Fe 2+ in the solution and is not affected by Fe 2+ .

즉, 본 발명에 따른 관리농도 측정방법을 이용하여 산세액의 농도측정을 할때 전극 및 측정값의 신뢰도 향상과 전극의 장시간 사용을 위해 산세액을 순수물로 일정 비율로 희석시켜 수산화나트륨을 공급하는 한편 pH 적정곡선에서 유리산도의 당량점을 pH 4 로 정하면 바람직하다.That is, when measuring the concentration of pickling liquid by using the control concentration measurement method according to the present invention, sodium hydroxide is supplied by diluting the pickling solution with pure water at a predetermined ratio to improve the reliability of the electrode and the measured value and to use the electrode for a long time. On the other hand, it is preferable to set the equivalent point of free acidity to pH 4 in a pH titration curve.

이하, 실시예를 통하여 본 발명의 효과를 상세히 설명한다.Hereinafter, the effects of the present invention will be described in detail through examples.

(실시예)(Example)

먼저 염산의 농도를 변화시킨 염산에 대해 1N-수산화 나트륨을 사용하여 적정곡선을 구하고, 적정액의 투입량을 각각의 pH meter 에서 다르게 하여 염산의 농도를 측정하였다. 그후 FeCl2와 염산의 혼합용액하에 동일한 조건으로 실험을 실시하였다. 농도 측정시 산세 용액은 각각의 미터링 펌프에 의해 분당 10ml 흡입하여 3개의 측정혼합기에 보내고, 동시에 적정액 1N NaOH 용액은 각각 투입량이 다르게 설정된 각각의 미터링 펌프에 의해 측정혼합기로 보냈다. 이때, 1N-NaOH의 투입량은 상한, 목표 및 하한 염산농도를 갖는 산세용액이 분당 10ml 투입될 때를 기준으로 하여 pH 4 까지 중화시킬 수 있는 양이다. 고 농도의 산세액 및 수산화나트륨 용액으로 pH 전극을 보호하기 위하여 물도 측정 혼합기로 함께 계속 공급된다. 각각의 측정 혼합기에서 측정된 pH 값은 4-20mA DC 의 출력으로 data wireless logging 시스템을 이용하여 1-5Voltaga 범위의 값으로 전환하여 나타내었다. 즉, pH 값이 6.4 일때 출력값은 1Volt, pH 값이 2 일때 5Volt 가 되도록 설정하였다.First, a titration curve was calculated using 1N-sodium hydroxide for hydrochloric acid having a varying concentration of hydrochloric acid, and the concentration of hydrochloric acid was measured by varying the input amount of the titrant in each pH meter. Then, the experiment was conducted under the same conditions under a mixed solution of FeCl 2 and hydrochloric acid. At the time of concentration measurement, the pickling solution was sucked 10 ml per minute by each metering pump and sent to three measuring mixers. At the same time, the titration solution 1N NaOH solution was sent to the measuring mixer by each metering pump with different dosages. At this time, the input amount of 1N-NaOH is the amount that can be neutralized to pH 4 on the basis of 10ml per minute pickling solution having the upper limit, the target and the lower limit hydrochloric acid concentration. Water is also supplied together with the measuring mixer to protect the pH electrode with a high concentration of pickling and sodium hydroxide solution. The measured pH value of each measuring mixer was converted to a value in the range of 1-5 Voltaga using a data wireless logging system with an output of 4-20 mA DC. That is, the output value is set to 1Volt when the pH value is 6.4, and 5Volt when the pH value is 2.

본 실시예에서는 목표 염산농도를 통상 산세라인에서의 관리기준인 10% HCl 로 정하였으며 나머지 상하한 농도는 각각 11% HCl, 9% HCl 로 하였다.In this example, the target hydrochloric acid concentration was generally set to 10% HCl, which is a management standard in pickling lines, and the remaining upper and lower concentrations were 11% HCl and 9% HCl, respectively.

도 2, 3, 4, 5 는 9, 10, 11% 를 하한, 목표, 상한의 염산농도로 설정한 조건하에서 각기 염산농도가 다른 산세용액을 측정한 결과이다.2, 3, 4, and 5 are results obtained by measuring pickling solutions having different hydrochloric acid concentrations under conditions in which 9, 10, and 11% were set as lower, target, and upper limits of hydrochloric acid.

도 2는 산세액의 농도가 9.5%(Fe2+: 80g/l)인 경우에는 실제 염산농도가 설정된 하한의 농도보다 크므로 출력값은 5Volt 에 가까와지고, 설정된 목표와 상한의 농도보다는 작으므로 둘다 거의 1Volt 를 나타내었다.FIG. 2 shows that when the concentration of the pickling solution is 9.5% (Fe 2+ : 80 g / l), since the actual hydrochloric acid concentration is greater than the set lower limit, the output value is closer to 5 Volt, and both are smaller than the set target and upper limit concentrations. It showed almost 1 Volt.

도 3은 산세액이 10.8%(Fe2+: 80g/l)인 용액으로 실제 염산농도가 하한과 목표 염산의 농도설정치보다는 크므로 목표와 하한 염산 감시 농도 측정셀의 값은 5Volt 를 나타낸 반면에 상한염산의 농도 보다는 작으므로 상한 감시셀에서는 4Volt 를 나타내었다.3 is a solution having a pickling solution of 10.8% (Fe 2+ : 80 g / l), and the actual hydrochloric acid concentration is higher than the lower limit and the target hydrochloric acid concentration. Since the concentration was lower than the upper limit hydrochloric acid, the upper limit monitoring cell showed 4 Volt.

도 4는 산세액이 염산농도가 11.5%(Fe2+: 100g/l)로 상한 염산농도 설정치보다도 큰 경우에 대한 것으로 모든 농도 감시셀에 과잉의 염산이 존재하므로 모두 5volt 에 가까운 출력값을 나타내었다.FIG. 4 shows that the pickling solution has a hydrochloric acid concentration of 11.5% (Fe 2+ : 100 g / l), which is larger than the upper limit of the hydrochloric acid concentration setting. Since all hydrochloric acid is present in all concentration monitoring cells, the output values are all close to 5 volts. .

도 5는 산세액의 염산 농도가 8.8(Fe2+: 100g/l)로 실제 염산의 농도가 하한염산농도 설정치 보다도 작으므로 모든 농도 감시셀이 1volt 에 가까운 출력값을 나타내었다.5 shows that the concentration of hydrochloric acid in the pickling solution is 8.8 (Fe 2+ : 100 g / l), and the actual concentration of hydrochloric acid is smaller than the lower limit hydrochloric acid concentration.

따라서, 실제로 하한, 목표, 상한 농도값을 더욱 좁은 범위의 농도값으로 하게 되면 더욱 정확한 산세용액의 산도를 신속히 측정할 수 있다.Therefore, when the lower limit, target and upper limit concentration values are actually narrower concentration values, more accurate acidity of the pickling solution can be measured quickly.

상술한 바와같이, 본 발명에 따른 측정방법에 의하면 강판의 산세처리시 사용되는 산세용액의 유리산도를 신속하고 정확히 관리할 수 있는 장점이 있다.As described above, the measuring method according to the present invention has the advantage of being able to quickly and accurately manage the free acidity of the pickling solution used in the pickling treatment of the steel sheet.

Claims (4)

산세용액의 유리산도를 측정하는 방법에 있어서,In the method for measuring the free acidity of the pickling solution, 염산의 농도를 변화시킨 산세용액에 수산화나트륨을 적정(titration)하면서 pH 변화를 측정하고, 측정된 pH와 적정시 투입된 수산화나트륨의 투입량과의 관계를 구하는 단계;Measuring a pH change while titrating sodium hydroxide to a pickling solution having a varying concentration of hydrochloric acid, and obtaining a relationship between the measured pH and the amount of sodium hydroxide added during titration; 상기 염산의 농도가 다른 산세용액으로 부터 다수개의 산세용액을 선택하고, 이중 하나의 산세용액을 임의로 목표농도를 갖는 산세용액으로 설정하고, 나머지는 상기 목표 농도를 갖는 산세용액의 염산농도와 비교하여 하한 및 상한 농도를 갖는 산세용액으로 분류하는 단계;A plurality of pickling solutions are selected from pickling solutions having different concentrations of hydrochloric acid, and one pickling solution is arbitrarily set as a pickling solution having a target concentration, and the rest is compared with the hydrochloric acid concentration of the pickling solution having the target concentration. Classifying with a pickling solution having a lower limit and an upper limit; 상기 목표, 하한 및 상한 농도를 갖는 산세용액에 각각 대응하는 필요한 수산화나트륨의 적정 투입량을 상기에서 구한 pH와 적정시 투입된 수산화나트륨의 투입량과의 관계로부터 결정하는 단계;Determining a proper dose of the required sodium hydroxide corresponding to the pickling solution having the target, the lower limit and the upper limit from the relationship between the pH obtained above and the dose of sodium hydroxide added at the time of titration; 측정하고자 하는 임의의 산세용액에 상기에서 결정된 수산화나트륨의 적정 투입량을 투입하고 각 산세용액중의 pH 를 측정하는 단계; 및Adding an appropriate amount of sodium hydroxide determined above to any pickling solution to be measured and measuring the pH in each pickling solution; And 상기에서 측정된 산세용액의 pH 값을 비교하여 그 산세용액의 염산농도를 결정하는 단계를 포함하여 구성되는 산세용액중의 유리산도 측정방법Comparing the pH value of the pickling solution measured above to determine the hydrochloric acid concentration of the pickling solution free acidity measurement method 제1항에 있어서, 하한농도 및 상한농도를 갖는 산세용액과 이에 대응하는 수산화나트륨용액은 각각 적어도 1개 이상으로 함을 특징으로 하는 산세용액중의 유리산도 측정방법The method of measuring free acidity in a pickling solution according to claim 1, wherein the pickling solution having a lower limit and an upper limit and at least one sodium hydroxide solution corresponding thereto are at least one. 제1항에 있어서, 측정하고자 하는 임의의 산세용액에 수산화나트륨을 투입할 때 상기 산세용액을 일정비율의 순수로 희석시키면서 수산화나트륨을 투입함을 특징으로 하는 산세용액중의 유리산도 측정방법The method of measuring free acidity in a pickling solution according to claim 1, wherein sodium hydroxide is added while the pickling solution is diluted with a predetermined ratio of pure water when sodium hydroxide is added to any pickling solution to be measured. 제1항에 있어서, 상기 pH 와 수산화나트륨의 투입량과의 관계에서 중화적정점을 pH 4로 정함을 특징으로 하는 산세용액중의 유리산도 측정방법The method of measuring free acidity in a pickling solution according to claim 1, wherein the neutralization peak is set at pH 4 in relation to the pH and the amount of sodium hydroxide added.
KR1019970019070A 1997-05-16 1997-05-16 Method for measuring free acidity of pickling solution KR100345694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970019070A KR100345694B1 (en) 1997-05-16 1997-05-16 Method for measuring free acidity of pickling solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970019070A KR100345694B1 (en) 1997-05-16 1997-05-16 Method for measuring free acidity of pickling solution

Publications (2)

Publication Number Publication Date
KR19980083687A KR19980083687A (en) 1998-12-05
KR100345694B1 true KR100345694B1 (en) 2002-09-18

Family

ID=37488601

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970019070A KR100345694B1 (en) 1997-05-16 1997-05-16 Method for measuring free acidity of pickling solution

Country Status (1)

Country Link
KR (1) KR100345694B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978618A (en) * 2017-04-04 2017-07-25 上饶市鸿基铝业有限公司 A kind of aluminium alloy high-efficiency environment friendly oxidation technology method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366489B (en) * 2020-03-26 2022-05-20 湖南长远锂科股份有限公司 Semi-quantitative detection method for lithium content in primary mixed material sample of ternary cathode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978618A (en) * 2017-04-04 2017-07-25 上饶市鸿基铝业有限公司 A kind of aluminium alloy high-efficiency environment friendly oxidation technology method

Also Published As

Publication number Publication date
KR19980083687A (en) 1998-12-05

Similar Documents

Publication Publication Date Title
JP2001021548A (en) Analytical method and device for free fluorine in solution containing hydrofluoric acid
US3904365A (en) Method and apparatus for measuring the presence of a weak acid or a weak base in a liquid
Booman et al. Determination of free acid in presence of hydrolyzable ions
KR100345694B1 (en) Method for measuring free acidity of pickling solution
CN112513624A (en) Component concentration measuring device of mixed acid solution for metal pickling
DE2334686C3 (en) Process for monitoring or controlling the chlorate content and the hydrogen ion content in the production of chlorine dioxide
CN101013120A (en) Automation titrimetric analysis method and uses thereof
KR101046218B1 (en) Free acid concentration analysis method of mixed acid pickling solution of stainless steel
Klatt et al. Analysis of the polarographic method of studying metal complex equilibriums
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
CN108333223A (en) The formulating method of iron concentration bioassay standard curve and its application
Radić et al. Kinetic-potentiometric determination of aluminium in acidic solution using a fluoride ion-selective electrode
Cummings et al. An analytical method for determining bound and free alkanolamines in heat stable salt contaminated solutions
Burgess et al. A kinetic method for the determination of arsenic (III), antimony (III) and ascorbic acid
US3479152A (en) Chelometric zinc titration
KR100453915B1 (en) Analysis method of copper ion concentration in a nitric acid-copper pickling solution
US10677717B2 (en) Colorimetric analyzer with reagent diagnostics
KR19990055894A (en) Measurement and control method of free acidity with excellent measurement accuracy
Majer et al. Adsorption of calcium and magnesium ions on surfaces
JP2007248297A (en) Apparatus and method for analyzing acid concentration in mixed acid
KR19980044846A (en) Pickling solution concentration automatic control device
JPS5944657A (en) Quantitatively analyzing method of acid or total iron ion
Ye et al. Kinetic potentiometry simultaneous determination of iron (III) and zirconium (IV) by using the Kalman filter
Melouni et al. Multiparametric curve fitting XVI. Analysis of acid—base titration data on chelating resins
Walton Potentiometric titration of sodium sulfate in sodium sulfite solutions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150703

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 15

EXPY Expiration of term