KR101039007B1 - Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof - Google Patents

Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof Download PDF

Info

Publication number
KR101039007B1
KR101039007B1 KR1020080073688A KR20080073688A KR101039007B1 KR 101039007 B1 KR101039007 B1 KR 101039007B1 KR 1020080073688 A KR1020080073688 A KR 1020080073688A KR 20080073688 A KR20080073688 A KR 20080073688A KR 101039007 B1 KR101039007 B1 KR 101039007B1
Authority
KR
South Korea
Prior art keywords
aluminum hydroxide
flame retardancy
hydroxide particles
improved flame
particles
Prior art date
Application number
KR1020080073688A
Other languages
Korean (ko)
Other versions
KR20100012345A (en
Inventor
진용출
김성협
윤동주
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020080073688A priority Critical patent/KR101039007B1/en
Publication of KR20100012345A publication Critical patent/KR20100012345A/en
Application granted granted Critical
Publication of KR101039007B1 publication Critical patent/KR101039007B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 난연성이 향상된 금속수산화물 입자 및 그 제조방법에 관한 것으로서, 보다 상세하게는 SiO2를 주재로 한 겔화되는 액체유리가 코팅된 난연성이 향상된 수산화알루미늄(Aluminum hydroxide) 입자 및 졸(sol)-겔(gel) 법을 이용한 상기 난연성이 향상된 수산화알루미늄 입자의 제조방법에 관한 것이다. 본 발명의 난연성이 향상된 수산화알루미늄 입자는 탈할로겐화에 의한 연소가스의 2차 재해를 최소화시키며, 수산화알루미늄의 내열성을 향상시키고, 수산화알루미늄의 표면개질을 통해 일정 온도에서 탈수 후 열전달을 지연시킴으로써 피도체의 열변형 및 연소를 지연시키므로, 다양한 산업부문에 이용될 수 있다.The present invention relates to metal hydroxide particles having improved flame retardancy and a method of manufacturing the same, and more particularly, to aluminum flame particles and sol (flame-enhanced) coated with liquid glass to be gelled based on SiO 2 . The present invention relates to a method for producing aluminum hydroxide particles having improved flame retardancy using a gel method. The aluminum hydroxide particles having improved flame retardancy of the present invention minimize the secondary disaster of combustion gases due to dehalogenation, improve heat resistance of aluminum hydroxide, and delay the heat transfer after dehydration at a constant temperature through surface modification of aluminum hydroxide. It can be used in various industrial sectors because it delays thermal deformation and combustion.

난연제(fire retardant), 수산화알루미늄(Aluminum hydroxide), 표면개질(Surface reforming), 유리코팅입자(glass coated particle) Fire retardant, aluminum hydroxide, surface reforming, glass coated particles

Description

난연성이 향상된 수산화알루미늄 입자 및 그 제조방법{Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof}Aluminum Hydroxide Particle Improving for Fire-retardant and Production Method Thereof}

본 발명은 난연성이 향상된 수산화알루미늄 입자 그 제조방법에 관한 것이다.The present invention relates to a method for producing aluminum hydroxide particles with improved flame retardancy.

고분자 재료는 연소하기 쉬우므로 난연제를 첨가하거나 화학적으로 반응시켜 분자내에 난연성 원소를 도입하여 난연화가 이루어지고 있다. 이 난연재료는 컴퓨터, VTR, TV, 전력케이블, 통신케이블 등의 전기전자기기 부품재료를 비롯하여 자동차, 건축재료, 차량 등 모든 산업분야에서 쓰이고 있다. 특히, 건축물 화재시 전기 및 통신케이블의 절연물질이 연소하여 유독가스를 발생시키고 이로 인해 인명피해를 더욱 늘이고 있다. 따라서 케이블 표면에 무기계 방염재를 도포하여 발화시간을 낮추고 연소가스의 배출을 억제시키기 위해 케이블연소 방지재가 필요하게 되었으며 특히 할로겐 물질을 사용하지 않고 금속수산화물에 의한 무기계 난연 충진제의 합성으로 친환경적이며 인체에 무해한 케이블연소방지재가 요구된다. 무기 계 난연 충진제는 금속수산화물로서 일정 온도에서 탈수되어 소화시키는 작용을 하는데 소화 후 단열층이 형성되지 않아 피도체에 열전달을 지연시키기에는 미흡하다.Since polymer materials are easy to burn, flame retardant is made by adding a flame retardant or chemically reacting and introducing a flame retardant element into a molecule. This flame retardant material is used in all industries such as computer, VTR, TV, power cable, communication cable and other electronic and electronic component parts, automobiles, building materials, vehicles. In particular, in the event of a building fire, insulation materials of electric and communication cables are burned to generate toxic gases, thereby increasing the damage to humans. Therefore, in order to reduce the ignition time and suppress the emission of combustion gas by applying inorganic flame retardant to the surface of the cable, it is necessary to prevent the combustion of the combustion gas. Especially, it is environmentally friendly and human-friendly due to the synthesis of inorganic flame retardant filler by metal hydroxide without using halogen material. Harmless cable burnout is required. Inorganic flame retardant fillers are metal hydroxides that dehydrate and extinguish at a certain temperature. However, since the thermal insulation layer is not formed after fire extinguishing, it is insufficient to delay heat transfer to the subject.

최근 세계적으로 환경 문제에 대한 경각심이 높아져 브롬계 난연제로부터 발생되는 브롬화 다이옥신, 푸란 등의 문제로 유럽연합(EU)은 복사기, 컴퓨터, 프린터 등에 사용되는 재료에 할로겐계 난연제의 사용을 금지하고 있으며, 우리나라의 경우 화재시 화염에 의한 피해보다 질식에 의한 인명피해를 심각하게 고려하여 건축물 내부에 사용되는 난연 제품에는 비할로겐계 난연제품을 사용하도록 유도하고 있다. 할로겐계 난연제의 국제적 사용규제에 따라 비할로겐계 난연제 및 무기계 난연제에 대한 연구가 활발히 진행되고 있다. 무기계 난연제는 수화금속화합물로서 Al(OH)3, Mg(OH)2가 대표적이다. 알루민산칼슘, 탄산칼슘, 붕산아연, 도소나이트, 수산화칼슘 등도 수화금속화합물 특유의 흡열반응을 보이지만 실제로 거의 사용되지 않는다.Recently, due to the increasing awareness of environmental problems around the world, the EU has banned the use of halogen flame retardants for materials used in copiers, computers and printers due to problems such as bromine dioxins and furans. In Korea, non-halogen flame-retardant products are used for flame-retardant products used inside buildings in consideration of human injury caused by asphyxiation rather than fire damage. In accordance with international regulations for the use of halogen-based flame retardants, research on non-halogen-based flame retardants and inorganic flame retardants has been actively conducted. An inorganic flame retardant is a metal hydride compound such as Al (OH) 3 and Mg (OH) 2 . Calcium aluminate, calcium carbonate, zinc borate, dosonite, calcium hydroxide and the like also exhibit endothermic reactions peculiar to hydrated metal compounds, but are rarely used in practice.

난연성은 탈수 반응에 의한 흡열효과, 수증기에 의한 가연성 가스의 농도 희석, 탈수생성물과 폴리머로부터 생성하는 챠(char)와의 복합 무기피막층에 의한 단열효과와 산소의 차단효과, 또한 생성된 산화물에 의한 연기중의 미세 카본입자의 산화촉진반응에 의한 CO, CO2가스에 대한 전환과 저발연효과를 들 수 있다.Flame retardancy is endothermic effect by dehydration reaction, concentration dilution of flammable gas by water vapor, insulation effect by composite inorganic coating layer of char produced from dehydration product and polymer, and oxygen blocking effect, and smoke by oxide produced there may be mentioned the conversion and the low-smoke effects on CO, CO 2 gas generated by facilitating the oxidation reaction of the fine carbon particles contained in the.

Al(OH)3는 탈수온도가 200℃부근이고 연소후기(400℃)의 난연효과가 적으며, 가공온도가 높은 폴리머에는 가공중에 발포를 일으켜 사용할 수 없다. 또한 Mg(OH)2은 공기중의 탄산 가스와 수분에 의해 탄산마그네슘이 생성되어 표면이 희게 되는 표백현상이 나타난다. 상기 Al(OH)2 및 Mg(OH)2 특유의 결점은 기본적인 특성에 있어서는 개량이 어렵지만 개량된 연구가 진행되고 있다.Al (OH) 3 has a dehydration temperature near 200 ℃ and a low flame retardant effect at late combustion (400 ℃), and it cannot be used for polymers with high processing temperature due to foaming during processing. In addition, Mg (OH) 2 has a bleaching phenomenon in which magnesium carbonate is formed by carbon dioxide and moisture in the air and the surface becomes white. The defects peculiar to Al (OH) 2 and Mg (OH) 2 are difficult to improve in basic characteristics, but improved research is being conducted.

이에, 본 발명자들은 수산화알루미늄 입자의 난연성 향상을 위한 표면개질을 연구하던 중, sol-gel법을 이용하여 붕규산염 액체유리를 합성하고 수산화알루미늄 분말 표면에 상기 붕규산염유리가 달라붙게 하여 Al(OH)3 입자표면에 세라믹 층을 형성시키고, 열에 의한 탈수반응 후 입자표면에 무기 단열층을 형성시킴을 확인함으로써 본 발명을 완성하였다.Therefore, the inventors of the present invention while studying the surface modification for improving the flame retardancy of the aluminum hydroxide particles, using a sol-gel method to synthesize a borosilicate liquid glass and to adhere the borosilicate glass to the aluminum hydroxide powder surface Al (OH 3 ) The present invention was completed by confirming that a ceramic layer was formed on the surface of the particles, and that an inorganic insulating layer was formed on the surface of the particles after the dehydration reaction by heat.

본 발명의 목적은 수산화알루미늄에 액체합성유리를 코팅하여 표면개질을 통해 난연성의 향상 및 탈수 후 단열층을 제공하여 피도체의 열전달 시간을 지연시킬 수 있는 난연성이 향상된 수산화알루미늄 입자 및 그 제조방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to improve the flame retardancy by coating a liquid synthetic glass on aluminum hydroxide to improve the flame retardancy through the surface modification and to provide a heat insulation layer after dehydration, to provide a flame-retardant aluminum hydroxide particles and a method for producing the same that can delay the heat transfer time of the subject It is.

상기 목적을 달성하기 위하여, 본 발명은 SiO2를 주재로 한 겔화되는 액체유 리가 코팅된 난연성이 향상된 수산화알루미늄(Aluminum hydroxide) 입자를 제공한다.In order to achieve the above object, the present invention provides aluminum hydroxide particles with improved flame retardancy coated with a liquid glass to be gelatinized based on SiO 2 .

또한, 본 발명은 졸(sol)-겔(gel) 법을 이용한 상기 난연성이 향상된 수산화알루미늄 입자의 제조방법을 제공한다. 즉, 저가의 규산소다에 B2O3, Al2O3 등 수식산화물을 첨가시켜 액체합성유리를 제조하고 제조된 용액을 수산화알루미늄 입자에 가하고 건조시켜서 개질된 수산화알루미늄을 제조하는 방법을 제공한다.The present invention also provides a method for producing the aluminum hydroxide particles with improved flame retardancy using the sol-gel method. That is, a modified synthetic hydroxide such as B 2 O 3 and Al 2 O 3 is added to low-cost sodium silicate to prepare a liquid synthetic glass, and the prepared solution is added to aluminum hydroxide particles and dried to provide a modified aluminum hydroxide. .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 SiO2를 주재로 한 겔화되는 액체유리가 코팅된 난연성이 향상된 수산화알루미늄(Aluminum hydroxide) 입자를 제공한다.The present invention provides aluminum hydroxide particles having improved flame retardancy coated with liquid glass to be gelled based on SiO 2 .

본 발명의 난연성이 향상된 수산화알루미늄 입자에 있어서, 상기 액체유리는 SiO2-B2O3-Na2O인 것이 바람직하고, 아울러 상기 액체유리에는 발포제가 포함되는 것이 바람직하다. 이때 상기 발포제는 우레아(urea)인 것이 바람직하다.In the aluminum hydroxide particles having improved flame retardancy of the present invention, the liquid glass is preferably SiO 2 -B 2 O 3 -Na 2 O, and the liquid glass preferably contains a blowing agent. At this time, the blowing agent is preferably urea (urea).

또한, 본 발명의 난연성이 향상된 수산화알루미늄 입자에 있어서, 상기 겔화의 개시반응을 위한 액체로 인산용액을 사용하는 것이 바람직하다.In addition, in the aluminum hydroxide particles having improved flame retardancy of the present invention, it is preferable to use a phosphoric acid solution as a liquid for the initial reaction of the gelation.

또한, 본 발명은 졸(sol)-겔(gel) 법을 이용한 상기 난연성이 향상된 수산화알루미늄 입자의 제조방법을 제공한다.The present invention also provides a method for producing the aluminum hydroxide particles with improved flame retardancy using the sol-gel method.

본 발명의 상기 난연성이 향상된 수산화알루미늄 입자의 제조방법에 있어서, 상기 제조방법은 ⅰ) 물에 붕산(Boric acid)을 용해시키고, 이것을 규산소다(water glass)와 혼합하여 1차 붕규산염 액체유리용액을 제조하는 단계; ⅱ) 상기 1차 붕규산염 액체유리용액에 발포제를 첨가하여 최종 붕규산염 액체유리용액(코팅용액)을 제조하는 단계; ⅲ) 수산화알루미늄(Aluminum hydroxide)에 상기 코팅용액을 처리하는 단계; 및 ⅳ) 상기 ⅲ) 단계의 용액에 인산용액을 처리하여 코팅용액을 겔화시키는 단계를 포함하여 이루어진다. In the method for producing the aluminum hydroxide particles having improved flame retardancy of the present invention, the production method is a primary borosilicate liquid glass solution by dissolving boric acid in water, mixed with sodium silicate (water glass) Preparing a; Ii) adding a blowing agent to the primary borosilicate liquid glass solution to prepare a final borosilicate liquid glass solution (coating solution); Iii) treating the coating solution with aluminum hydroxide; And iii) gelling the coating solution by treating the solution of step iii) with a phosphoric acid solution.

이때 상기 물은 탈이온수(deionized water ; DI water)인 것이 바람직하고, 상기 발포제는 urea(요소)인 것이 바람직하며, 상기 코팅용액은 SiO2-B2O3-Na2O 졸인 것이 바람직하고, 상기 수산화알루미늄의 입자 크기는 0.5 내지 10 ㎛인 것이 바람직하다. In this case, the water is preferably deionized water (DI water), the blowing agent is preferably urea (urea), the coating solution is preferably SiO 2 -B 2 O 3 -Na 2 O sol, The particle size of the aluminum hydroxide is preferably 0.5 to 10 ㎛.

상기 각 성분의 조성비는 붕산 1~5 중량부, 탈이온수 10 내지 70 중량부, 규산소다 20 내지 150 중량부, urea(요소) 0.5 내지 6 중량부 및 수산화알루미늄 30 내지 200 중량부인 것이 바람직하다.The composition ratio of each component is preferably 1 to 5 parts by weight of boric acid, 10 to 70 parts by weight of deionized water, 20 to 150 parts by weight of sodium silicate, 0.5 to 6 parts by weight of urea (urea) and 30 to 200 parts by weight of aluminum hydroxide.

본 발명은 졸-겔(sol-gel)법을 이용하여 붕규산염 액체유리를 합성하고 수산화알루미늄 분말 표면에 붕규산염유리가 달라붙게 하여 Al(OH)3 입자표면에 세라믹 층을 형성시키고 열에 의한 탈수반응 후 입자표면에 무기 단열층을 형성시킴으로써 난연성 향상을 위한 표면이 개질된 수산화알루미늄 입자를 제공한다.The present invention synthesizes a borosilicate liquid glass by using a sol-gel method and makes the borosilicate glass adhere to the aluminum hydroxide powder surface to form a ceramic layer on the Al (OH) 3 particle surface and dehydration by heat. The inorganic insulating layer is formed on the particle surface after the reaction to provide aluminum hydroxide particles having a modified surface for improving flame retardancy.

이를 위하여, 무기계 난연제 중 금속수산화물의 대표적인 물질인 수산화알루 미늄 분말 표면을 개질하기 위하여, 졸-겔 공정을 이용하여 SiO2-Na2O-B2O3계 액체유리를 합성하고, 이를 수산화알루미늄 입자에 달라붙게 하여 인산을 사용하여 겔화반응을 유도하고 건조한 다음 이 고화된 겔(gel)체를 유발로 분쇄하여 표면이 개질된 수산화알루미늄 입자를 제조하였다. 아울러, XRD, SEM, TG-DTA분석을 한 결과 인산(H3PO4)을 이용한 겔체는 수산화알루미늄 입자 주위에 다공질의 비정질 유리가 많이 달라붙어 표면이 유리질로 개질됨을 확인하였고, 요소 함량이 증가할수록 다공질의 유리 생성이 많았으며 표면 개질된 수산화알루미늄 입자는 TG-DTA분석 결과 2~3%가량 수분감량이 많은 것을 확인하였다.To this end, in order to modify the surface of the aluminum hydroxide powder, which is a representative material of the metal hydroxide in the inorganic flame retardant, to synthesize the SiO 2 -Na 2 OB 2 O 3 type liquid glass using a sol-gel process, and to the aluminum hydroxide particles By sticking to induce a gelation reaction using phosphoric acid, and dried, the solidified gel (gel) body was ground by induction to prepare a surface-modified aluminum hydroxide particles. In addition, XRD, SEM, and TG-DTA analysis showed that the gel body using phosphoric acid (H 3 PO 4 ) was modified with a lot of porous amorphous glass around the aluminum hydroxide particles, and the surface was modified with glass. The more porous glass was formed, the more the surface-modified aluminum hydroxide particles showed 2 ~ 3% moisture loss as a result of TG-DTA analysis.

그 결과, 금속수산화물이 일정 온도의 열을 받아 고유의 열분해 온도에서 탈수되고 더욱 열을 가하면 빠른 열전달로 급속히 소성되지만 표면에 유리질을 코팅하여 단열층을 형성하게 되면 열전달을 방해하여 비교적 완만한 소성이 이루어진다.As a result, the metal hydroxide is dehydrated at its own pyrolysis temperature by receiving a certain temperature of heat, and if further heat is applied, the metal hydroxide is rapidly fired by rapid heat transfer, but when the glass is coated on the surface to form an insulating layer, the heat transfer is hindered, resulting in relatively gentle firing. .

본 발명의 난연성이 향상된 수산화알루미늄 입자는 탈할로겐화에 의한 연소가스의 2차 재해를 최소화시키며, 수산화알루미늄의 내열성을 향상시키고, 수산화알루미늄의 표면개질을 통해 일정 온도에서 탈수 후 열전달을 지연시킴으로써 피도체의 열변형 및 연소를 지연시키게 되어, 다양한 산업부문에 활용할 수 있다.The aluminum hydroxide particles having improved flame retardancy of the present invention minimize the secondary disaster of combustion gases due to dehalogenation, improve heat resistance of aluminum hydroxide, and delay the heat transfer after dehydration at a constant temperature through surface modification of aluminum hydroxide. This will delay heat deformation and combustion, which can be utilized in various industrial sectors.

이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.

<실시예 1> 액체 유리(water glass)를 이용한 코팅용액(SiO2-B2O3-Na2O계 졸(sol)) 합성Example 1 Synthesis of Coating Solution (SiO 2 -B 2 O 3 -Na 2 O-based Sol) Using Liquid Glass

붕산(Boric acid, purity 99.5%) 2 wt%, 탈이온수(deionized water ; DI water) 32wt%, 규산소다(water glass, Si/Na=3) 66wt%를 각각 정량하였다. 이들을 전구체로 sol-gel법을 이용하여 60℃에서 붕규산염 액체유리용액을 제조하였다Boric acid (boric acid, purity 99.5%) 2 wt%, deionized water (DI water) 32wt%, sodium silicate (water glass, Si / Na = 3) 66wt%, respectively. The borosilicate liquid glass solution was prepared at 60 ° C. using the sol-gel method as a precursor.

구체적으로, 먼저 상기 중량%의 규산소다를 60℃로 가열시켰다. 별도로 상기 중량%의 DI water에 붕산을 용해시킨 용액을 제조하여 이것을 상기 규산소다에 천천히 인가하여 4시간 동안 상온에서 교반하여 1차 붕규산염 액체유리용액을 제조하였다. 그 결과, 상기 1차 붕규산염 액체유리용액은 72.4SiO2-24.1Na2O-3.5B2O3 조성을 갖게 된다.Specifically, the weight percent sodium silicate was first heated to 60 ° C. Separately, a solution in which boric acid was dissolved in DI water by weight was prepared and slowly applied to the sodium silicate, followed by stirring at room temperature for 4 hours to prepare a primary borosilicate liquid glass solution. As a result, the primary borosilicate liquid glass solution has a composition of 72.4SiO 2 -24.1Na 2 O-3.5B 2 O 3 .

상기 1차 붕규산염 액체유리용액 100 중량부에 추가적으로 계면활성제인 urea(요소)를 1~3 중량부를 첨가하여 발포제를 함유하는 표면개질 반응을 위한 최 종 붕규산염 액체유리용액(이하, 코팅용액)(SiO2-B2O3-Na2O system 졸)을 제조하였다. 그 결과 합성된 코팅용액은 다음과 같은 특성을 나타내었다. 부분 겔화 현상이 없으며, 졸이 투명하고, 10일 동안 점도 변화가 100 cps 이내이고, 기타 알칼리수식산화물 첨가에도 안정하고, pH 8 이상을 유지하였다. 상기 제조과정을 도 1에 도식화 하였다The final borosilicate liquid glass solution (hereinafter, coating solution) for the surface modification reaction containing a blowing agent by adding 1 to 3 parts by weight of urea (urea), which is a surfactant, in addition to 100 parts by weight of the primary borosilicate liquid glass solution. (SiO 2 -B 2 O 3 -Na 2 O system sol) was prepared. As a result, the synthesized coating solution exhibited the following characteristics. There was no partial gelling phenomenon, the sol was clear, the viscosity change was within 100 cps for 10 days, stable to the addition of other alkali hydrochloride, and maintained above pH 8. The manufacturing process is illustrated in FIG.

<실시예 2> 수산화알루미늄의 표면에의 액체유리의 코팅Example 2 Coating of Liquid Glass on the Surface of Aluminum Hydroxide

상기 실시예 1에서 제조한 SiO2-B2O3-Na2O계의 졸(코팅용액)을 이용하여 수산화알루미늄(Al(OH)3)의 표면을 처리하였다(도 2). 구체적으로, 코팅용액 100 중량부를 기준으로 수~수십 ㎛ 크기를 갖는 수산화알루미늄(KC(주) 제품, 평균입경 0.7 ㎛) 분말 80 중량부를 위 액체유리에 첨가하고 40℃의 핫플레이트에서 2시간 동안 교반하여 slurry를 제조하였다. 인산용액을 피펫을 이용하여 slurry에 천천히 적하하였으며, 겔화되어 더 이상 교반이 불가능할 때까지 첨가하였다. 이때, 상기 인산용액은 코팅용액의 겔화반응을 유도한다. 다시 상징액을 따라 내고 습윤겔체를 막자사발로 으깨어 60℃의 건조기에서 8시간 건조한 후 200 mesh sieve로 체가름하여 표면 개질된 수산화알루미늄 입자를 제조하였다. 그 결과, 인산용액의 첨가는 비교적 겔화 반응을 천천히 일으켜 수산화알루미늄 입자 주위를 다공성 유리가 감싸고 있는 형태로 관찰되었다.The surface of aluminum hydroxide (Al (OH) 3 ) was treated using a SiO 2 -B 2 O 3 -Na 2 O-based sol (coating solution) prepared in Example 1 (FIG. 2). Specifically, 80 parts by weight of aluminum hydroxide (KC Co., Ltd. product, average particle diameter: 0.7 μm) powder having a size of several to several tens of micrometers based on 100 parts by weight of the coating solution was added to the upper liquid glass, and the plate was heated at 40 ° C. for 2 hours. The slurry was prepared by stirring. Phosphoric acid solution was slowly added dropwise to the slurry using a pipette and added until gelation was no longer possible to stir. At this time, the phosphoric acid solution induces a gelation reaction of the coating solution. The supernatant was poured out again, and the wet gel sieve was crushed with a mortar and dried in an oven at 60 ° C. for 8 hours. As a result, the addition of the phosphate solution was observed in a form in which the porous glass was wrapped around the aluminum hydroxide particles due to the relatively slow gelation reaction.

상기 제조과정을 도 2에 도식화 하였다. The manufacturing process is illustrated in FIG.

그리고, 상기 제조된 수산화알루미늄 입자를 하기 실험예의 XRD(High Power X-ray Diffractometer, X'pert-PRO MPD), TG-DTA(장비회사), FE-SEM(Field Emission Scanning Electron Microscopy, Hitachi S-4800) 분석장비를 이용하여 관찰하였다.In addition, the prepared aluminum hydroxide particles were XRD (High Power X-ray Diffractometer, X'pert-PRO MPD), TG-DTA (equipment company), FE-SEM (Field Emission Scanning Electron Microscopy, Hitachi S-) 4800) using an analytical instrument.

<실험예> 액체유리 코팅된 수산화알루미늄 특성Experimental Example Characteristics of Liquid Glass Coated Aluminum Hydroxide

<실험예 1> 전자현미경 SEM 관찰Experimental Example 1 Electron Microscope SEM Observation

상기 실시예 1에서 제조한 코팅용액을 처리하기 전의 수산화알루미늄 입자(도 3)와 코팅용액 처리한 후의 실시예 2에서 제조한 수산화알루미늄의 입자(도 4)를 전자현미경으로 조사하였다. 그 결과, 코팅용액을 처리한 실시예 2에서 제조한 수산화알루미늄의 경우 수백 ㎚의 SiO2계 유리가 수산화알루미늄 입자를 감싸고 있는 모습을 관찰할 수 있었다. 또한, Urea함량이 증가할수록 다공질의 유리 생성이 증가함을 확인하였다(도 5).The aluminum hydroxide particles (FIG. 3) before the coating solution prepared in Example 1 and the aluminum hydroxide particles (FIG. 4) prepared in Example 2 after the coating solution were examined were examined by an electron microscope. As a result, in the case of the aluminum hydroxide prepared in Example 2 treated with the coating solution, it could be observed that several hundred nm SiO 2 glass surrounding the aluminum hydroxide particles. In addition, it was confirmed that the glass formation of the porous increases as the Urea content increased (FIG. 5).

<실험예 2> XRD 성분 분석Experimental Example 2 XRD Component Analysis

상기 실시예 1에서 제조한 코팅용액 처리 전 및 처리한 후의 수산화알루미늄의 입자의 X선 회절을 이용한 XRD의 성분을 분석하였다(도 6). 이때, 1차 붕규산염 액체유리용액 100 중량부를 기준으로 발포제 urea(요소)를 각각 1 중량부 내지 3 중량부를 첨가하여 제조한 코팅용액을 사용하였다(표 1). 그 결과, 수산화알루 미늄이 코팅된 개질된 입자는 코팅처리하지 입자에 비하여 Al(OH)3 피크 이외에 SiO2, Na2O 피크 등이 관찰되었다. 구체적으로, XRD 분석 결과 30.1도, 35.2도, 그리고 34.2~34.5도에서 순수한 수산화알루미늄에서 보이지 않는 피크가 나타났으며 이는 SiO2(Tetragonal), Na2O 결정으로 분석되었다. 단, B2O3는 조성에는 존재하나 피크가 약하여 관찰되지 않았다.The XRD component using X-ray diffraction of the aluminum hydroxide particles before and after the coating solution treatment prepared in Example 1 was analyzed (FIG. 6). At this time, based on 100 parts by weight of the first borosilicate liquid glass solution, a coating solution prepared by adding 1 to 3 parts by weight of a foaming agent urea (urea) was used (Table 1). As a result, in the modified particles coated with aluminum hydroxide, SiO 2 , Na 2 O peaks, etc. were observed in addition to the Al (OH) 3 peak compared to the particles not coated. Specifically, XRD analysis showed invisible peaks in pure aluminum hydroxide at 30.1 degrees, 35.2 degrees, and 34.2 to 34.5 degrees, which were analyzed by SiO 2 (Tetragonal) and Na 2 O crystals. However, B 2 O 3 was present in the composition, but the peak was weak and was not observed.

시편 (d)와 (e)는 무게감량이 2~3% 가량 많음을 보여주고 있으며 이는 열분해 온도는 낮아졌지만 수분방출이 상대적으로 많음을 나타내므로 탈수에 의한 주위온도를 낮추는데 더욱 효과적이라 판단된다.Specimens (d) and (e) show that the weight loss is more than 2 ~ 3%, which means that the pyrolysis temperature is lowered but the water release is relatively high, so it is more effective to lower the ambient temperature by dehydration.

[표 1] Al(OH)3의 표면 개질을 위한 분석시편TABLE 1 Analytical Specimens for Surface Modification of Al (OH) 3

시편Psalter 1차 붕규산염액체유리용액
(중량부)
Primary borosilicate liquid glass solution
(Parts by weight)
Urea 첨가량
(중량부)
Urea addition amount
(Parts by weight)
(a)(a) 100100 1.01.0 (b)(b) 100100 1.51.5 (c)(c) 100100 2.02.0 (d)(d) 100100 2.52.5 (e)(e) 100100 3.03.0

<실험예 3> 데이터 곡선 및 TG-DTA 분석Experimental Example 3 Data Curve and TG-DTA Analysis

상기 실시예 1에서 제조한 코팅용액 처리 전 및 처리한 후의 수산화알루미늄의 입자의 데이터 곡선을 분석하였다(도 7). 이때, 1차 붕규산염 액체유리용액 100 중량부를 기준으로 발포제 urea(요소)를 각각 1 중량부 내지 3 중량부를 첨가하여 제조한 코팅용액을 사용하였다(표 1). 그 결과, 수산화알루미늄이 코팅된 개 질된 입자는 코팅처리하지 입자에 대하여 Al(OH)3가 200~300℃ 사이에서 탈수된 후 완만한 소성과정을 나타냄을 확인하였다(도 8). 또한 표면 개질된 수산화알루미늄 입자는 TG-DTA분석 결과 2~3%가량 수분감량이 많은 것을 확인하였다. 또한, 표면 개질된 수산화알루미늄은 비처리된 입자에 비하여 10℃ 정도 낮은 온도에서 열분해되었는데, 이것은 붕산이 100℃ 부근에서 열분해되는 영향때문으로 판단된다. The data curves of the particles of aluminum hydroxide before and after the coating solution treatment prepared in Example 1 were analyzed (FIG. 7). At this time, based on 100 parts by weight of the first borosilicate liquid glass solution, a coating solution prepared by adding 1 to 3 parts by weight of a foaming agent urea (urea) was used (Table 1). As a result, it was confirmed that the modified particles coated with aluminum hydroxide exhibited a gentle firing process after Al (OH) 3 was dehydrated between 200 and 300 ° C. for the particles not coated (FIG. 8). In addition, TG-DTA analysis showed that the surface-modified aluminum hydroxide particles had a lot of moisture loss of about 2-3%. In addition, the surface-modified aluminum hydroxide was pyrolyzed at a temperature about 10 ° C. lower than that of the untreated particles, which is judged to be due to the effect of boric acid pyrolysis at around 100 ° C.

도 1은 본 발명의 액체유리용액(코팅용액) 합성의 도식도이다.1 is a schematic diagram of the synthesis of a liquid glass solution (coating solution) of the present invention.

도 2는 도 1에서 제조한 코팅용액을 이용한 수산화알루미늄(Al(OH)3)의 표면 개질방법의 도식도이다.FIG. 2 is a schematic diagram of a surface modification method of aluminum hydroxide (Al (OH) 3 ) using the coating solution prepared in FIG. 1.

도 3은 코팅용액 처리전의 수산화알루미늄 입자의 전자현미경으로 확대한 사진이다.3 is an enlarged photograph of an electron microscope of aluminum hydroxide particles before coating solution treatment.

도 4는 코팅용액 처리후의 수산화알루미늄 입자의 SEM 전자현미경으로 확대한 사진이다.4 is an enlarged photograph of an SEM electron microscope of aluminum hydroxide particles after coating solution treatment.

도 5는 코팅용액 처리후의 수산화알루미늄 입자의 SEM 이미지로서 다양한 농도의 요소의 첨가에 따른 경향성을 보이는 사진이다((이때, (a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt%; (d) 2.5 wt%; (e) 3.0 wt%이다).Figure 5 is a SEM image of the aluminum hydroxide particles after the coating solution treatment is a photograph showing a tendency with the addition of various concentrations of urea ((a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt% (d) 2.5 wt%; (e) 3.0 wt%).

도 6은 발포제로 요소의 다양한 농도의 첨가에 따라 붕소-규소염(boro-sillicate) 유리의 X선 회절 데이터이다(이때, (a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt%; (d) 2.5 wt%; (e) 3.0 wt%, (ref) 대조군이다).FIG. 6 is X-ray diffraction data of boro-sillicate glass with varying concentrations of urea as blowing agent (where (a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt (d) 2.5 wt%; (e) 3.0 wt%, (ref) control).

도 7은 발포제로 요소의 다양한 농도의 첨가에 따라 붕소-규소염(boro-sillicate) 유리의 데이터 곡선이다(이때, (a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt%; (d) 2.5 wt%; (e) 3.0 wt%, (ref) 대조군이다).FIG. 7 is a data curve of boro-sillicate glass with varying concentrations of urea as blowing agent (where: (a) 1.0 wt% (b) 1.5 wt%; (c) 2.0 wt%; (d) 2.5 wt%; (e) 3.0 wt%, (ref) control).

도 8a 내지 도 8e는 100 내지 1000℃의 온도 범위에서 제조된 TG-DTA 결과이다.8A to 8E are TG-DTA results prepared at a temperature range of 100 to 1000 ° C.

Claims (10)

SiO2-B2O3-Na2O로 이루어지는 겔화되는 액체유리가 코팅된 난연성이 향상된 수산화알루미늄(Aluminum hydroxide) 입자.Aluminum hydroxide particles with improved flame retardancy coated with a gelled liquid glass comprising SiO 2 -B 2 O 3 -Na 2 O. 삭제delete 제1항에 있어서, The method of claim 1, 상기 액체유리에는 발포제가 포함되는 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자.Aluminum hydroxide particles with improved flame retardancy, characterized in that the liquid glass comprises a blowing agent. 제3항에 있어서, The method of claim 3, wherein 상기 발포제는 우레아(urea)인 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자.The blowing agent is aluminum hydroxide particles with improved flame retardancy, characterized in that the urea (urea). 제 1항에 있어서, The method of claim 1, 상기 겔화의 개시반응을 위한 액체로 인산용액이 사용되는 것을 특징으로 하는 난연성이 향상된 수산화알루미늄(Aluminum hydroxide) 입자.Aluminum hydroxide particles with improved flame retardancy, characterized in that a phosphoric acid solution is used as a liquid for initiating the gelation reaction. ⅰ) 물에 붕산(Boric acid)을 용해시키고, 이것을 규산소다(water glass)와 혼합하여 1차 붕규산염 액체유리용액을 제조하는 단계;Iii) dissolving boric acid in water, and mixing it with sodium silicate to prepare a primary borosilicate liquid glass solution; ⅱ) 상기 1차 붕규산염 액체유리용액에 발포제를 첨가하여 최종 붕규산염 액체유리용액(코팅용액)을 제조하는 단계;Ii) adding a blowing agent to the primary borosilicate liquid glass solution to prepare a final borosilicate liquid glass solution (coating solution); ⅲ) 상기 코팅용액에 수산화알루미늄(Aluminum hydroxide)을 가하고 교반하여 슬러리를 제조하는 단계; 및Iii) adding aluminum hydroxide to the coating solution and stirring to prepare a slurry; And ⅳ) 상기 ⅲ) 단계를 통하여 제조된 슬러리에 인산용액을 가하여 코팅용액을 겔화시키는 단계를 포함하는 난연성이 향상된 수산화알루미늄 입자의 제조방법.Iv) adding a phosphoric acid solution to the slurry prepared through step iii) to gel the coating solution. 제6항에 있어서, The method of claim 6, 상기 물은 탈이온수(deionized water ; DI water)인 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자의 제조방법.The water is a method of producing aluminum hydroxide particles with improved flame retardancy, characterized in that the deionized water (deionized water; DI water). 제6항에 있어서, The method of claim 6, 상기 발포제는 urea(요소)인 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자의 제조방법.The blowing agent is urea (urea) characterized in that the method of producing aluminum hydroxide particles with improved flame retardancy. 제6항에 있어서, The method of claim 6, 상기 코팅용액은 SiO2-B2O3-Na2O Sol인 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자의 제조방법.The coating solution is SiO 2 -B 2 O 3 -Na 2 O Sol The production method of the aluminum hydroxide particles with improved flame retardancy, characterized in that. 제6항에 있어서, The method of claim 6, 상기 수산화알루미늄의 입자크기는 0.5 내지 10 ㎛인 것을 특징으로 하는 난연성이 향상된 수산화알루미늄 입자의 제조방법.The particle size of the aluminum hydroxide is a method of producing aluminum hydroxide particles with improved flame resistance, characterized in that 0.5 to 10 ㎛.
KR1020080073688A 2008-07-28 2008-07-28 Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof KR101039007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080073688A KR101039007B1 (en) 2008-07-28 2008-07-28 Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080073688A KR101039007B1 (en) 2008-07-28 2008-07-28 Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof

Publications (2)

Publication Number Publication Date
KR20100012345A KR20100012345A (en) 2010-02-08
KR101039007B1 true KR101039007B1 (en) 2011-06-03

Family

ID=42086582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080073688A KR101039007B1 (en) 2008-07-28 2008-07-28 Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof

Country Status (1)

Country Link
KR (1) KR101039007B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902934B (en) * 2023-09-11 2023-12-08 山东东信新材料科技股份有限公司 Preparation method of aluminum hypophosphite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836948A (en) 1981-08-24 1983-03-04 Toshiba Corp Alumina substrate
JPS6313658A (en) 1986-07-05 1988-01-20 Ngk Insulators Ltd Member for molten aluminum
JPH0797269A (en) * 1993-09-27 1995-04-11 Mitsubishi Materials Corp Production of low-temperature sintering ceramic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836948A (en) 1981-08-24 1983-03-04 Toshiba Corp Alumina substrate
JPS6313658A (en) 1986-07-05 1988-01-20 Ngk Insulators Ltd Member for molten aluminum
JPH0797269A (en) * 1993-09-27 1995-04-11 Mitsubishi Materials Corp Production of low-temperature sintering ceramic

Also Published As

Publication number Publication date
KR20100012345A (en) 2010-02-08

Similar Documents

Publication Publication Date Title
KR101752091B1 (en) Blanket comprising silica aerogel and method for preparing the same
CN102850905B (en) Aqueous expansion-type steel structure fireproof paint and preparation method thereof
CN101565625B (en) Silicone rubber fireproof sealing material and preparation method thereof
KR101575989B1 (en) Lightweight, Sound absorbing And Thermal Insulating Panel with Expaned Graphite And Manufacturing Method of The Same
CN104556964A (en) Hydrophobic silica aerogel heat-insulation composite material and preparation method thereof
CN104556969A (en) Preparation method of hydrophobic silica aerogel heat-insulation composite material
CN104556965A (en) Hydrophobic silica aerogel heat-insulation composite material
RU2012122783A (en) DEPOSITED MAGNESIUM CARBONATE
US20090081459A1 (en) Organic foaming plastic body having excellent thermal resistance and durability
CN102634256A (en) Water expansion type fire-proof mildew-proof coating for tunnels
WO2015163502A1 (en) Inorganic expandable refractory composition
WO2008026308A1 (en) Silicic acid coated hydrotalcite particle powder, stabilizers for chlorine-containing resins made by using the powder, and chlorine-containing resin compositions
JPH0116794B2 (en)
KR101039007B1 (en) Aluminum hydroxide Particle Improving for Fire-retardant and Production Method Thereof
KR20150000295A (en) Magnesia, method for preparing thereof, and multilayer ceramic capacitor comprising additives the same
KR101519864B1 (en) Sound absorbing and adiabatic material having lightweight fireproof using expandable graphite and manufacturing method of the same
CN110240867B (en) Two-component compound synergistic inorganic fireproof adhesive and preparation method thereof
JP2014148444A (en) Refractory coating material containing aluminum hydroxide as main component and its manufacturing method
KR101437636B1 (en) The methode for manufacturing aqueous fire-proof paint composition
KR20220139482A (en) Non-combustible ceramic molded body for lightweight building interior and exterior materials and its manufacturing method
KR101052344B1 (en) Method for producing high purity magnesium oxide powder from magnesium chloride
CN113088145A (en) Modified high-temperature fiber resin-based fireproof coating and preparation method thereof
KR102326873B1 (en) Porous ceramic insulation material using waste aluminum dross powder and method for manufacturing same
CN111217551A (en) Inorganic mineral polymeric fiber crystal halogen-free flame retardant powder
CN110669246B (en) Phosphomolybdic acid intercalation hydrotalcite-like light foam heat-insulating material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140424

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150422

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee