KR101031149B1 - Validity test method about slip form lifting based on maturity - Google Patents

Validity test method about slip form lifting based on maturity Download PDF

Info

Publication number
KR101031149B1
KR101031149B1 KR1020090042367A KR20090042367A KR101031149B1 KR 101031149 B1 KR101031149 B1 KR 101031149B1 KR 1020090042367 A KR1020090042367 A KR 1020090042367A KR 20090042367 A KR20090042367 A KR 20090042367A KR 101031149 B1 KR101031149 B1 KR 101031149B1
Authority
KR
South Korea
Prior art keywords
temperature
penetration resistance
concrete
slip foam
integrated temperature
Prior art date
Application number
KR1020090042367A
Other languages
Korean (ko)
Other versions
KR20100123249A (en
Inventor
오보환
유재강
Original Assignee
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)대우건설 filed Critical (주)대우건설
Priority to KR1020090042367A priority Critical patent/KR101031149B1/en
Publication of KR20100123249A publication Critical patent/KR20100123249A/en
Application granted granted Critical
Publication of KR101031149B1 publication Critical patent/KR101031149B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/06Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for walls, e.g. curved end panels for wall shutterings; filler elements for wall shutterings; shutterings for vertical ducts
    • E04G11/20Movable forms; Movable forms for moulding cylindrical, conical or hyperbolical structures; Templates serving as forms for positioning blocks or the like
    • E04G11/22Sliding forms raised continuously or step-by-step and being in contact with the poured concrete during raising and which are not anchored in the hardened concrete; Arrangements of lifting means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/04Calorimeters using compensation methods, i.e. where the absorbed or released quantity of heat to be measured is compensated by a measured quantity of heating or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4806Details not adapted to a particular type of sample
    • G01N25/4813Details not adapted to a particular type of sample concerning the measuring means

Abstract

본 발명은 수직구조물 축조를 위해 적용되는 슬립폼의 인양시기를 결정하는 방법에 관한 것이다.The present invention relates to a method for determining the lifting time of the slip foam applied for the construction of the vertical structure.

본 발명은 (a) 슬립폼 내에 타설되는 콘크리트의 배합조건에 맞춘 모르타르로 공시체를 제작하는 단계; (b) 상기 공시체의 양생기간별 온도를 측정하여 적산온도를 산출하고 적산온도-관입저항 관계그래프를 도출하는 단계; 및 (c) 슬립폼 내부에 타설된 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하고, 산출된 적산온도가 목표 관입저항 범위에 해당하는지를 상기 적산온도-관입저항 관계그래프를 토대로 확인하여, 슬립폼의 인양여부를 결정하는 단계;를 포함하는 적산온도에 기초한 슬립폼 인양여부 평가방법을 제공한다.The present invention comprises the steps of (a) preparing the specimen with a mortar in accordance with the mixing conditions of the concrete to be poured into the slip foam; (b) calculating the integrated temperature by measuring the temperature for each curing period of the specimen and deriving an integrated temperature-penetration resistance graph; And (c) calculating the integrated temperature by measuring the curing time of the concrete poured in the slip foam, and checking whether the calculated integrated temperature falls within the target penetration resistance range based on the integrated temperature-penetration resistance graph. Determining whether or not the lifting of the foam; provides a method for evaluating slip foam lifting based on the integration temperature.

슬립폼, 인양, 적산온도, 관입저항 Slip Foam, Lifting, Accumulation Temperature, Penetration Resistance

Description

적산온도에 기초한 슬립폼 인양여부 평가방법{Validity test method about slip form lifting based on maturity}Evaluation method for slip form lifting based on integration temperature {Validity test method about slip form lifting based on maturity}

본 발명은 수직구조물 축조를 위해 적용되는 슬립폼의 인양시기를 결정하는 방법에 관한 것이다.The present invention relates to a method for determining the lifting time of the slip foam applied for the construction of the vertical structure.

슬립폼(Slip Form)은 콘크리트가 굳기 시작할 때 폼을 인양함으로써 시공이음부(construction joint)가 없는 구조물을 형성할 때 사용된다. 슬립폼의 시공은 24시간 연속으로 진행되며, 일반적으로 슬립폼(약 1m 높이)의 80cm 높이까지 4단에 걸쳐 콘크리트가 연속적으로 타설된다. 1회 타설된 콘크리트 층은 약 20cm 정도이며, 가장 먼저 타설된 하층부의 콘크리트가 초결 직전에 콘크리트 자중에 의한 변형을 지지할 수 있는 정도의 굳기를 확보한 후 슬립폼으로부터 탈형된다. 따라서, 초결 직전의 이러한 굳기 상태에 대한 평가는 슬립폼 시공에 있어 매우 중요하다.Slip Form is used to form structures without construction joints by lifting the foam when concrete begins to harden. The installation of slip foam is continuous for 24 hours. In general, concrete is poured continuously in four stages up to 80 cm of the slip foam (about 1 m high). The casted concrete layer is about 20cm, and the first casted concrete is demolded from the slip foam after securing the rigidity enough to support the deformation caused by the concrete's own weight just before the final connection. Therefore, the evaluation of the state of firmness just before the final connection is very important for slip foam construction.

일반적으로는, 콘크리트에서 골재를 제거한 모르타르 시료를 제작하여 모르타르의 관입저항값이 1.75~7.0㎏/㎠에 도달하였을 때 슬립폼을 들어올리는 것이 이 상적인 것으로 알려져 있다(아래의 [표 1] 참조). 그러나, 실제 생산단계에서는 슬립폼 인양시기에 관한 과학적 평가기준 없이 기존의 경험이 있는 작업자가 탐침막대를 콘크리트에 관입하였을 때의 느낌을 바탕으로 슬립폼의 인양시기를 결정하고 있다. 이와 같은 경험적인 판단에 기초한 정성적인 평가방법은 공사와 관련된 관계자에게 합리적인 판단기준을 제시할 수 없기 때문에 보다 객관적인 평가기법이 요구되고 있다.In general, it is known that it is ideal to produce a mortar sample from which aggregate is removed from concrete and to lift the slip foam when the penetration resistance of the mortar reaches 1.75 to 7.0 ㎏ / ㎠ (see Table 1 below). ). However, in the actual production stage, without the scientific evaluation criteria for the time of lifting the slip foam, the existing experienced worker determines the time of lifting the slip foam based on the feeling when injecting the probe rod into the concrete. Qualitative evaluation methods based on such empirical judgments require more objective evaluation techniques because they cannot present reasonable judgment criteria to those involved in construction.

[표 1] - 슬립폼 탈형시 관입저항과 표면 마감성과의 관계[Table 1]-Relationship between Penetration Resistance and Surface Finishing in Sliding Foam Form

관입저항(kg/㎠)Penetration Resistance (kg / ㎠) 표면성상Surface properties 1.75미만Less than 1.75 박락(Falling)Falling 1.75~7.01.75-7.0 이상적임(Ideal)Ideal 7.0~357.0-35 문제발생(Minor Problem)Minor Problem 35이상35 or more 심각한 문제발생(Bigger Problem)Bigger Problem

본 발명은 슬립폼 인양 시기에 대해 공학적이고 합리적인 평가기법을 제공함을 그 목적으로 한다.It is an object of the present invention to provide an engineering and reasonable evaluation technique for the slip foam lifting time.

본 발명에서는 공시체를 통해 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하고, 이와 함께 공시체의 관입저항을 측정하여 적산온도와 관입저항간의 파악함으로써 슬립폼을 탈형할 수 있는 관입저항이 발현되는 때의 적산온도를 알아내어, 슬립폼 내에 타설된 콘크리트의 적산온도를 산출함으로써 슬립폼의 인양여부를 판단할 수 있도록 한다. In the present invention, when the temperature is measured by the curing period of the concrete through the specimen to calculate the integrated temperature, and with the penetration resistance that can demould slip form by measuring the penetration resistance of the specimen and the integration temperature and the penetration resistance when it is expressed. It is possible to determine whether the slip foam is lifted by finding the accumulated temperature of the foam and calculating the accumulated temperature of the concrete poured in the slip foam.

본 발명에 의하면,According to the invention,

1. 외기온도 변화에 따른 콘크리트 온도계측 결과를 바탕으로 산출된 적산온도 평가를 통해 슬립폼 인양 가능여부를 공학적이고 합리적으로 판단할 수 있다. 1. It is possible to judge whether it is possible to lift slip foam through the evaluation of accumulated temperature based on the result of concrete thermometer measurement according to the change of outside temperature.

2. 슬립폼에 타설된 콘크리트의 온도이력 결과를 바탕으로 슬립폼 인양속도의 적정성 평가가 가능하며, 인양속도 증가를 위한 추가적인 콘크리트 보양방법의 결정이 가능하다.2. Based on the result of the temperature history of concrete placed on slip foam, it is possible to evaluate the adequacy of slip foam lifting speed, and to determine the additional concrete maintenance method to increase the lifting speed.

본 발명은 (a) 슬립폼 내에 타설되는 콘크리트의 배합조건에 맞춘 모르타르로 공시체를 제작하는 단계; (b) 상기 공시체의 양생기간별 온도를 측정하여 적산온도를 산출하고 적산온도-관입저항 관계그래프를 도출하는 단계; 및 (c) 슬립폼 내부에 타설된 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하고, 산출된 적산온도가 목표 관입저항 범위에 해당하는지를 상기 적산온도-관입저항 관계그래프를 토대로 확인하여, 슬립폼의 인양여부를 결정하는 단계;를 포함하는 적산온도에 기초한 슬립폼 인양여부 평가방법을 제공한다.The present invention comprises the steps of (a) preparing the specimen with a mortar in accordance with the mixing conditions of the concrete to be poured into the slip foam; (b) calculating the integrated temperature by measuring the temperature for each curing period of the specimen and deriving an integrated temperature-penetration resistance graph; And (c) calculating the integrated temperature by measuring the curing time of the concrete poured in the slip foam, and checking whether the calculated integrated temperature falls within the target penetration resistance range based on the integrated temperature-penetration resistance graph. Determining whether or not the lifting of the foam; provides a method for evaluating slip foam lifting based on the integration temperature.

본 발명은 슬립폼을 이용하여 일정한 단면 형상을 갖는 구조물을 축조하는 데에 적용되는 것이다. [발명의 상세한 설명] 중 [배경기술]에서 설명한 바와 같이 슬립폼을 이용하여 수직방향으로 연속되는 구조물을 축조할 때에는 슬립폼 내에 콘크리트를 여러 단계로 나누어 타설하여, 가장 하층의 콘크리트가 일정한 강도가 발현되면 그 콘크리트층의 두께만큼 슬립폼을 인양하여 콘크리트를 재타설하는 과정을 반복 실시한다. 따라서, 슬립폼을 인양해도 되는지, 즉 슬립폼 내 최하층 콘크리트가 콘크리트 자중에 의한 변형을 지지할 수 있는 정도의 굳기를 확보하였는지를 판단하는 것이 매우 중요하며, 본 발명은 적산온도를 이용해 슬립폼 인양 여부를 평가하기 위한 것이다.The present invention is applied to the construction of a structure having a constant cross-sectional shape using slip foam. As described in [Background Art] of [Detailed Description of the Invention], when constructing a continuous structure in the vertical direction using slip foam, the concrete is laid in several stages in the slip foam so that the lowest concrete has a certain strength. If it is manifested, the process of re-casting concrete is repeated by lifting the slip foam by the thickness of the concrete layer. Therefore, it is very important to determine whether or not the slip foam may be lifted, that is, whether the lowest-floor concrete in the slip foam has secured the hardness enough to support the deformation caused by the concrete's own weight. Is to evaluate.

전술한 바와 같이 본 발명은 슬립폼 내에 타설된 콘크리트의 양생기간별 온 도를 측정하여 적산온도를 산출하고, 이를 통해 슬립폼의 인양여부를 평가하는 방법이다. 슬립폼의 인양여부는 그 내부에 타설된 콘크리트의 관입저항을 기준으로 판단해야 하는 것이 바람직하지만, 시공중에 관입저항 계측기를 이용하여 관입저항을 측정하기는 매우 어렵고, 작업자가 탐침막대를 콘크리트에 관입시켰을 때의 느낌에 의존하는 것은 비과학적이다. 그러나, 슬립폼 내에 써머커플 등의 온도센서를 부착시켜 타설된 콘크리트의 양생기간별 온도를 측정하는 작업과 이를 토대로 적산온도를 산출하는 작업은 상대적으로 매우 간편하므로 상기 적산온도와 관입저항간의 관계를 미리 파악할 수 있다면 적산온도 산출만으로 슬립폼의 인양여부를 판단할 수 있게 된다. As described above, the present invention is a method for calculating the integrated temperature by measuring the temperature for curing period of concrete poured in slip foam, and evaluating whether the slip foam is lifted. It is desirable to determine whether the slip foam is lifted based on the penetration resistance of the concrete placed inside, but it is very difficult to measure the penetration resistance by using the penetration resistance meter during construction, and the operator inserts the probe rod into the concrete. It's unscientific to rely on the feeling you make. However, it is relatively easy to measure the temperature of curing concrete by placing a temperature sensor such as a thermocouple inside the slip foam and calculate the integrated temperature based on it, so the relationship between the integrated temperature and penetration resistance is measured in advance. If it can be found, it is possible to determine whether the slip foam is lifted by calculating the integration temperature.

따라서, 본 발명은 공시체를 제작하여 상기 공시체의 적산온도와 관입저항간의 관계를 사전에 파악하고, 이를 토대로 실제 시공되는 콘크리트의 관입저항은 산출된 적산온도를 통해 간접적으로 추정되도록 하는 것을 핵심 내용으로 한다. 이하에서는 본 발명을 각 단계별로 구체적으로 설명하기로 한다.Therefore, the present invention is to prepare the specimen in advance to grasp the relationship between the integration temperature and the penetration resistance of the specimen in advance, and based on this the penetration resistance of the concrete is actually indirectly estimated through the calculated integration temperature do. Hereinafter, the present invention will be described in detail for each step.

1. (a)단계1.step (a)

본 (a)단계는 슬립폼 인양여부 평가를 위한 준비단계이다.This step (a) is a preparation step for evaluating slip foam lifting.

콘크리트의 최종압축강도와 강도발현 속도는 시멘트의 종류, 물-시멘트비, 사용재료의 구성비율, 슬럼프값 등에 따라 달라진다. 또한, 기후조건, 외기의 온도 등에 따라 그 경화속도의 차이도 커지게 된다. 슬립폼의 인양여부는 관입저항을 기준으로 판단하는데, 상기 관입저항은 압축강도 평가와는 달리 골재를 제외한 모르 타르의 경화도 측정함으로써 파악할 수 있다.The final compressive strength and speed of strength development of concrete depend on the type of cement, water-cement ratio, composition ratio of materials used, and slump value. In addition, the difference in curing rate also increases according to climatic conditions, outdoor temperature, and the like. Lifting of the slip foam is determined based on the penetration resistance, the penetration resistance can be determined by measuring the curing of the mortar excluding the aggregate, unlike the compressive strength evaluation.

이를 위해 본 단계에서는 실제 시공될 콘크리트의 배합조건에 맞춘 모르타르(실제 시공될 콘크리트에서 골재가 제외된 상태)로 공시체를 제작하는 것이며, 이러한 공시체 제작시에는 양생기간별 온도측정을 위해 써머커플을 매립시켜 둘 수 있다. To this end, in this step, the specimen is manufactured with mortar (the aggregate is excluded from the concrete to be constructed) according to the mixing conditions of the concrete to be constructed, and when the specimen is manufactured, the thermocouple is reclaimed for temperature measurement by curing period. You can put it.

2. (b)단계2. Step (b)

본 단계는 상기 공시체의 양생기간별 온도를 측정하여 적산온도를 산출하고 적산온도-관입저항 관계그래프를 도출하는 단계이다.In this step, the integrated temperature is calculated by measuring the temperature for curing period of the specimen, and the integrated temperature-penetration resistance relation graph is derived.

콘크리트가 응결을 거쳐 경화되어 강도를 발현하는 단계는 여러 가지 외부환경조건에 영향을 받는데, 그 중에서는 양생온도에 큰 영향을 받는다. 여름철에는 콘크리트의 강도가 빨리 발현되고, 겨울철에는 콘크리트의 강도발현이 지연된다는 것은 주지의 사실이며, 이러한 콘크리트의 특성을 합리적으로 정리하고자 하는 개념에서 도출된 것이 적산온도 개념이다.The step of concrete hardening through condensation and developing strength is affected by various external environmental conditions, among which the curing temperature is greatly affected. It is well known that the strength of concrete is quickly expressed in summer and the strength expression of concrete is delayed in winter, and the concept of integration temperature is derived from the concept of rationalizing the characteristics of concrete.

적산온도는 양생온도×재령으로 산출되며 여러 가지 제안식들이 있지만, 본 발명에서는 적산온도 산출을 위한 다음의 [식 1]을 제공한다.The cumulative temperature is calculated by curing temperature x age and there are various proposed equations, but the present invention provides the following [Formula 1] for calculating the accumulated temperature.

[식 1] :

Figure 112009029144227-pat00001
[Equation 1]:
Figure 112009029144227-pat00001

Figure 112009029144227-pat00002
: 적산온도
Figure 112009029144227-pat00002
: Accumulation temperature

Figure 112009029144227-pat00003
: 양생기간(day)
Figure 112009029144227-pat00003
: Curing period (day)

Figure 112009029144227-pat00004
:
Figure 112009029144227-pat00005
기간 중의 평균 양생온도(℃)
Figure 112009029144227-pat00004
:
Figure 112009029144227-pat00005
Average curing temperature (℃) during the period

위 식에서 콘크리트 온도에 10℃를 더하는 이유는 영하 10℃ 이상의 조건에서는 콘크리트의 강도가 조금씩이라도 발현될 수 있다는 개념에 의한 것이며, 평균 양생온도가 영하 10℃ 이면 시그마항이 0이 되기 때문에 양생기간이 아무리 늘어나도 적산온도는 0이 된다. 즉, 영하 10℃는 콘크리트가 강도를 발현할 수 있는 한계온도라 할 수 있다.The reason for adding 10 ℃ to the concrete temperature in the above equation is based on the concept that the strength of concrete can be expressed little by little under the condition of minus 10 ℃. If the average curing temperature is below 10 ℃, the sigma term becomes 0. Accumulation temperature becomes 0 even if it increases. That is, minus 10 ℃ can be said to be the limit temperature that the concrete can express the strength.

[참고도 1] [Reference Figure 1]

Figure 112009029144227-pat00006
Figure 112009029144227-pat00006

위 [참고도 1]은 양생기간(재령)을 가로축으로 도시하고, 양생온도를 세로축으로 도시한 그래프이다. 이 경우 적산온도는 (일정구간의 평균 양생온도)×(재령)의 누적합으로 산출한다.[Reference Figure 1] is a graph showing the curing period (young age) on the horizontal axis, the curing temperature on the vertical axis. In this case, the cumulative temperature is calculated by the cumulative sum of (average curing temperature) × (age) of the fixed section.

즉, a-b구간의 적산온도를 M1이라 하고, b-c구간의 적산온도를 M2라 하면,That is, if the integration temperature of the a-b section is M1 and the integration temperature of the b-c section is M2,

M1 = (x에서 y까지의 평균)×(b-a)로 산출하고,Calculated as M1 = (average from x to y) × (b-a),

M2 = (y에서 z까지의 평균)×(c-b)로 산출하여M2 = (average of y to z) × (c-b)

a-c구간의 적산온도(M)는, M = M1 + M2 로 산출할 수 있다.The integration temperature M of the a-c section can be calculated as M = M1 + M2.

공시체의 양생기간별 온도는 공시체 제작시에 매립시킨 써머커플 등의 온도센서를 이용하여 시간대별로 수집할 수 있으므로, 위 [식 1]에 수집된 양생온도와 양생기간을 대입시켜 적산온도를 산출할 수 있다.The temperature by curing period of the specimen can be collected by time zone using a temperature sensor such as a thermocouple buried at the time of manufacture of the specimen, and the integration temperature can be calculated by substituting the curing temperature and curing period collected in [Equation 1] above. have.

한편, 본 (b)단계에서는 적산온도-관입저항 관계그래프를 도출해야 한다.On the other hand, in the step (b), it is necessary to derive the integrated temperature-penetration resistance relation graph.

이를 위해서는 전술한 적산온도 산출과 함께 공시체의 관입저항 측정을 병행할 수 있다. 공시체의 관입저항은 KS F 2436 관입 저항침에 의한 콘크리트의 응결 시간 시험 방법에 준하여 측정할 수 있다([도 1] 및 [도 2] 참조).To this end, the penetration resistance measurement of the specimen can be performed in parallel with the above-described integration temperature calculation. Penetration resistance of the specimen can be measured according to the test method for setting the condensation time of concrete by the KS F 2436 penetration resistance needle (see [FIG. 1] and [FIG. 2]).

또한, 본 발명의 발명자들은 실험에 의해 하기 [식 2]와 같은 적산온도와 관입저항간의 관계식을 도출하였다. In addition, the inventors of the present invention derived a relationship between the integration temperature and the penetration resistance as shown in the following [Equation 2] by experiment.

[식 2] :

Figure 112009029144227-pat00007
[Equation 2]:
Figure 112009029144227-pat00007

Figure 112009029144227-pat00008
: 관입저항(MPa)
Figure 112009029144227-pat00008
: Penetration resistance (MPa)

Figure 112009029144227-pat00009
: 적산온도(°D·D, degree days)
Figure 112009029144227-pat00009
: Integration temperature (° D · D, degree days)

Figure 112009029144227-pat00010
,
Figure 112009029144227-pat00011
: 실험상수
Figure 112009029144227-pat00010
,
Figure 112009029144227-pat00011
: Experimental Constant

이에 따라 적산온도-관입저항 관계그래프를 도출할 수 있으며, 아래 [참고도 2]는 상기 적산온도-관입저항 관계그래프의 작성예이다.Accordingly, an integrated temperature-penetration resistance relation graph can be derived, and the following [Reference FIG. 2] is an example of preparation of the integrated temperature-penetration resistance relation graph.

[참고도 2][Reference Figure 2]

Figure 112009029144227-pat00012
Figure 112009029144227-pat00012

[배경기술]에서 설명한 바와 같이 통상적으로 슬립폼은 콘크리트 관입저항이 1.75~7.0㎏/㎠이 될 때 인양하는데, 본 발명에서도 상기 적산온도-관입저항 관계그래프를 통해 관입저항이 1.75~7.0㎏/㎠이 되는 순간의 적산온도를 파악해 낼 수 있다. 위 [참고도 2]에 따르면 1.75~7.0㎏/㎠의 관입저항을 보이는 때의 적산온도는 5~7°D·D 이다. As described in the [Background Art], the slip foam is generally lifted when the concrete penetration resistance is 1.75 to 7.0 kg / cm 2, and the penetration resistance is 1.75 to 7.0 kg / through the integrated temperature-penetration resistance graph in the present invention. The integration temperature at the moment when it becomes 2 cm 2 can be grasped. According to the above [Reference Figure 2], the integration temperature when the penetration resistance of 1.75 ~ 7.0 ㎏ / ㎠ is 5 ~ 7 ° D · D.

3. (c)단계3. Step (c)

본 단계는 슬립폼 내부에 타설된 콘크리트의 양생기간별 온도를 측정하여 적 산온도를 산출하고, 산출된 적산온도가 목표 관입저항 범위에 해당하는지를 상기 적산온도-관입저항 관계그래프를 토대로 확인하여, 슬립폼의 인양여부를 결정하는 단계이다.In this step, the integrated temperature is calculated by measuring the curing time of the concrete poured inside the slip foam, and whether the calculated integrated temperature falls within the target penetration resistance range is confirmed based on the integrated temperature-intrusion resistance graph. This step is to determine whether the foam is lifted.

본 단계에서도 슬립폼에 장착하여 콘크리트에 매립시켜 둔 써머커플 등의 온도센서를 이용하여 콘크리트의 양생기간별 온도를 수집하고, 상기 [식 1]에 수집된 양생온도와 양생기간을 대입시켜 적산온도를 산출할 수 있다. 한편, 상기 목표 관입저항 범위는 슬립폼 탈형시 관입저항과 표면 마감성간에 가장 이상적인 관계를 보이는 것으로 평가되는 1.75~7.0㎏/㎠로 설정하는 것이 바람직하다.Even in this step, the temperature is collected by curing period of the concrete using a temperature sensor such as a thermocouple embedded in the concrete and embedded in the slip foam, and the integration temperature is adjusted by substituting the curing temperature and curing period collected in [Equation 1]. Can be calculated. On the other hand, the target penetration resistance range is preferably set to 1.75 ~ 7.0 ㎏ / ㎠ evaluated as showing the most ideal relationship between the penetration resistance and the surface finish when demolding slip foam.

다시 말해, 전술한 (b)단계에서는 공시체의 적산온도를 산출하고, 본 (c)단계에서는 슬립폼 인양여부 판단의 대상이 되는 콘크리트의 적산온도를 산출하는 것이다. 상기 공시체와 콘크리트는 그 배합조건은 동일하나 외기의 온도 등에 따른 양생조건은 다를 수 있다. 그러나, 적산온도는 양생온도와 양생기간이라는 가변적 매개변수를 함께 고려하여 수치화한 개념이므로, 동일한 적산온도가 산출되면 양생조건과 무관하게 동일한 관입저항이 산출되는 것이라 설명할 수 있다. 예를 들어, 상기 (b)단계를 외기온도 20℃ 조건에서 시행하여 1.75~7.0㎏/㎠의 관입저항을 보이는 때의 적산온도가 5~7°D·D 이라면, 본 (c)단계를 외기온도 5℃ 조건에서 시행하더라도 적산온도가 5~7°D·D 가 되는 때의 관입저항은 1.75~7.0㎏/㎠가 된다는 의미이다.In other words, in step (b), the integration temperature of the specimen is calculated, and in step (c), the integration temperature of the concrete, which is the object of determination of slip foam lifting, is calculated. The specimen and concrete are the same mixing conditions but curing conditions according to the temperature of the outside air may be different. However, since the integration temperature is a numerical concept considering the variable parameters such as curing temperature and curing period, it can be explained that the same penetration resistance is calculated when the same integration temperature is calculated regardless of the curing conditions. For example, the step (b) is carried out at an ambient temperature of 20 ° C., and the integration temperature when the penetration resistance is 1.75 to 7.0 kg / cm 2 is 5 to 7 ° D.D. Even if it is carried out in the condition of FIG. 5 ° C, the penetration resistance at the time of integration temperature of 5 to 7 ° D · D is 1.75 to 7.0 kg / cm 2.

위와 같이, 공시체를 통해 적산온도와 관입저항간의 관계가 파악된 이상, 슬립폼을 이용하여 연속된 수직 구조물을 축조할 때에는 슬립폼을 인양할 때마다 콘크리트의 양생기간별 온도를 측정함으로써 적산온도를 산출하여 슬림폼의 인양여부를 판단할 수 있게 되는 것이다.As described above, when the relationship between integration temperature and penetration resistance is identified through specimens, when constructing a continuous vertical structure using slip foam, the integrated temperature is calculated by measuring the temperature of the concrete curing period each time the slip foam is lifted. It will be able to determine whether the lifting of the slim foam.

4. (d)단계4. Step (d)

본 단계는 인양된 슬립폼에 콘크리트를 타설하고, 상기 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하여, 목표 관입저항 범위에 해당하는 적산온도가 산출되는지를 확인하여 슬립폼 인양여부를 결정하는 단계이다. In this step, the concrete is placed on the lifted slip foam, the temperature is calculated by curing period of the concrete, and the integrated temperature is calculated, and the integrated temperature corresponding to the target penetration resistance range is calculated to determine whether the slip foam is lifted or not. Step.

본 단계는 전술한 (a) 내지 (c)단계 시행 후, 구조물의 축조를 마무리할 때까지 반복 시행하는 단계로서, 슬립폼 내 콘크리트의 적산온도가 목표 관입저항에 도달하는지를 체크하여 슬립폼의 인양여부를 결정할 수 있게 된다.This step is repeated after the above steps (a) to (c), until the construction of the structure is completed, checking whether the integration temperature of the concrete in the slip foam reaches the target penetration resistance to lift the slip foam You can decide whether or not.

[도 3]은 슬립폼 단면 및 콘크리트의 양생기간별 온도 측정 부위 모식도이다. 3 is a schematic view of the temperature measurement site by the curing period of the slip foam cross section and concrete.

[도 3]에 도시된 바와 같이 슬립폼 내 콘크리트 타설순서별로 ①, ②, ③의 써머커플을 매립한 후 경과시간에 따른 온도이력 결과를 바탕으로 산출된 ①의 적산온도가 슬립폼 인양에 의해 탈형 가능한 적산온도에 도달하였는가를 판단한 후 후속공정(인양에 의한 노출)을 진행하게 된다. ②와 ③ 은 ①보다 늦게 순차적으로 타설되었기 때문에 ①과 같은 방법으로 슬립폼 인양에 따른 탈형시기를 결정하게 된다. As shown in FIG. 3, the integrated temperature of ① calculated based on the temperature history result according to elapsed time after embedding the thermocouples of ①, ②, ③ for each concrete pouring order in the slip foam is caused by the slip foam lifting. After determining whether the integrating temperature has reached a demoulding temperature, a subsequent process (exposure by lifting) is performed. Since ② and ③ were placed in sequential order later than ①, the same method as ① is used to determine the timing of demoulding according to the lifting of the slip foam.

도 1은 공시체의 관입저항 측정장비의 사진이다.1 is a photograph of the penetration resistance measuring instrument of the specimen.

도 2는 공시체의 관입저항을 측정하는 모습을 촬영한 사진이다. Figure 2 is a photograph taken to measure the penetration resistance of the specimen.

도 3은 슬립폼 단면 및 콘크리트의 양생기간별 온도 측정 부위 모식도이다. Figure 3 is a schematic diagram of the temperature measurement site by the curing period of the slip foam cross section and concrete.

Claims (6)

(a) 슬립폼 내에 타설되는 콘크리트의 배합조건에 맞춘 모르타르로 공시체를 제작하는 단계; (a) preparing a specimen from the mortar according to the mixing conditions of the concrete to be poured into the slip foam; (b) 상기 공시체의 양생기간별 온도를 측정하여 적산온도를 산출하고 적산온도-관입저항 관계그래프를 도출하는 단계;(b) calculating the integrated temperature by measuring the temperature for each curing period of the specimen and deriving an integrated temperature-penetration resistance graph; (c) 슬립폼 내부에 타설된 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하고, 산출된 적산온도가 목표 관입저항 범위에 해당하는지를 상기 적산온도-관입저항 관계그래프를 토대로 확인하여, 슬립폼의 인양여부를 결정하는 단계;를 포함하는 적산온도에 기초한 슬립폼 인양여부 평가방법.(c) The integrated temperature is calculated by measuring the curing time of the concrete poured inside the slipform, and it is checked whether the calculated integrated temperature is within the target penetration resistance range based on the integrated temperature-penetration resistance graph, and the slipform Determining whether the salvage of; Slip foam lifting evaluation method based on the integrated temperature comprising a. 제1항에 있어서,The method of claim 1, 상기 (b)단계는, 하기 [식 1]을 통해 적산온도를 도출하는 것을 특징으로 하는 적산온도에 기초한 슬립폼 인양여부 평가방법.In the step (b), slip foam lifting evaluation method based on the accumulated temperature, characterized in that to derive the integrated temperature through the following [Equation 1]. [식 1] :
Figure 112009029144227-pat00013
[Equation 1]:
Figure 112009029144227-pat00013
Figure 112009029144227-pat00014
: 적산온도 (°D·D, degree days)
Figure 112009029144227-pat00014
: Integration temperature (° D · D, degree days)
Figure 112009029144227-pat00015
: 양생기간 (day)
Figure 112009029144227-pat00015
: Curing period (day)
Figure 112009029144227-pat00016
:
Figure 112009029144227-pat00017
기간 중의 평균 양생온도 (℃)
Figure 112009029144227-pat00016
:
Figure 112009029144227-pat00017
Average curing temperature during the period (℃)
제1항에 있어서,The method of claim 1, 상기 (b)단계에서는 상기 공시체의 관입저항 측정을 병행하여 적산온도-관입저항 관계그래프를 도출하는 것을 특징으로 하는 적산온도에 기초한 슬립폼 인양여부 평가방법.In the step (b), the integration temperature-intrusion resistance relationship graph is derived by measuring penetration resistance of the specimen in parallel. 제1항에 있어서,The method of claim 1, 상기 (b)단계에서는 하기 [식 2]를 통해 적산온도-관입저항 관계그래프를 도출하는 것을 특징으로 하는 적산온도에 기초한 슬립폼 인양여부 평가방법.In the step (b), the integrated foam temperature-slip resistance lifting evaluation method, characterized in that to calculate the integrated temperature-penetration resistance relationship graph through the following [Equation 2]. [식 2] :
Figure 112009029144227-pat00018
[Equation 2]:
Figure 112009029144227-pat00018
Figure 112009029144227-pat00019
: 관입저항(MPa)
Figure 112009029144227-pat00019
: Penetration resistance (MPa)
Figure 112009029144227-pat00020
: 적산온도(°D·D, degree days)
Figure 112009029144227-pat00020
: Integration temperature (° D · D, degree days)
Figure 112009029144227-pat00021
,
Figure 112009029144227-pat00022
: 실험상수
Figure 112009029144227-pat00021
,
Figure 112009029144227-pat00022
: Experimental Constant
제1항에 있어서,The method of claim 1, 상기 (c)단계에서는 상기 목표 관입저항 범위를 1.75~7.0㎏/㎠로 설정하는 것을 특징으로 하는 적산온도에 기초한 슬립폼 인양여부 평가방법.In the step (c), the target foam resistance range is set to 1.75 ~ 7.0 ㎏ / ㎠, characterized in that the slip foam lifting evaluation method based on the integrated temperature. 제1항 내지 제5항 중 어느 한 항에 있어서,6. The method according to any one of claims 1 to 5, (d) 인양된 슬립폼에 콘크리트를 타설하고, 상기 콘크리트의 양생기간별 온도를 측정하여 적산온도를 산출하여, 목표 관입저항 범위에 해당하는 적산온도가 산출되는지를 확인하여 슬립폼 인양여부를 결정하는 단계; 를 더 포함하며,(d) Placing concrete on the lifted slip foam, and calculating the integrated temperature by measuring the temperature of the concrete curing period, to determine whether the integrated temperature corresponding to the target penetration resistance range is calculated to determine whether to lift the slip foam step; More, 상기 (d)단계는 구조물의 축조를 마무리할 때까지 반복 시행함을 특징으로 하는 적산온도에 기초한 슬립폼 인양여부 평가방법.Step (d) is a method of evaluating the slip foam lifting based on the integrated temperature, characterized in that repeated implementation until the finish of the construction of the structure.
KR1020090042367A 2009-05-15 2009-05-15 Validity test method about slip form lifting based on maturity KR101031149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090042367A KR101031149B1 (en) 2009-05-15 2009-05-15 Validity test method about slip form lifting based on maturity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090042367A KR101031149B1 (en) 2009-05-15 2009-05-15 Validity test method about slip form lifting based on maturity

Publications (2)

Publication Number Publication Date
KR20100123249A KR20100123249A (en) 2010-11-24
KR101031149B1 true KR101031149B1 (en) 2011-04-27

Family

ID=43407951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090042367A KR101031149B1 (en) 2009-05-15 2009-05-15 Validity test method about slip form lifting based on maturity

Country Status (1)

Country Link
KR (1) KR101031149B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031165B1 (en) * 2009-05-15 2011-04-27 (주)대우건설 Validity test method about slip form lifting based on ultrasonic velocity
CN109507400B (en) * 2018-12-30 2021-07-23 哈尔滨工业大学 Method for evaluating early-stage freezing performance of concrete by using maturity
KR20210043089A (en) 2019-10-11 2021-04-21 현대건설주식회사 Slip form having a partial heating part, concrete depositing system using therewith, and concrete depositing method using therewith
JP7195295B2 (en) * 2020-09-11 2022-12-23 五洋建設株式会社 CONCRETE STRENGTH CONTROL METHOD AND CONCRETE MANUFACTURING METHOD USING THE SAME
CN112964601B (en) * 2021-02-06 2022-09-09 青岛建一混凝土有限公司 Concrete penetration resistance instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060006166A (en) * 2004-07-15 2006-01-19 쌍용건설 주식회사 Method for constructing a concrete structure as slip-form system
KR100709670B1 (en) 2006-03-14 2007-04-19 삼성물산 주식회사 Tunnel lining concrete construction method
KR20080101620A (en) * 2007-05-18 2008-11-21 재단법인 한국건자재시험연구원 Automatic measurement apparatus of concrete mixture setting time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060006166A (en) * 2004-07-15 2006-01-19 쌍용건설 주식회사 Method for constructing a concrete structure as slip-form system
KR100709670B1 (en) 2006-03-14 2007-04-19 삼성물산 주식회사 Tunnel lining concrete construction method
KR20080101620A (en) * 2007-05-18 2008-11-21 재단법인 한국건자재시험연구원 Automatic measurement apparatus of concrete mixture setting time

Also Published As

Publication number Publication date
KR20100123249A (en) 2010-11-24

Similar Documents

Publication Publication Date Title
KR101031149B1 (en) Validity test method about slip form lifting based on maturity
KR102190604B1 (en) A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof
JP5231493B2 (en) Lining concrete demolding time judging method and demolding time judging system
Sofi et al. Estimating early-age in situ strength development of concrete slabs
Seo et al. Experimental study on hydration heat control of mass concrete by vertical pipe cooling method
KR101082737B1 (en) Evaluation method of compressive strength for structural concrete
CN102183626B (en) Method for predicting plastic shrinkage cracking of cement mortar material
Kucharczyková et al. Comprehensive testing techniques for the measurement of shrinkage and structural changes of fine-grained cement-based composites during ageing
Kucharczyková et al. Experimental analysis on shrinkage and swelling in ordinary concrete
CN115308395A (en) Method for testing expansibility of underground engineering concrete structure doped with expanding agent
KR100977811B1 (en) Evaluation Method for Properies of Concrete Shrinkage Crack by Slat-Ring Type Restrained Test
JP4429821B2 (en) Method for estimating expansion stress of expansive concrete
Deysel et al. Implementing capillary pressure control measures to prevent plastic shrinkage cracking in concrete
KR101031165B1 (en) Validity test method about slip form lifting based on ultrasonic velocity
Wang et al. Experimental investigation of brickwork behaviour under shear, compression and flexure
Kucharczyková et al. Evaluation of shrinkage, mass changes and fracture properties of fine-aggregate cement-based composites during ageing
Dedukh et al. Spun concrete properties of power transmission line supports
Rostam et al. Economical and structural feasibility of concrete cellular and solid blocks in Kurdistan region
Gu et al. Cracking behaviour of cast in situ reinforced concrete slabs with control joints
Sivakumar Studies on influence of water-cement ratio on the early age shrinkage cracking of concrete systems
Domski et al. An example of monitoring of early-age concrete temperatures in a massive concrete slab
DEŞİK et al. Use of weight maturity method for building concretes used in Artvin Yusufeli dam construction
Kucharczyková et al. Comparison of measurements methods intended to determination of the shrinkage development in polymer cement mortars
Siang Determination of Coefficient of Thermal Expansion (CTE) of 20MPa Mass Concrete Using Granite Aggregate
Ong et al. Early-age shrinkage strains versus depth of low water-cement ratio mortar prisms

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140404

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee