KR101027924B1 - Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene - Google Patents

Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene Download PDF

Info

Publication number
KR101027924B1
KR101027924B1 KR1020080084929A KR20080084929A KR101027924B1 KR 101027924 B1 KR101027924 B1 KR 101027924B1 KR 1020080084929 A KR1020080084929 A KR 1020080084929A KR 20080084929 A KR20080084929 A KR 20080084929A KR 101027924 B1 KR101027924 B1 KR 101027924B1
Authority
KR
South Korea
Prior art keywords
cms
seq
onion
dna
gene
Prior art date
Application number
KR1020080084929A
Other languages
Korean (ko)
Other versions
KR20100026082A (en
Inventor
김성길
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080084929A priority Critical patent/KR101027924B1/en
Publication of KR20100026082A publication Critical patent/KR20100026082A/en
Application granted granted Critical
Publication of KR101027924B1 publication Critical patent/KR101027924B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 양파 세포질적 웅성 불임성(Cytoplasmic-genic Male Sterility: CMS) 특이적인 신규한 키메라 유전자(orf725) 및 상기 유전자의 구조적 특징을 이용하여 개발된 웅성불임 및 정상 양파계통 식물체 선발용 DNA 표지인자에 관한 것이다. 구체적으로 상기 신규한 웅성불임 특이적 키메라 유전자(orf725)는 2종의 양파 웅성불임 세포질(CMS-S 와 CMS-T)및 정상세포질(Normal cytoplasm)을 동시에 식별 가능케 하며 또한, 상기 키메라 유전자(orf725) 이용한 DNA 표지인자는 길게는 5년 이상 소요되는 자식검정법과 비효율적인 기존 DNA 표지인자를 완전대체 함으로서 CMS를 이용한 양파 잡종 종자의 생산에 매우 용이하게 이용될 수 있다. 뿐만 아니라, 단 한번의 PCR을 통해 양파에 존재하는 3종의 세포질 타입을 모두 식별할 수 있어 CMS 양파계통 및 CMS 유지계통의 선발에 매우 유용하며, 이는 CMS 세포질 종류를 조기에 선발하는 것을 가능케 하여 양파 잡종 품종개발 기간을 크게 앞당기고 다양하고 우수한 품종개발을 체계적으로 수행하는데 기여할 수 있다.The present invention is directed to a DNA marker for selection of male sterility and normal onion-based plants developed using a cytoplasmic-genic male sterility (CMS) specific novel chimeric gene ( orf725 ) and structural features of the gene. It is about. Specifically, the novel male infertility specific chimeric gene ( orf725 ) enables the identification of two onion male infertility cytoplasms (CMS-S and CMS-T) and normal cytoplasm at the same time, and the chimeric gene ( orf725). DNA markers can be easily used for the production of onion hybrid seeds using CMS by completely replacing the existing DNA markers, which are longer than 5 years, and inefficient DNA markers. In addition, it is possible to identify all three types of cytoplasm present in onion through a single PCR, which is very useful for the selection of CMS onion system and CMS maintenance system, which enables early selection of CMS cytoplasm types. It can greatly accelerate the development period of onion hybrid varieties and contribute to systematically performing various and excellent varieties.

양파, 세포질적 웅성불임성, 키메라 유전자 (chimeric gene), 잡종종자, DNA 표지 인자 Onion, Cytoplasmic Male Infertility, Chimeric Gene, Hybrid Seed, DNA Marker

Description

신규한 양파 웅성불임 세포질 특이적 키메라 유전자와 이를 이용하여 개발된 상기 양파 계통 식물체 선발용 DNA 표지 인자{Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility (CMS)-specific chimeric gene}Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility (CMS ) -specific chimeric gene}

본 발명은 양파 세포질적 웅성불임 (CMS: Cytoplasmic Male Sterility) 특이적인 신규로 발견된 키메라 유전자(orf725)와 상기 키메라 유전자 구조적 특성을 이용하여 개발된 양파 계통 식물체의 세포질 종류를 판별하는데 이용되는 DNA 표지 인자에 관한 것이다.The present invention is a DNA marker used to determine the cytoplasmic type of onion-based plants developed by using a newly discovered chimeric gene ( orf725 ) specific to onion cytoplasmic male sterility (CMS) and the chimeric gene structural characteristics. It's about arguments.

잡종 강세는 두 종의 순계간의 교배 자손이 양친 중 어느 한 쪽보다 높은 생산 잠재력을 갖는 현상이다. 잡종의 경우 가장 우수한 비잡종의 고정종보다 10 내지 30% 정도 증가된 산출량을 보일 수 있고, 산출량의 증가에 있어서 유리하다.Hybrid stress is a phenomenon in which the breeding offspring of two species have higher production potential than either parent. In the case of hybrids, the yield can be increased by about 10 to 30% compared to the best non-hybrid fixed species, which is advantageous in increasing the yield.

식물에 있어서 잡종 강세 현상을 이용한 1대 잡종 품종 육성은 오래 전부터 계속되어 오고 있고, 현재 시판되어지는 채소 종자의 대부분이 F1 잡종 종자이다. F1 잡종 종자 채종 방법으로는 인공교배, 자가불화합성(self-incompatibility), 자 웅이주, 웅성 불임성, 종간 교잡 등이 있으나 웅성 불임성을 이용하는 방법을 제외하고는 시간, 노력, 균일도 및 경제성에서 어려운 문제가 많으므로 많은 작물에서 웅성 불임 자원을 개발하고 육종에 이용하기 위한 연구가 계속되고 있다.Upbringing of one hybrid variety using hybrid accents in plants has been going on for a long time, and most of the commercially available vegetable seeds are F 1 hybrid seeds. F 1 hybrid seed cultivation methods include artificial mating, self-incompatibility, male migration, male infertility, and cross-breeding but are difficult in terms of time, effort, uniformity and economy except for the use of male infertility. Because of the many problems, research continues to develop and use male infertility resources in many crops.

웅성 불임성이란 화분, 꽃밥, 수술 등의 웅성기관에 이상이 생겨 불임이 생기는 현상으로 여러 종류의 식물에서 이러한 현상을 나타내고 있다. 이는 주로 자연돌연변이, 종속간 잡종, 돌연변이 유기제 처리 등에 의해 인위적 혹은 자연적으로 발생하고 있다. 웅성 불임의 원인에는 유전적인 원인에 의한 것과 환경적인 원인에 의한 것이 있는데, 대부분 육종에 쓰이는 웅성 불임계통은 유전적인 원인에 의한 웅성 불임계통이다. 이러한 유전적인 원인에 의한 웅성 불임은 3가지 형으로 나눌 수 있는데 핵유전자적 웅성 불임성(Genic Male Sterility; GMS), 세포질적 웅성 불임성(Cytoplasmic Male Sterility; CMS) 및 세포질-유전자적 웅성 불임성(Cytoplasmic-Genic Male Sterility; CGMS)으로 나뉜다. CMS와 CGMS는 거의 대부분 세포질 내 미토콘드리아 이상에 의한 것인데 임성회복 유전자의 존재 여부에 따라 CMS와 CGMS를 나누기도 한다(Rundfeldt, J., Z. Pflanzenzuchtung, 1960, 44: 30-62; Shivanna, K. R. and B. M. Johri., Pollen sterility, in the angiosperm pollen, structure and function. 1985. Wiley Eastern Ltd. New Delhi).Male infertility refers to a phenomenon in which infertility occurs due to abnormalities in male organs such as pollen, anther, and stamen. It is caused artificially or naturally, mainly by natural mutations, interdependent hybrids, and treatment with mutant organic agents. Male infertility is caused by genetic causes and environmental causes. Most male infertility systems used for breeding are male infertility due to genetic causes. Male infertility caused by these genetic causes can be divided into three types: genetic male sterility (GMS), cytoplasmic male sterility (CMS) and cytoplasmic-male sterility (Cytoplasmic- sterility) Genic Male Sterility (CGMS). CMS and CGMS are mostly due to mitochondrial abnormalities in the cytoplasm, and may be divided between CMS and CGMS depending on the presence of a gestational recovery gene (Rundfeldt, J., Z. Pflanzenzuchtung, 1960, 44: 30-62; Shivanna, KR and BM Johri., Pollen sterility, in the angiosperm pollen, structure and function.1985. Wiley Eastern Ltd. New Delhi).

핵유전자적 웅성 불임성(Genic Male Sterility; GMS)은 주로 열성 유전을 하며 열성동형(homozygous recessive)인 경우에 불임성이 나타나기 때문에 이를 이용하여 F1 잡종종자를 생산하는 경우 채종포에서 50%만의 불임주를 얻을 수 있다. 그 러므로 웅성 불임계의 유지 및 증식을 위해서는 각 개체들을 개화 시켜 화분 생성 유무를 확인해야하는 과정이 필요하기 때문에 많은 노력과 비용이 발생된다. 한편 세포질적 웅성 불임(Cytoplasmic Male Sterility; CMS) 및 세포질-유전자적 웅성 불임(Cytoplasmic-Genic Male Sterility : CGMS)은 세포질 내 미토콘드리아에 이상이 생겨 비정상적인 화분을 생성함으로서 자가 수정 능력을 상실하는 것이기 때문에 모계 유전을 하는 특징을 가진다.Genetic male sterility (GMS) is primarily recessive and infertile in the case of a homozygous recessive, so when producing F 1 hybrid seeds using only 50% infertile Can be obtained. Therefore, in order to maintain and multiply male sterility, a lot of effort and cost are incurred because it is necessary to check the existence of pollen by flowering each individual. Cytoplasmic Male Sterility (CMS) and Cytoplasmic-Genic Male Sterility (CGMS), on the other hand, cause abnormalities in the mitochondria in the cytoplasm, resulting in abnormal pollen, and thus losing maternal fertility. It is characterized by heredity.

상기 CMS와 웅성불임 유지계통은 게놈의 핵 성분에 있어서 실질적으로 동일하지만(그래서 종종 이소핵 계통이라고 불림), 세포질내 게놈의 성분에 있어서는 서로 다르다. CMS 세포계의 웅성 불임성은 모계 유전되고, 미토콘드리아 DNA에서의 돌연변이에 기인하는 것으로 보인다. 자성 가임인 CMS 세포계는 웅성불임 유지계통으로부터의 화분발산으로 인하여 수정됨으로써 증식될 수 있다. 게놈의 세포질 성분은 화분에 의하여 전달되지 않기 때문에, 이러한 교배자손은 오직 CMS 세포계의 세포질 특성을 물려받아 웅성 불임이 되게 된다. 비록 웅성불임 유지계통으로 부터 절반만 물려받지만, 게놈의 성분과 관련하여서 두 계통간의 차이점이 없기 때문에, 상기 자손에 있어서 게놈의 핵성분 또한 CMS 세포계의 핵성분과 동일할 것이다.The CMS and male infertility maintenance system are substantially the same in the nuclear component of the genome (so often called the isonuclear line), but differ in the composition of the genome in the cytoplasm. Male sterility in the CMS cell system is maternally inherited and appears to be due to mutations in mitochondrial DNA. The CMS cell system of magnetic fertility can be proliferated by fertilization due to pollen shedding from the male sterility maintenance system. Since the cytoplasmic components of the genome are not transmitted by pollen, these hybridizers inherit only the cytoplasmic properties of the CMS cell system and become male infertility. Although only half is inherited from the male sterility maintenance system, since there is no difference between the two lines with respect to the composition of the genome, the nuclear component of the genome in the offspring will be identical to the nuclear component of the CMS cell system.

CMS 게통을, 상기에서 나타낸 바와 같이 웅성 가임 및 자성 가임이고 임성회복 계통으로 불리는 또 다른 순종의 부모 계통과 교배함으로써 잡종 종자를 생산할 수 있다. 이러한 교배에 있어서, 임성회복 계통이 웅성 부모의 역할을 하는 반면 상기 CMS 계통은 자성 부모의 역할을 한다. 또한 임성회복 계통은 핵 게놈 내에 웅성불임 회복유전자(Rf: Restorer of fertility)를 운반하여, CMS 계통으로부터 유 전된 세포질을 갖는 식물체에서 웅성 임성을 회복시킬 것이다. 그러므로 상기 잡종 종자가 생산된다. 상기 CMS 및 임성회복 계통은 순종 고정종 보다 실질적으로 높은 생산성을 보이는 잡종 강세(또는 헤테로시스)를 나타내는 우수한 조합이 선택된다.Hybrid seed can be produced by crossing CMS cramps with another parental line, male and female fertility, and fertility recovery lines, as indicated above. In this mating, the reproductive recovery line acts as the male parent while the CMS line acts as the female parent. The fertility recovery line will also carry a male restorer of fertility (Rf) within the nuclear genome, restoring male fertility in plants with the cytoplasm inherited from the CMS line. Therefore, the hybrid seed is produced. The CMS and fertility recovery strains are selected with good combinations that exhibit hybrid stresses (or heterosis) that show substantially higher productivity than purely fixed species.

잘 특징화된 CMS 시스템의 예 중 하나는 옥수수에서 발견된다. 불임성 및 가임성 mRNA를 지닌 cms-T 옥수수로부터의 mtDNA 라이브러리를 스크리닝함으로써, Dewey 등은 T-세포질에 특이적인 부위를 확인하였다. 상기 부위는 13-kDa 폴리펩타이드(URF13)를 코딩하는 것으로 예측되는 T- urf13 으로 명명된 특별한 유전자를 함유한다. T- urf13orf25의 상류에 위치하고 동시-전사된다(Dewey RE, Levings III CS, Timothy DH (1986) "Novel recombination in the maize mitochondrial genome produces a unique transcriptional unit in the Texas malesterile cytoplasm." Cell 44: 439-449).One example of a well characterized CMS system is found in corn. By screening a mtDNA library from cms-T corn with sterile and fertile mRNA, Dewey et al. Identified sites specific for T-cytoplasm. This site contains a special gene named T- urf13 which is predicted to encode 13-kDa polypeptide (URF13). T- urf13 is located upstream of orf25 and co-transcribed (Dewey RE, Levings III CS, Timothy DH (1986) "Novel recombination in the maize mitochondrial genome produces a unique transcriptional unit in the Texas malesterile cytoplasm." Cell 44: 439 -449).

또 다른 예는 페튜니아(petunia)에서 발견된다. S- pcf 유전자는 페튜니아 내 CMS와 관련된 것으로 발견되었다. 이러한 로커스(locus)는 atp9 유전자의 5부분; coxII의 엑손 부분; 알려지지 않은 오픈 리딩 프레임(open reading frame)인 urf -s의 3개 부분으로 구성된다(Young EG, Hanson MR (1987) "A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated."Cell 50: 41-49).Another example is found in petunia. The S- pcf gene was found to be associated with CMS in petunias. These locus are 5 parts of the atp9 gene; exon portion of coxII ; Unknown open reading frame that is (open reading frame) is composed of three portions of the urf -s (Young EG, Hanson MR (1987) "A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated." Cell 50: 41- 49).

CMS와 관련된 특정한 유전자는 또한 강낭콩(Johns C, Lu M, Lyznik A, Mackenzie S (1992) "A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants." The Plant Cell 4: 435-449), 브라시카(Brassica) (Grelon M, Budar F, Bonhomme S, Pelletier G (1994) "Ogura cytoplasmic malesterility(CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243: 540-547), 무(Makaroff CA, Apel IJ, Palmer JD (1990) "Characterization of radish mitochondrial atpA-associated sequences and relationship with male sterility." Plant Mol Biol 15: 735-746), 해바라기(Moneger R, Smart CJ, Leaver CJ (1994) "Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene." The EMBO J. 13(1): 8-17), 벼(Akagi H (1995) "Genetic diagnosis of cytoplasmic male sterile cybrid plants of rice." Theor. Appl. Genet. 90:948-951), 당근(Kanzaki H, Takeda M, Kameya T (1991) "Sequence analysis of a mitochondrial DNA fragment isolated from cultured cells of carrot cytoplasmic male-sterile strain." Japanese J Genet 66: 719-724), 및 사탕수수(Tang HV (1996) "Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile Sorghum."Plant J. 10:123-133) 등에서도 보고되었다.Certain genes associated with CMS are also described in John C, Lu M, Lyznik A, Mackenzie S (1992) "A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants." The Plant Cell 4: 435-449 Brassica (Grelon M, Budar F, Bonhomme S, Pelletier G (1994) "Ogura cytoplasmic malesterility (CMS) -associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243 540-547), Makaroff CA, Apel IJ, Palmer JD (1990) "Characterization of radish mitochondrial atpA-associated sequences and relationship with male sterility." Plant Mol Biol 15: 735-746), sunflower (Moneger R, Smart CJ, Leaver CJ (1994) "Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene." The EMBO J. 13 (1): 8-17), rice (Akagi H (1995) "Genetic diagnosis of cytoplasmic male sterile cybrid plants of rice." Theor.App Genet. 90: 948-951), carrot (Kanzaki H, Takeda M, Kameya T (1991) "Sequence analysis of a mitochondrial DNA fragment isolated from cultured cells of carrot cytoplasmic male-sterile strain." Japanese J Genet 66: 719-724), and sugarcane (Tang HV (1996) "Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile Sorghum." Plant J. 10: 123-133).

통상적으로 이들 CMS-관련 유전자가 mtDNA의 내부-재정렬에 의해 생성되더라도, 오픈 리딩 프레임은 유의적인 서열 상동성을 공유하지 않는다(Hanson MR (1991) "Plant mitochondrial mutations and male sterility." Annu Rev Genet 25:461-486). 어떻게 이들 유전자가 CMS 식물 내에서 활동하고, 미토콘드리아의 기 능장애 및 불능성 화분을 유발하는지는 아직 알려져 있지 않다.Typically, even though these CMS-related genes are generated by in-rearrangement of mtDNA, open reading frames do not share significant sequence homology (Hanson MR (1991) "Plant mitochondrial mutations and male sterility." Annu Rev Genet 25 : 461-486). It is not yet known how these genes act in CMS plants and cause mitochondrial dysfunction and disabling pollen.

CMS 특성은 F1 종자 생성에 있어서 상업적으로 매우 유용하고 중요하다. 이는 형질전환 웅성 불임 식물이 일부 연구자에 의하여 시도되고 개발되는 이유이다. 예를 들어 Mariani 등은 식물 내에서 리보뉴클레아제(rionuclease) 유전자로 기능하는 융단조직(tapetum)-특이적 프로모터 및 바나제(barnase) 유전자를 이용하여 웅성 불임 담배를 개발하였다(Mariani C, Beuckeleer J, Truettner J, Leemans J, Goldberg RB (1990) "Induction of male sterility in plants by a chimeric ribonuclease gene." Nature 347:737-741). 일부 실험은 이들 CMS-관련 유전자를 가임 식물로 형질전환 하는 시도를 하였다. 강낭콩에서 일반적인 CMS-관련 미토콘드리아 DNA 서열인 orf239은 미토콘드리아 타겟 서열을 지니거나 지니지 않은 담배로 형질전환 되었다(Abad AR, Mehrtens BJ, Mackenzie SA (1995) "Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male sterile beans. Plant Cell 7:271-285). 형질전환된 담배는 단백질의 미토콘드리아로의 타겟팅이 이루어지지 않더라도 반-불임(semisterile) 또는 웅성불임 표현형을 나타냈다(He S, Abad AR, Gelvin SB, Mackenzie SA (1996) "A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco." Proc. Natl. Acad. Sci. USA 93:11763-11768).CMS properties are very useful and important commercially for the generation of F 1 seeds. This is why transgenic male sterile plants are tried and developed by some researchers. For example, Mariani et al. Developed male sterile tobacco using a taper-specific promoter and barnase gene that function as a rionuclease gene in plants (Mariani C, Beuckeleer). J, Truettner J, Leemans J, Goldberg RB (1990) "Induction of male sterility in plants by a chimeric ribonuclease gene." Nature 347: 737-741). Some experiments have attempted to transform these CMS-related genes into fertile plants. Orf239 , a common CMS-related mitochondrial DNA sequence in kidney beans, was transformed with tobacco with or without a mitochondrial target sequence (Abad AR, Mehrtens BJ, Mackenzie SA (1995) "Specific expression in reproductive tissues and fate of a mitochondrial sterility- associated protein in cytoplasmic male sterile beans.Plant Cell 7: 271-285.Transformed tobacco showed a semi-sterile or male infertility phenotype even if the protein was not targeted to mitochondria (He S, Abad AR). , Gelvin SB, Mackenzie SA (1996) "A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco." Proc. Natl. Acad. Sci. USA 93: 11763-11768).

또한, 식용 작물을 포함하는 식물체의 웅성 가임 세포질 및 웅성 불임 세포 질의 올바른 판별은 육종 시스템에 있어서 매우 중요하다.In addition, the correct discrimination of male fertility cytoplasm and male infertility cytoplasm of plants, including edible crops, is very important for breeding systems.

관행적 육종에서는 원하는 형질의 계통을 선발하기 위해 형태적 특성(예: 꽃의 색)의 변이에 따른 표지인자를 이용하였으나(Staub JE et al ., HortScienc e, 31(5): 729-741, 1996), 상당수의 형태적 표지인자는 환경에 따라서 변화될 가능성이 있을 뿐만 아니라(예: 오이의 신육형 유전자 de), 표지인자의 수가 극히 제한되어 있다는 단점이 있다. 이에 따라, 최근에는 DNA 염기서열 수준에서 나타나는 변이를 이용하는 분자표지인자(DNA 표지인자)를 개발하려는 연구가 진행되고 있다. DNA 표지인자는 형태적 표지인자에 비교할 수 없을 정도로 식물체에 많이 존재하고 있고, 식물체의 기능이나 생리에 장애를 주지 않아 표지인자로 이용하는데 유리하다(Jones N., et al ., New Phytol ., 137: 165-177, 1997).Conventional sarcoma used markers according to variations in morphological characteristics (eg flower color) to select the lineage of the desired trait (Staub JE et al., Hort Scienc e, 31 (5): 729-741, In 1996, many morphological markers are not only likely to change depending on the environment (eg cucumber degenerative gene de), but also have a very limited number of markers. Accordingly, recent studies have been conducted to develop molecular markers (DNA markers) using mutations that appear at the DNA sequence level. DNA markers are present in plants so much that they cannot be compared with morphological markers, and they are advantageous for use as markers without impeding the function or physiology of plants (Jones N., et al., New Phytol., 137: 165-177, 1997).

이에, 본 발명자들은 2종의 양파 웅성불임 세포질에 존재하는 웅성불임 특이적인 신규한 유전자를 발견하였고 그 특성을 규명하고, 신규로 발견된 유전자의 특성에 기반하여 양파에 존재하는 2종의 웅성불임과 1종의 정상세포질을 판별하여 유용한 양파 계통 식물체를 선발할 수 있는 안정적인 DNA 표지인자를 개발함으로써 본 발명을 완성하였다.Accordingly, the present inventors have discovered a novel gene specific for male infertility present in two onion male infertility cytoplasm and characterized its characteristics, and based on the characteristics of the newly discovered gene, two male infertility in onions The present invention was completed by developing stable DNA markers capable of selecting useful onion-based plants by discriminating between normal and one normal cytoplasm.

따라서 본 발명은 세포질적 웅성불임성(CMS: Cytoplasmic Male Sterility) 을 갖는 양파 특이적인 키메라 유전자를 제공하는 것이다.Therefore, the present invention provides an onion-specific chimeric gene having cytoplasmic male sterility (CMS).

또한 본 발명의 다른 목적은 상기 CMS 및 정상세포질 양파계통의 식물체를 선발하기 위한 DNA 표지 인자에 관한 것이다.Another object of the present invention relates to a DNA labeling factor for selecting plants of the CMS and normal cytoplasmic onion system.

본 발명은 세포질적 웅성불임성(CMS)을 갖는 양파 특이적인 키메라 유전자를 제공하는 것이다.The present invention provides an onion specific chimeric gene with cytoplasmic male sterility (CMS).

또한 본 발명의 다른 목적은 상기 CMS 및 정상세포질 양파계통의 식물체를 선발하기 위한 DNA 표지 인자에 관한 것이다.Another object of the present invention relates to a DNA labeling factor for selecting plants of the CMS and normal cytoplasmic onion system.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 웅성불임 양파에 특이적인 키메라 유전자의 뉴클레오티드 서열을 제공하는 것으로, PCR 법에 의하여 양파에서 세포질 종류를 판별하는 방법 및 양파에서 세포질 종류를 판별하기 위한 PCR 프라이머 세트를 제공하는 것이다.The present invention provides a nucleotide sequence of a chimeric gene specific to male sterile onion, and provides a method for determining cytoplasm type in onion by PCR and a PCR primer set for discriminating cytoplasm type in onion.

본 발명자들은 F1 잡종 종자의 생산성 향상을 위하여 세포질적 웅성 불임성을 갖는 양파 특이적인 유전자를 찾기 위하여 한국과 일본에서 재배되고 있는 176 여종의 양파 계통 중 교배 및 기존에 보고된 분자 표지를 이용하여 정상 세포질 및 2종의 웅성불임 세포질(CMS-S 와 CMS-T 세포질 타입)로 분류한 다음 이들을 이용하여 웅성불임 세포질에만 특이적으로 관찰되는 신규한 유전자 구조를 발견하였다.In order to improve the productivity of F 1 hybrid seeds, the present inventors used normal and molecularly reported molecular markers among 176 onion strains grown in Korea and Japan to find onion-specific genes with cellular male infertility. After classifying into the cytoplasm and two male infertility cytoplasms (CMS-S and CMS-T cytoplasmic types), they were used to find a novel genetic structure that was specifically observed only in the male infertility cytoplasm.

상기 양파 웅성불임 특이적인 유전자는 두 가지 다른 종류의 유전자가 결합된 형태의 키메라 유전자이다. 뉴클레오티드는 하기 서열번호 1 기재의 뉴클레오티드(2357bp)를 포함하는 세포질 웅성 불임 식물의 특이적인 DNA 서열로, 상기 뉴클 레오티드는 양파 coxI 유전자의 일부와 3'-말단에 서양부추에서 추출된 orfA501 유전자 유사 염기서열이 연결된 형태로 존재한다.The onion male infertility specific gene is a chimeric gene in a form in which two different kinds of genes are combined. Nucleotide is a specific DNA sequence of a cytoplasmic male infertile plant comprising the nucleotide (2357bp) described in SEQ ID NO: 1, wherein the nucleotide is similar to the orfA501 gene extracted from a part of onion coxI gene and 3'-terminal leek The base sequences are present in linked form.

상기 DNA 서열은 미토콘드리아 게놈에 존재하는 것으로 양파의 세포질 웅성 불임성과 관련 있으며, 이를 포함한 세포질적 웅성불임성을 갖는 CMS 양파 계통 식물체를 교배모본으로 하여 세포질 웅성 불임성을 갖는 CMS 양파 계통 잡종 종자를 생산할 수 있다.The DNA sequence is present in the mitochondrial genome and is related to the cytoplasmic male infertility of onions, and the CMS onion-based infertile hybrid with the cytoplasmic male infertility including the cytoplasmic male infertility can be produced. .

또한 본 발명은 상기 2종의 CMS 양파계통의 식물체를 선발하기 위한 DNA 표지 인자를 제공한다.The present invention also provides a DNA labeling factor for selecting plants of the two CMS onion system.

본 발명의 신규한 양파 세포질적 웅성불임성 특이적 키메라 유전자의 이용은 효과적인 F1 잡종 종자 생산을 가능하게 하고, 미토콘드리아 유전체를 기반으로 한 CMS 양파 계통 식물체를 선발할 수 있는 DNA 분자 표지를 개발하였다.The use of the novel onion cytoplasmic male infertility specific chimeric gene of the present invention enables efficient F 1 hybrid seed production and has developed a DNA molecule label capable of selecting CMS onion lineage plants based on mitochondrial genomes.

본 발명의 세포질적 웅성불임 양파의 특이적인 키메라 DNA 서열은 정상 세포질과 2종의 웅성 불임 세포질을 갖는 양파를 판별하기 위하여 사용할 수 있다. 상기 웅성 불임 양파를 판별하기 위한 방법은 서열번호 1의 신규한 유전자 orf725에서 서열번호2의 정상 coxI 유전자와 유사한 뉴클레오타이드 염기서열의 일부를 어닐링할 수 있는 정방향 프라이머와 각각 정상적인 coxI 유전자 특이적 3’말단과 신규한 orf725 유전자 특이적 3’말단에 어닐링할 수 있는 2종의 역방향 프라이머를 이용하여 PCR를 수행하는 단계 및 DNA 단편이 증폭되는지 여부를 관찰하는 단계를 포함한다. 이 때, 증폭된 단편의 종류는 상기 식물이 어떤 종류의 웅성 불임 세 포질을 보유하고 있는지를 나타내고, 또는 정상 세포질을 가진 웅성가임 계통인지도 나타낸다. 증폭된 DNA 단편의 크기는 300bp 내지 2000bp 이고, 정방향 프라이머 및 역방향 프라이머의 길이는 15bp 내지 30bp 이다. 도 1 및 도 2를 참조한다.The specific chimeric DNA sequence of the cytoplasmic male infertility onion of the present invention can be used to distinguish onions having normal cytoplasm and two male infertile cytoplasms. The method for determining the male sterile onion is a forward primer capable of annealing a part of a nucleotide sequence similar to the normal coxI gene of SEQ ID NO: 2 in the novel gene orf725 of SEQ ID NO: 1 and the normal coxI gene specific 3 'terminal, respectively. And performing PCR using two reverse primers that can anneal to the novel orf725 gene specific 3 ′ end and observing whether the DNA fragment is amplified. At this time, the type of the amplified fragment indicates what kind of male infertile cells the plant possesses, or whether it is a male genus family having a normal cytoplasm. The size of the amplified DNA fragment is 300bp to 2000bp, and the lengths of the forward primer and the reverse primer are 15bp to 30bp. See FIGS. 1 and 2.

관찰 단계에 있어서, DNA 단편의 증폭여부는 아가로스 겔 또는 폴리아크릴아미드 겔 상에서 전기영동 시킨 후 브롬산 에티디움 염색하여 측정할 수 있다. 또한, 방사선-표지법, 비색법, 화학발광법 또는 형광법을 적용하여 PCR 산물을 탐지 할 수 있다.In the observation step, the amplification of the DNA fragments can be measured by electrophoresis on agarose gel or polyacrylamide gel, followed by ethidium bromide staining. In addition, PCR products can be detected by radiation-labeling, colorimetric, chemiluminescent or fluorescence methods.

본 발명의 실시예에 있어서, 정방향 프라이머로서 서열번호 3(5’- CATAGGCGGGCTCACAGGAATA - 3’)의 뉴클레오티드 서열로 이루어진 프라이머와 역방향 프라이머는 서열번호 4(5’- AATCCTAGTGTCCGGGGTTTCT - 3’)와 5(5’- CAGCGAACTTTCATTCTTTCGC - 3’)의 뉴클레오티드 서열로 이루어진 프라이머를 설계 제작한다.In an embodiment of the present invention, the primer consisting of the nucleotide sequence of SEQ ID NO: 3 (5'- CATAGGCGGGCTCACAGGAATA-3 ') and the reverse primer as the forward primer is SEQ ID NO: 4 (5'- AATCCTAGTGTCCGGGGTTTCT-3') and 5 (5 ') A primer consisting of the nucleotide sequence of CAGCGAACTTTCATTCTTTCGC-3 ′) is designed and constructed.

상기에서 살펴본 바와 같이, 세포질적 웅성불임성 특이적인 키메라 유전자를 이용하여 CMS 양파 계통의 잡종 종자를 생산하는데 매우 용이하게 이용 될 수 있으며, 또한 본 발명에 따른 양파 CMS 특이적인 신규한 키메라 유전자를 이용한 선발용 DNA 표지 인자는 이를 증폭하기 위한 프라이머를 이용한 PCR을 통해 특이적으로 식물의 세포질 표현형이 검출될 수 있기 때문에 CMS 양파 계통의 선발에 매우 유용하여 CMS 세포계의 순도를 지킴으로서 잡종 종자의 오염의 주원인을 제거할 수 있는 장점도 있다.As described above, it can be very easily used to produce hybrid seeds of CMS onion lineage using cytoplasmic male infertility specific chimeric genes, and also selecting using a novel chimeric gene specific to onion CMS according to the present invention. DNA markers are very useful for the selection of CMS onion strains because PCR can be detected by PCR using primers to amplify them. There is also an advantage that can be removed.

또한 작물 육종에 있어서, 노력과 경비가 적게 들뿐 아니라, 신속성, 정확성 및 민감성이 높은 PCR 기술을 이용하여 DNA표지인자를 검출하면 목표형질을 보다 정확히 선발할 수 있다.In crop breeding, not only the effort and expense are low, but also the detection of DNA markers using high-speed, high-accuracy and sensitive PCR technology enables more accurate selection of target traits.

이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니며, 본 발명의 사상과 범위 내에서 여러 가지 변형 또는 수정할 수 있음은 이 분야에서 당업자에게는 명백한 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by the following examples, and various modifications or changes can be made within the spirit and scope of the present invention to those skilled in the art.

[실시예 1] 양파 CMS ( cytoplasmic Male Sterility ) 세포질 특이적인 유전자 DNA 분리. Example 1 onion CMS (cytoplasmic Male Sterility ) Isolation of cytoplasmic specific gene DNA .

양파 게놈 DNA를 분리하기 위하여 한국과 일본에서 재배되고 있는 176 여종의 양파 계통을 교배를 통한 자식검정 및 기존에 알려진 분자표지를 이용하여 2종의 웅성불임과 1종의 정상 세포질 타입으로 분류하여 웅성불임 특이적 유전자 탐색을 위한 재료로 이용하였다. 서양부추(chives) 웅성불임 특이적인 서열(orfA501, 도1 참조)이 양파 웅성불임에도 존재한다는 보고가 있어(Engelke T, Terefe D, Tatlioglu T (2003) “A PCR-based marker system monitoring CMS-(S), CMS-(T) and (N)-cytoplasm in the onion (Allium cepa L.).” Theor Appl Genet 107:162-167) 본 발명자는 서양부추 염기서열을 기반으로 양파에 유사한 염기서열을 찾아내었고 genome walking 기법을 이용하여 서양부추 염기서열과는 전혀 다른 주변 염기서열 및 유전자 구조를 찾아내었다 (도1 참조). Genome walking은 (주)클론텍의 키 트(Universal Genome Walker kit, Clontech, Palo Alto, CA, USA)를 이용하여 수행하였다.In order to isolate onion genomic DNA, 176 onion strains grown in Korea and Japan were classified into two male infertility and one normal cytoplasmic type by using a child test through crossbreeding and known molecular markers. It was used as a material for searching for infertility specific genes. Chives male infertility specific sequences ( orfA501 , see Figure 1) have been reported to exist in onion male infertility (Engelke T, Terefe D, Tatlioglu T (2003) “A PCR-based marker system monitoring CMS- ( S), CMS- (T) and (N) -cytoplasm in the onion ( Allium cepa L. ). ”Theor Appl Genet 107: 162-167) The genome walking technique was used to find peripheral sequences and gene structures that were completely different from the western leek sequences (see FIG. 1). Genome walking was performed using a kit of Clontech Co., Ltd. (Universal Genome Walker kit, Clontech, Palo Alto, CA, USA).

상기 발견된 웅성불임 특이적 유전자의 미토콘드리아 유전체 내의 분포 (copy number)를 조사하기 위하여 2종의 웅성불임 세포질 및 1종의 정상 세포질을 가진 각각 3가지 계통을 대상으로 PCR을 수행하였다. 신규로 발견된 유전자(orf725)와 정상적인 coxI 유전자의 상대적인 비율을 관찰하기 위하여 PCR cycle을 30과 40회 사이클을 돌렸다(도 2 참조). 식물의 잎 조직으로 부터 DNA를 분리 후, 이를 주형으로 서열번호 6 및 서열번호 7로 표시되는 염기서열을 갖는 프라이머를 이용하여 orf725 유전자를 증폭시키는데 이용하였고 서열번호 8 및 서열번호 11로 표시되는 염기서열을 갖는 프라이머를 이용하여 상기 기재 서열번호 2의 정상 coxI 유전자를 증폭시키는데 이용하였다. 그 결과 신규로 발견된 orf725 유전자는 2종의 웅성불임 세포질에만 다량으로 존재함을 알 수 있었고 정상적인 coxI 유전자는 CMS-S 타입에서는 아주 작은 양이 그리고 CMS-T와 정상 세포질 타입에서는 많은 양이 존재함을 알 수 있었다. 이러한 두 가지 유전자의 미토콘드리아 유전체 내의 상대적인 비율이 세포질 종류에 따라 상이하다는 결과에 기반을 두고 3종의 세포질을 단 한번의 PCR로 식별할 수 있는 DNA 표지인자를 개발하였다. PCR은 (주)클론텍의 PCR 키트(Advantage 2 Polymerase Mix, Clontech, Palo Alto, CA, USA)를 이용하여 수행하였다. 반응 조건은 95℃에서 5분 동안 변성화(denaturation)시킨 후, 95℃에서 30초; 65℃에서 30초; 및 72℃에서 1분 30초로 한 사이클을 40회 반복한 다음, 72℃에서 10분간 최종 반응시켰다.In order to investigate the copy number in the mitochondrial genome of the above-mentioned male infertility specific gene, PCR was performed on each of three lines having two male infertility cytoplasms and one normal cytoplasm. In order to observe the relative ratio of the newly discovered gene ( orf725 ) and the normal coxI gene, the PCR cycle was run 30 and 40 times (see FIG. 2). After separating the DNA from the leaf tissue of the plant, it was used to amplify the orf725 gene using a primer having a nucleotide sequence represented by SEQ ID NO: 6 and SEQ ID NO: 7 as a template and a base represented by SEQ ID NO: 8 and SEQ ID NO: 11 A primer having a sequence was used to amplify the normal coxI gene of SEQ ID NO: 2. As a result, the newly discovered orf725 gene was found in large amounts in only two male infertility cytoplasm, and the normal coxI gene was very small in CMS-S type and large in CMS-T and normal cytoplasmic type. I could see. Based on the results that the relative proportions of these two genes in the mitochondrial genomes differ depending on the cytoplasmic type, DNA markers capable of identifying three cytoplasmes by a single PCR were developed. PCR was performed using Clontech's PCR kit (Advantage 2 Polymerase Mix, Clontech, Palo Alto, CA, USA). The reaction conditions were denatured for 5 minutes at 95 ° C., followed by 30 seconds at 95 ° C .; 30 seconds at 65 ° C .; And 40 cycles of 1 minute 30 seconds at 72 ° C., followed by final reaction at 72 ° C. for 10 minutes.

[실시예 2] 양파에서 2종의 웅성불임 세포질 및 1종의 정상 세포질을 판별하기 위한 DNA 표지인자 개발 [Example 2] DNA to determine the top of two cytoplasmic male sterile cytoplasm and at least in the onion Cover factor development

상기 실시예 1에서 발견한 orf725 유전자와 정상 coxI 유전자의 세포질 타입간에 나타나는 상대적인 비율을 기반으로 3종의 세포질을 판별할 수 있는 DNA 표지인자를 개발하였는데 다양한 품종과 계통의 세포질 타입을 신뢰성 있게 식별할 수 있는지 확인하기 위하여 다음과 같은 실험을 수행하였다. 이를 위한 실험재료로는 세포질 타입이 알려진 24종의 품종 또는 육종계통 식물체를 이용하였다(도 3 참조).Based on the relative ratios between the orf725 gene and the normal coxI gene found in Example 1, DNA markers were developed that can distinguish three cytoplasmes. In order to check whether the following experiment was carried out. As an experimental material for this, 24 varieties or breeding plant plants of known cellular type were used (see FIG. 3).

상기한 24종의 식물체에서 분리한 DNA를 주형으로 하고, 서열번호 3, 서열번호4 및 서열번호 5로 표시되는 염기서열을 갖는 3종의 프라이머를 동시에 이용하여 PCR을 수행하였다. PCR 반응 조건은 95℃에서 5분 동안 전변성화(per-denaturation)시킨 후, 95℃에서 30초; 60℃에서 30초; 및 72℃에서 1분 30초로 한 사이클을 40회 반복한 다음, 72℃에서 10분간 최종 반응시켰다. 이후, 1% 아가로스 겔 전기영동을 수행하였다. 그 결과, 도 3에서 확인할 수 있듯이, 정상 세포질은 coxI 유전자로부터 증폭된 833bp 크기의 밴드가 검출되었고 CMS-S 타입 세포질에서는 orf725 유전자로부터 증폭된 628bp 크기의 밴드가 검출되었다. 그러나 CMS-T 타입의 세포질에서는 두 가지 밴드가 모두 증폭되었음을 확인하였다.PCR was performed using DNAs isolated from the 24 plants described above as templates, and simultaneously using three primers having the nucleotide sequences represented by SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5. PCR reaction conditions were 5 minutes at 95 ° C after per-denaturation at 95 ° C; 30 seconds at 60 ° C .; And 40 cycles of 1 minute 30 seconds at 72 ° C., followed by final reaction at 72 ° C. for 10 minutes. Thereafter, 1% agarose gel electrophoresis was performed. As a result, as can be seen in Figure 3, the normal cytoplasm was detected a band of size 833bp amplified from the coxI gene, and in the CMS-S type cytoplasm was detected a band of 628bp amplified from the orf725 gene. However, it was confirmed that both bands were amplified in the cytoplasm of CMS-T type.

Figure 112008061651708-pat00001
Figure 112008061651708-pat00001

[실시예 3] 양파에서 웅성불임 특이적인 유전자( orf725 ) 및 정상적인 coxI 유전자의 유전자 발현 조사를 위한 역전사효소 RT - PCR 실시 [Example 3] A male sterile specific genes from onion (orf725) and normal coxI reverse transcriptase for the investigation of gene expression of genes RT - PCR performed

신규한 웅성불임 특이적 유전자 (orf725) 및 정상 coxI 유전자 특이적 프라이머 쌍(서열번호 9, 10 및 11)으로 RT-PCR을 수행하여 3종의 세포질에서의 발현 양상을 분석하였다(도 4 참조). 실험재료는 각각 CMS-S 및 CMS-T 세포질을 가진 웅성불임 개체에 웅성불임 회복유전자가 있는 가임계통을 교배한 분리세대에서 웅성가임주 4개체와 웅성불임주 4개체를 선발하여 꽃봉우리로부터 RNA를 추출하여 cDNA를 합성하여 RT-PCR의 주형으로 이용하였다. 정상세포질은 4종의 육종 계통 식물체의 꽃에서 RNA를 추출하여 cDNA를 합성하여 주형으로 이용하였다.RT-PCR was performed with a novel male infertility specific gene ( orf725 ) and a normal coxI gene specific primer pair (SEQ ID NOS: 9, 10 and 11) to analyze the expression patterns in the three cytoplasmes (see FIG. 4). . Experimental materials were selected from four male and female fertility strains from the flower buds of four male and female fertility strains. Was extracted to synthesize cDNA was used as a template of RT-PCR. In normal cytoplasm, RNA was extracted from flowers of four breeding lineage plants and cDNA was synthesized and used as a template.

인비트로젠사의 역전사키트(Superscript Reverse Transcriptase(RT)II kit, Invitrogen, Carlsbad, CA)를 이용하여 상기 식물의 꽃 RNA로부터 cDNA를 합성하였고, 유전자들의 발현을 RT-PCR로 분석하였다.CDNA was synthesized from the flower RNA of the plant using Invitrogen's reverse transcriptase kit (Superscript Reverse Transcriptase (RT) II kit, Invitrogen, Carlsbad, Calif.), And the expression of genes was analyzed by RT-PCR.

RT-PCR 조건은 94℃에서 3분 동안 전변성화(per-denaturation)시킨 후, 94℃에서 30초; 65℃에서 30초; 및 72℃에서 2분으로 한 사이클을 30회 반복한 다음, 72℃에서 10분간 최종 반응시켰다. 이후, 1% 아가로스 겔 전기영동을 수행하였다. 그 결과, 도 4에서 확인할 수 있듯이, orf725 유전자는 CMS-S 와 CMS-T에서만 발현되고 정상세포질에서는 발현되지 않음을 확인하였고 반면 정상 coxI 유전자는 CMS-T와 정상세포질에서만 발현되고 CMS-S 세포질에서는 발현되지 않음을 확인하였다. 그리고 두 가지 유전자의 발현은 분리세대에서 웅성가임 개체와 웅성불임 개체 간에 차이가 없으므로 회복유전자는 두 가지 유전자의 발현에 영향을 미치지 않음을 확인하였다.RT-PCR conditions were 30 minutes at 94 ° C. after per-denaturation at 94 ° C. for 3 minutes; 30 seconds at 65 ° C .; And 30 cycles of two minutes at 72 ° C., followed by a final reaction at 72 ° C. for 10 minutes. Thereafter, 1% agarose gel electrophoresis was performed. As a result, as shown in Figure 4, the orf725 gene was confirmed only in CMS-S and CMS-T, but not in the normal cytoplasm, whereas normal coxI gene is expressed only in CMS-T and normal cytoplasm and CMS-S cytoplasm It was confirmed that is not expressed in. And since the expression of the two genes does not differ between male and female infertile individuals in the isolated generation, it was confirmed that the recovery gene did not affect the expression of the two genes.

도 1은 양파의 미토콘드리아 게놈에서 coxI 유전자와 키메라 유전자 orf725의 염기서열 구조 비교를 위한 개략도 및 양파 세포질 종류 판별용 DNA 표지인자를 이용한 식물체의 세포질 종류를 확인한 PCR 결과를 나타낸 것이다. (1: HT201, 2: HT202, 3: HT204, 4: Sharom, 5: Ocean, 6: Giant, 7: Sasuki, 8: Gangsukhwang, 9: Hiro)Figure 1 shows a PCR result confirming the cytoplasm of the plant using a schematic diagram for comparing the nucleotide sequence structure of the coxI gene and chimeric gene orf725 in the onion mitochondrial genome and onion cytoplasm type discriminator. (1: HT201, 2: HT202, 3: HT204, 4: Sharom, 5: Ocean, 6: Giant, 7: Sasuki, 8: Gangsukhwang, 9: Hiro)

도 2는 3종류의 양파 세포질 타입에서 양파 게놈 내 coxI 유전자와 키메라 유전자 orf725의 존재여부 및 상대적인 비율을 확인한 PCR 결과를 나타낸 것이다. (1: HT201, 2: HT202, 3: HT204, 4: Sharom, 5: Ocean, 6: Giant, 7: Sasuki, 8: Gangsukhwang, 9: Hiro)Figure 2 shows the PCR results confirming the presence and relative ratio of the coxI gene and chimeric gene orf725 in the onion genome in three types of onion cytoplasm. (1: HT201, 2: HT202, 3: HT204, 4: Sharom, 5: Ocean, 6: Giant, 7: Sasuki, 8: Gangsukhwang, 9: Hiro)

도 3은 다양한 양파 품종 및 육종 계통을 대상으로 개발된 DNA 표지인자의 신뢰도를 확인한 PCR 결과를 나타낸 것이다. (1: OB201, 2: OB202, 3: OB204, 4: OB217, 5: OB225, 6: OB245, 7:OB278, 8: OB359, 9: Gukjosangball, 10: Hantur420, 11: Guygum, 12: PI-Gilimsung, 13: Swaro, 14:Nice, 15: Juokhwang, 16: Red Ring Ball, 17: Nurihwang, 18: Rucy, 19: Chunryukgwon, 20: Wolgwang, 21: Tobball, 22: Katamaru, 23: POP, 24: Saboroki)Figure 3 shows the PCR results confirming the reliability of the DNA markers developed for various onion varieties and breeding lines. (1: OB201, 2: OB202, 3: OB204, 4: OB217, 5: OB225, 6: OB245, 7: OB278, 8: OB359, 9: Gukjosangball, 10: Hantur420, 11: Guygum, 12: PI-Gilimsung , 13: Swaro, 14: Nice, 15: Juokhwang, 16: Red Ring Ball, 17: Nurihwang, 18: Rucy, 19: Chunryukgwon, 20: Wolgwang, 21: Tobball, 22: Katamaru, 23: POP, 24: Saboroki )

도 4는 정상 coxI 유전자 및 orf725 유전자의 발현을 3종의 세포질 타입을 대상으로 RT-PCR로 확인한 결과를 나타낸 것이다. 4 shows the results of confirming the expression of normal coxI gene and orf725 gene by RT-PCR targeting three cytoplasmic types.

<110> Industry Foundation of Chonnam National University <120> Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility (CMS)-specific chimeric gene <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 2772 <212> DNA <213> Allium cepa <400> 1 aataagaatt atattcaatt tcagaagcaa agatggctga tctgtatcaa gaacctgatg 60 ataatatgct acgccccaga agaagaagat tcagaataaa cggaggctaa tcatggaaaa 120 aggttgacgt tcaccccctt tcttgtttgt gagtaggtgg gtgctattga gatattgggc 180 ccttaaagag tcttccttta gaaagaacgg aacgagtttg tgattcgatc ttctaaagcg 240 taaagcgaaa tcagtaggac aagatccaat ctttcgtcaa cgcaggttgc ttattctcct 300 acttaagtat attaattggg tagcgtagct ggaatttctt tttggtccct ttcgtccagt 360 ggttaggaca tcgtcttttc atgtcgaaga cacgggttcg attcccgtaa gggataggta 420 cttctcggta ctccgggata tacaccagcg ggtggaccgg ttggcgttat gccacttctc 480 cttcctcata tggtggttcg atggctcttc tctactaacc acaaagatat cggtactctc 540 tatttcatct ttgctgccat tgctggagtg atgggcacat gcttctccgt actgattcgt 600 atggaattag cccgacccgg cgatcaaatt cttggcggga atcatcagct ttataatgtt 660 ttaataactg ctcacgcttt tttaatgatc ttttttatgg tgatgccagc gatgataggt 720 ggatttggta attggtttgt tccgattctg atcggtgcac ctgacatggc atttccacga 780 ttaaataata tatcattctg gttgttgcca ccaagtctct tgctcctatt aagctccgcc 840 ttagtagaag tgggtagcgg cactgggtgg acggtctatc cgcctttaag tggtattacc 900 agccattctg gaggagcagt tgattcagcc atttttagtc ttcatctatc aggtgtttca 960 tcaattttag gttctatcaa ttttataacc actatcttca acatgcgtgg acctggaatg 1020 actatgcata gattacccct ttttgtgtgg tccgttctag tgacagcatt tctactttta 1080 ttatcacttc cggtactggc gggggcaatt acaatgttat taaccgatcg aaactttaat 1140 acaacctttt ttgatcctgc aggaggggga gaccccatat tataccagca tctctttcgg 1200 ttcttcggtc atccagaggt gtatattctc attctgcccg gattcggtat tattagtcat 1260 atcgtatcga ccttttcggg aaaaccggtc ttcgggtatc taggcatggt ttacgccatg 1320 atcagtatag gtgttcttgg atttcttgtt tgggctcatc atatgtttac tgtgggctta 1380 gacgttgata cgcgtgctta cttcaccgca gctaccatga tcatagctgt ccccactgga 1440 atcaaaatct ttagttggat cgctaccatg tggggaggtt cgatacaata caaaacaccc 1500 atgttatttg ctgtagggtt catctttttg ttcaccatag gcgggctcac aggaataatt 1560 ctagcgaatt ctgggctaga cattgctcta catgatactt attatgtggt ggcacatttc 1620 cattatgtac tttctatggg agcggttttt gctttatttg caggatttta ctattgggtg 1680 ggtaaaatct ttggtcggac atacccggaa actttaggtc aaatccattt ttggatcact 1740 tctttcgggg tgaatcttac cttctttccc atgcatttct tagggctttc gggtatgcca 1800 cgtcgcattc cagattatcc agatgcttac gccggatgga atgctctgag cagtttcggc 1860 tcttatatat ccgtagttgg gattcgttct ttcttcgtgg tcgtcacaat cactttaagc 1920 agtggaaaca acactaaatg tgctccaagc ccttgggctg ttgaagagaa gaattcaacc 1980 acacttgaat ggatggtaca aagtcctcca gcttttcata cttttggaga acttccagct 2040 atcaaagaga cgaaaagcta tgcgaatgta tcggggattg cacgagtccg cggacgggcc 2100 acttcgccca ccaggcgggg tttctccaca actccggacc cgctcgcctt gaaagagagc 2160 atgctctctt acaagaaaag tggaattcct cgttctgggg ctttctatgc ttgttctcaa 2220 gcagattccg caccttgttt atcgtcttgt tcgcttcctt tttactgctt ttgtggggac 2280 atttagtacc aatttggtac tacagcgagc ggctttccgt tgccatggat tttttgatgt 2340 cgaaaggaat tccttttgag ttggagttcg ggtgggacaa agtggtgatt cgcccagttc 2400 agtcggtggc aacttttctc aaagcagggg aagtacctcc tgttccacca gtgacgggta 2460 tagtaccacc cgtagaatcc cactgcccac tagagtgcca cttattcaca aatccatcct 2520 tgtctatgct gctcactctc ggtttggtcc tactgatgat tttttttttg ttacgaaaaa 2580 gggaggggga aagtcagtgc caaatgcttg gcaatccttg gtagagctta ttcatgattt 2640 cgtgccgaaa ggctttgctc taaccgaagc tattgcattg tttgccctaa tgatggcctt 2700 tctgatctca ttcgtcttcc aaagtgaacc agatgcttct ttaaaagaaa gcgctttgcc 2760 ttacctatga tg 2772 <210> 2 <211> 2767 <212> DNA <213> Allium cepa <400> 2 gagtcttcct ttagaaagaa cggaacgagt ttgtgattcg atcttctaaa gcgtaaagcg 60 aaatcagtag gacaagatcc aatctttcgt caacgcaggt tgcttattct cctacttaag 120 tatattaatt gggtagcgta gctggaattt ctttttggtc cctttcgtcc agtggttagg 180 acatcgtctt ttcatgtcga agacacgggt tcgattcccg taagggatag gtacttctcg 240 gtactccggg atatacacca gcgggtggac cggttggcgt tatgccactt ctccttcctc 300 atatggtggt tcgatggctc ttctctacta accacaaaga tatcggtact ctctatttca 360 tctttgctgc cattgctgga gtgatgggca catgcttctc cgtactgatt cgtatggaat 420 tagcccgacc cggcgatcaa attcttggcg ggaatcatca gctttataat gttttaataa 480 ctgctcacgc ttttttaatg atctttttta tggtgatgcc agcgatgata ggtggatttg 540 gtaattggtt tgttccgatt ctgatcggtg cacctgacat ggcatttcca cgattaaata 600 atatatcatt ctggttgttg ccaccaagtc tcttgctcct attaagctcc gccttagtag 660 aagtgggtag cggcactggg tggacggtct atccgccttt aagtggtatt accagccatt 720 ctggaggagc agttgattca gccattttta gtcttcatct atcaggtgtt tcatcaattt 780 taggttctat caattttata accactatct tcaacatgcg tggacctgga atgactatgc 840 atagattacc cctttttgtg tggtccgttc tagtgacagc atttctactt ttattatcac 900 ttccggtact ggcgggggca attacaatgt tattaaccga tcgaaacttt aatacaacct 960 tttttgatcc tgcaggaggg ggagacccca tattatacca gcatctcttt cggttcttcg 1020 gtcatccaga ggtgtatatt ctcattctgc ccggattcgg tattattagt catatcgtat 1080 cgaccttttc gggaaaaccg gtcttcgggt atctaggcat ggtttacgcc atgatcagta 1140 taggtgttct tggatttctt gtttgggctc atcatatgtt tactgtgggc ttagacgttg 1200 atacgcgtgc ttacttcacc gcagctacca tgatcatagc tgtccccact ggaatcaaaa 1260 tctttagttg gatcgctacc atgtggggag gttcgataca atacaaaaca cccatgttat 1320 ttgctgtagg gttcatcttt ttgttcacca taggcgggct cacaggaata attctagcga 1380 attctgggct agacattgct ctacatgata cttattatgt ggtggcacat ttccattatg 1440 tactttctat gggagcggtt tttgctttat ttgcaggatt ttactattgg gtgggtaaaa 1500 tctttggtcg gacatacccg gaaactttag gtcaaatcca tttttggatc acttctttcg 1560 gggtgaatct taccttcttt cccatgcatt tcttagggct ttcgggtatg ccacgtcgca 1620 ttccagatta tccagatgct tacgccggat ggaatgctct gagcagtttc ggctcttata 1680 tatccgtagt tgggattcgt tctttcttcg tggtcgtcac aatcacttta agcagtggaa 1740 acaacactaa atgtgctcca agcccttggg ctgttgaaga gaagaattca accacacttg 1800 aatggatggt acaaagtcct ccagcttttc atacttttgg agaacttcca gctatcaaag 1860 agacgaaaag ctatgtgaag taaaagaaga aaaggtcgcg ctactaagaa cctaacagaa 1920 gaaagatcag aatgaatggt tggatcaaac ggagaatgca taaataagca gcgatgacga 1980 tgaatgagaa tgacttacta tccaaaaaaa aaaagaatgg acagattttt ttagatatga 2040 ctccgccagt atattaattt cgtcgaggca attatccaaa tttttattcg ccttcggaac 2100 ggaaaaagaa cgacccccgg atcggatgta gcttacaggt gaaccgggta accaaagtcg 2160 cgaaagaatg aaagttcgct gggtcccaga agtgcaggtt cgagtccagc tcgtgacaag 2220 gcctttttgg tcacttggtc ttgcttgtta ttgaaatatt ccgttctcat cctccctgga 2280 accatggtct tgttgcttgg cttgctttca tgtcagtact tattctcttt ctctgaactt 2340 tcagacggaa gcttaagaca tgggattgtc tggaaagaag gggcacctta cgccttggct 2400 caggcgagcg aagtgaggaa agaaacaaat ttccttagac aacagcctgt atactgactc 2460 caggggggct cgcactattc cgggaagaga aacggacaag ggctgaacat gctgaatctt 2520 tcctttattg ccggctaggc tgctagacta gaagaatccc ctgcacatga aaaagagaaa 2580 gaggcggagt aacggctttg agggagaggc cgaaattagg atagccttca gggacatgat 2640 ttggctcgga cgtccgtgtt agagcaccag catgtactcc ttgagatagc attgtcttag 2700 gattggtact gaccaagtga tcagaggtgc ttgcgggtgc aacgtgctag acctaaaact 2760 tcaacag 2767 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Aense sequence <400> 3 cataggcggg ctcacaggaa ta 22 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 4 aatcctagtg tccggggttt ct 22 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequense <400> 5 cagcgaactt tcattctttc gc 22 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sense sequence <400> 6 ttatccagat gcttacgccg gatggaa 27 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 7 aggccatcat tagggcaaac aatgcaa 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sense sequences <400> 8 tgggtgggta aaatctttgg tcggaca 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sences sequence <400> 9 tgggtgggta aaatctttgg tcggaca 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 10 cactttgtcc cacccgaact ccaactc 27 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 11 ccgttccgaa ggcgaataaa aatttgg 27 <110> Industry Foundation of Chonnam National University <120> Method for detecting cytoplasm types of plant of Allium cepa line          using the DNA marker developed based on novel cytoplasmic male          sterility (CMS) -specific chimeric gene <160> 11 <170> KopatentIn 1.71 <210> 1 <211> 2772 <212> DNA <213> Allium cepa <400> 1 aataagaatt atattcaatt tcagaagcaa agatggctga tctgtatcaa gaacctgatg 60 ataatatgct acgccccaga agaagaagat tcagaataaa cggaggctaa tcatggaaaa 120 aggttgacgt tcaccccctt tcttgtttgt gagtaggtgg gtgctattga gatattgggc 180 ccttaaagag tcttccttta gaaagaacgg aacgagtttg tgattcgatc ttctaaagcg 240 taaagcgaaa tcagtaggac aagatccaat ctttcgtcaa cgcaggttgc ttattctcct 300 acttaagtat attaattggg tagcgtagct ggaatttctt tttggtccct ttcgtccagt 360 ggttaggaca tcgtcttttc atgtcgaaga cacgggttcg attcccgtaa gggataggta 420 cttctcggta ctccgggata tacaccagcg ggtggaccgg ttggcgttat gccacttctc 480 cttcctcata tggtggttcg atggctcttc tctactaacc acaaagatat cggtactctc 540 tatttcatct ttgctgccat tgctggagtg atgggcacat gcttctccgt actgattcgt 600 atggaattag cccgacccgg cgatcaaatt cttggcggga atcatcagct ttataatgtt 660 ttaataactg ctcacgcttt tttaatgatc ttttttatgg tgatgccagc gatgataggt 720 ggatttggta attggtttgt tccgattctg atcggtgcac ctgacatggc atttccacga 780 ttaaataata tatcattctg gttgttgcca ccaagtctct tgctcctatt aagctccgcc 840 ttagtagaag tgggtagcgg cactgggtgg acggtctatc cgcctttaag tggtattacc 900 agccattctg gaggagcagt tgattcagcc atttttagtc ttcatctatc aggtgtttca 960 tcaattttag gttctatcaa ttttataacc actatcttca acatgcgtgg acctggaatg 1020 actatgcata gattacccct ttttgtgtgg tccgttctag tgacagcatt tctactttta 1080 ttatcacttc cggtactggc gggggcaatt acaatgttat taaccgatcg aaactttaat 1140 acaacctttt ttgatcctgc aggaggggga gaccccatat tataccagca tctctttcgg 1200 ttcttcggtc atccagaggt gtatattctc attctgcccg gattcggtat tattagtcat 1260 atcgtatcga ccttttcggg aaaaccggtc ttcgggtatc taggcatggt ttacgccatg 1320 atcagtatag gtgttcttgg atttcttgtt tgggctcatc atatgtttac tgtgggctta 1380 gacgttgata cgcgtgctta cttcaccgca gctaccatga tcatagctgt ccccactgga 1440 atcaaaatct ttagttggat cgctaccatg tggggaggtt cgatacaata caaaacaccc 1500 atgttatttg ctgtagggtt catctttttg ttcaccatag gcgggctcac aggaataatt 1560 ctagcgaatt ctgggctaga cattgctcta catgatactt attatgtggt ggcacatttc 1620 cattatgtac tttctatggg agcggttttt gctttatttg caggatttta ctattgggtg 1680 ggtaaaatct ttggtcggac atacccggaa actttaggtc aaatccattt ttggatcact 1740 tctttcgggg tgaatcttac cttctttccc atgcatttct tagggctttc gggtatgcca 1800 cgtcgcattc cagattatcc agatgcttac gccggatgga atgctctgag cagtttcggc 1860 tcttatatat ccgtagttgg gattcgttct ttcttcgtgg tcgtcacaat cactttaagc 1920 agtggaaaca acactaaatg tgctccaagc ccttgggctg ttgaagagaa gaattcaacc 1980 acacttgaat ggatggtaca aagtcctcca gcttttcata cttttggaga acttccagct 2040 atcaaagaga cgaaaagcta tgcgaatgta tcggggattg cacgagtccg cggacgggcc 2100 acttcgccca ccaggcgggg tttctccaca actccggacc cgctcgcctt gaaagagagc 2160 atgctctctt acaagaaaag tggaattcct cgttctgggg ctttctatgc ttgttctcaa 2220 gcagattccg caccttgttt atcgtcttgt tcgcttcctt tttactgctt ttgtggggac 2280 atttagtacc aatttggtac tacagcgagc ggctttccgt tgccatggat tttttgatgt 2340 cgaaaggaat tccttttgag ttggagttcg ggtgggacaa agtggtgatt cgcccagttc 2400 agtcggtggc aacttttctc aaagcagggg aagtacctcc tgttccacca gtgacgggta 2460 tagtaccacc cgtagaatcc cactgcccac tagagtgcca cttattcaca aatccatcct 2520 tgtctatgct gctcactctc ggtttggtcc tactgatgat tttttttttg ttacgaaaaa 2580 gggaggggga aagtcagtgc caaatgcttg gcaatccttg gtagagctta ttcatgattt 2640 cgtgccgaaa ggctttgctc taaccgaagc tattgcattg tttgccctaa tgatggcctt 2700 tctgatctca ttcgtcttcc aaagtgaacc agatgcttct ttaaaagaaa gcgctttgcc 2760 ttacctatga tg 2772 <210> 2 <211> 2767 <212> DNA <213> Allium cepa <400> 2 gagtcttcct ttagaaagaa cggaacgagt ttgtgattcg atcttctaaa gcgtaaagcg 60 aaatcagtag gacaagatcc aatctttcgt caacgcaggt tgcttattct cctacttaag 120 tatattaatt gggtagcgta gctggaattt ctttttggtc cctttcgtcc agtggttagg 180 acatcgtctt ttcatgtcga agacacgggt tcgattcccg taagggatag gtacttctcg 240 gtactccggg atatacacca gcgggtggac cggttggcgt tatgccactt ctccttcctc 300 atatggtggt tcgatggctc ttctctacta accacaaaga tatcggtact ctctatttca 360 tctttgctgc cattgctgga gtgatgggca catgcttctc cgtactgatt cgtatggaat 420 tagcccgacc cggcgatcaa attcttggcg ggaatcatca gctttataat gttttaataa 480 ctgctcacgc ttttttaatg atctttttta tggtgatgcc agcgatgata ggtggatttg 540 gtaattggtt tgttccgatt ctgatcggtg cacctgacat ggcatttcca cgattaaata 600 atatatcatt ctggttgttg ccaccaagtc tcttgctcct attaagctcc gccttagtag 660 aagtgggtag cggcactggg tggacggtct atccgccttt aagtggtatt accagccatt 720 ctggaggagc agttgattca gccattttta gtcttcatct atcaggtgtt tcatcaattt 780 taggttctat caattttata accactatct tcaacatgcg tggacctgga atgactatgc 840 atagattacc cctttttgtg tggtccgttc tagtgacagc atttctactt ttattatcac 900 ttccggtact ggcgggggca attacaatgt tattaaccga tcgaaacttt aatacaacct 960 tttttgatcc tgcaggaggg ggagacccca tattatacca gcatctcttt cggttcttcg 1020 gtcatccaga ggtgtatatt ctcattctgc ccggattcgg tattattagt catatcgtat 1080 cgaccttttc gggaaaaccg gtcttcgggt atctaggcat ggtttacgcc atgatcagta 1140 taggtgttct tggatttctt gtttgggctc atcatatgtt tactgtgggc ttagacgttg 1200 atacgcgtgc ttacttcacc gcagctacca tgatcatagc tgtccccact ggaatcaaaa 1260 tctttagttg gatcgctacc atgtggggag gttcgataca atacaaaaca cccatgttat 1320 ttgctgtagg gttcatcttt ttgttcacca taggcgggct cacaggaata attctagcga 1380 attctgggct agacattgct ctacatgata cttattatgt ggtggcacat ttccattatg 1440 tactttctat gggagcggtt tttgctttat ttgcaggatt ttactattgg gtgggtaaaa 1500 tctttggtcg gacatacccg gaaactttag gtcaaatcca tttttggatc acttctttcg 1560 gggtgaatct taccttcttt cccatgcatt tcttagggct ttcgggtatg ccacgtcgca 1620 ttccagatta tccagatgct tacgccggat ggaatgctct gagcagtttc ggctcttata 1680 tatccgtagt tgggattcgt tctttcttcg tggtcgtcac aatcacttta agcagtggaa 1740 acaacactaa atgtgctcca agcccttggg ctgttgaaga gaagaattca accacacttg 1800 aatggatggt acaaagtcct ccagcttttc atacttttgg agaacttcca gctatcaaag 1860 agacgaaaag ctatgtgaag taaaagaaga aaaggtcgcg ctactaagaa cctaacagaa 1920 gaaagatcag aatgaatggt tggatcaaac ggagaatgca taaataagca gcgatgacga 1980 tgaatgagaa tgacttacta tccaaaaaaa aaaagaatgg acagattttt ttagatatga 2040 ctccgccagt atattaattt cgtcgaggca attatccaaa tttttattcg ccttcggaac 2100 ggaaaaagaa cgacccccgg atcggatgta gcttacaggt gaaccgggta accaaagtcg 2160 cgaaagaatg aaagttcgct gggtcccaga agtgcaggtt cgagtccagc tcgtgacaag 2220 gcctttttgg tcacttggtc ttgcttgtta ttgaaatatt ccgttctcat cctccctgga 2280 accatggtct tgttgcttgg cttgctttca tgtcagtact tattctcttt ctctgaactt 2340 tcagacggaa gcttaagaca tgggattgtc tggaaagaag gggcacctta cgccttggct 2400 caggcgagcg aagtgaggaa agaaacaaat ttccttagac aacagcctgt atactgactc 2460 caggggggct cgcactattc cgggaagaga aacggacaag ggctgaacat gctgaatctt 2520 tcctttattg ccggctaggc tgctagacta gaagaatccc ctgcacatga aaaagagaaa 2580 gaggcggagt aacggctttg agggagaggc cgaaattagg atagccttca gggacatgat 2640 ttggctcgga cgtccgtgtt agagcaccag catgtactcc ttgagatagc attgtcttag 2700 gattggtact gaccaagtga tcagaggtgc ttgcgggtgc aacgtgctag acctaaaact 2760 tcaacag 2767 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Aense sequence <400> 3 cataggcggg ctcacaggaa ta 22 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 4 aatcctagtg tccggggttt ct 22 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequense <400> 5 cagcgaactt tcattctttc gc 22 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sense sequence <400> 6 ttatccagat gcttacgccg gatggaa 27 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 7 aggccatcat tagggcaaac aatgcaa 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sense sequences <400> 8 tgggtgggta aaatctttgg tcggaca 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Sences sequence <400> 9 tgggtgggta aaatctttgg tcggaca 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 10 cactttgtcc cacccgaact ccaactc 27 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Antisense sequence <400> 11 ccgttccgaa ggcgaataaa aatttgg 27  

Claims (10)

서열번호 1 기재의 뉴클레오티드로 이루어지는 세포질적 웅성 불임 식물체 특이적인 DNA 서열.A cytoplasmic male infertility plant specific DNA sequence consisting of the nucleotides set forth in SEQ ID NO: 1. 제 1항에 있어서,The method of claim 1, 상기 식물은 양파의 세포질적 웅성 불임성을 부여하는 것을 특징으로 하는 식물의 특이적인 키메라 DNA 서열.The plant is a specific chimeric DNA sequence of the plant, characterized in that to give the cytoplasmic male sterility of onion. 제 1항에 있어서,The method of claim 1, 상기 DNA 서열은 미토콘드리아 게놈에 존재하는 것을 특징으로 하는 세포질적 웅성불임 식물의 특이적인 키메라 DNA 서열.The DNA sequence is a specific chimeric DNA sequence of a cellular male infertility plant, characterized in that present in the mitochondrial genome. 삭제delete 삭제delete a) 서열번호 1 기재의 신규한 orf725 유전자와 서열변호 2 기재한 정상 coxI 유전자 뉴클레오티드 사이에 공통으로 존재하는 서열 일부를 어닐링 할 수 있는 정방향 프라이머 및 서열번호 1 기재의 orf725 유전자 특이적 뉴클레오티드 서열 및 서열번호 2 기재의 coxI 유전자 특이적인 서열 일부를 어닐링할 수 있는 역방향 프라이머를 이용하여 PCR을 수행하는 단계; 및a) a forward primer capable of annealing a portion of the sequence that is commonly present between the novel orf725 gene described in SEQ ID NO: 1 and the normal coxI gene nucleotide described in SEQ ID NO: 2, and the orf725 gene specific nucleotide sequence and sequence described in SEQ ID NO: 1 Performing PCR using a reverse primer capable of annealing a portion of the coxI gene specific sequence as set forth in No. 2; And b)상기 DNA 단편이 증폭되었는지 여부를 확인하는 단계;b) checking whether the DNA fragment is amplified; 를 포함하는 것으로, 상기 b)단계에서 증폭된 단편의 존재 및 종류는 식물의 웅성불임 종류 및 세포질의 종류를 판별하는 방법.To include, the presence and type of the fragment amplified in step b) is a method for determining the type of male sterility and cytoplasm of the plant. 제 6항에 있어서,The method of claim 6, 증폭된 DNA 단편은 300bp 내지 2000bp 인 것을 특징으로 하는 양파 세포질 종류 판별 방법.Onion cytoplasmic type determination method, characterized in that the amplified DNA fragment is 300bp to 2000bp. 제 6항에 있어서,The method of claim 6, 상기 PCR을 위한 정방향 프라이머는 서열번호 3의 염기서열로 이루어지고, 상기 역방향 프라이머는 각각 서열번호 4 및 서열번호 5의 염기서열로 이루어진 것을 특징으로 하는 세포질 웅성 불임 양파 판별 방법.The forward primer for PCR consists of a nucleotide sequence of SEQ ID NO: 3, the reverse primer is a cytoplasmic male sterile onion discrimination method, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 4 and SEQ ID NO: 5, respectively. a) 서열번호 1 개재의 orf725 유전자 뉴클레오티드 일부 및 서열번호 2 기재의 뉴클레오티드 일부 서열을 어닐링 할 수 있는 정방향 프라이머;a) a forward primer capable of annealing a portion of the orf725 gene nucleotides of SEQ ID NO: 1 and a portion of the nucleotides of SEQ ID NO: 2; b) 식물 DNA 또는 식물 미토콘드리아 DNA의 서열번호 1 및 서열번호 2 기재의 뉴클레오티드 서열 일부를 어닐링 할 수 있는 역방향 프라이머를 포함하는 식물체의 웅성불임성 판별을 위한 PCR 프라이머 세트로, 상기 b)단계로 증폭된 DNA 단편의 크기는 300bp 내지 2000bp 인 PCR 프라이머 세트.b) a set of PCR primers for determining male sterility of a plant comprising a reverse primer capable of annealing a portion of the nucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2 of the plant DNA or plant mitochondrial DNA, and amplified in step b) PCR primer set having a DNA fragment size of 300bp to 2000bp. 제 9항에 있어서,The method of claim 9, 상기 정방향 프라이머는 서열번호 3의 염기서열로 이루어지고, 상기 역방향 프라이머는 서열번호 4 와 서열번호 5 의 염기서열로 이루어진 것을 특징으로 하는 PCR 프라이머 세트.The forward primer is composed of the nucleotide sequence of SEQ ID NO: 3, the reverse primer is a PCR primer set, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 4 and SEQ ID NO: 5.
KR1020080084929A 2008-08-29 2008-08-29 Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene KR101027924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080084929A KR101027924B1 (en) 2008-08-29 2008-08-29 Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080084929A KR101027924B1 (en) 2008-08-29 2008-08-29 Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene

Publications (2)

Publication Number Publication Date
KR20100026082A KR20100026082A (en) 2010-03-10
KR101027924B1 true KR101027924B1 (en) 2011-04-12

Family

ID=42177468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080084929A KR101027924B1 (en) 2008-08-29 2008-08-29 Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene

Country Status (1)

Country Link
KR (1) KR101027924B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981281A (en) * 2014-06-10 2014-08-13 山东省农业科学院蔬菜花卉研究所 Method for breeding onion male sterile line and maintainer line by utilizing molecular markers
CN107828909A (en) * 2017-11-15 2018-03-23 云南省农业科学院花卉研究所 A kind of male sterile method of Markers for Detection oriental hybrid lily special group
KR20240066512A (en) 2022-11-02 2024-05-16 전남대학교산학협력단 New cytoplasmic male sterility-associated gene and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338472B1 (en) * 2010-12-28 2013-12-11 전남대학교산학협력단 Male-Sterility Polymorphism Markers in Onion
KR101471029B1 (en) * 2012-11-30 2014-12-09 전남대학교산학협력단 Molecular Markers related a Restorer-of-Fertility gene and Method for Selecting of Male-Fertility or Male-Sterility in Onion
KR101485544B1 (en) * 2013-11-07 2015-01-28 전남대학교산학협력단 Nucleic acid Molecule jnurf13 for Selecting Male-Sterility in Onion
KR102157801B1 (en) * 2019-06-24 2020-09-18 전남대학교산학협력단 Composition for determining male-sterility of onion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLAST 서열 검색

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981281A (en) * 2014-06-10 2014-08-13 山东省农业科学院蔬菜花卉研究所 Method for breeding onion male sterile line and maintainer line by utilizing molecular markers
CN107828909A (en) * 2017-11-15 2018-03-23 云南省农业科学院花卉研究所 A kind of male sterile method of Markers for Detection oriental hybrid lily special group
KR20240066512A (en) 2022-11-02 2024-05-16 전남대학교산학협력단 New cytoplasmic male sterility-associated gene and uses thereof

Also Published As

Publication number Publication date
KR20100026082A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
KR101027924B1 (en) Method for detecting cytoplasm types of plant of Allium cepa line using the DNA marker developed based on novel cytoplasmic male sterility CMS-specific chimeric gene
Tennessen et al. Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae)
JP2018501821A (en) Sex-determining genes and their use in breeding
CN106164254A (en) For inducing a kind of apomixis i.e. gene of parthenogenetic reproduction
Wang et al. Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton
CN107846856B (en) Methods and compositions for selectively modulating protein expression
Talukdar et al. Cytogenomics and mutagenomics in plant functional biology and breeding
CN106834469B (en) Specific molecular marker of male gametophyte of kelp and application of specific molecular marker
CN107418956B (en) The separation of rice photaesthesia genic male sterile gene pms1 is cloned and application
JP3964368B2 (en) Callus and plant body of CMS radish line of new genotype and hybrid seed produced therefrom
JP2004512828A (en) Map-based genome collection method for identifying regulatory loci that control the amount of gene transcripts or products
CN109837295A (en) A kind of the rice haploid inducing line and its method for creating of gene editing initiative and application
US20190241981A1 (en) Plant breeding using next generation sequencing
KR102109197B1 (en) Markers for discriminating genotyping restorer gene involved in male sterility of Brassica napus and discriminating method using the same
KR20100009694A (en) Development of molecular markers linked to the ms1 gene of genic male sterility in sweet bell pepper and their use for identifying the ms1 allele and developing new inbred lines
WO2008123714A1 (en) A method for producing a hybrid seed using plant of novel cytoplasmic-genic male sterility raphanus sativus line and dna markers for selecting the plant of said raphanus sativus line
CN116249444B (en) Mutant genes conferring a compact growth phenotype in watermelon
Kwiatek et al. Adaptation of the pivotal-differential genome pattern for the induction of intergenomic chromosome recombination in hybrids of synthetic amphidiploids within Triticeae Tribe
US20230371453A1 (en) Parthenocarpic watermelon plants
CN113754746B (en) Rice male fertility regulation gene, application thereof and method for regulating rice fertility by using CRISPR-Cas9
CN104168760A (en) Nucleotide sequences encoding FASCIATED EAR3 (FEA3) and methods of use thereof
Chae et al. Sex-linked gene expression and the reversion to hermaphroditism in Carica papaya L.(Caricaceae)
KR101871806B1 (en) Markers for discriminating genotyping restorer gene involved in male sterility of Brassica napus and discriminating method using the same
KR100998133B1 (en) Development of molecular markers linked to the ms3 gene in pepper genic male sterility and their use for identifying the ms3 allele and developing new inbred lines
Kadirimangalam et al. Fine mapping and expression analysis of thermosensitive genic male sterility gene (tms) in rice (Oryza sativa L.)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140203

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190318

Year of fee payment: 9