KR101032814B1 - Analysis of Bacillus anthracis Lethal Toxin - Google Patents

Analysis of Bacillus anthracis Lethal Toxin Download PDF

Info

Publication number
KR101032814B1
KR101032814B1 KR1020030045320A KR20030045320A KR101032814B1 KR 101032814 B1 KR101032814 B1 KR 101032814B1 KR 1020030045320 A KR1020030045320 A KR 1020030045320A KR 20030045320 A KR20030045320 A KR 20030045320A KR 101032814 B1 KR101032814 B1 KR 101032814B1
Authority
KR
South Korea
Prior art keywords
gene
anthrax
genes
toxin
mrna expression
Prior art date
Application number
KR1020030045320A
Other languages
Korean (ko)
Other versions
KR20050003815A (en
Inventor
채영규
서귀문
남정아
오광근
Original Assignee
채영규
주식회사 쎌앤젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 채영규, 주식회사 쎌앤젠 filed Critical 채영규
Priority to KR1020030045320A priority Critical patent/KR101032814B1/en
Publication of KR20050003815A publication Critical patent/KR20050003815A/en
Application granted granted Critical
Publication of KR101032814B1 publication Critical patent/KR101032814B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 탄저균의 치사독소에 의하여 특이적으로 대식세포에서 발현이 증가 또는 감소되는 유전자를 마이크로 어레이에 의하여 분석하는 방법에 관한 것으로, 구체적으로는 탄저균의 치사독소에 의하여 대식세포에서 특이적으로 증가 또는 감소되는 유전자를 마이크로 어레이 기술을 이용하여 탐색한 후 발현의 차이를 측정함으로써, 탄저균 치사독소에 의하여 반응하는 유전자를 바이오마커로서 활용할 수 있다.The present invention relates to a method for analyzing genes whose expression is increased or decreased in macrophages by anthrax toxin specifically, in particular, in macrophages by anthrax toxin. Alternatively, the genes that are reacted by anthrax lethal toxin can be utilized as biomarkers by searching for the reduced genes using microarray technology and measuring the difference in expression.

Bacillus anthracis, 탄저치사독소, cDNA microarray, 마우스 대식세포Bacillus anthracis, anthrax toxin, cDNA microarray, mouse macrophage

Description

탄저균 치사독소에 의한 대식세포 반응 유전자 분석방법{Analysis of Bacillus anthracis Lethal Toxin} Analysis of macrophage response gene analysis by anthrax lethal toxin {Analysis of Bacillus anthracis Lethal Toxin}             

도 1은 치사독소를 처리한 다음 역전사 효소를 이용하여 중합효소연쇄반응을 수행한 결과이다. (a) NEK 6, (b) RPL10A, (c) JAK1, (d) ATP1B1, (e) BACE. PA는 100ng/ml, LF 16ng/ml을 처리하여 얻은 결과이다.1 is a result of polymerase chain reaction using reverse transcriptase after treatment of lethal toxin. (a) NEK 6, (b) RPL10A, (c) JAK1, (d) ATP1B1, (e) BACE. PA was obtained by treating 100ng / ml and 16ng / ml LF.

본 발명은 탄저균의 치사독소에 의하여 대식세포에서 특이적으로 증가 또는 감소되는 유전자를 마이크로 어레이 기술을 이용하여 탐색한 후 발현의 차이를 측정하고 이를 이용한 DNA칩으로 탄저균의 감염을 간단하게 분석하는 방법에 관한 것이다.The present invention uses a microarray technology to search for genes that are specifically increased or decreased in macrophages by anthrax toxin to determine the difference in expression and to simply analyze the infection of anthrax using DNA chips. It is about.

탄저(Anthrax) 는 탄저균에 의해 발생되며, 인수 공통 전염병으로 폐 탄저(inhalation anthrax), 장 탄저(gastrointestinal anthrax), 피부탄저(cutaneous anthrax) 로 구분된다. 폐탄저는 탄저 아포(spore)가 폐의 대 식세포에 들어가 발아하여 탄저균이 증식하고, 탄저균으로부터 생성된 독소 때문에 호흡곤란과 함께 패혈증 및 쇼크 증상이 온다. 이때 대식세포는 탄저균이 혈관을 통해 전신으로 퍼지게 하는 매개자 역할을 한다.Anthrax is caused by anthrax and is a common infectious disease classified into pulmonary anthrax, gastrointestinal anthrax and cutaneous anthrax. Pulmonary anthrax enters lung macrophages and germinates, causing anthrax to proliferate, resulting in sepsis and shock with dyspnea due to toxins produced from anthrax. The macrophage acts as a mediator to spread anthrax to the whole body through blood vessels.

탄저균은 호기성 세균이며 그람 양성 세균으로 크기는 5 ㎛ x 5-8 ㎛이다. 탄저균은 운동성이 없고, 산소가 있을 때에는 아포를 형성한다. 탄저균의 독소 구성 단백질은 방어항원(protective antigen: PA, 83 kDa), 부종요소(edema factor: EF, 89 kDa) 및 치사요소(lethal factor:LF, 90 kDa)로 구성되어 있다. 치사요소 한 분자와 부종요소 한 분자는 각각 방어항원 7분자와 결합하여 치사독소(lethal toxin: LeTx)와 부종독소(edema toxin: EdTx)를 형성한다. 탄저균이 대식세포에 들어가 독성을 나타낼 때 치사독소(LeTx)는 세포사멸을 작동시키는 주된 역할을 하는 것으로 보인다.Anthrax is an aerobic and gram positive bacterium that is 5 μm × 5-8 μm in size. Anthrax is not motile and forms oxygen when there is oxygen. Anthrax toxin-constituting protein is composed of protective antigen (PA, 83 kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). One molecule of lethal and one edema combine with seven protective antigen molecules to form lethal toxin (LeTx) and edema toxin (EdTx). Lethal toxin (LeTx) appears to play a major role in triggering apoptosis when anthrax enters macrophages and becomes toxic.

치사독소의 활성은 세포막 수용체에 방어항원이 특이적으로 결합하면 furin-like protease에 의해 방어항원의 20 kDa이 절단되며, 절단되고 남은 방어항원의 63 kDa은 탄저독소 수용체(anthrax toxin receptor: ATR)에 결합하여 heptamer를 형성하며, 이후 방어항원 heptamer에 치사요소 한 분자가 결합하여 세포 안으로 들어가 활성을 나타낸다. 치사독소는 대식세포에 들어가 세포를 파괴하는데 저농도의 치사독소는 세포 사멸(apoptosis)를 일으키고 고농도의 치사독소는 활성산소종(reactive oxygen species: ROS)을 과다발현시켜 대식세포가 급사(sudden death)하게 한다.The specific activity of lethal toxin is that 20 kDa of the protective antigen is cleaved by furin-like protease when the protective antigen specifically binds to the cell membrane receptor, and 63 kDa of the remaining protective antigen is cleaved by ananthrax toxin receptor (ATR). It binds to form heptamer, and then a molecule of lethal element binds to the protective antigen heptamer and enters into cell. Lethal toxin enters and destroys macrophages. Low concentration of lethal toxin causes apoptosis, and high concentration of lethal toxin overexpresses reactive oxygen species (ROS), causing macrophage sudden death. Let's do it.

고농도의 치사독소를 대식세포에 가한 후 45분까지를 초기단계라하고 60분 후를 후기 단계라고 한다. 치사독소는 초기단계에서 Na+/K+의 막 투과성(membrane permeability)을 높이고 ATP를 소모한다. 후기 단계에서는 Ca2+, Cr2+, Cl-, SO42-, amino acid 및 uridine의 막 투과성 변형이 일어나며, 고분자 (macromolecule) 합성을 저해하여 세포의 형태적 변화(morphological change)를 초래한다. 치사독소와 함께 tyrosine kinase inhibitor를 가했을 때 대식세포의 생존율이 높아지는 것으로 보아 tyrosine kinase가 치사독소 기작에 관여할 것이라고 보고 되었다.After high concentrations of lethal toxins are added to macrophages, up to 45 minutes is called the early stage and 60 minutes later is called the late stage. Lethal toxin increases the membrane permeability of Na + / K + in the early stage and consumes ATP. In the later stages, membrane permeability modifications of Ca2 +, Cr2 +, Cl-, SO42-, amino acid and uridine occur, inhibiting the synthesis of macromolecule (macromolecule), resulting in morphological changes of cells. Tyrosine kinase inhibitors and tyrosine kinase inhibitors increase the survival rate of macrophages, suggesting that tyrosine kinase may be involved in the lethal toxin mechanism.

유전자 발현(gene expression)을 연구하는 방법에는 differential display PCR(DD-PCR)[Liang et al., Science, 258, 967-971, 1992], serial analysis gene expression(SAGE)[Velculescu et al., Science, 270, 484-487], expressed sequence tags(EST) database comparison [Vasmatizis et al., Proc. Natl. Acad. Sci. USA, 95 , 300-304, 1998]의 방법들이 이용되고 있으나 이들 방법들의 가장 큰 문제점은 시간이 많이 걸리고, 비용이 많이 든다는 점으로 시간적·경제적 부담이 크다는 사실이다. 또한 수행과정이 복잡하고 많은 유전자를 동시에 다루기가 어려운 단점을 가지고 있다.Methods for studying gene expression include differential display PCR (DD-PCR) [Liang et al., Science, 258, 967-971, 1992], serial analysis gene expression (SAGE) [Velculescu et al., Science , 270, 484-487, expressed sequence tags (EST) database comparison [Vasmatizis et al., Proc. Natl. Acad. Sci. USA, 95, 300-304, 1998], but the biggest problem with these methods is the fact that they are time-consuming and expensive, resulting in high time and economic burden. In addition, the process is complicated and difficult to handle many genes at the same time.

본 발명에서는 상기의 방법들의 단점을 보완하는 방법으로 DNA microarray 방법을 사용하였다. DNA microarray는 특정 세포에서 발현되는 유전자의 발현양상을 동시 다발적으로 분석할 수 있는 장점을 가진 기술로서, 특이적으로 발현이 유도되거나 저해되는 유전자들을 대량으로 분석할 수 있다.In the present invention, a DNA microarray method was used as a method to compensate for the shortcomings of the above methods. DNA microarray is a technology that can simultaneously analyze the expression patterns of genes expressed in a specific cell, and can analyze a large amount of genes whose expression is specifically induced or inhibited.

본 발명은 탄저균 치사독소에 의하여 대식세포에서 차별적으로 발현이 증가 또는 감소되는 유전자가 스폿팅된 마이크로어레이 칩을 이용한 대식세포의 유전자 발현양상을 생물학적으로 분석하고 탄저균 감염에 대한 바이오마커로서 제공하는데 그 목적이 있다.
The present invention provides biological analysis of gene expression patterns of macrophages using a microarray chip in which a gene whose differential expression is increased or decreased in macrophages by anthrax lethal toxin is biologically analyzed and provided as a biomarker for anthrax infection. There is a purpose.

본 발명은 탄저균 치사독소에 의하여 대식세포에서의 반응을 분석하는 방법에 있어서, (1) 탄저균 치사독소에 의하여 차별적으로 증가 또는 감소되는 유전자 및 그 유전자로부터 유래된 DNA 단편이 고정화된 DNA칩: (2) 탄저균에 의하여 대식세포에서 차별적으로 발현되는 유전자를 스폿팅한 DNA 칩을 이용하여 탄저균의 치사독소를 함유한 시료로 부터 증가 또는 감소되는 유전자 발현을 측정함으로써, 탄저균의 감염을 간단하고 경제적으로 분석하는 방법을 제공한다. The present invention provides a method for analyzing a response in macrophages by anthrax lethal toxin, wherein (1) a DNA chip differentially increased or decreased by anthrax lethal toxin and DNA fragments derived from the gene are immobilized: ( 2) Simple and economical anthrax infections can be easily and economically determined by measuring gene expression that is increased or decreased from anthrax toxin-containing samples using DNA chips that are spotted genes differentially expressed in macrophages by anthrax. Provide a method for analysis.

탄저균의 치사독소에 의하여 영향을 받게되면 유전자 발현의 변화가 생기게된다. DNA 칩은 3 내지 4만개의 유전자중 탄저균에 의하여 영향을 받는 일부 유전자를 유리 슬라이드위에 스폿팅한 것을 말한다. 탄저균의 치사독소를 처리하지 않은 대식세포(대조그룹)와 탄저균의 치사독소를 처리한 대식세포(샘플그룹)로부터 전체 mRNA를 분리하여, 샘플그룹과 대조그룹에 2가지 형광물질 (Cy-3, Cy-5형광)중 각각 하나씩만 결합시켜 프로브를 제조한다. 각각의 형광물질이 결합된 유전물질을 cDNA 칩에 혼성화시키면, 대조그룹과 샘플그룹으로 부터 제조된 프로브는 경쟁적으로 1개의 스폿에 결합하게 되며, 상대적인 유전자 발현양상의 차이를 형광의 세기 를 통해 구분할 수 있다.When affected by an lethal toxin of anthrax, changes in gene expression occur. DNA chip refers to a spot on a glass slide of some genes affected by anthrax among 3 to 40,000 genes. Total mRNA was isolated from macrophages (control group) without Anthrax lethal toxin and macrophages (sample group) with Anthrax lethal toxin, and two fluorescent substances (Cy-3, Only one of each of Cy-5 fluorescence is combined to prepare a probe. When hybridization of each fluorescent substance bound to the cDNA chip, probes prepared from the control group and the sample group competitively bind to one spot, and the difference in relative gene expression can be distinguished by the intensity of fluorescence. Can be.

본 발명에서 탄저균의 치사독소에 의해 영향을 받은 유전자는 이의 발현이 탄저균 치사독소에 의해 촉진 또는 억제되는 유전자로서 정의된다. 이러한 유전자의 수는 하나 이상일 수 있다. 따라서, 발현이 탄저균의 치사독소에 의해 직접ㆍ 간접적으로 영향을 받은 작용물질의 유전자 또는 관련 유전자가 본 발명의 DNA 어레이상에 고정화되는 유전자로 사용될 수 있다. In the present invention, a gene affected by anthrax toxin is defined as a gene whose expression is promoted or inhibited by anthrax toxin. The number of such genes may be one or more. Therefore, genes of agonists or related genes whose expression is directly or indirectly affected by anthrax toxin can be used as genes immobilized on the DNA array of the present invention.

탄저균의 치사독소에 의해 영향을 받은 유전자는 하기와 같이 검출할 수 있다. DNA 어레이는 유전자 또는 그 유전자로부터 유래된 cDNA 단편이 고정화되는 지지체를 언급하고 예로써 DNA 칩을 포함한다. 혼성화를 위해 사용될 수 있는 지지체는 일반적으로 슬라이드 글라스, 실리콘 칩, 니트로셀룰로오스 또는 나일론 막 등이 사용되며 탄저균의 치사독소에 의해 영향을 받은 유전자 또는 유전자로부터 유래된 cDNA 단편이 고정화된다.The gene affected by the lethal toxin of anthrax can be detected as follows. DNA array refers to a support on which a gene or cDNA fragment derived from the gene is immobilized and includes, for example, a DNA chip. Supports that can be used for hybridization generally include slide glass, silicon chips, nitrocellulose or nylon membranes, and cDNA fragments derived from genes or genes affected by Anthrax lethal toxin are immobilized.

탄저균의 치사독소에 처리된 대식세포에 대한 결과를 대조 대식세포에 대한 결과와 비교하여, 두 샘플사이에서 시그날 세기가 현저하게 상이한 유전자를 검출할 수 있다. 혼성화된 어레이에 대한 방사선, 형광, 발광 등의 시그날 세기를 이미지 분석기와 같은 특수 측정 기기를 사용하여 측정한다. 이로써 탄저균의 치사독소에 의해 발현이 현저히 변경된 유전자를 시그날 세기의 차이에 기초하여 검출할 수 있다.By comparing the results for macrophages treated with Anthrax lethal toxin with those for control macrophages, genes with significantly different signal intensities can be detected between the two samples. Signal intensities, such as radiation, fluorescence, and luminescence, for the hybridized arrays are measured using a special measuring instrument such as an image analyzer. Thereby, the gene whose expression was remarkably changed by the lethal toxin of anthrax can be detected based on the difference of signal intensity.

2개 타입의 형광 라벨을 동시에 탐지할 수 있는 다중 파장 탐지 형광 분석기를 사용하여, 동일한 DNA 어레이상에서 탄저균의 치사독소에 노출된 대식세포에 대 한 유전자 발현은 대조 대식세포에 대한 유전자 발현과 비교할 수 있다. 예를 들면, 탄저균 치사독소의 영향을 받은 세포로부터 유래된 핵산 샘플은 Cy3-dUTP로, 대조 핵산 샘플은 Cy5-dUTP로 형광-라벨링시킨다. 동일한 양의 두 핵산 샘플을 혼합하고 혼합물을 DNA 어레이와 혼성화시켜 두 핵산 샘플사이의 유전자 발현의 차이를 색의 차이로 측정하여 이에 기초하여 탄저균의 치사독소에 의해 발현 수준이 현저하게 변경된 유전자를 검출할 수 있다. Using a multi-wavelength detection fluorescence analyzer that can detect two types of fluorescent labels simultaneously, gene expression for macrophages exposed to anthrax lethal toxin on the same DNA array can be compared with gene expression for control macrophages. have. For example, nucleic acid samples derived from cells affected by anthrax lethal toxin are fluorescently-labeled with Cy3-dUTP and control nucleic acid samples with Cy5-dUTP. The same amount of two nucleic acid samples are mixed and the mixture is hybridized with the DNA array to determine the difference in gene expression between the two nucleic acid samples by color difference, based on which a gene whose expression level has been significantly changed by anthrax toxin is detected. can do.

발현 수준 인덱스로써 탄저균 치사독소를 포함하는 것으로 예상되는 샘플에 대해 측정된 시그날 세기를 대조 샘플에 대한 것과 비교하여, 탄저균 치사독소에 의해 영향을 받은 유전자를 선별한다. 예를 들어, 이 값은 탄저균 치사독소를 포함하는 샘플에 대한 형광 시그날 값을 대조 샘플에 대한 형광 시그날 값으로 나누어 계산한다. 1.00보다 큰 값은 유전자 발현이 시험 물질의 처리에 의해 촉진되었음을 의미한다. 1.00보다 작은 값은 유전자 발현이 시험 물질의 처리에 의해 억제되었음을 의미한다. 1.00과 동일한 값은 유전자가 시험물질의 처리에 의해 아무런 영향을 받지 않았음을 나타낸다. 발현이 촉진된 경우, 값은 1.5, 바람직하게는 2.0보다 크게 나타난다. 발현이 억제된 경우, 값은 0.9, 바람직하게는 0.8보다 작게 나타난다.Genes affected by anthrax lethal toxin are selected by comparing the signal intensity measured for the sample expected to include anthrax lethal toxin as the expression level index to that for the control sample. For example, this value is calculated by dividing the fluorescence signal value for the sample containing anthrax lethal toxin by the fluorescence signal value for the control sample. Values greater than 1.00 mean that gene expression is facilitated by the treatment of the test substance. A value less than 1.00 means that gene expression was inhibited by the treatment of the test substance. A value equal to 1.00 indicates that the gene was not affected by the treatment of the test material. If expression is promoted, the value is greater than 1.5, preferably greater than 2.0. If expression is inhibited, the value appears to be less than 0.9, preferably 0.8.

본 발명에서는 탄저균의 치사독소를 대식세포에 처리하여 유전자 발현양상의 차이를 측정하였다.In the present invention, the treatment of anthrax toxin to macrophages was measured to determine the difference in gene expression patterns.

이하 본 발명을 하기 실시예에 의하여 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것으로, 본 발명이 이에 한정된 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples illustrate the invention, but the invention is not limited thereto.

  실시예1 Example 1

생쥐 대식세포 RAW 264.7 세포는 10 % 송아지 태아 혈청(fetal bovine serum: FBS)과 1 % 페니실린/스트렙토마이신이 포함된 DMEM 배지를 사용하여 37 ℃, 5 % CO2 배양기에서 배양하였다. Mouse macrophage RAW 264.7 cells were cultured in a 37 ° C., 5% CO 2 incubator using DMEM medium containing 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin.

보유하고 있는 방어항원, 치사요소의 생리학적 활성을 확인하기 위하여 MTT assay를 수행하였다. MTT assay는 미토콘드리아의 탈수소효소와 반응하여 세포 생존율을 측정하는 방법이다. 생쥐 대식세포 RAW 264.7 세포를 96-웰 플레이트에 각각 6×104개 분주하여 37 ℃, 5 % CO2 배양기에서 하루 밤 배양하였다. 방어항원 농도는 100 ng/㎖로 고정하였고, 치사요소는 농도별로(2, 4, 8, 16, 32, 64 및 100 ng/㎖) 플레이트에 처리하였다. 시간별(0, 10, 20, 30, 60, 90, 120, 180 및 240분)로 플레이트를 CO2 배양기에서 꺼내어 PBS(pH 7.2) 완충액으로 5회 세척하였다. DMEM 배지(10 % FBS, 1X PS) 100 ㎕을 첨가하고 25 ㎕ MTT(5 ㎎/㎖ in PBS)를 가한 후 37 ℃, 5 % CO2 배양기에서 3시간 배양하였다. 배양이 끝난 플레이트에 정지 용액(20 % SDS, 50 % dimethyl formamide, pH 4.7) 100 ㎕를 첨가하고 상온에서 천천히 교반하였다. 3시간 후 파장 570 nm에서 ELISA reader로 측정하여 그래프를 작성하였다. MTT assay was performed to confirm the physiological activity of protective antigen and lethal factor. MTT assay is a method of measuring cell viability by reacting with dehydrogenase of mitochondria. Mouse macrophage RAW 264.7 cells were dispensed 6 × 10 4 into 96-well plates and incubated overnight at 37 ° C., 5% CO 2 incubator. Protective antigen concentrations were fixed at 100 ng / ml and lethal elements were treated by concentration (2, 4, 8, 16, 32, 64 and 100 ng / ml) plates. At hourly (0, 10, 20, 30, 60, 90, 120, 180 and 240 minutes) plates were removed from the CO 2 incubator and washed five times with PBS pH 7.2 buffer. 100 μl of DMEM medium (10% FBS, 1 × PS) was added and 25 μl MTT (5 mg / ml in PBS) was added, followed by incubation for 3 hours in a 37 ° C., 5% CO 2 incubator. 100 μl of the stop solution (20% SDS, 50% dimethyl formamide, pH 4.7) was added to the culture plate, and the mixture was stirred slowly at room temperature. After 3 hours, a graph was prepared by measuring with an ELISA reader at a wavelength of 570 nm.

그 결과 치사독소의 치사요소 농도가 8 ng/㎖을 넘어설 때 90분을 기준으로 세포가 사멸함을 알 수 있었다. 본 발명에서는 세포 급사에서의 치사독소에 대한 유전자 발현 변화를 보고자 하는 것이므로 상기 결과를 바탕으로 방어항원 농도는 100 ng/㎖, 치사요소 농도는 16 ng/㎖로 하여 시행하였다.As a result, when the lethal urea concentration of lethal toxin exceeds 8 ng / ㎖, it can be seen that the cells die at 90 minutes. In the present invention, it is intended to see the change in the gene expression for the lethal toxin in the cell death, the protective antigen concentration based on the above results was carried out with a concentration of 100 ng / ㎖, 16 ng / ㎖ of lethal urea.

  실시예2Example 2

RNA 분리는 GibcoBRL사가 제공하는 방법으로 수행하였다. DMEM 배지(10 % FBS, 1X PS)를 사용하여 생쥐 대식세포 RAW 264.7 세포를 플레이트에 6×106개 되도록 분주한 후 37 ℃, 5 % CO2 배양기에서 2시간 동안 배양하였다. 배양이 끝나면 세포가 플레이트 바닥에 잘 붙었는지 확인하고 PBS(pH 7.2) 완충액으로 2회 세척 후 방어항원 100 ng/㎖, 치사요소 16 ng/㎖을 첨가하였다. 다시 37 ℃, 5 % CO2 배양기에서 30분 동안 배양 후 플레이트를 PBS(pH 7.2) 완충액으로 2회 세척하였다. 세척 후에는 Trizol 시약 2 ㎖를 첨가하고 pipeting 50-70회하여 세포를 파괴하였다. 세포 파괴가 끝난 시료를 튜브에 1 ㎖씩 분주 후 200 ㎕ 클로로포름을 첨가하였다. 튜브 뚜껑을 닫고 15초 정도 와류(vortexing)하고 얼음에 15분 정도 방치하였다. 후에 12,000 g, 15분, 4 ℃에서 원심분리 하였다. 이 후 조심스럽게 상층액을 수거한 후 새로운 튜브에 옮기고 동량의 이소프로필 알코올을 넣어주어 얼음에 1시간동안 방치하였다. 그 후에 4 ℃에서 12,000 ×g로 15분간 원심분리 하였다. 젤 같은 응집체 형성을 확인하고 상층액을 제거하였다. 에탄올 75 %(DEPC 처리 증류수) 1 ㎖를 첨가한 후 교반하고 4 ℃에서 12,000 ×g로 15분간 원심분리 하여 상층액을 제거하고 다시 동일한 조건으로 원심분리 하여 남아있는 상층액을 모두 제거하였다. 응집체를 5분에서 10분 동안 상온에서 건조하고 DEPC 처리된 3차 증류수 30 ㎕를 가하여 녹였다. 분광광도계(Spectrophotometer)에서 파장 260 ㎚와 280 ㎚로 시료를 측정하여 A260/A280의 값이 1.7 이상인지 확인하였다. 전기영동으로 RNA가 잘 분리되었는지도 확인하였다.RNA isolation was performed by a method provided by GibcoBRL. Mouse macrophage RAW 264.7 cells were dispensed into 6 × 10 6 cells on a plate using DMEM medium (10% FBS, 1 × PS) and incubated for 2 hours at 37 ° C. in a 5% CO 2 incubator. After incubation, the cells were adhered to the bottom of the plate, washed twice with PBS (pH 7.2) buffer, and then 100 ng / ml of protective antigen and 16 ng / ml of lethal element were added. The plate was washed twice with PBS (pH 7.2) buffer after incubation for 30 min at 37 ° C., 5% CO 2 incubator. After washing, 2 ml of Trizol reagent was added and the cells were destroyed by pipeting 50-70 times. The cell disrupted sample was dispensed into tubes by 1 ml and 200 μl chloroform was added. The tube lid was closed and vortexed for 15 seconds and left on ice for 15 minutes. After centrifugation at 12,000 g, 15 minutes, 4 ℃. After that, the supernatant was carefully collected, transferred to a new tube, and the same amount of isopropyl alcohol was added and left on ice for 1 hour. Thereafter, the mixture was centrifuged at 12,000 × g for 15 minutes at 4 ° C. Gel-like aggregate formation was confirmed and the supernatant was removed. After adding 1 ml of ethanol 75% (DEPC-treated distilled water), the mixture was stirred and centrifuged at 12,000 × g for 15 minutes at 4 ° C. to remove the supernatant, and again, the remaining supernatant was removed by centrifugation under the same conditions. The aggregates were dried at room temperature for 5 to 10 minutes and dissolved by adding 30 μl of DEPC treated tertiary distilled water. Samples were measured at a wavelength of 260 nm and 280 nm with a spectrophotometer to determine whether the value of A260 / A280 was at least 1.7. Electrophoresis also confirmed that the RNA was well separated.

  실시예3Example 3

Labeling kit는 마크로젠사(한국)의 것을 구입하여 그 회사에서 제공하는 방법으로 수행하였다. PCR(Polymerase chain reaction) 튜브에 대조군의 총 RNA와 실험군의 총 RNA로 각각 결합(annealing)반응 혼합물(총 RNA 18 ㎕, control mRNA(1 ng) 1 ㎕, oligo dT 시발체 3 ㎕)을 준비한 후 70 ℃에서 5분간 방치하고 즉시 튜브를 얼음으로 옮겼다. 새로운 0.2 ㎖ PCR 튜브를 실험군과 대조군 반응으로 구분한 후 표지 혼합물(5X AMV RT buffer 8 ㎕, low dT dNTP 4 ㎕, 1 mM Cy3, Cy5-dUTP 3 ㎕, RNase inhibitor(40 u/㎕) 1 ㎕, AMV RT 2 ㎕(50 units))을 준비하였다. 결합반응 혼합물을 표지 혼합물에 각각 첨가하고 PCR 기기에서 42 ℃, 1시간 동안 방치하였다. 후에 0.5 M EDTA 5 ㎕를 첨가하여 반응을 중단시켰다. 각 튜브에 1 N NaOH 10 ㎕를 첨가하여 37 ℃에서 10분간 방치하였다. 후에 튜브에 1 M Tris.Hcl(pH 7.5) 완충액 25 ㎕를 첨가하였다. Chromaspin 컬럼(마크로젠사)을 2 ㎖ 튜브에 넣은 후 실온에서 1,300 ×g로 3분간 원심분리 하여 컬럼안의 완충액을 제거하였다. 완충액이 제거된 spin 컬럼을 새 튜브에 넣고, 준비된 대조군과 실험군 반응 시료를 각각 컬럼의 중앙에 넣은 후 실온에서 1,300 ×g로 5분간 원심분리 하였다. 각각의 시료에 100 % 에탄올 300 ㎕와 3 M NaOAc 10 ㎕를 첨가하고 -70 ℃에 30분 동안 방치하였다. 후에 실온에서 12,000 ×g로 20분간 원심분리를 수행하여 에탄올을 제거하였다. 그 후에 70 % 에탄올 1㎖를 첨가하고 동일한 조건으로 원심분리 하여 에탄올을 제거하였다. 응집체를 빛을 차단하여 공기 중에서 건조하였다. 건조한 응집체를 각각 45 ㎕의 3차 증류수에 녹이고 12,000 ×g로 2분간 원심분리 하였다. Cy3(대조군) 와 Cy5(샘플군) 혼합물에서 각각 5 ㎕을 취한 후 1/20 희석하여 분광광도계로 흡광도(OD)값을 측정하였다. 측정된 값을 기준으로 각각의 cDNA 양을 계산하여 실험군과 대조군의 cDNA가 동량이 되면서 부피가 80 ㎕되도록 하여 하나의 튜브에 첨가하였다. 후에 5× 분절화 용액 20 ㎕를 첨가하여 전체 부피 100 ㎕가 되도록 하였다. 그 후에 95 ℃에서 15분간 방치하여 얼음으로 옮기고 진공가속건조기(Speed-Vac)로 분절된 cDNA 혼합물을 건조하여 응집체를 생성하였다. The labeling kit was purchased by Macrogen (Korea) and performed by the method provided by the company. Prepare an annealing reaction mixture (18 μl total RNA, 1 μl control mRNA (1 ng), 3 μl oligo dT primer) in a PCR (Polymerase chain reaction) tube with total RNA from the control group and total RNA from the experimental group, respectively. It was left for 5 minutes at ℃ and immediately the tube was transferred to ice. After dividing the new 0.2 ml PCR tube into the experimental and control reactions, the label mixture (8 μl 5X AMV RT buffer, 4 μl low dT dNTP, 1 μl Cy3, Cy5-dUTP 3 μl, RNase inhibitor (40 u / μl) 1 μl 2 μl of AMV RT (50 units) was prepared. The binding reaction mixtures were added to the labeling mixtures respectively and left at 42 ° C. for 1 hour in a PCR instrument. The reaction was then stopped by adding 5 μl of 0.5 M EDTA. 10 μl of 1 N NaOH was added to each tube and allowed to stand at 37 ° C. for 10 minutes. Then 25 μl of 1 M Tris.Hcl (pH 7.5) buffer was added to the tube. The Chromaspin column (Macrogen) was placed in a 2 ml tube and centrifuged at 1,300 xg for 3 minutes at room temperature to remove the buffer in the column. The spin column from which the buffer was removed was placed in a new tube, and the prepared control and experimental reaction samples were placed in the center of the column, and centrifuged at 1,300 × g for 5 minutes at room temperature. 300 μl of 100% ethanol and 10 μl of 3 M NaOAc were added to each sample and allowed to stand at −70 ° C. for 30 minutes. After centrifugation at 12,000 × g for 20 minutes at room temperature to remove ethanol. Then 1 ml of 70% ethanol was added and ethanol was removed by centrifugation under the same conditions. The aggregates were dried in air by blocking light. The dried aggregates were each dissolved in 45 μl of tertiary distilled water and centrifuged at 12,000 × g for 2 minutes. 5 μl of each of the mixture of Cy3 (control) and Cy5 (sample) was taken and diluted 1/20, and the absorbance (OD) value was measured with a spectrophotometer. Based on the measured value, the amount of each cDNA was calculated, and the volume of the test group and the control group was added to one tube so that the volume was equal to 80 µl. 20 μl of 5 × segmentation solution was then added to a total volume of 100 μl. Thereafter, the mixture was left at 95 ° C. for 15 minutes, transferred to ice, and the cDNA mixture, which had been segmented with a Speed-Vac, was dried to form aggregates.

cDNA microarray pre-hybridization 방법은 디지털지노믹스사(한국)에서 제공하는 방법으로 수행하였다. Pre-hybridization 완충액(25 % formamide, 5X SSC, 0.1 % SDS, 10 ㎎/㎖ BSA)을 미리 42 ℃로 가열하였다. 슬라이드를 pre-hybridization 완충액이 채워진 50 ㎖ 튜브에 넣고 42 ℃에서 45분간 방치하였다. 후에 slide를 꺼내어 3차 증류수로 5회 정도 세척하고 실온에서 60 ×g로 5분간 원심분리 하여 microarray 위의 수분을 제거하였다. cDNA microarray pre-hybridization method was performed by the method provided by Digital Genomics (Korea). Pre-hybridization buffer (25% formamide, 5X SSC, 0.1% SDS, 10 mg / ml BSA) was previously heated to 42 ° C. The slides were placed in a 50 ml tube filled with pre-hybridization buffer and left at 42 ° C. for 45 minutes. After that, the slide was removed, washed 5 times with distilled water, and centrifuged at 60 × g for 5 minutes at room temperature to remove moisture on the microarray.

프로브 제조과정에서 만든 시료 응집체를 15 ㎕ hybridization 완충액(25 % formamide, 5×SSC, 0.1 % SDS)에 녹이고 95 ℃에서 5분간 가열하였다. 그 후 2분 동안 가볍게 원심분리 하였다. 슬라이드를 chamber에 옮기고 준비된 시료를 슬라이드 표면에 부하한 후 커버 글라스를 덮어주었다. 이 후 42 ℃에서 16-20시간 동안 방치하였다. Sample aggregates prepared during the probe preparation were dissolved in 15 μl hybridization buffer (25% formamide, 5 × SSC, 0.1% SDS) and heated at 95 ° C. for 5 minutes. Then centrifuged lightly for 2 minutes. The slide was transferred to the chamber, and the prepared sample was loaded onto the slide surface and the cover glass was covered. This was then left at 42 ° C. for 16-20 hours.

세척 완충액 I(2X SSC, 0.1 % SDS)를 42 ℃로 가열한 후 슬라이드를 넣고 흔들어주어 커버 글라스를 제거하였다. 세척 완충액 I(2×SSC, 0.1 % SDS)에 슬라이드를 넣고 42 ℃에서 5분간 방치하였다. 세척 완충액 II(0.1×SSC, 0.1×SDS)에 슬라이드를 넣고 실온에서 1분간 방치하고 이 과정을 4회 반복하였다. 이 후 실온에서 60 ×g로 5분간 원심분리 하여 microarray를 건조시켰다. Wash buffer I (2X SSC, 0.1% SDS) was heated to 42 ° C., slides were inserted and shaken to remove cover glass. The slides were placed in Wash Buffer I (2 × SSC, 0.1% SDS) and left at 42 ° C. for 5 minutes. The slides were placed in Wash Buffer II (0.1 × SSC, 0.1 × SDS) and left at room temperature for 1 minute and the procedure was repeated four times. Thereafter, the microarray was dried by centrifugation at 60 xg for 5 minutes at room temperature.

Axon GenePix scanarray 4000(Axon 4000, USA) 프로그램을 실행해서 슬라이드를 hybridization된 부분이 아래로 가게 하여 스테이지에 밀어 넣었다. Scan parameter, 슬라이드, wavelength 532 ㎚(Cy5), 및 635 ㎚(Cy3) 등의 값을 기입하였다. 2개의 형광 이미지(Cy3, Cy5)를 각각 wavelength 532 ㎚, 635 ㎚로 스캐닝하고, 각각 background값이 올라가지 않고 시그널이 최대로 취해질 수 있는 레이저 강도(laser intensity)와 PMT 감도를 설정하였다. Cy3와 Cy5의 normalization 대조군 유전자의 값을 살펴본 후 스캐닝하였다. 이미지를 저장하고 취한 화상으로 지정된 각 spot 위치의 형광 시그널 강도와 background 강도를 취하여 엑셀 파일로 전환하였다. I ran the Axon GenePix scanarray 4000 (Axon 4000, USA) program and slide the slides down the stage with the hybridized parts down. Values such as Scan parameter, slide, wavelength 532 nm (Cy5), and 635 nm (Cy3) were entered. Two fluorescence images (Cy3, Cy5) were scanned at wavelengths 532 nm and 635 nm, respectively, and laser intensity and PMT sensitivity at which the signal could be maximized without increasing the background value were set, respectively. Scanning was performed after examining the values of the normalization control genes of Cy3 and Cy5. The image was saved and converted to an Excel file by taking the fluorescence signal intensity and background intensity at each spot location designated as the taken image.

Cy3와 Cy5의 시그널 강도를 비교해 보면 Cy3가 Cy5보다 병합(incorporation) 되는 정도가 크기 때문에 이를 비슷하게 조절해 주는 normalization을 해주었다. 이 경우 여러 번의 실험을 통하여 데이터를 비교, 분석하고 normalization한다. 그 후에 대조군 유전자의 Cy3와 Cy5의 형광비가 1로 보고 그것과 비교해서 Cy3와 Cy5의 형광비가 2배 이상이면 유전자 발현이 저해되는 유전자로 보고, 0.5 이하이면 유전자 발현이 유도되는 유전자로 보았다. Comparing the signal strengths of Cy3 and Cy5, Cy3 has a higher degree of incorporation than Cy5, so it has a similar normalization. In this case, the data is compared, analyzed and normalized through several experiments. After that, the fluorescence ratio of Cy3 and Cy5 of the control gene was 1, and compared with that, the fluorescence ratio of Cy3 and Cy5 was 2 times or more, and the gene expression was inhibited.

역전사 PCR(Reverse trascription-polymerase chain reaction)은 Invitrogen사(미국)가 제공하는 방법으로 수행하였다. 방어항원 농도 100 ng/㎖, 치사요소 농도 16 ng/㎖로 30분간 처리해 준 생쥐 대식세포 RAW 264.7 세포의 총 RNA을 분리하였다. PCR 튜브에 total RNA 2 ㎕, oligo dT 시발체 1 ㎕, 10 mM dNTP 1 ㎕, DEPC 처리된 3차 증류수 9 ㎕를 첨가하고 PCR 기기에서 65 ℃, 5분간 방치하였다. 후에 5 ×first-strand 완충액 4 ㎕, 0.1M DTT 2 ㎕, recombinant ribonuclease inhibitor 1 ㎕를 가하고 42 ℃에서 2분간 방치하였다. 그 후 SuperScript II RNase H-reverse transcriptase 1 ㎕를 첨가하고 42 ℃에서 50분간 방치하여 cDNA를 합성했다. 후에 70 ℃, 15분간 가열하여 잔류 단백질들을 불활성화 시켰다. 튜브에 3차 증류수 30 ㎕를 넣어 다음 사용할 때까지 -20℃에 보관하였다.Reverse transcription-polymerase chain reaction (PCR) was performed by a method provided by Invitrogen (USA). Total RNA from mouse macrophage RAW 264.7 cells treated with protective antigen concentration of 100 ng / ml and lethal concentration of 16 ng / ml for 30 minutes was isolated. 2 μl total RNA, 1 μl oligo dT primer, 1 μl 10 mM dNTP, and 9 μl of DEPC treated distilled water were added to the PCR tube and allowed to stand at 65 ° C. for 5 minutes in a PCR instrument. After that, 4 μl of 5 × first-strand buffer, 2 μl of 0.1M DTT, and 1 μl of recombinant ribonuclease inhibitor were added and left at 42 ° C. for 2 minutes. Then, 1 μl of SuperScript II RNase H-reverse transcriptase was added and left at 42 ° C. for 50 minutes to synthesize cDNA. After heating at 70 ℃ for 15 minutes to inactivate the residual proteins. 30 μl of tertiary distilled water was added to the tube and stored at −20 ° C. until the next use.

전술한 바와 같이 MTT assay 결과를 바탕으로 방어항원 농도 100 ng/㎖, 치사요소 농도 16 ng/㎖에 30분으로 조건을 설정하였다. 생쥐 대식세포 RAW 264.7 세포 6×106개에 방어항원 농도 100 ng/㎖와 치사요소 16 ng/㎖를 가하고 30분 후에 총 RNA를 분리하여 cDNA microarray에 시료를 하이브리드 한 후에 스캐닝했다. 데이타 분석 결과 226개의 유전자 발현 변화를 확인하였다. 그 중 32개 유전자의 발현이 저해되었고, 194개의 유전자 발현이 유발되었다.As described above, based on the results of the MTT assay, the conditions were set for 30 minutes at a concentration of 100 ng / ml protective antigen and 16 ng / ml lethal concentration. 6 × 10 6 mouse macrophage RAW 264.7 cells were added with 100 ng / ml of protective antigen concentration and 16 ng / ml of lethal urea, and 30 minutes later, total RNA was isolated and hybridized to the cDNA microarray. Data analysis confirmed 226 gene expression changes. Of these, 32 genes were inhibited and 194 genes were induced.

분석 결과 단백질 생합성에 관여하는 RPL10A, ARBP, RPL30, RPS3, RPL3, RPS16 및 MPRS17 유전자와 세포 유사분열 개시를 조절하는 NEK6 유전자의 발현이 저해되는 것으로 판명되었으며 그 결과는 표 1에 나타낸 것과 같다.As a result, the RPL10A, ARBP, RPL30, RPS3, RPL3, RPS16 and MPRS17 genes involved in protein biosynthesis and NEK6 genes that regulate cell mitosis initiation were inhibited and the results are shown in Table 1.

탄저균 치사독소를 대식세포에 처리를 하였을때 유전자의 발현이 감소되는 유전자 리스트  List of genes whose gene expression is reduced when anthrax lethal toxin is treated in macrophages 유전자gene 생성물product 생물학적 기능Biological function RPL10ARPL10A Ribosomal protein L10ARibosomal protein L10A Protein biosynthesisProtein biosynthesis NOC4NOC4 Neighbor of Cox4Neighbor of Cox4 SORT1SORT1 Sortilin 1Sortilin 1 SERPIN1SERPIN1 Serine(or cystein) protease
nhibitor
Serine (or cystein) protease
nhibitor
ARBPARBP Acidic ribosomal phosphoprotein PAcidic ribosomal phosphoprotein P Protein biosynthesisProtein biosynthesis MPRS17MPRS17 Mitochondria ribosomal protein S1Mitochondria ribosomal protein S1 Protein biosynthesisProtein biosynthesis RPL30RPL30 Ribosomal protein L30Ribosomal protein L30 Protein biosynthesisProtein biosynthesis RPS3RPS3 Ribosomal protein S3Ribosomal protein S3 Protein biosynthesisProtein biosynthesis TPM3TPM3 Tropomyosin 3 gammaTropomyosin 3 gamma Muscle developmentMuscle development CREMCREM cAMP responsive element modulatorcAMP responsive element modulator Regulation of
ranscription
Regulation of
ranscription
TLNTLN TalinTalin Ube2iUbe2i Ubiquitin-conjugating enzyme E21Ubiquitin-conjugating enzyme E21 Ubiquitin dependent
rotein catabolism
Ubiquitin dependent
rotein catabolism
MSH6MSH6 MutS homolog 6 (E.coli)MutS homolog 6 ( E.coli ) DNA repairDNA repair PTDSS2PTDSS2 Phosphatidylserine synthase 2Phosphatidylserine synthase 2 SELENBP1SELENBP1 Selenium binding protein 1Selenium binding protein 1 RPL3RPL3 Ribosomal protein L3Ribosomal protein L3 Protein biosynthesisProtein biosynthesis GNB2-RS1GNB2-RS1 Guanine nucleotide binding
rotein β-2
Guanine nucleotide binding
rotein β-2
ROBO1ROBO1 Roundabout homolog 1Roundabout homolog 1 NEK6NEK6 NIMA-related expressed kinase 6NIMA-related expressed kinase 6 RPS16RPS16 Ribosomal protein S16Ribosomal protein S16 Protein biosynthesisProtein biosynthesis HIST2HIST2 Histone protein 4Histone protein 4

반면 발현이 유도되는 유전자 중에는 표2에 나타낸 것과 같이 시그널에 관여하는 STAT4, STAT5A, JAK1 및 CNIH 유전자, 분아(분열)에 관여하는 BTG1 유전자, 조직 재구성/응고에 관여하는 SERPINB2 유전자, 단백질분해에 관여하는 CTSW1, BACE 및 MCPT5 유전자, 세포주기를 저지하는 GAS1 유전자, 세포사멸에 관여하는 BIRC1E와 CAP8AP2 유전자, 전자전달에 관여하는 GLRX1, CYP7B1, AOX1 및 CYP4A10 유전자, 이동에 관여하는 AQP3, FXC1, ATP1A1, SLC16A1, APOM 및 KCNE4 유전자, 면역감응에 관여하는 SCYB9와 PSMB9 유전자가 있다.On the other hand, as shown in Table 2, STAT4, STAT5A, JAK1 and CNIH genes involved in signaling, BTG1 genes involved in germination (SE), SERPINB2 genes involved in tissue reconstruction / coagulation, and proteolysis are shown in Table 2. CTSW1, BACE and MCPT5 genes, GAS1 genes that inhibit the cell cycle, BIRC1E and CAP8AP2 genes involved in cell death, GLRX1, CYP7B1, AOX1 and CYP4A10 genes involved in electron transfer, AQP3, FXC1, ATP1A1, SLC16A1, APOM and KCNE4 genes, SCYB9 and PSMB9 genes involved in immune response.

탄저균 치사독소를 대식세포에 처리를 하였을때 유전자의 발현이 증가되는 유전자의 리스트 List of genes whose gene expression is increased when anthrax lethal toxin is treated in macrophages 유전자gene 생성물product 생물학적 기능Biological function JAK1JAK1 Janus kinaseJanus kinase Intracellular signal
cascade
Intracellular signal
cascade
STAT4STAT4 Signal transducer and activatior
of transcription 4
Signal transducer and activatior
of transcription 4
Intracellular signal
cascade
Intracellular signal
cascade
BTG1BTG1 B-cell translocation gene 1,
nti-proliferative
B-cell translocation gene 1,
nti-proliferative
ProlieratingProlierating
SERPINB2SERPINB2 Serine(or cysteine) protease
inhibitor, clade B
Serine (or cysteine) protease
inhibitor, clade B
Tissue
remodeling/cloting
Tissue
remodeling / cloting
STAT5ASTAT5A Signal transducer and activator
f transcriptor5A
Signal transducer and activator
f transcriptor5A
Intracellular signal
cascade
Intracellular signal
cascade
CTSW1CTSW1 Cathepsin WCathepsin w ProteolysisProteolysis GAS1GAS1 Growth arrest specific 1Growth arrest specific 1 Cell cycle arrestCell cycle arrest CNIHCNIH Cornichon homolog(Drosophila)Cornichon homolog (Drosophila) Intracellular signal
cascade
Intracellular signal
cascade
GLRX1GLRX1 Glutaredoxin 1(thiol transferase)Glutaredoxin 1 (thiol transferase) Electron transportElectron transport AQP3AQP3 Aquaporin 3Aquaporin 3 TransportTransport FXC1FXC1 Fractured callus expressed
ranscript 1
Fractured callus expressed
ranscript 1
TransportTransport
CYP7B1CYP7B1 Cytochrome p-450,7b1Cytochrome p-450,7b1 Electron transportElectron transport ATP1A1ATP1A1 ATPase, NA+/K+ transporting
eta 1 polypeptide
ATPase, NA + / K + transporting
eta 1 polypeptide
Na+/K+ transportNa + / K + transport
AOX1AOX1 Aldehyde oxidase 1Aldehyde oxidase 1 Electron transportElectron transport CYP4A10CYP4A10 Cytochrome p-450,4a10Cytochrome p-450,4a10 Electron transportElectron transport BIRC1EBIRC1E Baculoviral IAP repeat-containing
1e
Baculoviral IAP repeat-containing
1e
ApoptosisApoptosis
SLC16A1SLC16A1 Solute carrier family 16Solute carrier family 16 TransportTransport BACEBACE Beta-site APP cleaving enzymeBeta-site APP cleaving enzyme ProteolysisProteolysis CAMK4CAMK4 Calcium/calmodulin-dependent
rotein kinase IV
Calcium / calmodulin-dependent
rotein kinase IV
Amino acid
hosphorylation
Amino acid
hosphorylation
APOMAPOM Apolipoprotein MApolipoprotein M TransportTransport MCPT5MCPT5 Mast cell protease 5Mast cell protease 5 ProteolysisProteolysis SCYB9SCYB9 Small inducible cytokine
subfamily(cys-x-cys)
Small inducible cytokine
subfamily (cys-x-cys)
Immune responseImmune response
KCNE4KCNE4 Potassium voltage-gated channelPotassium voltage-gated channel Ion transportIon transport PSMB9PSMB9 Proteasome subunit, beta type 9Proteasome subunit, beta type 9 Immune responseImmune response CASP8AP2CASP8AP2 Caspase 8 associated protein 2Caspase 8 associated protein 2 ApoptosisApoptosis

  실시예4Example 4

생쥐 대식세포 RAW 264.7 세포에 방어항원 100 ng/㎖과 치사요소 16 ng/㎖를 처리하고 30분 경과한 세포에서 총 RNA를 분리하였다. 총 RNA로 합성한 cDNA 2 ㎕, 10X PCR 완충액 5 ㎕, 50 mM MgCl2 1.5 ㎕, 전 시발체 1 ㎕, 후 시발체 1 ㎕, Taq DNA polymerase(5 U/㎕, Biotool사) 1 ㎕, 3차 증류수 37.5 ㎕를 0.2 ㎖ PCR 튜브에 첨가하여 전체 부피가 50 ㎕되도록 하였다. 그 후 94 ℃에서 5분간 사전 변성하고, 94 ℃에서 1분간 변성, 각각의 시발체에 맞는 융해 온도에서 1분간 결합, 72 ℃에서 1분간 신장 과정을 30주기 수행하였다. 그 후에 72 ℃에서 10분간 신장시키고 결과를 2 % TAE 아가로스 젤에서 확인하였다. 사용한 각 유전자의 시발체 서열은 다음과 같다.Mouse macrophage RAW 264.7 cells were treated with 100 ng / ml of protective antigen and 16 ng / ml of lethal urea and total RNA was isolated from cells after 30 minutes. 2 μl of cDNA synthesized with total RNA, 5 μl of 10X PCR buffer, 1.5 μl of 50 mM MgCl 2 , 1 μl of the pre-starter, 1 μl of the pre-starter, 1 μl of Taq DNA polymerase (5 U / μl, Biotool), tertiary distilled water 37.5 μl was added to a 0.2 ml PCR tube to bring the total volume to 50 μl. Thereafter, denatured at 94 ° C. for 5 minutes, denatured at 94 ° C. for 1 minute, bound for 1 minute at the melting temperature for each primer, and stretched for 30 minutes at 72 ° C. for 1 minute. It was then stretched for 10 minutes at 72 ° C. and the results were confirmed on 2% TAE agarose gel. The primer sequence of each gene used is as follows.

NEK6: 5'-TTCTGAAGGGGTGACAG-3', 5'-CTGTCTTCCAGATGGCT-3'NEK6: 5'-TTCTGAAGGGGTGACAG-3 ', 5'-CTGTCTTCCAGATGGCT-3'

RPL10A: 5'-GCTCATCATCGGTCATC-3', 5'-AAGTTGGTCAAGAAGCT-3'RPL10A: 5'-GCTCATCATCGGTCATC-3 ', 5'-AAGTTGGTCAAGAAGCT-3'

JAK1: 5'-GCGAGACACAGGTTTGACG-3', 5'-CGGACAGTGGCGTAAACAG-3'JAK1: 5'-GCGAGACACAGGTTTGACG-3 ', 5'-CGGACAGTGGCGTAAACAG-3'

ATP1B1: 5'-GGAAAAGCCAAGGAGGAAGG-3', 5'-TTGGATGGTCCCGATGAAG-3'ATP1B1: 5'-GGAAAAGCCAAGGAGGAAGG-3 ', 5'-TTGGATGGTCCCGATGAAG-3'

BACE: 5'-GAATAGGGGAAAAAGCCAG-3', 5'-ATTTGCCTCTGCCTGGATT-3'BACE: 5'-GAATAGGGGAAAAAGCCAG-3 ', 5'-ATTTGCCTCTGCCTGGATT-3'

생물학적 기능에 따라 관여하는 유전자에 대한 시발체를 상기와 같이 구상하여 RT-PCR을 수행하였다. 즉, 세포성장에 관여하는 유전자 NEK6, 단백질 생합성에 관여하는 유전자 RPL10A , 세포내 시그날링에 관여하는 유전자 JAK1, 이동에 관여하는 유전자 ATP1A1 유전자, 단백질 분해에 관여하는 유전자 BACE에 대한 것으로 그 결과는 도면 1에 나타내었다. 이 결과로서 급사수준의 탄저균 치사독소를 대식세포에 가하였을 때 일어나는 유전적인 발현의 변화를 측정함으로써 치사독소가 대 식세포의 외부 물질 분해기능을 더욱 자극하여 세포급사를 더 촉진하는 것을 알 수 있으며, 이를 이용하여 탄저균의 감염을 쉽게 측정할 수 있게 됨을 확인하였다.The primers for genes involved according to biological function were envisioned as described above to perform RT-PCR. That is, the gene NEK6 involved in cell growth, gene RPL10A involved in protein biosynthesis, JAK1 involved in intracellular signaling, gene ATP1A1 involved in migration, and gene BACE involved in protein degradation. 1 is shown. As a result, it can be seen that by measuring the change in the genetic expression that occurs when the sudden death level of anthrax lethal toxin to the macrophages, lethal toxin further stimulates the macrophage decomposing function to further promote cell death. It was confirmed that the anthrax infection can be easily measured using this.

본 발명은 탄저균의 치사독소에 의하여 대식세포에서 특이적으로 증가 또는 감소되는 유전자를 마이크로 어레이 기술을 이용하여 탐색한 후 발현의 차이를 측정함으로써, 탄저균 치사독소에 의하여 반응하는 유전자를 바이오마커로서 활용하여 탄저균의 치사독소 존재시에 간단하고 경제적으로 분석할 수 있다.The present invention utilizes genes that respond to anthrax toxin toxin as a biomarker by searching for genes that are specifically increased or decreased in macrophages by anthrax toxin toxin and by measuring the difference in expression. Thus, in the presence of lethal toxin of anthrax can be analyzed simply and economically.

Claims (3)

RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16, HIST2, JAK1, STAT4, BTG1, SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APOM, MCPT5, SCYB9, KCNE4, PSMB9 및 CASP8AP2 유전자의 mRNA 발현수준을 측정하는 제재를 포함하는 탄저균 치사독소 검출용 DNA칩.RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16, HIST2, JAK1, STAT4 Measuring SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APOM, MCPT5, SCYB9, KCNE4, MP9 Anthracnose lethal toxin detection DNA chip comprising the agent. 제1항에 있어서, 상기 유전자의 mRNA 발현 수준을 측정하는 제재는 상기 유전자에 특이적으로 결합하는 프로브인 DNA칩.The DNA chip of claim 1, wherein the agent for measuring mRNA expression level of the gene is a probe that specifically binds to the gene. 개체의 시료로부터 RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16, HIST2, JAK1, STAT4, BTG1, SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APOM, MCPT5, SCYB9, KCNE4, PSMB9 및 CASP8AP2 유전자의 mRNA 발현 수준을 측정하는 단계; 상기 유전자의 mRNA 발현 수준을 정상 대조구 시료의 해당 유전자의 mRNA 발현 수준과 비교하는 단계; 및 상기 RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16 및 HIST2 유전자의 mRNA 발현량이 감소된 경우 및 상기 JAK1, STAT4, BTG1, SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APOM, MCPT5, SCYB9, KCNE4, PSMB9 및 CASP8AP2 유전자의 mRNA 발현량이 증가된 경우 탄저균 감염으로 판단하는 단계를 포함하는 탄저균 감염 진단에 필요한 정보를 제공하는 방법.RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16, HIST2, JAK1 STAT4, BTG1, SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APNEOM, MCPT5, SCYB8, SCYB8 Measuring expression levels; Comparing the mRNA expression level of the gene with the mRNA expression level of the gene of the normal control sample; And mRNA expression levels of the RPL10A, NOC4, SORT1, SERPIN1, ARBP, MPRS17, RPL30, RPS3, TPM3, CREM, TLN, Ube2i, MSH6, PTDSS2, SELENBP1, RPL3, GNB2-RS1, ROBO1, NEK6, RPS16 and HIST2 genes Reduced and the JAK1, STAT4, BTG1, SERPINB2, STAT5A, CTSW1, GAS1, CNIH, GLRX1, AQP3, FXC1, CYP7B1, ATP1A1, AOX1, CYP4A10, BIRC1E, SLC16A1, BACE, CAMK4, APOM4, APNE4 If the amount of mRNA expression of the PSMB9 and CASP8AP2 gene is increased, the method for providing information necessary for diagnosing anthrax infection, comprising determining anthrax infection.
KR1020030045320A 2003-07-04 2003-07-04 Analysis of Bacillus anthracis Lethal Toxin KR101032814B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030045320A KR101032814B1 (en) 2003-07-04 2003-07-04 Analysis of Bacillus anthracis Lethal Toxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030045320A KR101032814B1 (en) 2003-07-04 2003-07-04 Analysis of Bacillus anthracis Lethal Toxin

Publications (2)

Publication Number Publication Date
KR20050003815A KR20050003815A (en) 2005-01-12
KR101032814B1 true KR101032814B1 (en) 2011-05-04

Family

ID=37218865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030045320A KR101032814B1 (en) 2003-07-04 2003-07-04 Analysis of Bacillus anthracis Lethal Toxin

Country Status (1)

Country Link
KR (1) KR101032814B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761414B1 (en) * 2006-05-25 2007-10-04 한양대학교 산학협력단 A biomarker for diagonosis of infection of bacillus anthracis and the method of diagonosis using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316197B1 (en) * 1999-02-05 2001-11-13 The United States Of America As Represented By The Secretary Of The Army Method of diagnosing of exposure to toxic agents by measuring distinct pattern in the levels of expression of specific genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316197B1 (en) * 1999-02-05 2001-11-13 The United States Of America As Represented By The Secretary Of The Army Method of diagnosing of exposure to toxic agents by measuring distinct pattern in the levels of expression of specific genes

Also Published As

Publication number Publication date
KR20050003815A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
EP0743989B1 (en) Methed of identifying differentially expressed genes
EP1064404B1 (en) P53-regulated genes
CA2485968A1 (en) Method for predicting autoimmune diseases
US6316608B1 (en) Combined polynucleotide sequence as discrete assay endpoints
JP2004517602A (en) Reduced complexity nucleic acid targets and methods of use
KR100994996B1 (en) Biomarkers for identification of exposure to phenanthrene and the method of identification using the same
KR102031858B1 (en) composition for detecting senescence, kit containing the same and method of detecting the same
JPH10501973A (en) Materials and methods for oxalate detection
US20060088852A1 (en) Method for determining the homeostasis of hairy skin
US20100029492A1 (en) Nucleic acid chip for obtaining binding profile of single strand nucleic acid and unknown biomolecule, manufacturing method thereof and analysis method of unknown biomolecule using nucleic acid chip
KR101499710B1 (en) Kit for Analysing Exposure to Abiotic Stress in Oryza sativa L. and Method for Analysing the Same
JP2002508653A (en) Materials and methods for detecting Oxalobacter
KR101032814B1 (en) Analysis of Bacillus anthracis Lethal Toxin
CN115605608A (en) Method for detecting Parkinson's disease
EP1524319A1 (en) Method of classifying chemical agents and identifying cellular targets thereof
KR101735762B1 (en) Prediction method for swine fecundity using gene expression profile
US20040016026A1 (en) Methods to identify evolutionarily significant changes in polynucleotide and polypeptide sequences in domesticated plants and animals
KR100908125B1 (en) Genetic polymorphisms associated with myocardial infarction and uses thereof
US20050234654A1 (en) Detection of evolutionary bottlenecking by dna sequencing as a method to discover genes of value
US6602663B1 (en) Method for detection or measuring plasmocytoma cells
WO2009040220A1 (en) Single-readout multiplexing of metagenes
Fasano et al. Analysis of the Teashirt Target Genes in Ureteric Bud Development
Lee Expression profile analysis of human peripheral blood mononuclear cells in response to aspirin
KR100962209B1 (en) Biomarker for identification of exposure to malachite green and the method of identification using thereof
JP2006101766A (en) Method for determining taste of grain using expression level of gene as index

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee