KR101023995B1 - Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same - Google Patents

Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same Download PDF

Info

Publication number
KR101023995B1
KR101023995B1 KR1020080054305A KR20080054305A KR101023995B1 KR 101023995 B1 KR101023995 B1 KR 101023995B1 KR 1020080054305 A KR1020080054305 A KR 1020080054305A KR 20080054305 A KR20080054305 A KR 20080054305A KR 101023995 B1 KR101023995 B1 KR 101023995B1
Authority
KR
South Korea
Prior art keywords
bacteriophage
coli
seq
fermentation
dna
Prior art date
Application number
KR1020080054305A
Other languages
Korean (ko)
Other versions
KR20090128239A (en
Inventor
조영욱
안상희
신수안
최향
박민태
강인혜
김효진
김철하
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020080054305A priority Critical patent/KR101023995B1/en
Publication of KR20090128239A publication Critical patent/KR20090128239A/en
Application granted granted Critical
Publication of KR101023995B1 publication Critical patent/KR101023995B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10331Uses of virus other than therapeutic or vaccine, e.g. disinfectant

Abstract

본 발명은 대장균(Escherichia coli) 특이적 감염 및 사멸능을 갖는 신규한 박테리오파아지 및 미생물의 배양에 의한 발효에서 대장균의 오염을 효과적으로 예방 또는 통제하기 위한 상기 박테리오파아지의 용도에 관한 것이다. The present invention Escherichia coli ) relates to the use of said bacteriophage to effectively prevent or control contamination of E. coli in fermentation by cultivation of novel bacteriophages and microorganisms having specific infection and killing ability.

박테리오파아지, 대장균 오염, 아미노산 Bacteriophage, Escherichia Coli Contamination, Amino Acids

Description

대장균 특이적 박테리오파아지 및 이를 이용한 대장균 오염의 예방 또는 통제 방법{Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same}Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same}

본 발명은 대장균(Escherichia coli) 특이적 감염 및 사멸능을 갖는 신규한 박테리오파아지 및 미생물의 배양에 의한 발효에서 대장균의 오염을 효과적으로 예방 또는 통제하기 위한 상기 박테리오파아지의 용도에 관한 것이다. The present invention Escherichia coli ) relates to the use of said bacteriophage to effectively prevent or control contamination of E. coli in fermentation by cultivation of novel bacteriophages and microorganisms having specific infection and killing ability.

박테리오파아지(bacteriophage)는 1917년 프랑스의 세균학자 데렐(d'Herelle)에 의해 발견된 세균 바이러스의 일종으로 파아지(phage)라고도 불린다. 박테리오파아지는 생존을 위해 세균에 감염되어 그 세포 내에서만 증식하며, 박테리오파아지와 그 숙주 간의 관계는 높은 특이성을 갖는 것으로 알려져 있다. 다른 바이러스들과 마찬가지로 박테리오파아지는 핵산으로 이루어진 유전물질 중심부를 단백질 외피가 싸고 있는 단순한 구조의 유기체이며 핵산은 단일 사슬이거나 이중 사슬인 DNA 또는 RNA로 구성된다. 세균을 감염시킬 때 파아지는 세균의 표면에 달라붙어 자신의 유전물질을 세포 내로 주입하며, 이후 파아지는 용균성(lytic) 또는 용원성(lysogenic) 생활사(life cycle)를 따른다. 용균성 파아지는 숙주의 세 포 기구들이 파아지 자신의 구조물들을 만들게 한 후 세포를 파괴하거나 용해시켜 새로운 파아지 입자들을 방출시킨다. 용원성 파아지는 자신의 핵산을 숙주세포의 염색체에 편입시켜 세포를 파괴하지 않고 세포와 함께 복제된다. 일정한 조건이 되면 용원성 파지는 용균성으로 전환될 수 있다.Bacteriophage is a type of bacterial virus discovered by French bacteriologist d'Herelle in 1917, also called phage. Bacteriophage are infected with bacteria to survive and proliferate only within their cells, and the relationship between the bacteriophage and its host is known to have high specificity. Like other viruses, bacteriophages are simple organisms with a protein envelope wrapped around the core of a genetic material. Nucleic acids consist of DNA or RNA, either single- or double-stranded. When infecting a bacterium, the phage cling to the surface of the bacterium and inject its genetic material into the cell, after which the phage follows a lytic or lysogenic life cycle. Soluble phages allow the host cell mechanisms to build their own structures and then destroy or lyse the cells to release new phage particles. Lysogenic phage are incorporated into the host cell's chromosome and replicate with the cell without destroying the cell. Under certain conditions, lysogenic phage can be converted to lytic.

항균성 약물로서 용균성 박테리오파아지는 감수성 있는 세균에 감염된 후에, 그들을 완전히 파괴하고 계속해서 세균 세포를 공격해서 파괴시키는 새로운 박테리오파아지를 생성하면서 내부에서 복제하는 특성 때문에 세균에 의한 감염을 효과적으로 치료할 수 있을 것으로 기대되었다. 이러한 과정은 시험관 내 및 생체 내 양쪽 모두에서 일어날 수 있다. 그러나 박테리오파아지는 생체 내에서 세균을 죽이는 효과가 시험관 내에서의 세균을 죽이는 효과만큼 효율적이지 못했으며, 1940년대에 항생제의 개발로 인해서 서방에서의 박테리오파아지에 대한 연구는 내리막길을 걷게 되었다. 동유럽과 인도 등 일부 국가에서는 연구가 꾸준히 진행되어왔으며, 최근 들어 항생제의 오남용으로 인해 항생제 내성을 가진 박테리아의 출현으로 다시 많은 관심을 받고 있는 생명체이다.As an antimicrobial drug, lytic bacteriophages can effectively treat infections caused by bacteria because of their ability to replicate internally after infection with sensitive bacteria, creating new bacteriophages that destroy them completely and continue to attack and destroy bacterial cells. Expected. This process can occur both in vitro and in vivo. Bacteriophage, however, was not as effective in killing bacteria in vitro as the effects of killing bacteria in vitro, and the development of antibiotics in the 1940s led to a downhill study of bacteriophages in the West. In some countries, such as Eastern Europe and India, research has been conducted steadily, and recently, due to the misuse of antibiotics, antibiotics resistant to the emergence of antibiotics have attracted much attention.

기존에 박테리오파아지를 이용한 질병의 예방 및 치료제(Atterbury et al., Appl. Envion. Microbiol. 73(14):4543-4549 (2007)), 음식물의 이상부패를 막는 소독제나 세척제(PCT 1998-08944, PCT 1995-31562, EP 1990-202169, PCT 1990-03122), 혹은 진단을 위한 파이지 디스플레이 기술의 개발(Ripp et al., J. Appl. Microbiol. 100(3):488-499 (2006)) 등이 있었으나, 박테리오파아지를 세균에 의한 오염을 방지하기 위해 대량 발효에 적용하는 사례는 없었다.Existing drugs for the prevention and treatment of diseases using bacteriophage (Atterbury et al., Appl. Envion.Microbiol. 73 (14): 4543-4549 (2007)), disinfectants or cleaning agents to prevent abnormal rot of food (PCT 1998-08944 , PCT 1995-31562, EP 1990-202169, PCT 1990-03122), or the development of a Fiji display technology for diagnosis (Ripp et al., J. Appl. Microbiol. 100 (3): 488-499 (2006) There was no case where the bacteriophage was applied to mass fermentation to prevent bacterial contamination.

아미노산, 핵산 등의 유용한 물질을 생산하기 위한 미생물의 배양시, 원치않는 세균에 의한 오염은 배양에 의한 생산 효율 저하를 유발하고, 심각한 경우 배양의 중단을 초래한다. 따라서, 미생물 배양에 의한 발효에서 세균 오염의 예방 및 통제는 매우 중요하다. In the cultivation of microorganisms to produce useful substances such as amino acids, nucleic acids and the like, contamination by unwanted bacteria causes a decrease in the production efficiency by culturing and, in serious cases, interruption of the culture. Therefore, prevention and control of bacterial contamination in fermentation by microbial culture is very important.

코리네박테리움 균주, 특히 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 L-아미노산 생산에 많이 이용되고 있는 그람 양성 세균으로서, 발효로 만들어지는 대부분의 L-아미노산을 생산하는 균주로 이용되고 있다. L-아미노산, 특히 L-라이신은 필수 아미노산의 일종으로 사료, 의약품 및 식품 등의 분야에 사용되고 있다. L-라이신은 주로 코리네박테리움 글루타미쿰을 이용한 직접발효법에 의해 생산되고 있기 때문에 발효과정의 개선에 의한 L-라이신의 생산성 향상은 큰 경제적 효과가 있다. 발효과정의 개선을 위해, 주로 균주 개량이나 배지 개발 등이 시도되었으나, 미생물 배양을 통한 L-아미노산 생산방법의 개선이 여전히 요구된다. Corynebacterium strains, particularly Corynebacterium glutamicum, are Gram-positive bacteria that are widely used for L-amino acid production, and are used as strains for producing most L-amino acids produced by fermentation. . L-amino acids, in particular L-lysine, is an essential amino acid and is used in fields such as feed, medicine and food. Since L-lysine is mainly produced by a direct fermentation method using Corynebacterium glutamicum, the productivity improvement of L-lysine by the improvement of fermentation process has a great economic effect. In order to improve the fermentation process, mainly attempted to improve the strain or the development of the medium, but the improvement of the L-amino acid production method through microbial culture is still required.

이에, 본 발명자들은 코리네박테리움과 같이 대장균이 아닌 미생물의 배양에 의한 발효에서 손실을 최소화하여 발효 효율을 극대화시키기고자 주요 오염원 중 하나인 대장균에 대해 특이적 감염 및 사멸능을 갖는 박테리오파아지를 선별하고 이를 이용하여 상업적인 대량발효시에 발생할 수 있는 대장균에 의한 오염을 효과적으로 예방 또는 통제하는 방법을 개발하여 본 발명을 완성하였다. Accordingly, the present inventors have tried to minimize the loss in fermentation by culturing microorganisms other than Escherichia coli, such as Corynebacterium, to maximize the fermentation efficiency. The present invention has been completed by developing a method for effectively preventing or controlling contamination by E. coli, which may occur during commercial mass fermentation.

본 발명의 목적은 대장균 특이적 감염 및 사멸능을 갖는 신규한 박테리오파아지를 제공하는 것이다.It is an object of the present invention to provide novel bacteriophage with E. coli specific infection and killing ability.

본 발명의 또 다른 목적은 대장균 특이적 감염 및 사멸능을 갖는 신규한 박테리오파아지를 이용하여, 미생물의 배양에 의한 대규모 발효에서 대장균 오염을 효과적으로 예방 또는 통제하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method for effectively preventing or controlling E. coli contamination in large-scale fermentation by culturing microorganisms using a novel bacteriophage having E. coli specific infection and killing ability.

상기와 같은 목적을 달성하기 위해, 본 발명은 대장균 특이적 감염 및 사멸능을 갖고, 서열번호 1의 아미노산 서열을 갖는 꼬리 단백질(tail protein) 및 서열번호 2 내지 서열번호 37로 표시되는 염기서열로 구성된 핵산 분자를 포함하는 유전체를 갖는 것을 특징으로 하는 시포비리대 과(Siphoviridae family), T1-유사 파아지 속(T1-like phage genus)에 속하는 박테리오파아지를 제공한다.In order to achieve the above object, the present invention has E. coli-specific infection and killing ability, the tail protein having the amino acid sequence of SEQ ID NO: 1 and the base sequence represented by SEQ ID NO: 2 to SEQ ID NO: 37 It provides a bacteriophage belonging to the Siphoviridae family, T1-like phage genus, characterized by having a genome comprising a constructed nucleic acid molecule.

본 발명의 일 구체예에서, 대장균 특이적 감염 및 사멸능을 갖는 박테리오파아지는 박테리오파아지 YS01 KCCM10947일 수 있다.In one embodiment of the invention, the bacteriophage having E. coli specific infection and killing ability may be bacteriophage YS01 KCCM10947.

본 발명의 일 구체예에서, 상기 박테리오파아지는 박테리오파아지가 감염된 대장균 발효액으로부터 분리될 수 있다. In one embodiment of the present invention, the bacteriophage may be isolated from the E. coli fermentation broth infected with the bacteriophage.

도 1은 본 발명의 일 구체예에 따른 박테리오파아지 YS01의 전자투과현미경 사진을 보여준다. 이에 따르면, 본 발명에서 분리된 박테리오파아지는 형태상, 형태형(morphotype) B1의 시포비리대(Siphoviridae) 과에 속하며, 부분 염기서열 분 석을 통하여 분석한 결과 서열번호 1의 아미노산 서열을 갖는 꼬리 단백질(tail protein)을 갖는 것을 특징으로 하는, 박테리오파아지 RTP와 높은 유사성을 보이는 T1-유사 파아지(T1-like) 파아지로 밝혀졌다.Figure 1 shows an electron transmission micrograph of the bacteriophage YS01 according to an embodiment of the present invention. According to this, the bacteriophage isolated in the present invention belongs to the siphoviridae family of morphotype B1 in morphology, and the tail having the amino acid sequence of SEQ ID NO: 1 was analyzed through partial sequencing. T1-like phage showing high similarity to bacteriophage RTP, characterized by having a tail protein.

본 발명의 일 구체예에서, 상기 박테리오파아지는 대장균에만 특이적으로 감염되며, 그 성장이 온도에 의존적인 것으로 확인되었다. 하나의 박테리오파아지가 하나의 세균에 감염되어서 그 안에서 자가 복제되어 나올 때의 방출수(burst size)는 1,000개 이상이었으며, 세균배양의 일반적인 온도인 37℃에서보다 일반적인 발효온도인 30℃에서 더 원활한 감염을 보였다. 따라서, 상기 박테리오파아지는 발효산업에서 대장균 오염을 효과적으로 예방 또는 통제하기 위해 사용하기에 적합할 수 있다. In one embodiment of the present invention, the bacteriophage is specifically infected only with E. coli, and its growth was found to be temperature dependent. When one bacteriophage was infected with one bacterium and self-replicated in it, the burst size was more than 1,000. It showed an infection. Thus, the bacteriophage may be suitable for use in the fermentation industry to effectively prevent or control E. coli contamination.

본 발명은 또한 i) 대장균이 아닌 미생물을 종모 배양하는 단계, 및 The present invention also comprises the steps of i) seed culture of microorganisms that are not Escherichia coli, and

ii) 상기 종모 배양된 미생물을 대장균 특이적 감염 및 사멸능을 갖는 박테리오파아지와 함께 본 배양용 배지에 접종하는 단계를 포함하는, 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법을 제공한다. ii) a method of preventing or controlling contamination of E. coli in fermentation by culturing the microorganism, comprising inoculating the cultured microorganism with the bacteriophage having E. coli specific infection and killing ability. to provide.

본 발명에 따른 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법은 대장균이 아닌 미생물을 종모 배양하는 단계를 포함한다. Method for preventing or controlling the contamination of E. coli in fermentation by culturing the microorganism according to the present invention includes the step of culturing the microorganisms that are not E. coli.

본 발명의 일 구체예에서, 상기 대장균이 아닌 미생물은 L-아미노산 생산능을 갖는 코리네박테리움(Corynebacterium) 속 미생물일 수 있다. In one embodiment of the present invention, the microorganism that is not E. coli may be a microorganism of the genus Corynebacterium (Corynebacterium) having the ability to produce L-amino acids.

본 발명에 따른 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법은 종모 배양된 미생물을 대장균 특이적 감염 및 사멸능을 갖는 박테 리오파아지와 함께 본 배양용 배지에 접종하는 단계를 포함한다. A method for preventing or controlling contamination of E. coli in fermentation by culturing microorganisms according to the present invention includes inoculating the culture medium with the bacteriophage having E. coli specific infection and killing ability. do.

대부분의 발효산업에서 오염이 일어나는 대부분의 경우가 종모배양에서 본배양으로 넘어가는 시기에 발생한다. 이 시점에서 다른 세균들보다 기회감염의 확률이 높은 대장균을 통제하기 위한 수단으로 대장균 특이적 감염 및 사멸능을 갖는 박테리오파아지를 첨가할 수 있다. Most of the pollution in most fermentation industries occurs at the time of transition from seed culture to main culture. At this point, a bacteriophage with E. coli-specific infection and killing ability can be added as a means to control E. coli, which has a greater chance of opportunistic infection than other bacteria.

본 발명의 일 구체예에서, 상기 박테리오파아지는 서열번호 1의 아미노산 서열을 갖는 꼬리 단백질(tail protein) 및 서열번호 2 내지 서열번호 37로 구성된 염기서열로 표시되는 핵산 분자를 포함하는 유전체를 갖는 것을 특징으로 하는 시포비리대 과(Siphoviridae family), T1-유사 파아지(T1-like phage genus) 속에 속하는 박테리오파아지일 수 있다. In one embodiment, the bacteriophage has a genome comprising a tail protein having an amino acid sequence of SEQ ID NO: 1 and a nucleic acid molecule represented by a nucleotide sequence consisting of SEQ ID NO: 2 to SEQ ID NO: 37. It may be a bacteriophage belonging to the genus Siphoviridae family, T1-like phage genus.

본 발명의 일 구체예에서, 상기 박테리오파아지는 기탁번호 KCCM10947인 박테리오파아지 YSO1일 수 있다. In one embodiment of the present invention, the bacteriophage may be bacteriophage YSO1 having accession number KCCM10947.

본 발명의 일 구체예에서, 상기 박테리오파아지는 본 배양용 배지 1L 당 10^4 pfu 내지 10^6 pfu의 농도로 접종될 수 있다. In one embodiment of the present invention, the bacteriophage may be inoculated at a concentration of 10 ^ 4 pfu to 10 ^ 6 pfu per 1L of the culture medium.

일반적으로 배양 시 수득되는 박테리오파아지의 농도가 10^9 pfu/ml 임을 감안할 때 본 배양용 배지 1L 당 투입되는 10^4 pfu 내지 10^6 pfu는 아주 적은 양이므로 산업적인 스케일을 생각하더라도 경제적으로 저렴하게 배양하여 분리한 후 적용할 수 있는 박테리오파아지를 이용하여 L-아미노산 발효에서 대장균 오염을 예방 및 통제할 수 있다.In general, considering that the concentration of bacteriophage obtained during the culture is 10 ^ 9 pfu / ml, the amount of 10 ^ 4 pfu to 10 ^ 6 pfu added per 1L of the culture medium is very small. E. coli contamination can be prevented and controlled in L-amino acid fermentation using bacteriophage, which can be inexpensively cultured and isolated.

본 발명의 일 구체예에서, 상기 박테리오파아지를 접종하는 본 배양용 배지 의 온도는 30℃ 내지 33℃일 수 있으며, 바람직하게는 30℃일 수 있다.  In one embodiment of the present invention, the temperature of the culture medium for inoculating the bacteriophage may be 30 ℃ to 33 ℃, preferably 30 ℃.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

본 발명에서 새로운 특성의 박테리오파아지 발굴을 통하여 대장균 이외의 미생물 특히 코리네박테리움 속을 이용한 L-아미노산 발효공정에서 대장균에 의한 오염을 항생제를 사용하지 않고 천연의 방법으로 효과적으로 통제할 수 있다. 또한 극소량의 박테리오파아지를 이용하면서도 대장균 오염을 예방하고 통제하는 효과가 높아 경제적이라 할 수 있다.In the present invention, it is possible to effectively control the contamination by Escherichia coli without the use of antibiotics in the L-amino acid fermentation process using microorganisms other than Escherichia coli, especially Corynebacterium genus, through the discovery of a novel bacteriophage. In addition, while using a very small amount of bacteriophage, the effect of preventing and controlling E. coli contamination is economical.

실시예1Example 1 : 대장균에 감염하는  : Infected with E. coli 박테리오파아지의Bacteriophage 분리 및 배양 Isolation and Cultivation

(1) 대장균에 감염하는 박테리오파아지의 분리(1) Isolation of bacteriophage infected with E. coli

박테리오파아지가 감염된 대장균 발효액에 1%의 클로로포름을 첨가해서 2분간 잘 섞어준 후, 12,000rpm에서 10분간 원심분리하여 얻어진 상등액을 0.45㎛ 필터를 이용하여 여과하였다. 상기에서 수득된 여과액을 LB(Luira Bertani) 플레이트(트립톤 10g; 효모 추출물 5g; NaCl 10g; 아가 20g; 총 용량을 1L로 채우는 양의 H2O)에 펴 바른 후, 그 위에 대장균 W3110 배양액 (OD600=0.8)을 0.7% 한천배지(아가 7g; 총 용량을 1L로 채우는 양의 H2O)에 섞어 부어준 뒤 굳히고 18시간 동안 30℃에 서 배양하였다. 하나의 용균반을 와이드포어 피펫(wide-pore pippet)으로 취해서 500ul SM 완충액(NaCl 5.8 g; MgSO47H2O 2 g; 1M Tris-Cl (pH7.5) 50ml; 총 용량을 1L로 채우는 양의 H2O)에 넣고 6시간 동안 실온에 정치하였다. 이를 원심분리해서 대장균에 감염하는 박테리오파아지를 포함하는 상등액을 취했다.1% chloroform was added to the bacteriophage-infected E. coli fermentation broth, followed by well mixing for 2 minutes, and the supernatant obtained by centrifugation at 12,000 rpm for 10 minutes was filtered using a 0.45 μm filter. The filtrate obtained above was spread over a LB (Luira Bertani) plate (10 g of tryptone; 5 g of yeast extract; 10 g of NaCl; 20 g of agar; H 2 O in a total volume of 1 L), followed by the culture of E. coli W3110 (OD 600 = 0.8) was poured into 0.7% agar medium (agar 7g; H 2 O in a total volume of 1 L), poured and solidified, and incubated at 30 ° C. for 18 hours. Take one lysate with a wide-pore pippet and fill 500 L SM buffer (NaCl 5.8 g; MgSO 4 7H 2 O 2 g; 1 M Tris-Cl (pH 7.5) 50 ml; fill total volume to 1 L) H 2 O) and left at room temperature for 6 hours. This was centrifuged to take a supernatant containing bacteriophage infected with E. coli.

(2) 대장균에 감염하는 박테리오파아지의 배양(2) Cultivation of bacteriophage infected with E. coli

상기 (1)에서 준비한 상등액 10ul를 0.7% 한천배지 14ml 및 대장균 W3100 배양액 (OD600=0.8) 500ul와 혼합하고 50mm 직경의 LB 플레이트에 부어 굳힌 후 18시간 동안 30℃에서 배양하였다. 완전 용균이 일어난 플레이트에 15ml의 SM 완충액을 분주하고, 5시간 동안 실온에서 진탕시켰다. 그 후, 상기 플레이트에서 SM 완충액을 회수하고, 1%의 클로로포름을 첨가해서 2분간 잘 섞어준 후, 12,000rpm에서 10분간 원심분리하였다. 여기서 얻어진 상등액을 0.45㎛ 필터로 여과하여 냉장 보관하였다. 10 ul of the supernatant prepared in (1) was mixed with 14 ml of 0.7% agar medium and 500 ul of E. coli W3100 culture medium (OD 600 = 0.8), poured into a 50 mm diameter LB plate, hardened, and incubated at 30 ° C. for 18 hours. 15 ml of SM buffer was dispensed onto the plate with complete lysis and shaken for 5 hours at room temperature. Then, the SM buffer solution was recovered from the plate, and 1% chloroform was added and mixed well for 2 minutes, followed by centrifugation at 12,000 rpm for 10 minutes. The supernatant obtained here was filtered through a 0.45 μm filter and refrigerated.

모든 실험은 상기 (2)에 기재된 방법으로 반복 배양 증식하여 사용하였다. 상기 배양에 의해 수득된 박테리오파아지의 농도는 1.0 * 10^9 pfu/ml였다.All experiments were used by repeated culture propagation by the method described in (2) above. The concentration of bacteriophage obtained by the culture was 1.0 * 10 ^ 9 pfu / ml.

실시예Example 2:  2: 박테리오파아지Bacteriophage 순수분리 및 형태관찰 Pure separation and shape observation

박테리오파아지를 순수분리하기 위해서 대량배양을 실시했다. 대장균 W3110 을 LB 배지(트립톤 10g; 효모 추출물 5g; NaCl 10g; 총 용량을 1L로 채우는 양의 H2O)에 접종 후, 30℃에서 16시간 동안 배양하여 시험관당 1.0 x 10^10 cfu가 되도록 분주하였다. 4000g에서 10분간 원심분리한 후 이를 3ml SM 완충액에 재부유시켰다. 실시예 1에서 수득된 박테리오파아지를 5.0 * 10^8 pfu로 접종한 후 30℃에서 20분간 진탕배양하였다. 이를 200ml 새로운 LB 에 2개 시험관씩 접종한 후 30℃ 에서 8시간 동안 진탕배양하였다. 그 후, 4ml의 클로로포름을 첨가하고 10분간 진탕배양하였다. DNase I과 RNase A를 최종농도 1ug/ml 되도록 접종하고 30분간 실온에 정치시켰다. 1M NaCl과 10% PEG를 첨가한 뒤 4℃에서 3시간 정치시켰다. 4℃, 11,000g에서 10분간 원심분리후 상등액을 제거하였다. 와이드포어 피펫으로 4ml SM 완충액에 상기 원심분리에서 수득된 침전물을 재부유한 후 20분간 실온에 정치하였다. 4ml 클로로포름을 첨가한 후 잘 섞어주고 4℃, 3,000g에서 15분간 원심분리한 후 상등액을 따로 분리하였다. 글리세롤 밀도 구배법(밀도: 40%, 5% 글리세롤)을 이용한 초원심분리(35,000rpm, 1시간, 4℃)를 통하여 박테리오파아지를 정제하였다.Mass culture was performed to purely isolate the bacteriophage. E. coli W3110 was inoculated in LB medium (tryptone 10g; yeast extract 5g; NaCl 10g; H 2 O in a total volume of 1L), and then incubated at 30 ° C. for 16 hours to obtain 1.0 x 10 ^ 10 cfu per tube. Dispensed as much as possible. After centrifugation at 4000g for 10 minutes it was resuspended in 3ml SM buffer. The bacteriophage obtained in Example 1 was inoculated with 5.0 * 10 ^ 8 pfu and incubated at 30 ° C. for 20 minutes. This was inoculated with two test tubes in 200 ml fresh LB and shaken at 30 ° C. for 8 hours. Then, 4 ml of chloroform was added and shaken for 10 minutes. DNase I and RNase A were inoculated to a final concentration of 1ug / ml and allowed to stand at room temperature for 30 minutes. After addition of 1M NaCl and 10% PEG, the mixture was allowed to stand at 4 ° C for 3 hours. The supernatant was removed after centrifugation for 10 minutes at 4 ℃, 11,000g. The precipitate obtained in the centrifugation was resuspended in 4 ml SM buffer with a wide pore pipette and allowed to stand at room temperature for 20 minutes. After adding 4ml chloroform, the mixture was mixed well, centrifuged at 4 ° C. and 3,000 g for 15 minutes, and the supernatant was separated. The bacteriophage was purified by ultracentrifugation (35,000 rpm, 1 hour, 4 ° C.) using a glycerol density gradient method (density: 40%, 5% glycerol).

상기 정제된 박테리오파아지를 0.01% 젤라틴 용액에 희석한 후, 2.5% 글루타르알데히드 용액으로 고정하였다. 이를 탄소-코팅된 운모 플레이트(carbon-coated mica plate: 약 2.5 *2.5 mm)에 떨어뜨려 10분간 적응시킨 후, 멸균증류수로 세척하였다. 탄소 필름을 구리 그리드(copper grid)에 끼워 4% 우라닐 아세테이트로 30-60초간 염색하고, 건조시킨 후, JEM-1011 투과전자현미경으로 80kV에서 배율 120,000배 내지 200,000배로 검경하였다. 도 1은 실시예 1 및 실시예 2를 통해 분 리되고 정제된 박테리오파아지의 전자투과현미경 사진을 도시한다. 그 결과, 분리된 박테리오파아지가 형태학적으로 분류상 시포비리대(Siphoviridae) 과에 속하는 것을 확인하고, 이를 YS01로 명명하였다. 박테리오파아지 YS01을 2008년 5월 15일자로 국제기탁기관인 한국종균협회 부설 한국미생물보존센터에 수탁번호 KCCM10947로 기탁하였다.The purified bacteriophage was diluted in 0.01% gelatin solution and then fixed with 2.5% glutaraldehyde solution. It was dropped on a carbon-coated mica plate (about 2.5 * 2.5 mm) and acclimated for 10 minutes, followed by washing with sterile distilled water. The carbon film was placed on a copper grid and dyed for 30-60 seconds with 4% uranyl acetate, dried, and examined at 120,000 to 200,000 times magnification at 80 kV with a JEM-1011 transmission electron microscope. 1 shows electron transmission micrographs of bacteriophage isolated and purified through Examples 1 and 2. FIG. As a result, it was confirmed that the isolated bacteriophage belongs to the Siphoviridae family in morphological classification, and named it YS01. Bacteriophage YS01 was deposited on May 15, 2008 with the accession number KCCM10947 to the Korea Microbiological Conservation Center, which is affiliated with the Korea Spawn Association.

실시예Example 3:  3: 박테리오파아지의Bacteriophage 유전적 특성 분석 Genetic Characterization

(1) 박테리오파아지의 gDNA 분리(1) gDNA Isolation of Bacteriophage

실시예 2에서 초원심분리를 통해 정제된 박테리오파아지의 gDNA 를 추출하였다. 구체적으로 정제된 박테리오파아지 배양액에 최종농도 20mM의 EDTA(pH8.0), 50ug/ml의 프로테아제(Protease) K, 및 0.5%의 SDS를 첨가하였다. 잘 섞어준 후 56℃에서 1시간 동안 정치하였다. 동일 양의 페놀(pH8.0)을 첨가하고 잘 섞어준 후 실온에서 3,000g로 5분간 원심분리하였다. 상등액을 취해서 동일 양의 PC(페놀:클로로포름=1:1)를 첨가하고 잘 섞어준 후 실온에서 3,000g로 5분간 원심분리하였다. 상기 원심분리 후 상등액을 취해서 동일 양의 클로로포름을 첨가하고 잘 섞어준 후 실온에서 3,000g로 5분간 원심분리하였다. 상등액을 취한 후 3M 아세트산 나트륨을 1/10의 비율로 첨가하고 혼합한 후 그 부피의 2배량의 차가운 EtOH를 첨가하고 -20℃에서 1시간 정치하였다. 0℃에서 10분간 12,000rpm으로 원심분리 후 상등액을 완전히 제거하고, 바닥에 침전된 gDNA를 100ul의 물에 녹인 후 -20℃에서 냉동 보관한다.In Example 2 gDNA of the purified bacteriophage was extracted by ultracentrifugation. Specifically, the purified bacteriophage culture medium was added with a final concentration of 20 mM EDTA (pH 8.0), 50 ug / ml Protease K, and 0.5% SDS. After mixing well, the mixture was allowed to stand at 56 ° C. for 1 hour. The same amount of phenol (pH 8.0) was added and mixed well, and then centrifuged at 3,000 g for 5 minutes at room temperature. The supernatant was taken and the same amount of PC (phenol: chloroform = 1: 1) was added and mixed well, followed by centrifugation at 3,000 g for 5 minutes at room temperature. After the centrifugation, the supernatant was taken, the same amount of chloroform was added and mixed well, followed by centrifugation at 3,000 g for 5 minutes at room temperature. After taking the supernatant, 3M sodium acetate was added at a ratio of 1/10, mixed, and then 2 times the volume of cold EtOH was added, and the mixture was allowed to stand at -20 ° C for 1 hour. After centrifugation at 12,000 rpm for 10 minutes at 0 ° C, the supernatant was completely removed, and the gDNA precipitated at the bottom was dissolved in 100ul of water and then stored at -20 ° C.

(2) 염기서열 분석(2) sequencing

분리한 박테리오파아지의 유전자적 특성을 알아보기 위해서 상기 (1)에서 수득된 박테리오파아지의 gDNA 5 ㎍을 StuI과 SmaI 제한효소로 동시에 처리하였다. 벡터로는 pBluescript SK+(Stratagene사)를 사용하였으며 EcoR V 제한효소로 자른 후 CIP(Calf Intestinal Phosphatase)로 처리하였다. 상기와 같이 처리된 gDNA와 벡터의 양이 3:1이 되도록 반응조건을 맞추어 16℃에서 5시간 동안 라이게이션(ligation)을 진행하였다. 이에 의해 수득된 재조합 벡터를 대장균 DH5α에 도입시켰다. 박테리오파아지의 gDNA 단편을 포함하는 벡터에 의한 형질전환체를 암피실린(ampicillin)과 X-gal이 포함된 LB 플레이트에서 청백 콜로니 선별법을 통해 백색의 콜로니만을 선별하였다. 이에 의해 선별된 콜로니를 암피실린이 포함된 LB 배지에서 30℃에서 16시간 동안 200 rpm으로 진탕배양하였다. 상기에서 배양된 대장균으로부터 플라스미드 정제키트(Promega 사)를 이용하여 플라스미드를 추출하였다. 이를 EcoR V 제한효소로 처리하여 그 크기를 확인하였으며 크기가 1kb 이상 되는 것을 골라 각각 서열번호 38과 39의 M13 정방향(forward) 프라이머와 M13 역방향(reverse) 프라이머(Invitrogen사)를 이용하여 염기서열을 분석하였다. 이렇게 얻어진 유전자 서열은 분리된 박테리오파아지 YS01의 전체 유전체를 구성하는 부분서열로서 서열번호 2 내지 37로 표시하였다. To investigate the genetic characteristics of the isolated bacteriophage 5 g of the bacteriophage gDNA obtained in the above (1) was treated with StuI and SmaI restriction enzymes simultaneously. As a vector, pBluescript SK + (Stratagene) was used and cut with EcoR V restriction enzyme and then treated with Cal Intestinal Phosphatase (CIP). The ligation was carried out at 16 ° C. for 5 hours to adjust the reaction conditions such that the amount of gDNA and vector treated as described above was 3: 1. The recombinant vector thus obtained was introduced into E. coli DH5α. Transformants by vectors containing gDNA fragments of bacteriophage were screened only by white colonies on LB plates containing ampicillin and X-gal. Colonies selected by this were shaken at 200 rpm for 16 hours at 30 ° C. in LB medium containing ampicillin. The plasmid was extracted from the E. coli cultured above using a plasmid purification kit (Promega). The size was confirmed by treatment with EcoR V restriction enzyme, and the size was 1 kb or more, and the base sequence was determined using M13 forward primer and M13 reverse primer (Invitrogen) of SEQ ID NOs: 38 and 39, respectively. Analyzed. The gene sequence thus obtained is represented by SEQ ID NOs: 2 to 37 as a partial sequence constituting the entire genome of the isolated bacteriophage YS01.

상기에서 얻어진 유전자 서열을 NCBI blast 프로그램을 이용하여 분석한 결과가 하기의 표 1 및 표 2에 기재된다. 염기서열 분석 결과 박테리오파아지 YS01은 박테리오파아지 RTP와 높은 유사성을 보이는 T1-유사 파아지로 밝혀졌다.The gene sequences obtained above were analyzed using the NCBI blast program, and the results are shown in Tables 1 and 2 below. Sequence analysis revealed that bacteriophage YS01 was a T1-like phage showing high similarity with bacteriophage RTP.

표 1. blastn 을 이용한 분석 결과Table 1. Analysis results using blastn

단편snippet
(서열번호)(SEQ ID NO)
organismorganism genegene identitiesidentities GapsGaps
1
(2/3)
One
(2/3)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 389/558 (69%)389/558 (69%) 48/558 (8%)48/558 (8%)
2F
(4)
2F
(4)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 93/108 (86%)93/108 (86%) 0/108 (0%)0/108 (0%)
2R
(5)
2R
(5)
Bacteriophage RTP Bacteriophage RTP complete genome complete genome 582/722 (80%)582/722 (80%) 0/722 (0%)0/722 (0%)
Bacteriophage JK06 virion Bacteriophage JK06 virion complete genome complete genome 569/725 (78%)569/725 (78%) 2/725 (0%)2/725 (0%) Phage TLS Phage TLS complete genome complete genome 462/667 (69%)462/667 (69%) 9/667 (1%)9/667 (1%) 3
(6/7)
3
(6/7)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 88/104 (84%)88/104 (84%) 0/104 (0%)0/104 (0%)
4
(8/9)
4
(8/9)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 149/182 (81%)149/182 (81%) 0/182 (0%)0/182 (0%)
6
(12/13)
6
(12/13)
Bacteriophage JK06 virion Bacteriophage JK06 virion complete genome complete genome 245/331 (74%)245/331 (74%) 2/331 (0%)2/331 (0%)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 291/430 (67%)291/430 (67%) 10/430 (2%)10/430 (2%) 7
(14/15)
7
(14/15)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 89/104 (85%)89/104 (85%) 0/104 (0%)0/104 (0%)
8
(16/17)
8
(16/17)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 579/720 (80%)579/720 (80%) 0/720 (0%)0/720 (0%)
Bacteriophage JK06 virion Bacteriophage JK06 virion complete genome complete genome 565/722 (78%)565/722 (78%) 2/722 (0%)2/722 (0%) Bacteriophage TLS Bacteriophage TLS complete genome complete genome 457/662 (69%)457/662 (69%) 9/662 (1%)9/662 (1%) Enterobacteria phage T1 Enterobacteria phage T1 complete genome complete genome 467/709 (65%)467/709 (65%) 22/709 (3%)22/709 (3%) 10
(20/21)
10
(20/21)
Enterobacteria phage RTP Enterobacteria phage RTP complete genome complete genome 422/606 (69%)422/606 (69%) 48/606 (7%)48/606 (7%)
Bacteriophage JK06 virion Bacteriophage JK06 virion complete genome complete genome 98/131 (74%)98/131 (74%) 8/131 (6%)8/131 (6%) 11
(22/23)
11
(22/23)
Bacteriophage RTP Bacteriophage RTP complete genome complete genome 297/346 (85%)297/346 (85%) 0/346 (0%)0/346 (0%)
Bacteriophage JK06 Bacteriophage jk06 complete genome complete genome 272/347 (78%)272/347 (78%) 2/347 (0%)2/347 (0%) Phage TLS Phage TLS complete genome complete genome 264/376 (70%)264/376 (70%) 11/376 (2%)11/376 (2%) 12
(24/25)
12
(24/25)
Bacteriophage RTP Bacteriophage RTP complete genome complete genome 149/182 (81%)149/182 (81%) 0/182 (0%)0/182 (0%)
13
(26/27)
13
(26/27)
Bacteriophage RTP Bacteriophage RTP complete genome complete genome 422/606 (69%)422/606 (69%) 48/606 (7%)48/606 (7%)
Bacteriophage JK06 Bacteriophage jk06 complete genome complete genome 95/124 (76%)95/124 (76%) 3/124 (2%)3/124 (2%) 14
(28/29)
14
(28/29)
Bacteriophage RTP Bacteriophage RTP complete genome complete genome 89/104 (85%)89/104 (85%) 0/104 (0%)0/104 (0%)

비고: 단편의 번호에 병기된 F 및 R은 각각 정방향(Forward) 및 역방 향(Reverse)를 의미함. 즉, 서열번호 2F는 M13 정방향 프라이머를 이용하여 판독된 결과를 나타내고, 서열번호 2R은 M13 역방향 프라이머를 이용하여 판독된 결과를 나타냄. 또한, 단편에 대해 두 개의 서열번호가 기재된 경우, 정방향/역방향 프라이머로 판독한 결과가 하나의 단편으로 연결되는 경우에 해당함. Note: F and R written in the number of fragments mean Forward and Reverse, respectively. That is, SEQ ID 2F shows the result read using M13 forward primer, and SEQ ID 2R shows the result read using M13 reverse primer. In addition, when two sequence numbers are described for a fragment, the result of reading the forward / reverse primer corresponds to one fragment.

표 2. blastx 를 이용한 분석 결과Table 2. Analysis results using blastx

단편snippet
(서열번호)(SEQ ID NO)
organismorganism proteinprotein identitiesidentities PositivePositive
1
(2/3)
One
(2/3)
Bacteriophage RTPBacteriophage RTP hypothetical protein rtp26hypothetical protein rtp26 90/171 (52%)90/171 (52%) 101/171 (59%)101/171 (59%)
Enterobacteria phage T1Enterobacteria phage T1 hypothetical protein T1p49hypothetical protein T1p49 46/93 (49%)46/93 (49%) 62/93 (66%)62/93 (66%) 2F
(4)
2F
(4)
Bacteriophage TLSBacteriophage TLS TtpMTtpM 116/236 (49%) 116/236 (49%) 156/236 (66%) 156/236 (66%)
Enterobacteria phage T1Enterobacteria phage T1 putative tail tape proteinputative tail tape protein 101/236 (42%)101/236 (42%) 155/236 (65%)155/236 (65%) 2R
(5)
2R
(5)
Bacteriophage TLSBacteriophage TLS YfiJYfiJ 176/241 (73%)176/241 (73%) 208/241 (86%)208/241 (86%)
4
(8/9)
4
(8/9)
Enterobacteria phage RTPEnterobacteria phage RTP hypothetical protein rtp15hypothetical protein rtp15 59/61 (96%)59/61 (96%) 60/61 (98%)60/61 (98%)
6F
(12)
6F
(12)
Bacteriophage JK06Bacteriophage jk06 putative tail tape proteinputative tail tape protein 139/249 (55%)139/249 (55%) 178/249 (71%)178/249 (71%)
Enterobacteria phage RTPEnterobacteria phage RTP putative tail tape proteinputative tail tape protein 96/161 (59%)96/161 (59%) 123/161 (76%)123/161 (76%) 6R
(13)
6R
(13)
Bacteriophage JK06Bacteriophage jk06 putative minor tail proteinputative minor tail protein 78/111 (70%)78/111 (70%) 90/111 (81%)90/111 (81%)
Enterobacteria phage RTPEnterobacteria phage RTP putative minor tail proteinputative minor tail protein 73/113 (64%)73/113 (64%) 88/113 (77%)88/113 (77%) 8
(16/17)
8
(16/17)
Enterobacteria phage RTPEnterobacteria phage RTP hypothetical protein rtp67 hypothetical protein rtp67 215/240 (89%)215/240 (89%) 228/240 (95%)228/240 (95%)
Bacteriophage TLSBacteriophage TLS YfiJYfiJ 175/240 (72%)175/240 (72%) 207/240 (86%)207/240 (86%) 11F
(22)
11F
(22)
Enterobacteria phage RTPEnterobacteria phage RTP hypothetical protein rtp69hypothetical protein rtp69 80/93 (86%)80/93 (86%) 90/93 (96%)90/93 (96%)
Bacteriophage JK06Bacteriophage jk06 hypothetical protein JK_50hypothetical protein JK_50 66/93 (70%)66/93 (70%) 78/93 (83%)78/93 (83%) 11R
(23)
11R
(23)
Enterobacteria phage RTPEnterobacteria phage RTP hypothetical protein rtp67hypothetical protein rtp67 111/116 (95%)111/116 (95%) 113/116 (97%)113/116 (97%)
Bacteriophage JK06Bacteriophage jk06 hypothetical protein JK_52hypothetical protein JK_52 102/117 (87%)102/117 (87%) 110/117 (94%)110/117 (94%)

비고: 단편의 번호에 병기된 F 및 R은 각각 정방향(Forward) 및 역방 향(Reverse)를 의미함. 즉, 서열번호 2F는 M13 정방향 프라이머를 이용하여 판독된 결과를 나타내고, 서열번호 2R은 M13 역방향 프라이머를 이용하여 판독된 결과를 나타냄. 또한, 단편에 대해 두 개의 서열번호가 기재된 경우, 정방향/역방향 프라이머로 판독한 결과가 하나의 단편으로 연결되는 경우에 해당함. Note: F and R written in the number of fragments mean Forward and Reverse, respectively. That is, SEQ ID NO: 2F shows the result read using M13 forward primer, and SEQ ID 2R shows the result read using M13 reverse primer. In addition, when two sequence numbers are described for a fragment, the result of reading the forward / reverse primer corresponds to one fragment.

실시예Example 4:  4: 박테리오파아지Bacteriophage YS01YS01 의 감염범위 조사(대장균, Range of infection of E. coli 코리네박테리움Corynebacterium 글루타미쿰 Glutamicum (( CorynebacteriumCorynebacterium glutamicumglutamicum ) ) 및 살모넬라 종And Salmonella spp. (( SalmonellaSalmonella sppspp .).) 에 대한 감염도Degree of infection 비교)compare)

대장균이 아닌 다른 세균, 즉, 살모넬라 및 코리네박테리움 속 세균에 대한 박테리오파아지 YS01의 용균 활성을 조사하였다. 각 세균을 OD600=0.8까지 배양한 뒤 이를 0.7% 한천 배지에 섞고, LB 플레이트에 부어 굳혔다. 박테리오파아지 YS01을 SM 완충액을 이용하여 10^8 pfu부터 10^3 pfu까지 10배씩 희석시키고, 각 희석액을 상기 LB 플레이트에 10ul씩 떨어뜨린 후 30℃에서 16시간 동안 배양하여 플라크의 생성 유무를 관찰하였다. 본 실험에 사용된 세균 및 그 감염 여부가 하기의 표 3에 기재된다. The lytic activity of bacteriophage YS01 against bacteria other than Escherichia coli, namely Salmonella and Corynebacterium bacteria, was investigated. Each bacterium was incubated to OD 600 = 0.8 and then mixed in 0.7% agar medium and poured into LB plates to harden. Bacteriophage YS01 was diluted 10-fold from 10 ^ 8 pfu to 10 ^ 3 pfu using SM buffer, and each diluted solution was dropped by 10ul on the LB plate, and then cultured at 30 ° C. for 16 hours to observe whether plaque was formed. It was. The bacteria used in this experiment and their infection are listed in Table 3 below.

표 3. 박테리오파아지 YS01의 감염범위 조사 Table 3. Infection Range Survey of Bacteriophage YS01

균주명Strain name 플라크 생성 여부Whether plaque is produced E. coli (W3110) E. coli (W3110) OO E. coli (MG1655) E. coli (MG1655) OO E. coli (BL21) E. coli (BL21) OO E. coli (DH5α) E. coli (DH5α) OO 살모넬라 갈리나룸( Salmonella gallinarum ) Salmonella Galina Room (Salmonella gallinarum ) XX 살모넬라 풀로룸( Salmonella pullorum ) Salmonella pool room (Salmonella pullorum ) XX 살모넬라 티피무리움( Salmonella typhimurium ) Salmonella typhimurium (Salmonella typhimurium ) XX 살모넬라 엔테리티디스( Salmonella enteritidis ) Salmonella Entebbe utility disk (Salmonella enteritidis ) XX 살모넬라 더비( Salmonella derby ) Derby Salmonella (Salmonella derby ) XX 코리네박테리움 글루타미쿰( Corynebacterium glutamicum ) Corynebacterium glutamicum (Corynebacterium glutamicum ) XX

실시예Example 5:  5: 박테리오파아지Bacteriophage YS01YS01 의 일-단계 생장 곡선(One-step growth curve of OneOne -- stepstep growthgrowth curve)(감염도 테스트) curve) (Infection Test)

박테리오파아지 YS01의 배양온도에 따른 감염능력을 조사하였다. 대장균 W3110을 LB 배지에서 각각 30℃ 및 37℃에서 OD=0.5까지 배양한 후 2배 농축시켰다. 상기 농축된 대장균 배양액에 분리된 박테리오파아지 YS01을 감염다중도(MOI: Multiplicity of Infection)=0.0005로 접종한 후 5분간 정치하였다. 상기 반응액을 원심분리하여 균체를 분리한 다음 이를 다시 새로운 LB 배지에 부유시켰다. 그 후, 각각 30℃ 및 37℃ 배양하며 30분까지는 5분 간격으로, 80분까지 10분 간격으로 배양액으로부터 시료를 2개씩 채취해서 하나는 클로로포름을 처리하고 다른 하나는 처리하지 않았다. 도 2는 30℃에서 배양된 박테리오파아지 YS01의 일-단계 생장 곡선을 도시한다. 상기와 같은 배양에 의해 수득된 배양액을 단계 희석해서 10ul씩 대장균 (W3110) 배양액 (OD600=0.8)을 0.7% 한천 배지에 섞고 플레이트에 부어 굳힌 LB 플레이트에 떨어뜨린 뒤 각각 30℃ 및 37℃에서 18시간 동안 배양하여 용균 여부를 관찰하였다. 관찰 결과 박테리오파아지 YS01은 37℃보다 30℃에서 원활한 감 염을 일으키는 것으로 확인되었으며, 30℃에서의 방출수(burst size)가 1,000 이상임을 알 수 있었다. 도 3은 박테리오파아지 YS01의 배양 온도에 따른 감염 능력을 도시한다. The infectivity of bacteriophage YS01 according to the culture temperature was investigated. E. coli W3110 was incubated in LB medium at OD = 0.5 at 30 ° C. and 37 ° C., respectively, and then concentrated twice. The bacteriophage YS01 isolated in the concentrated E. coli culture was inoculated with multiplicity of infection (MOI) = 0.0005 and allowed to stand for 5 minutes. The reaction solution was centrifuged to separate the cells and then suspended again in fresh LB medium. Thereafter, two samples were taken from the culture solution at 30 ° C. and 37 ° C., 5 min intervals up to 30 minutes, and 10 min intervals up to 80 minutes, respectively, one treated with chloroform and the other not treated. 2 shows the one-step growth curve of bacteriophage YS01 incubated at 30 ° C. Diluting the culture solution obtained by the above culture step by step 10 ml of E. coli (W3110) culture solution (OD 600 = 0.8) in 0.7% agar medium, poured into a plate and dropped on the hardened LB plate, respectively at 30 ℃ and 37 ℃ It was incubated for 18 hours and observed for lysis. As a result, bacteriophage YS01 was found to cause a smooth infection at 30 ℃ than 37 ℃, it was found that the discharge water (burst size) at 30 ℃ or more than 1,000. Figure 3 shows the infectivity according to the culture temperature of bacteriophage YS01.

실시예Example 6: 대장균  6: Escherichia coli W3110W3110 에 대한 For 박테리오파아지Bacteriophage YS01YS01 의 정균 능력(Bacteriostatic ability of clearanceclearance ) 분석) analysis

박테리오파아지 YS01의 액체 배지 상에서의 대장균에 대한 정균 능력을 알아보기 위해 다양한 조건으로 정균 실험을 수행하였다. 250ml 플라스크에 35ml의 LB 액체배지를 넣은 후 W3110:YS01을 각각 1:1, 500:1, 1,000:1, 10,000:1, 100,000:1, 500,000:1, 및 10,000,000:1의 조건으로 접종하였다. 접종 후 30℃에서 200rpm으로 진탕 배양하며 시간별로 OD의 변화를 측정하였다. 박테리오파아지 YS01을 접종하지 않은 음성 대조군에 비해서 실험군은 W3110:YS01 = 10,000:1의 조건에서도 2시간 이후부터 우수한 정균 능력을 보였으며, 10,000,000:1의 조건에서도 정균 능력이 있음이 확인되었다. 도 4는 박테리오파아지 YSO1의 다양한 비율의 숙주 세포에 대한 정균 능력을 도시하는 정균 곡선(clearance curve)이다. The bacteriostatic experiment was carried out under various conditions to determine bacteriostatic capacity against E. coli on the liquid medium of bacteriophage YS01. After putting 35 ml of LB liquid medium in a 250 ml flask, W3110: YS01 was inoculated under the conditions of 1: 1, 500: 1, 1,000: 1, 10,000: 1, 100,000: 1, 500,000: 1, and 10,000,000: 1, respectively. After inoculation, shaking culture was carried out at 30 ° C. at 200 rpm, and the change in OD over time was measured. Compared to the negative control group not inoculated with bacteriophage YS01, the experimental group showed excellent bacteriostatic ability after 2 hours even under the conditions of W3110: YS01 = 10,000: 1, and it was confirmed that the bacteriostatic ability was also achieved under the condition of 10,000,000: 1. FIG. 4 is a clearance curve showing bacteriostatic capacity against various proportions of bacteriophage YSO1 against host cells. FIG.

실시예Example 7: 라이신 발효시 대장균의 감염 예방에 대한  7: Prevention of E. coli infection during lysine fermentation 적용예Application example

코리네박테리움을 이용한 라이신 발효시 박테리오파아지 YSO1의 효과를 평가하기 위해 코리네박테리움 글루타미쿰 KFCC10881을 배양하여 L-라이신을 생산하였다. L-lysine was produced by culturing Corynebacterium glutamicum KFCC10881 to evaluate the effect of bacteriophage YSO1 on lysine fermentation using Corynebacterium.

먼저 종 배지 25 ml(포도당 20g, 펩톤 10g, 효모추출물 5g, 요소 1.5g, KH2PO4 4g, K2HPO4 8g, MgSO47H2O 0.5g, 바이오틴 100㎍, 티아민 HCL 1000㎍, 칼슘-판토텐산 2000㎍, 니코틴아미드 2000㎍: pH 7.0, 공정수 1 리터 기준)를 함유하는 250 ml 코너-바플 플라스크에 코리네박테리움 글루타미쿰 균주 KFCC10881을 접종하고 30℃에서 72시간 동안 200 rpm으로 교반하면서 배양하여 종 배양액을 준비하였다. 그 후, 본 배양용 발효배지(포도당 50g, (NH4)2SO4 40g, 대두 단백질 2.5g, 콘스팁 고체 (Corn Steep Solids) 5g, 요소 3g, KH2PO4 1g, MgSO47H2O 0.5g, 바이오틴 100㎍, 티아민 HCL 1000㎍, 칼슘-판토텐산 2000㎍, 니코틴아미드 3000㎍, CaCO3 30g: pH 7.0, 공정수 1 리터 기준)에 상기 종 배양액을 접종하고, 박테리오파아지 YS01을 일정 농도로 첨가 한 후, 박테리오파아지 YS01이 대장균을 감염시키고 발효에 미치는 효과를 살펴보았다. 접종시 대장균 W3110과 박테리오파아지 YS01을 하기의 표 4에 기재된 것과 같은 비율로 접종하였으며, 비교를 위해서 대장균 W3110 또는 박테리오파아지 YS01을 단독 접종하여 그 효과를 평가하였다. 대장균 W3110과 박테리오파아지 YS01에 대해 각각 고 역가 및 저 역가의 2가지 조건을 실험하였다. 표 4에 기재된 바와 같이, 대장균 W3110으로만 감염된 군에서는 발효 종료시 대장균이나 박테리오파아지를 전혀 접종하지 않은 정상 대조군 대비 54% 정도의 L-라이신 생산량을 보여 대장균 W3110의 L-라이신 발효에 대한 부정적인 효과를 확인하였으며, 박테리오파아지 YS01를 단독으로 접종한 군에서는 정상 대조군 대비 L-라이신 생산량의 변화가 없어 박테리오파아지 YS01은 단독으로 라이신 발효에 영향을 미치지 않는다는 것을 확인하였다. 대장균 W3110과 박테리오파아지 YS01을 함께 접종한 복합 투여군에서는 대장균 W3110:박테리오파아지 YS01의 비율이 10,000:1인 실험군에서도 정상 대조군과 거의 동일한 양의 L-라이신 생산량을 보였다. 도 5는 대장균 W3110, 박테리오파아지 YS01 및 이들의 조합에 의한 L-라이신 발효에 대한 영향을 도시한다. First, 25 ml of seed medium (20 g of glucose, 10 g of peptone, 5 g of yeast extract, 1.5 g of urea, KH 2 PO 4 4 g, K 2 HPO 4 8 g, MgSO 4 7H 2 O 0.5 g, biotin 100 µg, thiamine HCL 1000 µg, calcium Inoculate Corynebacterium glutamicum strain KFCC10881 into a 250 ml corner-baffle flask containing 2000 μg pantothenic acid, 2000 μg nicotinamide: pH 7.0, per liter of process water) and at 200 rpm for 72 hours at 30 ° C. The culture medium was prepared by incubating with stirring. Then, the culture fermentation medium (glucose 50g, (NH 4 ) 2 SO 4 40g, soy protein 2.5g, Corn Steep Solids 5g, urea 3g, KH 2 PO 4 1g, MgSO 4 7H 2 O 0.5 g, biotin 100 µg, thiamine HCL 1000 µg, calcium-pantothenic acid 2000 µg, nicotinamide 3000 µg, CaCO 3 30 g: pH 7.0, based on 1 liter of the process water) and inoculated the species culture solution with bacteriophage YS01 at a constant concentration. After addition, the effects of bacteriophage YS01 on E. coli infection and fermentation were examined. At the time of inoculation, E. coli W3110 and bacteriophage YS01 were inoculated in the same ratio as described in Table 4 below. For comparison, the effect of E. coli W3110 or bacteriophage YS01 was inoculated alone. Two conditions of high and low titers were tested for E. coli W3110 and bacteriophage YS01, respectively. As shown in Table 4, the group infected with E. coli W3110 alone showed about 54% L-lysine production at the end of fermentation compared to the normal control group that had not been inoculated with E. coli or bacteriophage at all, resulting in a negative effect on L-lysine fermentation of E. coli W3110. In the group inoculated with bacteriophage YS01 alone, it was confirmed that the bacteriophage YS01 alone did not affect lysine fermentation because there was no change in L-lysine production compared to the normal control group. In the co-administered group inoculated with E. coli W3110 and bacteriophage YS01, the experimental group with E. coli W3110: bacteriophage YS01 ratio of 10,000: 1 showed almost the same amount of L-lysine production as the normal control group. 5 shows the effect on L-lysine fermentation by E. coli W3110, bacteriophage YS01 and combinations thereof.

표 4. YS01의 L-라이신 발효에의 영향 평가Table 4. Assessment of the impact of YS01 on L-lysine fermentation

라이신 Lysine
생산 균주Production strain
조건Condition W3110W3110
(( cfucfu ))
YS01YS01
(( cfucfu ))
L-라이신 (g)L-lysine (g)
코리네박테리움 글루타미쿰 KFCC10881Corynebacterium glutamicum KFCC10881 음성 대조구(N.C.)Negative Control (N.C.) xx xx 18.78 18.78 YS01 (고 역가)YS01 (high potency) xx 1.0 * 10^81.0 * 10 ^ 8 18.86 18.86 YS01 (저 역가)YS01 (low titer) xx 6.7 * 10^56.7 * 10 ^ 5 18.67 18.67 W3110 (고 역가) : YS01 = 150 : 1W3110 (high titer): YS01 = 150: 1 1.0 * 10^81.0 * 10 ^ 8 6.7 * 10^56.7 * 10 ^ 5 18.34 18.34 W3110 (고 역가) : YS01 = 10,000 : 1W3110 (high titer): YS01 = 10,000: 1 1.0 * 10^81.0 * 10 ^ 8 1.0 * 10^41.0 * 10 ^ 4 18.82 18.82 W3110 (저 역가) : YS01 = 150 : 1W3110 (low titer): YS01 = 150: 1 1.0 * 10^71.0 * 10 ^ 7 6.7 * 10^46.7 * 10 ^ 4 18.36 18.36 W3110 (저 역가) : YS01 = 10,000 : 1W3110 (low titer): YS01 = 10,000: 1 1.0 * 10^71.0 * 10 ^ 7 1.0 * 10^31.0 * 10 ^ 3 18.35 18.35 양성 대조군(고 역가)Positive control (high titer) 1.0 * 10^81.0 * 10 ^ 8 xx 10.22 10.22 양성 대조군(저 역가)Positive control (low titer) 1.0 * 10^71.0 * 10 ^ 7 xx 12.30 12.30

도 1은 본 발명에서 분리된 대장균 특이적 감염 및 사멸능을 갖는 박테리오파아지 YS01의 전자투과현미경 사진이다. 1 is an electron transmission micrograph of bacteriophage YS01 having E. coli specific infection and killing ability isolated from the present invention.

도 2는 30℃에서 배양된 박테리오파아지 YS01의 일-단계 생장 곡선을 도시한다. 2 shows the one-step growth curve of bacteriophage YS01 incubated at 30 ° C.

도 3은 박테리오파아지 YS01의 온도에 따른 감염능력을 도시한다. 3 shows infectivity according to temperature of bacteriophage YS01.

도 4는 박테리오파아지 YSO1의 정균 곡선(clearance curve)을 도시한다. N.C.는 음성 대조군을 나타낸다. 4 shows the clearance curve of bacteriophage YSO1. N.C. represents a negative control.

도 5는 본 발명의 일 구체예에 따른 방법에서 대장균 W3110, 박테리오파아지 YS01 및 이들의 조합에 의한 L-라이신 발효에 대한 영향을 도시한다.5 shows the effect on L-lysine fermentation by E. coli W3110, bacteriophage YS01 and combinations thereof in a method according to one embodiment of the invention.

<110> CJ Corporation <120> Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same <160> 39 <170> KopatentIn 1.71 <210> 1 <211> 236 <212> PRT <213> Bacteriophage YS01 <220> <221> PEPTIDE <222> (1)..(236) <220> <221> PEPTIDE <222> (1)..(236) <223> tail protein <400> 1 Lys Val Asn Asp Ile Gly Thr Ser Leu Ala Gly Gly Ile Pro Ile Trp 1 5 10 15 Leu Ile Ala Ile Gln Gln Gly Gly Gln Ile Lys Asp Ser Phe Gly Gly 20 25 30 Ile Ala Asn Thr Ala Arg Phe Ala Leu Ala Ala Ile Asn Pro Leu Thr 35 40 45 Ala Val Val Gly Thr Leu Gly Leu Ala Leu Gly Ala Leu Gly Val Ala 50 55 60 Ala Tyr Gln Ala Asp Lys Asn Thr Arg Gly Leu Ala Ser Thr Ile Thr 65 70 75 80 Leu Val Gly Asn Ser Thr Ile Thr Ser Thr Ala Gln Ile Asn Gln Val 85 90 95 Val Asp Gly Ile Glu Arg Ser Thr Leu Ala Thr Arg Gly Leu Ile Gln 100 105 110 Glu Ile Ala Asn Ser Leu Val Ala Asn Gly Asn Leu Thr Leu Thr Gln 115 120 125 Ile Asp Lys Ile Thr Lys Ala Thr Ala Gln Trp Ala Thr Val Thr Ser 130 135 140 Thr Asp Ser Lys Thr Ile Leu Gly Tyr Phe Asp Gln Ile Thr Lys Asp 145 150 155 160 Pro Ile Gln Gly Leu Ile Ala Leu Asp Lys Gln Phe Asn Phe Leu Gln 165 170 175 Ser Gly Gln Leu Lys Tyr Ile Glu Ser Ile Arg Lys Thr Ala Gly Glu 180 185 190 Thr Glu Ala Val Thr Ala Ala Thr Glu Leu Phe Ala Asn Val Met Glu 195 200 205 Asn Arg Leu Ala Asp Val Ala Leu Ser Leu Asn Pro Leu Glu Ser Ala 210 215 220 Trp Asn Ser Phe Arg Lys Phe Val Ser Glu Ile Trp 225 230 235 <210> 2 <211> 766 <212> DNA <213> Bacteriophage YS01 <400> 2 atcagtgata cttaggtctg tgccggatac cattaaacac ctgacaggta aatcacctac 60 cagaataata ctgtcgtaag gctggaatgc tggaatcaag gcctttgctt tttactcgag 120 gccttcgcaa ctatttgaag cgatttcaac taactccatt tgaatctcct gattatttat 180 ggtgcctacc attctatcag ataaaatgca ataaaaaacc tcccgaagga ggcttattta 240 attaacgcca aacttatttc tgtttaacct gaacctctac cagaatgcca tcaacactat 300 cgtcttgagt tggcattgcg ccggctgctg ttgctgctgc gatatagcct ccagcaaaag 360 tccaaccagt agtgaaagct gccgcaccag cgactgctgc atcaacaacc aaacctgcgg 420 cattgataaa tactggttta ccaacggctc ggtttgcggc ggtaattgct gctgctgccc 480 ttacccagat acgaccagca gtcattacgt taacagcctc ctgagctttg gctgtgccat 540 ctggagtctc ataatgagaa cgaacaacaa caccgtaagc gctaccttct tcatttactg 600 cggtaacaac cttgtgacca tcaatctcag gagcggtagt tacggaaacc gccacaccaa 660 cagggattgc atcagagcca ccaactacac aagcgccatc gatattatac agggaagtat 720 cagctaccat acctgccagt gctacagaac gaattgccat ttatct 766 <210> 3 <211> 747 <212> DNA <213> Bacteriophage YS01 <400> 3 atcattgacc ttgacccgcg cgcttgcctg aagaaaatta aaaagtaagg agatagataa 60 atggcaattc gttctgtagc actggcaggt atggtagctg atacttccct gtataatatc 120 gatggcgctt gtgtagttgg tggctctgat gcaatccctg ttggtgtggc ggtttccgta 180 actaccgctc ctgagattga tggtcacaag gttgttaccg cagtaaatga agaaggtagc 240 gcttacggtg ttgttgttcg ttctcattat gagactccag atggcacagc caaagctcag 300 gaggctgtta acgtaatgac tgctggtcgt atctgggtaa gggcagcagc agcaattacc 360 gccgcaaacc gagccgttgg taaaccagta tttatcaatg ccgcaggttt ggttgttgat 420 gcagcagtcg ctggtgcggc agctttcact actggttgga cttttgctgg aggctatatc 480 gcagcagcaa cagcagccgg cgcaatgcca actcaagacg atagtgttga tggcattctg 540 gtagaggttc aggttaaaca gaaataagtt tggcgttaat taaataagcc tccttcggga 600 ggttttttat tgcattttat ctgatagaat ggtangcacc ataaataatc angagattca 660 natggagtta gttgaaatcg cttcaaatag ttgcgaaagc ctcgagtaan aaagcaaggc 720 cttgattcca gcattccagc cttacga 747 <210> 4 <211> 772 <212> DNA <213> Bacteriophage YS01 <400> 4 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcaaa 600 ccttgcggta ttagcaatgc caccaaaact atccttaatc tgaccgccct gctgaattgc 660 aatgagccag attgggatgc caccagcaag ggaagttccg atatcattga ccttgacccg 720 cgcgcttgcc tgaagaaatt aaaaagtaag gagatagata aatggcaatt cc 772 <210> 5 <211> 733 <212> DNA <213> Bacteriophage YS01 <400> 5 atctgacgaa gcaacaagcg taaactcact gcttggcatg acgtatggcg atggctctaa 60 gaaaacgaac agcgaactcg tccttaaagc ctgggatgct ggtaacgtgt ccattgcgcg 120 tgcgaacgca gaaaacaata tgagcttcgt agctatggga tgtatctctg taattgccca 180 ggatgaaaca attaacgcca tcatgaatgc cggtgctcgt ggtattggtg tgtcggaacg 240 ttttcttctg gtgcgtgaaa agtcatttct tggcgatcgc gtgtttgttg atgagaatgg 300 taattcaaca tatgaggcta ttgatggtgg gctaaaggct gattacttcc gactcgttca 360 tgagattatg aatgaagtag aagtgaaact aactgtaagt gcttcttcaa tgcgttacct 420 gaaccgtgcg cgccaggaaa tggagccgca tcttggtgac ggaggtaagt attctcacac 480 aatgttgcgc ggtgctctag gtaagtttga taagcaagca atccgtatcg cttctgttct 540 gcacgttatt cgtaactggt tcgcaccagc aggctcaagc cctcataaat ccagagagat 600 tgaactggag acaatgcang aagcggttat gattttcaac gaactaagta aaacttattt 660 gtcatctgca aacgctgctg gtcacgctgg tgacaatgct gagatgaata agctgattga 720 tatcagtgat act 733 <210> 6 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 6 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcaaa 600 ccttgcggta ttagcaatgc caccaaaact atccttaatc tgaccgccct gctgaattgc 660 aatgagccag attgngatgc caccagcaag ggaagttccg at 702 <210> 7 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 7 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttaa atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tgaaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctgggatg at 702 <210> 8 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 8 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga tatcacccgc atgattgatg 120 cgatcgagac tagcacccaa ggcttgcata ctgccactga tgtagcaatc ccatacgaag 180 atgagatatt ggatgacctt attttcttca atttgctggt tgggcgcgaa ttcacttgtg 240 atggagataa acgcgaagct ggttcaaatt acgaggatgg tgaataatgt ttggattaaa 300 cgacgcatac tttaatgcag ttaagcgcca ggctgataag ctaaacgacg aatacggcaa 360 gctgggtgcg aagaagaaag atgacaaagt tgtggcggca ctgattactc aggtttgggg 420 tccagtttct acgctaatcg cgagggataa gtttgtgtgg atagcgggat 470 <210> 9 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 9 atcccgctat ccacacaaac ttatccctcg cgattagcgt agaaactgga ccccaaacct 60 gagtaatcag tgccgccaca actttgtcat ctttcttctt cgcacccagc ttgccgtatt 120 cgtcgtttag cttatcagcc tggcgcttaa ctgcattaaa gtatgcgtcg tttaatccaa 180 acattattca ccatcctcgt aatttgaacc agcttcgcgt ttatctccat cacaagtgaa 240 ttcgcgccca accagcaaat tgaagaaaat aaggtcatcc aatatctcat cttcgtatgg 300 gattgctaca tcagtggcag tatgcaagcc ttgggtgcta gtctcgatcg catcaatcat 360 gcgggtgata tcagtgatac ttaggtctgt gccggatacc attaaacacc tgacaggtaa 420 atcacctacc agaataatac tgtcgtaagg ctggaatgct ggaatcaagg 470 <210> 10 <211> 101 <212> DNA <213> Bacteriophage YS01 <400> 10 atcagtgata cttaggtctg tgccggatac cattaaacac ctgacaggta aatcacctac 60 cagaataata ctgtcgtaag gctggaatgc tggaatcaag g 101 <210> 11 <211> 101 <212> DNA <213> Bacteriophage YS01 <400> 11 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga t 101 <210> 12 <211> 776 <212> DNA <213> Bacteriophage YS01 <400> 12 atcctacttg gtgagtttgc aatagcggca accaagacac ttcagtcaat acctggactt 60 ggcgatttag gtaataaagc aatcgctgag cagcaaaaga ttgtcgatgc tgctaagaag 120 caaaacattg agttagcgaa aagcatagct gagcgagatg ctagaatcag gaagggtgaa 180 cttggttatg ttgagggcaa caataatacc aacctgagcg gcaataacgc atcaagcgat 240 aaggagtttg cagcaaggaa gaaggcgctt gcggatgagt atgatgcgat aaagaaagcg 300 aggagtgaga ggagcaaggc agtaaaagaa gaaagggatt taactttatc ttatgaatct 360 ggtgttcttg ctcttcaggc tcagctgaag gttttacaag agcacaggac gataaacgat 420 gtaataagca acgaacgcaa gcagctattc caggaagaag ctaagtttgc aatacttgag 480 caaaggaaag cggatggcac gcttacaaaa tcacaggcta agctacttgc gcagaagaat 540 atcattcttg aacaagctaa acagaaggct gaacttggtg accagattgt acttcaggag 600 aggtcanaca agttacttga tgacaacctt aagaagactg tgcagattaa gaatgaggca 660 aataatgttt cgcttgctgc taatttatct gacaggnaga agcagagagc aaaagagctt 720 caggcacttc aatcaatcag aataacaaag tggctctgta gatgacactg attttc 776 <210> 13 <211> 715 <212> DNA <213> Bacteriophage YS01 <400> 13 ccttgctcca tactcttcgc cacggaatgt aattgtcttg gctggtagtg actgaccaga 60 tgcctgagct tgcatgattt cctcgggcgt gtatgagatg ttctccccat gaaacctgta 120 aacccttgcg ccgaacttac tgccgtcaac ctcaataagc gtaaccacct cgccagggaa 180 aagtgactga agctggttct caaactttac acttgccata ttctctccaa taaaaaaggc 240 cctcaatggg ccttagttta actcattgac gtgaaaactt cagtaaattg catgctaaca 300 gtctgaactt ctttcgtgct tggcgagacg ctaatgctat cctgctgaat aaaaaacagc 360 tttagttcgc cctgcggtgt agtccatgcg aaaggtttta cgatgtgatc aaagcagaag 420 ttcattaccg cctcccaatc acgaccgacg tagctaacag tatatgtcct cttgttagtc 480 ctgtatccac cagttccgcg ctgctgataa ccattcgcaa atgagacaac cctaacattg 540 ttggcgttag taaatgaaga gcctccattg agaaacattt aacacaaatt taaagttgca 600 atgncattta aatccttagg gcccgaaccc cattaaatag gtgtaccgcg caagaagcgt 660 acgctctgcc gcctgctgga tgatttgctg attcctcagc acgataactt actcc 715 <210> 14 <211> 783 <212> DNA <213> Bacteriophage YS01 <400> 14 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttan atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tgaaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctgggatg atatcgaaat cctgcagccc 720 gggggatcca ctagntctag agcggccgcc accgcggtga agctccagct tttgttccct 780 tta 783 <210> 15 <211> 701 <212> DNA <213> Bacteriophage YS01 <400> 15 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcana 600 ccttgncgta ttagcaatgc caccaaaact atccttaatc tgnaacgcct gctgaattgc 660 atgagccaga ttgggatgcc acccagcagg gaaagtccga t 701 <210> 16 <211> 721 <212> DNA <213> Bacteriophage YS01 <400> 16 atcaatcagc ttattcatct cagcattgtc accagcgtga ccagcagcgt ttgcagatga 60 caaataagtt ttacttagtt cgttgaaaat cataaccgct tcctgcattg tctccagttc 120 aatctctctg gatttatgag ggcttgagcc tgctggtgcg aaccagttac gaataacgtg 180 cagaacagaa gcgatacgga ttgcttgctt atcaaactta cctagagcac cgcgcaacat 240 tgtgtgagaa tacttacctc cgtcaccaag atgcggctcc atttcctggc gcgcacggtt 300 caggtaacgc attgaagaag cacttacagt tagtttcact tctacttcat tcataatctc 360 atgaacgagt cggaagtaat cagcctttag cccaccatca atagcctcat atgttgaatt 420 accattctca tcaacaaaca cgcgatcgcc aagaaatgac ttttcacgca ccagaagaaa 480 acgttccgac acaccaatac cacgagcacc ggcattcatg atggcgttaa ttgtttcatc 540 ctgngcaatt acagagatac atcccatagc tacgaagctc atattgtttt ctgcgttcgc 600 acgcgcaatg gacacgttac cagcatccca ggctttaagg acgagttcgc tgttcgtttt 660 cttagagcca tcgccatacg tcatgccaag cagtgagttt acgcttgntg cttcgtcaga 720 t 721 <210> 17 <211> 721 <212> DNA <213> Bacteriophage YS01 <400> 17 atctgacgaa gcaacaagcg taaactcact gcttggcatg acgtatggcg atggctctaa 60 gaaaacgaac agcgaactcg tccttaaagc ctgggatgct ggtaacgtgt ccattgcgcg 120 tgcgaacgca gaaaacaata tgagcttcgt agctatggga tgtatctctg taattgccca 180 ggatgaaaca attaacgcca tcatgaatgc cggtgctcgt ggtattggtg tgtcggaacg 240 ttttcttctg gtgcgtgaaa agtcatttct tggcgatcgc gtgtttgttg atgagaatgg 300 taattcaaca tatgaggcta ttgatggtgg gctaaaggct gattacttcc gactcgttca 360 tgagattatg aatgaagtag aagtgaaact aactgtaagt gcttcttcaa tgcgttacct 420 gaaccgtgcg cgccaggaaa tggagccgca tcttggtgac ggaggtaagt attctcacac 480 aatgttgcgc ggtgctctag gtaagtttga taagcaagca atccgtatcg cttctgttct 540 gcacgttatt cgtaactggt tcgcaccagc aggctcaagc cctcataaat ccagagagat 600 tgaactggag acaatgcagg aagcggttat gattttcaac gaactaagta aaacttattt 660 gtcatctgca aacgctgctg gtcacgctgg tgacaatgct gagatgaata agctgattga 720 t 721 <210> 18 <211> 342 <212> DNA <213> Bacteriophage YS01 <400> 18 cgagatggtt aagcaagcgc taaagtctga agataagcaa ttcagcgttt cattaactaa 60 gattgaaggg attcttggta atgaagaggg gtcgattaag aagctgaaga gctcgtacat 120 ttataacaca acggctcgta tgcctgagct tagggatgct ggactgaaag ctactcacca 180 ttacgatgaa gatgagtttg aaaatccatt tggtgaaaca attctatctg gagacaagaa 240 gttagttatt aaactggtcc ctggaacggc aaatattggt atcaggaaga agaccaacga 300 cgcaatcaag ttggaggcaa tcactgaatt caaggctaag at 342 <210> 19 <211> 342 <212> DNA <213> Bacteriophage YS01 <400> 19 atcttagcct tgaattcagt gattgcctcc aacttgattg cgtcgttggt cttcttcctg 60 ataccaatat ttgccgttcc agggaccagt ttaataacta acttcttgtc tccagataga 120 attgtttcac caaatggatt ttcaaactca tcttcatcgt aatggtgagt agctttcagt 180 ccagcatccc taagctcagg catacgagcc gttgtgttat aaatgtacga gctcttcagc 240 ttcttaatcg acccctcttc attaccaaga atcccttcaa tcttagttaa tgaaacgctg 300 aattgcttat cttcagactt tagcgcttgc ttaaccatct cg 342 <210> 20 <211> 828 <212> DNA <213> Bacteriophage YS01 <400> 20 actatgggcg attgggtacc gggcccccct cgaggtcatc attgaccttg acccgcgcgc 60 ttgcctgaag aaaattaaaa agtaaggaga tagataaatg gcaattcgtt ctgtagcact 120 ggcaggtatg gtagctgata cttccctgta taatatcgat ggcgcttgtg tagttggtgg 180 ctctgatgca atccctgttg gtgtggcggt ttccgtaact accgctcctg agattgatgg 240 tcacaaggtt gttaccgcag taaatgaaga aggtagcgct tacggtgttg ttgttcgttc 300 tcattatgag actccagatg gcacagccaa agctcaggag gctgttaacg taatgactgc 360 tggtcgtatc tgggtaaggg cagcagcagc aattaccgcc gcaaaccgag ccgttggtaa 420 accagtattt atcaatgccg caggtttggt tgttgatgca gcagtcgctg gtgcggcagc 480 tttcactact ggttggactt ttgctggagg ctatatcgca gcagcaacag cagccggcgc 540 aatgccaact caagacgata gtgttgatgg cattctggta gaggttcagg ttaaacagaa 600 ataagtttgg cgttaattaa ataagcctcc ttcgggaggt tttttattgc attttatctg 660 atagaatggt aggcaccata aataatcagg agattcanat ggagttagtt gaaatcgctt 720 caatagttgc cgaggatcga ttcctgcagc ccggggatca ctagttctag agcggcgccc 780 acgcggtgga gctccagctt tgtcccttag tgaggttaat ttcagctt 828 <210> 21 <211> 736 <212> DNA <213> Bacteriophage YS01 <400> 21 ccttcgcaac tatttgaagc gatttcaact aactccattt gaatctcctg attatttatg 60 gtgcctacca ttctatcaga taaaatgcaa taaaaaacct cccgaaggag gcttatttaa 120 ttaacgccaa acttatttct gtttaacctg aacctctacc agaatgccat caacactatc 180 gtcttgagtt ggcattgcgc cggctgctgt tgctgctgcg atatagcctc cagcaaaagt 240 ccaaccagta gtgaaagctg ccgcaccagc gactgctgca tcaacaacca aacctgcggc 300 attgataaat actggtttac caacggctcg gtttgcggcg gtaattgctg ctgctgccct 360 tacccagata cgaccagcag tcattacgtt aacagcctcc tgagctttgg ctgtgccatc 420 tggagtctca taatgagaac gaacaacaac accgtaagcg ctaccttctt catttactgc 480 ggtaacaacc ttgtgaccat caatctcagg agcggtagtt acggaaaccg ccacaccaac 540 agggattgca tcagagccac caactacanc agcgccatcg atattataca ggggagtatc 600 agctaccata cctgccagtg ctacagaacg aaatgcccat tatctatctc cctacttttt 660 aattttcttc anngcagcgc gcgggtcaag gtcaatgatg accctcgagg gggggcccgg 720 gtaccaattt cgcctt 736 <210> 22 <211> 783 <212> DNA <213> Bacteriophage YS01 <400> 22 gtagaactaa gtaatgatga ggttattgag caaatcaaga aagatggtaa atgggttaat 60 cttgaagagc acggaaaata cataaagaca aaaacgcttt acgtgacgcg cgttaaccac 120 aaatctggcg ttaagaagga tttcaaagaa ggaaagcgct atcaggtcaa tatgcacagc 180 ggcatgggcc aatcagctgg ttacatttac gatgaagatg gtaatgcatg gcagctatat 240 cgcagtgaag atgttggatt ccacacattg tgtggcacat attactttga ggcacaatac 300 aaatgattca tgaactaaag atactaccaa tccatttcga gccagttgag gatggcctta 360 agttagctga acttagaaaa aatgatagaa atttttccat aggagacaag ctaatactta 420 aagagttttc agatggagaa tacacaggaa gggttgttat aaaggaagtt ttacatatag 480 cagatgtttc cgcttatctt catggatacg ttttgctttc aatgcattaa tatcatttta 540 gacaatcaga tttaccatag gtgcgttaac attagcgcga caactaagga gttttttaat 600 gtttgatttc aacgaagata agctatctgt tgaacaagtt atggncattg ccgcgaaacg 660 acaccttcac cgcttcgcgt ggctattaat gctaaatggt atcgacaatc tcaatctttc 720 tggaaacacc agtcgagatt gacgctggta aatgacagta cccagttatc tcgctaggta 780 cga 783 <210> 23 <211> 739 <212> DNA <213> Bacteriophage YS01 <400> 23 atctaagtat ttcgatataa aagatgtaca gagatgttgg ctgctgagtt ccgtgatact 60 caacagtaaa gcgcccaagc atagcggcag acacgcaacc aagaaagtgc atgtaagcgg 120 aagactcggg aaactgaact gaacgagcaa tattagctga gagcttacca actacatcaa 180 tgtcgttacc tagcgagata actgggtact tgtcattacc agcgtcaatc tcgactggtg 240 ttttccagaa agattgagat tgtcgataac cattagcatt aatagccacg cgaagcggtg 300 gaaggttgtc gttcgcggca attgccataa cttgttcaac agatagctta tcttcgttga 360 aatcaaacat taaaaaactc cttagttgtc gcgctaatgt taacgcacct atggtaaatc 420 tgattgtcta aaatgatatt aatgcattga aagcaaaacg tatccatgaa gataagcgga 480 aacatctgct atatgtaaaa cttcctttat aacaaccctt cctgtgtatt ctccatctga 540 aaactcttta agtattagct tgtctcctat ggaaaaattt ctatcatttt ttctaagttc 600 agctaacttt agggcatcct caactggctc gaaatggnat ggtagtatct ttagttcatg 660 aatcatttgt aatgtgcctc caagtaatat ggggcacacc atgtgtggaa tcccacatcc 720 tccctgcgat ataactgcc 739 <210> 24 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 24 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga tatcacccgc atgattgatg 120 cgatcgagac tagcacccaa ggcttgcata ctgccactga tgtagcaatc ccatacgaag 180 atgagatatt ggatgacctt attttcttca atttgctggt tgggcgcgaa ttcacttgtg 240 atggagataa acgcgaagct ggttcaaatt acgaggatgg tgaataatgt ttggattaaa 300 cgacgcatac tttaatgcag ttaagcgcca ggctgataag ctaaacgacg aatacggcaa 360 gctgggtgcg aagaagaaag atgacaaagt tgtggcggca ctgattactc aggtttgggg 420 tccagtttct acgctaatcg cgagggataa gtttgtgtgg atagcgggat 470 <210> 25 <211> 735 <212> DNA <213> Bacteriophage YS01 <400> 25 atcccgctat ccacacaaac ttatccctcg cgattagcgt agaaactgga ccccaaacct 60 gagtaatcag tgccgccaca actttgtcat ctttcttctt cgcacccagc ttgccgtatt 120 cgtcgtttag cttatcagcc tggcgcttaa ctgcattaaa gtatgcgtcg tttaatccaa 180 acattattca ccatcctcgt aatttgaacc agcttcgcgt ttatctccat cacaagtgaa 240 ttcgcgccca accagcaaat tgaagaaaat aaggtcatcc aatatctcat cttcgtatgg 300 gattgctaca tcagtggcag tatgcaagcc ttgggtgcta gtctcgatcg catcaatcat 360 gcgggtgata tcagtgatac ttaggtctgt gccggatacc attaaacacc tgacaggtaa 420 atcacctacc agaataatac tgtcgtaagg ctggaatgct ggaatcaagg atcaagctta 480 tcgataccgt cgacctcgag gggggggccc ggtacccaat tcgccctata gtgagtcgta 540 ttacaattca ctgggcgtcg ttttacaacg tcgtgactgg gaaaaaccct ggcgttacca 600 acttaatcgg cttgcagcac atcccccttt tcgcagctgg cgtaataccg aagaaggccg 660 caacgatcgc ccttcccaaa catttgccaa cctgaatgcc aaatgggaag cgccctggaa 720 acgcgcatta acccg 735 <210> 26 <211> 724 <212> DNA <213> Bacteriophage YS01 <400> 26 atcattgacc ttgacccgcg cgcttgcctg aagaaaatta aaaagtaagg agatagataa 60 atggcaattc gttctgtagc actggcaggt atggtagctg atacttccct gtataatatc 120 gatggcgctt gtgtagttgg tggctctgat gcaatccctg ttggtgtggc ggtttccgta 180 actaccgctc ctgagattga tggtcacaag gttgttaccg cagtaaatga agaaggtagc 240 gcttacggtg ttgttgttcg ttctcattat gagactccag atggcacagc caaagctcag 300 gaggctgtta acgtaatgac tgctggtcgt atctgggtaa gggcagcagc agcaattacc 360 gccgcaaacc gagccgttgg taaaccagta tttatcaatg ccgcaggttt ggttgttgat 420 gcagcagtcg ctggtgcggc agctttcact actggttgga cttttgctgg aggctatatc 480 gcagcagcaa cagcagccgg cgcaatgcca actcaagacg atagtgttga tggcattctg 540 gtagaggttc aggttaaaca gaaataagtt tggcgttaat taaataagcc tccttcggga 600 ggttttttat tgcattttat ctgatagaat ggtaggcacc atanataatc aggagattca 660 aatggagtta gttgaaatcg cttcaaatag ttgcgaaaga tcttttatat cgaaatactt 720 agat 724 <210> 27 <211> 727 <212> DNA <213> Bacteriophage YS01 <400> 27 atctaagtat ttcgatataa aagatccttc gcaactattt gaagcgattt caactaactc 60 catttgaatc tcctgattat ttatggtgcc taccattcta tcagataaaa tgcaataaaa 120 aacctcccga aggaggctta tttaattaac gccaaactta tttctgttta acctgaacct 180 ctaccagaat gccatcaaca ctatcgtctt gagttggcat tgcgccggct gctgttgctg 240 ctgcgatata gcctccagca aaagtccaac cagtagtgaa agctgccgca ccagcgactg 300 ctgcatcaac aaccaaacct gcggcattga taaatactgg tttaccaacg gctcggtttg 360 cggcggtaat tgctgctgct gcccttaccc agatacgacc agcagtcatt acgttaacag 420 cctcctgagc tttggctgtg ccatctggag tctcataatg agaacgaaac acaacaccgt 480 aagcgctacc ttcttcattt actgcggtaa caaccttgtg accatncatc tcangagcgg 540 tagttacgga aaccgccaca ccaacaggga attgcatcag aaccaccaac tacacaaggc 600 gcatcgatat tatacangga agtatcagct accataactg ccagtgctac gaaacaaatg 660 gcctttatct atctccttac cttttaaatt tcctcaagga agcgcgcggg tcaaggtcaa 720 tgatatc 727 <210> 28 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 28 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttaa atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tngaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctnggatg at 702 <210> 29 <211> 693 <212> DNA <213> Bacteriophage YS01 <400> 29 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgncacac caagagcgcc 540 aagagctaaa ccccaagtcc aacactgctg ttaatggngt attgctgcta tgcaaccttt 600 gcgtatagca atgcacaaaa ctatcctaat ctgaccgcct gctgaatgca tgagcagatt 660 ggatgccaca gcaaggaagt ccgattcagc tat 693 <210> 30 <211> 856 <212> DNA <213> Bacteriophage YS01 <400> 30 nnnggggcgt cagggaggct gcaggcgata agttgggtaa cgccangggt tttcccagtc 60 acgacgttgt aaaacgacgg ttcgtgaatt cgagctcggt acccatccta cttggtgagt 120 ttgcaatagc ggcaaccaag acacttcagt caatacctgg acttggcgat ttaggtaata 180 aagcaatcgc tgagcagcaa aagattgtcg atgctgctaa gaagcaaaac attgagttag 240 cgaaaagcat agctgagcga gatgctagaa tcaggaaggg tgaacttggt tatgttgagg 300 gcaacaataa taccaacctg agcggcaata acgcatcaag cgataaggag tttgcagcaa 360 ggaagaaggc gcttgcggat gagtatgatg cgataaagaa agcgaggagt gagaggagca 420 aggcagtaaa agaagaaagg gatttaactt tatcttatga atctggtgtt cttgctcttc 480 aggctcagct gaaggtttta caagagcaca ggacgataaa cgatgtaata agcaacgaac 540 gcaagcagct attccaggaa gaagctaagt ttgcaatact tgagcaaagg aaagcggatg 600 gcacgcttac aaaatcacag gctaagctac ttgcgcagaa gaatatcatt cttgaacaag 660 ctaaacagaa ggctgaactt ggtgaccaga ttgtacttca ggagaggtca aacaagttac 720 ttgatgacaa cccttagaag actgtgcaga ttaagaatga ggncaataat ggttcgcttg 780 ctgctaattt atctgacagg nagaagcaga agagcaaaga gcttcaggca cttcaatcca 840 tcagataaac aaggtg 856 <210> 31 <211> 869 <212> DNA <213> Bacteriophage YS01 <400> 31 nnnnnnaagt atgtgcgatc ttatgcagct ggcacgacag gtttcccgac tggaaagcgg 60 gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 120 actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag 180 gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcaggtcgac tctagaggat 240 ccccccttgc tccatactct tcgccacgga atgtaattgt cttggctggt agtgactgac 300 cagatgcctg agcttgcatg atttcctcgg gcgtgtatga gatgttctcc ccatgaaacc 360 tgtaaaccct tgcgccgaac ttactgccgt caacctcaat aagcgtaacc acctcgccag 420 ggaaaagtga ctgaagctgg ttctcaaact ttacacttgc catattctct ccaataaaaa 480 aggccctcaa tgggccttag tttaactcat tgacgtgaaa acttcagtaa attgcatgct 540 aacagtctga acttctttcg tgcttggcga gacgctaatg ctatcctgct gaataaaaaa 600 cagctttagt tcgccctgcg gtgtagtcca tgcgaaaggt tttacgatgt gatcaaagca 660 gaagttcatt accgcctccc aatcacgacc gacgtagcta acagtatatg tcctctntgt 720 agtcctgtat ccaccagttc cgcgctgctg ataaccattt cgcaatgaga caaccctaac 780 attgttggcg ttagtaaaat gagaagcctc cattgagaac attttaacac caattaaaag 840 tttgcaatgc cattttaaat cctttaggg 869 <210> 32 <211> 850 <212> DNA <213> Bacteriophage YS01 <400> 32 nnggggcgtc aggaggctca ggcgattagt tgggtaacgc cangggtttt cccagtcacg 60 acgttgtaaa acgacggcca gtgaattcga gctcggtacc cgtaaacaag tttatgataa 120 cgactgtctt gatcaagcac gtgcttacta gttggagtta cagcctcaat tccatctgag 180 tgaaggaaat caccaccaat cagtaaaact gccttagatg aatttggagc tttagcgacc 240 gcataatcaa aatattggtt aagcactctc tcagcaattt cggtgctgta gttttccccg 300 cactcagcat ggtgagccat tgcgccaatg tgcatatcaa atacagggta gaggctcaat 360 gtgtcttcgt agcttgattc actgagcggc tttggagtct cgcgagggac ttcatctgta 420 agagcctgaa caatctgctg aagcatctct tctagcttct cggcatcaat tgcagtctta 480 acccagcgca gcttctcatt gccttccgca tcaatcatgg ttgaagtgcc cttgactaaa 540 tatccatccg gcactagctt cttgatacct tcgttcccat gcccaatacc actcttagcc 600 aacttgctgc gacgaagttc aacgttgcga atgttcatac cgtacttctc tgcaatggcc 660 ttattagtca tgccattttt caactcttcg ataagctgct ctgtggaaat ctttgctact 720 gccattttta agtccttagt tcatcacgat aaaatataag atagtaaagc taaacagtgg 780 tactaatgct actagggctg cgtacttcat acaacctctt tcaccagtaa tcaattaaat 840 ccgcactaat 850 <210> 33 <211> 855 <212> DNA <213> Bacteriophage YS01 <400> 33 nnnnnnnggc agtggcgatc ttatgcagct ggcacgacag ggtttcccga ctggaaagcg 60 ggcagtgagc gcaacgcaat taatgtgagt tagctcactc attaggcacc ccaggcttta 120 cactttatgc ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca 180 ggaaacagct atgaccatga ttacgccaag cttgcatgcc tgcaggtcga ctctagagga 240 tccccatcac tgcgaagttg ccctgtcggt tgttaattcg cgcaagacct tcaggcgtag 300 tatcggatac cgggaacaca atatcacaca gcttctcaag tttttcctcg aggtcttctt 360 tttcttcaaa cagtgaagcc atctcagaag gtgacttctc ctgtttcatc tctttagata 420 gagccgacag tttagccata atctttttgc gatcacgttt acgcacttca ttcaaccgct 480 cagtctcagc aatcattggg gcaatcgaca gggagttgat agccgatttg ccagttgatg 540 gaggctggct agttactacc ctcgcaagta tgtcagggtt aagcctggtg tcacgataaa 600 cacgaatgag ttcctganag atcagggatt caaatttaag ataacgaagg gttagttatg 660 ttgggattag atttttcacc ctgagcatta tgatttagtt catggcagta gtggtgctaa 720 atttagagtg atacctatta ctgactggtt tccacctgac tatggggaat gtaatgcgaa 780 gaccaaagat ggtaagtggg gggcaaaatt accactcttc agctttgcgg tatctctggt 840 tgacaaacct gaacg 855 <210> 34 <211> 853 <212> DNA <213> Bacteriophage YS01 <400> 34 nnnnggggcg tcagggaggc tgcaggcgat taagttgggt aacgcncagg gttttcccag 60 tcacgacgtt gtaaaacgac ggccagtgaa ttcgagctcg gtacccatct gacgaagcaa 120 caagcgtaaa ctcactgctt ggcatgacgt atggcgatgg ctctaagaaa acgaacagcg 180 aactcgtcct taaagcctgg gatgctggta acgtgtccat tgcgcgtgcg aacgcagaaa 240 acaatatgag cttcgtagct atgggatgta tctctgtaat tgcccaggat gaaacaatta 300 acgccatcat gaatgccggt gctcgtggta ttggtgtgtc ggaacgtttt cttctggtgc 360 gtgaaaagtc atttcttggc gatcgcgtgt ttgttgatga gaatggtaat tcaacatatg 420 aggctattga tggtgggcta aaggctgatt acttccgact cgttcatgag attatgaatg 480 aagtagaagt gaaactaact gtaagtgctt cttcaatgcg ttacctgaac cgtgcgcgcc 540 aggaaatgga gccgcatctt ggtgacggag gtaagtattc tcacacaatg ttgcgcggtg 600 ctctaggtaa gtttgataag caagcaatcc gtatcgcttc tgttctgcac gttattcgta 660 actggttcgc accagcaggc tccagccctc ataaatccag agagattgaa ctggagacca 720 tgcangaagc gggtatgaat tttcacgaac taagtaaaac ttatttgtca tctgccaacg 780 ctgctggtca cgctggtgac catgctgaga tgaataaact gattgatggg atctcctaga 840 gtccacctgc agg 853 <210> 35 <211> 856 <212> DNA <213> Bacteriophage YS01 <400> 35 nttttgcggc aatgcgattt tatgcagctg gcacgacagg gtttcccgac tggaaagcgg 60 gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 120 actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag 180 gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcaggtcgac tctagaggat 240 cccatcaatc agcttattca tctcagcatt gtcaccagcg tgaccagcag cgtttgcaga 300 tgacaaataa gttttactta gttcgttgaa aatcataacc gcttcctgca ttgtctccag 360 ttcaatctct ctggatttat gagggcttga gcctgctggt gcgaaccagt tacgaataac 420 gtgcagaaca gaagcgatac ggattgcttg cttatcaaac ttacctagag caccgcgcaa 480 cattgtgtga gaatacttac ctccgtcacc aagatgcggc tccatttcct ggcgcgcacg 540 gttcaggtaa cgcattgaag aagcacttac agttagtttc acttctactt cattcataat 600 ctcatgaacg agtcggaagt aatcagcctt tagcccacca tcaatagcct catatgttga 660 attaccattc tcatcaacaa acacgcgatc gccaagaaat gacttttcac gcaccagaag 720 aaaacgttcc gacacaccaa taccacgagc accggcattc atgatggcct taaatgtttc 780 atcctgggca attacagaaa tacatcccat agctacgaag ctcatattgg tttctgcggt 840 cgcacgcgca atggac 856 <210> 36 <211> 855 <212> DNA <213> Bacteriophage YS01 <400> 36 nnnggggcgt cagggaggct gcaggcgata agttgggtaa cgccangggt tttcccagtc 60 acgacgttgt aaaacgacgg ccagtgaatt cgagctcggt accatcagca aaaggacact 120 tggggcgctt aacttaataa ctgacgttgt tgctggtacg attgagcaga taaggtcgtt 180 aataaactcc ggtgatatcc cgctatccac acaaacttat ccctcgcgat tagcgtagaa 240 actggacccc aaacctgagt aatcagtgcc gccacaactt tgtcatcttt cttcttcgca 300 cccagcttgc cgtattcgtc gtttagctta tcagcctggc gcttaactgc attaaagtat 360 gcgtcgttta atccaaacat tattcaccat cctcgtaatt tgaaccagct tcgcgtttat 420 ctccatcaca agtgaattcg cgcccaacca gcaaattgaa gaaaataagg tcatccaata 480 tctcatcttc gtatgggatt gctacgggga tcctctagag tcgacctgca ggcatgcaag 540 cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc 600 acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta 660 actcacatta attgcgttgc gctcactgcc cgctttccag tcnggaaacc tgtcgtgcca 720 gctgcattaa tgaaatcgnc aacgcgaatt nccgacagta agacgggtaa gcctgntgat 780 gataccgctg ccttactggg tgcattagcc agtctgaatg acctgtcacn ggataatccg 840 aagtggtcag actgg 855 <210> 37 <211> 845 <212> DNA <213> Bacteriophage YS01 <400> 37 nnngggccgg tgttgcattt tatgcagctg gccgacaggt ttcccgactg gaaagcgggc 60 agtgagcgca acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac 120 tttatgcttc cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga 180 aacagctatg accatgatta cgccaagctt gcatgcctgc aggtcgactc tagaggatcc 240 ccgtagcaat cccatacgaa gatgagatat tggatgacct tattttcttc aatttgctgg 300 ttgggcgcga attcacttgt gatggagata aacgcgaagc tggttcaaat tacgaggatg 360 gtgaataatg tttggattaa acgacgcata ctttaatgca gttaagcgcc aggctgataa 420 gctaaacgac gaatacggca agctgggtgc gaagaagaaa gatgacaaag ttgtggcggc 480 actgattact caggtttggg gtccagtttc tacgctaatc gcgagggata agtttgtgtg 540 gatagcggga tatcaccgga gtttattaac gaccttatct gctcaatcgt accagcaaca 600 acgtcagtta ttaagttaag cgccccaagt gtccttttgc tgatggtacc gagctcgaat 660 tcactggccg tcgttttaca acgtcgtgac tggaaaaacc tggcgttacc caacttaatc 720 gccttgcagc acatcccccc ttcgncagct ggcgaatagc gaaaaggccc gcacgatcgc 780 ctttccaaca gtgcgcagcc tgatgccaat gcggctgatg cgtatttctc ttaccatctg 840 ggcga 845 <210> 38 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> M13 forward primer <400> 38 gtaaaacgac ggccag 16 <210> 39 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13 reverse primer <400> 39 caggaaacag ctatgac 17 <110> CJ Corporation <120> Escherichia coil specific bactriophage and method of preventing          or controlling E. coli contamination using the same <160> 39 <170> KopatentIn 1.71 <210> 1 <211> 236 <212> PRT <213> Bacteriophage YS01 <220> <221> PEPTIDE (222) (1) .. (236) <220> <221> PEPTIDE (222) (1) .. (236) <223> tail protein <400> 1 Lys Val Asn Asp Ile Gly Thr Ser Leu Ala Gly Gly Ile Pro Ile Trp   1 5 10 15 Leu Ile Ala Ile Gln Gln Gly Gly Gln Ile Lys Asp Ser Phe Gly Gly              20 25 30 Ile Ala Asn Thr Ala Arg Phe Ala Leu Ala Ala Ile Asn Pro Leu Thr          35 40 45 Ala Val Val Gly Thr Leu Gly Leu Ala Leu Gly Ala Leu Gly Val Ala      50 55 60 Ala Tyr Gln Ala Asp Lys Asn Thr Arg Gly Leu Ala Ser Thr Ile Thr  65 70 75 80 Leu Val Gly Asn Ser Thr Ile Thr Ser Thr Ala Gln Ile Asn Gln Val                  85 90 95 Val Asp Gly Ile Glu Arg Ser Thr Leu Ala Thr Arg Gly Leu Ile Gln             100 105 110 Glu Ile Ala Asn Ser Leu Val Ala Asn Gly Asn Leu Thr Leu Thr Gln         115 120 125 Ile Asp Lys Ile Thr Lys Ala Thr Ala Gln Trp Ala Thr Val Thr Ser     130 135 140 Thr Asp Ser Lys Thr Ile Leu Gly Tyr Phe Asp Gln Ile Thr Lys Asp 145 150 155 160 Pro Ile Gln Gly Leu Ile Ala Leu Asp Lys Gln Phe Asn Phe Leu Gln                 165 170 175 Ser Gly Gln Leu Lys Tyr Ile Glu Ser Ile Arg Lys Thr Ala Gly Glu             180 185 190 Thr Glu Ala Val Thr Ala Ala Thr Glu Leu Phe Ala Asn Val Met Glu         195 200 205 Asn Arg Leu Ala Asp Val Ala Leu Ser Leu Asn Pro Leu Glu Ser Ala     210 215 220 Trp Asn Ser Phe Arg Lys Phe Val Ser Glu Ile Trp 225 230 235 <210> 2 <211> 766 <212> DNA <213> Bacteriophage YS01 <400> 2 atcagtgata cttaggtctg tgccggatac cattaaacac ctgacaggta aatcacctac 60 cagaataata ctgtcgtaag gctggaatgc tggaatcaag gcctttgctt tttactcgag 120 gccttcgcaa ctatttgaag cgatttcaac taactccatt tgaatctcct gattatttat 180 ggtgcctacc attctatcag ataaaatgca ataaaaaacc tcccgaagga ggcttattta 240 attaacgcca aacttatttc tgtttaacct gaacctctac cagaatgcca tcaacactat 300 cgtcttgagt tggcattgcg ccggctgctg ttgctgctgc gatatagcct ccagcaaaag 360 tccaaccagt agtgaaagct gccgcaccag cgactgctgc atcaacaacc aaacctgcgg 420 cattgataaa tactggttta ccaacggctc ggtttgcggc ggtaattgct gctgctgccc 480 ttacccagat acgaccagca gtcattacgt taacagcctc ctgagctttg gctgtgccat 540 ctggagtctc ataatgagaa cgaacaacaa caccgtaagc gctaccttct tcatttactg 600 cggtaacaac cttgtgacca tcaatctcag gagcggtagt tacggaaacc gccacaccaa 660 cagggattgc atcagagcca ccaactacac aagcgccatc gatattatac agggaagtat 720 cagctaccat acctgccagt gctacagaac gaattgccat ttatct 766 <210> 3 <211> 747 <212> DNA <213> Bacteriophage YS01 <400> 3 atcattgacc ttgacccgcg cgcttgcctg aagaaaatta aaaagtaagg agatagataa 60 atggcaattc gttctgtagc actggcaggt atggtagctg atacttccct gtataatatc 120 gatggcgctt gtgtagttgg tggctctgat gcaatccctg ttggtgtggc ggtttccgta 180 actaccgctc ctgagattga tggtcacaag gttgttaccg cagtaaatga agaaggtagc 240 gcttacggtg ttgttgttcg ttctcattat gagactccag atggcacagg caaagctcag 300 gaggctgtta acgtaatgac tgctggtcgt atctgggtaa gggcagcagc agcaattacc 360 gccgcaaacc gagccgttgg taaaccagta tttatcaatg ccgcaggttt ggttgttgat 420 gcagcagtcg ctggtgcggc agctttcact actggttgga cttttgctgg aggctatatc 480 gcagcagcaa cagcagccgg cgcaatgcca actcaagacg atagtgttga tggcattctg 540 gtagaggttc aggttaaaca gaaataagtt tggcgttaat taaataagcc tccttcggga 600 ggttttttat tgcattttat ctgatagaat ggtangcacc ataaataatc angagattca 660 natggagtta gttgaaatcg cttcaaatag ttgcgaaagc ctcgagtaan aaagcaaggc 720 cttgattcca gcattccagc cttacga 747 <210> 4 <211> 772 <212> DNA <213> Bacteriophage YS01 <400> 4 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcaaa 600 ccttgcggta ttagcaatgc caccaaaact atccttaatc tgaccgccct gctgaattgc 660 aatgagccag attgggatgc caccagcaag ggaagttccg atatcattga ccttgacccg 720 cgcgcttgcc tgaagaaatt aaaaagtaag gagatagata aatggcaatt cc 772 <210> 5 <211> 733 <212> DNA <213> Bacteriophage YS01 <400> 5 atctgacgaa gcaacaagcg taaactcact gcttggcatg acgtatggcg atggctctaa 60 gaaaacgaac agcgaactcg tccttaaagc ctgggatgct ggtaacgtgt ccattgcgcg 120 tgcgaacgca gaaaacaata tgagcttcgt agctatggga tgtatctctg taattgccca 180 ggatgaaaca attaacgcca tcatgaatgc cggtgctcgt ggtattggtg tgtcggaacg 240 ttttcttctg gtgcgtgaaa agtcatttct tggcgatcgc gtgtttgttg atgagaatgg 300 taattcaaca tatgaggcta ttgatggtgg gctaaaggct gattacttcc gactcgttca 360 tgagattatg aatgaagtag aagtgaaact aactgtaagt gcttcttcaa tgcgttacct 420 gaaccgtgcg cgccaggaaa tggagccgca tcttggtgac ggaggtaagt attctcacac 480 aatgttgcgc ggtgctctag gtaagtttga taagcaagca atccgtatcg cttctgttct 540 gcacgttatt cgtaactggt tcgcaccagc aggctcaagc cctcataaat ccagagagat 600 tgaactggag acaatgcang aagcggttat gattttcaac gaactaagta aaacttattt 660 gtcatctgca aacgctgctg gtcacgctgg tgacaatgct gagatgaata agctgattga 720 tatcagtgat act 733 <210> 6 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 6 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcaaa 600 ccttgcggta ttagcaatgc caccaaaact atccttaatc tgaccgccct gctgaattgc 660 aatgagccag attgngatgc caccagcaag ggaagttccg at 702 <210> 7 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 7 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttaa atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tgaaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctgggatg at 702 <210> 8 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 8 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga tatcacccgc atgattgatg 120 cgatcgagac tagcacccaa ggcttgcata ctgccactga tgtagcaatc ccatacgaag 180 atgagatatt ggatgacctt attttcttca atttgctggt tgggcgcgaa ttcacttgtg 240 atggagataa acgcgaagct ggttcaaatt acgaggatgg tgaataatgt ttggattaaa 300 cgacgcatac tttaatgcag ttaagcgcca ggctgataag ctaaacgacg aatacggcaa 360 gctgggtgcg aagaagaaag atgacaaagt tgtggcggca ctgattactc aggtttgggg 420 tccagtttct acgctaatcg cgagggataa gtttgtgtgg atagcgggat 470 <210> 9 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 9 atcccgctat ccacacaaac ttatccctcg cgattagcgt agaaactgga ccccaaacct 60 gagtaatcag tgccgccaca actttgtcat ctttcttctt cgcacccagc ttgccgtatt 120 cgtcgtttag cttatcagcc tggcgcttaa ctgcattaaa gtatgcgtcg tttaatccaa 180 acattattca ccatcctcgt aatttgaacc agcttcgcgt ttatctccat cacaagtgaa 240 ttcgcgccca accagcaaat tgaagaaaat aaggtcatcc aatatctcat cttcgtatgg 300 gattgctaca tcagtggcag tatgcaagcc ttgggtgcta gtctcgatcg catcaatcat 360 gcgggtgata tcagtgatac ttaggtctgt gccggatacc attaaacacc tgacaggtaa 420 atcacctacc agaataatac tgtcgtaagg ctggaatgct ggaatcaagg 470 <210> 10 <211> 101 <212> DNA <213> Bacteriophage YS01 <400> 10 atcagtgata cttaggtctg tgccggatac cattaaacac ctgacaggta aatcacctac 60 cagaataata ctgtcgtaag gctggaatgc tggaatcaag g 101 <210> 11 <211> 101 <212> DNA <213> Bacteriophage YS01 <400> 11 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga t 101 <210> 12 <211> 776 <212> DNA <213> Bacteriophage YS01 <400> 12 atcctacttg gtgagtttgc aatagcggca accaagacac ttcagtcaat acctggactt 60 ggcgatttag gtaataaagc aatcgctgag cagcaaaaga ttgtcgatgc tgctaagaag 120 caaaacattg agttagcgaa aagcatagct gagcgagatg ctagaatcag gaagggtgaa 180 cttggttatg ttgagggcaa caataatacc aacctgagcg gcaataacgc atcaagcgat 240 aaggagtttg cagcaaggaa gaaggcgctt gcggatgagt atgatgcgat aaagaaagcg 300 aggagtgaga ggagcaaggc agtaaaagaa gaaagggatt taactttatc ttatgaatct 360 ggtgttcttg ctcttcaggc tcagctgaag gttttacaag agcacaggac gataaacgat 420 gtaataagca acgaacgcaa gcagctattc caggaagaag ctaagtttgc aatacttgag 480 caaaggaaag cggatggcac gcttacaaaa tcacaggcta agctacttgc gcagaagaat 540 atcattcttg aacaagctaa acagaaggct gaacttggtg accagattgt acttcaggag 600 aggtcanaca agttacttga tgacaacctt aagaagactg tgcagattaa gaatgaggca 660 aataatgttt cgcttgctgc taatttatct gacaggnaga agcagagagc aaaagagctt 720 caggcacttc aatcaatcag aataacaaag tggctctgta gatgacactg attttc 776 <210> 13 <211> 715 <212> DNA <213> Bacteriophage YS01 <400> 13 ccttgctcca tactcttcgc cacggaatgt aattgtcttg gctggtagtg actgaccaga 60 tgcctgagct tgcatgattt cctcgggcgt gtatgagatg ttctccccat gaaacctgta 120 aacccttgcg ccgaacttac tgccgtcaac ctcaataagc gtaaccacct cgccagggaa 180 aagtgactga agctggttct caaactttac acttgccata ttctctccaa taaaaaaggc 240 cctcaatggg ccttagttta actcattgac gtgaaaactt cagtaaattg catgctaaca 300 gtctgaactt ctttcgtgct tggcgagacg ctaatgctat cctgctgaat aaaaaacagc 360 tttagttcgc cctgcggtgt agtccatgcg aaaggtttta cgatgtgatc aaagcagaag 420 ttcattaccg cctcccaatc acgaccgacg tagctaacag tatatgtcct cttgttagtc 480 ctgtatccac cagttccgcg ctgctgataa ccattcgcaa atgagacaac cctaacattg 540 ttggcgttag taaatgaaga gcctccattg agaaacattt aacacaaatt taaagttgca 600 atgncattta aatccttagg gcccgaaccc cattaaatag gtgtaccgcg caagaagcgt 660 acgctctgcc gcctgctgga tgatttgctg attcctcagc acgataactt actcc 715 <210> 14 <211> 783 <212> DNA <213> Bacteriophage YS01 <400> 14 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttan atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tgaaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctgggatg atatcgaaat cctgcagccc 720 gggggatcca ctagntctag agcggccgcc accgcggtga agctccagct tttgttccct 780 tta 783 <210> 15 <211> 701 <212> DNA <213> Bacteriophage YS01 <400> 15 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgcaacac caagagcgcc 540 aagagctaaa cccaaagtcc caacaactgc tgttaatggg ttaattgctg ctaatgcana 600 ccttgncgta ttagcaatgc caccaaaact atccttaatc tgnaacgcct gctgaattgc 660 atgagccaga ttgggatgcc acccagcagg gaaagtccga t 701 <210> 16 <211> 721 <212> DNA <213> Bacteriophage YS01 <400> 16 atcaatcagc ttattcatct cagcattgtc accagcgtga ccagcagcgt ttgcagatga 60 caaataagtt ttacttagtt cgttgaaaat cataaccgct tcctgcattg tctccagttc 120 aatctctctg gatttatgag ggcttgagcc tgctggtgcg aaccagttac gaataacgtg 180 cagaacagaa gcgatacgga ttgcttgctt atcaaactta cctagagcac cgcgcaacat 240 tgtgtgagaa tacttacctc cgtcaccaag atgcggctcc atttcctggc gcgcacggtt 300 caggtaacgc attgaagaag cacttacagt tagtttcact tctacttcat tcataatctc 360 atgaacgagt cggaagtaat cagcctttag cccaccatca atagcctcat atgttgaatt 420 accattctca tcaacaaaca cgcgatcgcc aagaaatgac ttttcacgca ccagaagaaa 480 acgttccgac acaccaatac cacgagcacc ggcattcatg atggcgttaa ttgtttcatc 540 ctgngcaatt acagagatac atcccatagc tacgaagctc atattgtttt ctgcgttcgc 600 acgcgcaatg gacacgttac cagcatccca ggctttaagg acgagttcgc tgttcgtttt 660 cttagagcca tcgccatacg tcatgccaag cagtgagttt acgcttgntg cttcgtcaga 720 t 721 <210> 17 <211> 721 <212> DNA <213> Bacteriophage YS01 <400> 17 atctgacgaa gcaacaagcg taaactcact gcttggcatg acgtatggcg atggctctaa 60 gaaaacgaac agcgaactcg tccttaaagc ctgggatgct ggtaacgtgt ccattgcgcg 120 tgcgaacgca gaaaacaata tgagcttcgt agctatggga tgtatctctg taattgccca 180 ggatgaaaca attaacgcca tcatgaatgc cggtgctcgt ggtattggtg tgtcggaacg 240 ttttcttctg gtgcgtgaaa agtcatttct tggcgatcgc gtgtttgttg atgagaatgg 300 taattcaaca tatgaggcta ttgatggtgg gctaaaggct gattacttcc gactcgttca 360 tgagattatg aatgaagtag aagtgaaact aactgtaagt gcttcttcaa tgcgttacct 420 gaaccgtgcg cgccaggaaa tggagccgca tcttggtgac ggaggtaagt attctcacac 480 aatgttgcgc ggtgctctag gtaagtttga taagcaagca atccgtatcg cttctgttct 540 gcacgttatt cgtaactggt tcgcaccagc aggctcaagc cctcataaat ccagagagat 600 tgaactggag acaatgcagg aagcggttat gattttcaac gaactaagta aaacttattt 660 gtcatctgca aacgctgctg gtcacgctgg tgacaatgct gagatgaata agctgattga 720 t 721 <210> 18 <211> 342 <212> DNA <213> Bacteriophage YS01 <400> 18 cgagatggtt aagcaagcgc taaagtctga agataagcaa ttcagcgttt cattaactaa 60 gattgaaggg attcttggta atgaagaggg gtcgattaag aagctgaaga gctcgtacat 120 ttataacaca acggctcgta tgcctgagct tagggatgct ggactgaaag ctactcacca 180 ttacgatgaa gatgagtttg aaaatccatt tggtgaaaca attctatctg gagacaagaa 240 gttagttatt aaactggtcc ctggaacggc aaatattggt atcaggaaga agaccaacga 300 cgcaatcaag ttggaggcaa tcactgaatt caaggctaag at 342 <210> 19 <211> 342 <212> DNA <213> Bacteriophage YS01 <400> 19 atcttagcct tgaattcagt gattgcctcc aacttgattg cgtcgttggt cttcttcctg 60 ataccaatat ttgccgttcc agggaccagt ttaataacta acttcttgtc tccagataga 120 attgtttcac caaatggatt ttcaaactca tcttcatcgt aatggtgagt agctttcagt 180 ccagcatccc taagctcagg catacgagcc gttgtgttat aaatgtacga gctcttcagc 240 ttcttaatcg acccctcttc attaccaaga atcccttcaa tcttagttaa tgaaacgctg 300 aattgcttat cttcagactt tagcgcttgc ttaaccatct cg 342 <210> 20 <211> 828 <212> DNA <213> Bacteriophage YS01 <400> 20 actatgggcg attgggtacc gggcccccct cgaggtcatc attgaccttg acccgcgcgc 60 ttgcctgaag aaaattaaaa agtaaggaga tagataaatg gcaattcgtt ctgtagcact 120 ggcaggtatg gtagctgata cttccctgta taatatcgat ggcgcttgtg tagttggtgg 180 ctctgatgca atccctgttg gtgtggcggt ttccgtaact accgctcctg agattgatgg 240 tcacaaggtt gttaccgcag taaatgaaga aggtagcgct tacggtgttg ttgttcgttc 300 tcattatgag actccagatg gcacagccaa agctcaggag gctgttaacg taatgactgc 360 tggtcgtatc tgggtaaggg cagcagcagc aattaccgcc gcaaaccgag ccgttggtaa 420 accagtattt atcaatgccg caggtttggt tgttgatgca gcagtcgctg gtgcggcagc 480 tttcactact ggttggactt ttgctggagg ctatatcgca gcagcaacag cagccggcgc 540 aatgccaact caagacgata gtgttgatgg cattctggta gaggttcagg ttaaacagaa 600 ataagtttgg cgttaattaa ataagcctcc ttcgggaggt tttttattgc attttatctg 660 atagaatggt aggcaccata aataatcagg agattcanat ggagttagtt gaaatcgctt 720 caatagttgc cgaggatcga ttcctgcagc ccggggatca ctagttctag agcggcgccc 780 acgcggtgga gctccagctt tgtcccttag tgaggttaat ttcagctt 828 <210> 21 <211> 736 <212> DNA <213> Bacteriophage YS01 <400> 21 ccttcgcaac tatttgaagc gatttcaact aactccattt gaatctcctg attatttatg 60 gtgcctacca ttctatcaga taaaatgcaa taaaaaacct cccgaaggag gcttatttaa 120 ttaacgccaa acttatttct gtttaacctg aacctctacc agaatgccat caacactatc 180 gtcttgagtt ggcattgcgc cggctgctgt tgctgctgcg atatagcctc cagcaaaagt 240 ccaaccagta gtgaaagctg ccgcaccagc gactgctgca tcaacaacca aacctgcggc 300 attgataaat actggtttac caacggctcg gtttgcggcg gtaattgctg ctgctgccct 360 tacccagata cgaccagcag tcattacgtt aacagcctcc tgagctttgg ctgtgccatc 420 tggagtctca taatgagaac gaacaacaac accgtaagcg ctaccttctt catttactgc 480 ggtaacaacc ttgtgaccat caatctcagg agcggtagtt acggaaaccg ccacaccaac 540 agggattgca tcagagccac caactacanc agcgccatcg atattataca ggggagtatc 600 agctaccata cctgccagtg ctacagaacg aaatgcccat tatctatctc cctacttttt 660 aattttcttc anngcagcgc gcgggtcaag gtcaatgatg accctcgagg gggggcccgg 720 gtaccaattt cgcctt 736 <210> 22 <211> 783 <212> DNA <213> Bacteriophage YS01 <400> 22 gtagaactaa gtaatgatga ggttattgag caaatcaaga aagatggtaa atgggttaat 60 cttgaagagc acggaaaata cataaagaca aaaacgcttt acgtgacgcg cgttaaccac 120 aaatctggcg ttaagaagga tttcaaagaa ggaaagcgct atcaggtcaa tatgcacagc 180 ggcatgggcc aatcagctgg ttacatttac gatgaagatg gtaatgcatg gcagctatat 240 cgcagtgaag atgttggatt ccacacattg tgtggcacat attactttga ggcacaatac 300 aaatgattca tgaactaaag atactaccaa tccatttcga gccagttgag gatggcctta 360 agttagctga acttagaaaa aatgatagaa atttttccat aggagacaag ctaatactta 420 aagagttttc agatggagaa tacacaggaa gggttgttat aaaggaagtt ttacatatag 480 cagatgtttc cgcttatctt catggatacg ttttgctttc aatgcattaa tatcatttta 540 gacaatcaga tttaccatag gtgcgttaac attagcgcga caactaagga gttttttaat 600 gtttgatttc aacgaagata agctatctgt tgaacaagtt atggncattg ccgcgaaacg 660 acaccttcac cgcttcgcgt ggctattaat gctaaatggt atcgacaatc tcaatctttc 720 tggaaacacc agtcgagatt gacgctggta aatgacagta cccagttatc tcgctaggta 780 cga 783 <210> 23 <211> 739 <212> DNA <213> Bacteriophage YS01 <400> 23 atctaagtat ttcgatataa aagatgtaca gagatgttgg ctgctgagtt ccgtgatact 60 caacagtaaa gcgcccaagc atagcggcag acacgcaacc aagaaagtgc atgtaagcgg 120 aagactcggg aaactgaact gaacgagcaa tattagctga gagcttacca actacatcaa 180 tgtcgttacc tagcgagata actgggtact tgtcattacc agcgtcaatc tcgactggtg 240 ttttccagaa agattgagat tgtcgataac cattagcatt aatagccacg cgaagcggtg 300 gaaggttgtc gttcgcggca attgccataa cttgttcaac agatagctta tcttcgttga 360 aatcaaacat taaaaaactc cttagttgtc gcgctaatgt taacgcacct atggtaaatc 420 tgattgtcta aaatgatatt aatgcattga aagcaaaacg tatccatgaa gataagcgga 480 aacatctgct atatgtaaaa cttcctttat aacaaccctt cctgtgtatt ctccatctga 540 aaactcttta agtattagct tgtctcctat ggaaaaattt ctatcatttt ttctaagttc 600 agctaacttt agggcatcct caactggctc gaaatggnat ggtagtatct ttagttcatg 660 aatcatttgt aatgtgcctc caagtaatat ggggcacacc atgtgtggaa tcccacatcc 720 tccctgcgat ataactgcc 739 <210> 24 <211> 470 <212> DNA <213> Bacteriophage YS01 <400> 24 ccttgattcc agcattccag ccttacgaca gtattattct ggtaggtgat ttacctgtca 60 ggtgtttaat ggtatccggc acagacctaa gtatcactga tatcacccgc atgattgatg 120 cgatcgagac tagcacccaa ggcttgcata ctgccactga tgtagcaatc ccatacgaag 180 atgagatatt ggatgacctt attttcttca atttgctggt tgggcgcgaa ttcacttgtg 240 atggagataa acgcgaagct ggttcaaatt acgaggatgg tgaataatgt ttggattaaa 300 cgacgcatac tttaatgcag ttaagcgcca ggctgataag ctaaacgacg aatacggcaa 360 gctgggtgcg aagaagaaag atgacaaagt tgtggcggca ctgattactc aggtttgggg 420 tccagtttct acgctaatcg cgagggataa gtttgtgtgg atagcgggat 470 <210> 25 <211> 735 <212> DNA <213> Bacteriophage YS01 <400> 25 atcccgctat ccacacaaac ttatccctcg cgattagcgt agaaactgga ccccaaacct 60 gagtaatcag tgccgccaca actttgtcat ctttcttctt cgcacccagc ttgccgtatt 120 cgtcgtttag cttatcagcc tggcgcttaa ctgcattaaa gtatgcgtcg tttaatccaa 180 acattattca ccatcctcgt aatttgaacc agcttcgcgt ttatctccat cacaagtgaa 240 ttcgcgccca accagcaaat tgaagaaaat aaggtcatcc aatatctcat cttcgtatgg 300 gattgctaca tcagtggcag tatgcaagcc ttgggtgcta gtctcgatcg catcaatcat 360 gcgggtgata tcagtgatac ttaggtctgt gccggatacc attaaacacc tgacaggtaa 420 atcacctacc agaataatac tgtcgtaagg ctggaatgct ggaatcaagg atcaagctta 480 tcgataccgt cgacctcgag gggggggccc ggtacccaat tcgccctata gtgagtcgta 540 ttacaattca ctgggcgtcg ttttacaacg tcgtgactgg gaaaaaccct ggcgttacca 600 acttaatcgg cttgcagcac atcccccttt tcgcagctgg cgtaataccg aagaaggccg 660 caacgatcgc ccttcccaaa catttgccaa cctgaatgcc aaatgggaag cgccctggaa 720 acgcgcatta acccg 735 <210> 26 <211> 724 <212> DNA <213> Bacteriophage YS01 <400> 26 atcattgacc ttgacccgcg cgcttgcctg aagaaaatta aaaagtaagg agatagataa 60 atggcaattc gttctgtagc actggcaggt atggtagctg atacttccct gtataatatc 120 gatggcgctt gtgtagttgg tggctctgat gcaatccctg ttggtgtggc ggtttccgta 180 actaccgctc ctgagattga tggtcacaag gttgttaccg cagtaaatga agaaggtagc 240 gcttacggtg ttgttgttcg ttctcattat gagactccag atggcacagg caaagctcag 300 gaggctgtta acgtaatgac tgctggtcgt atctgggtaa gggcagcagc agcaattacc 360 gccgcaaacc gagccgttgg taaaccagta tttatcaatg ccgcaggttt ggttgttgat 420 gcagcagtcg ctggtgcggc agctttcact actggttgga cttttgctgg aggctatatc 480 gcagcagcaa cagcagccgg cgcaatgcca actcaagacg atagtgttga tggcattctg 540 gtagaggttc aggttaaaca gaaataagtt tggcgttaat taaataagcc tccttcggga 600 ggttttttat tgcattttat ctgatagaat ggtaggcacc atanataatc aggagattca 660 aatggagtta gttgaaatcg cttcaaatag ttgcgaaaga tcttttatat cgaaatactt 720 agat 724 <210> 27 <211> 727 <212> DNA <213> Bacteriophage YS01 <400> 27 atctaagtat ttcgatataa aagatccttc gcaactattt gaagcgattt caactaactc 60 catttgaatc tcctgattat ttatggtgcc taccattcta tcagataaaa tgcaataaaa 120 aacctcccga aggaggctta tttaattaac gccaaactta tttctgttta acctgaacct 180 ctaccagaat gccatcaaca ctatcgtctt gagttggcat tgcgccggct gctgttgctg 240 ctgcgatata gcctccagca aaagtccaac cagtagtgaa agctgccgca ccagcgactg 300 ctgcatcaac aaccaaacct gcggcattga taaatactgg tttaccaacg gctcggtttg 360 cggcggtaat tgctgctgct gcccttaccc agatacgacc agcagtcatt acgttaacag 420 cctcctgagc tttggctgtg ccatctggag tctcataatg agaacgaaac acaacaccgt 480 aagcgctacc ttcttcattt actgcggtaa caaccttgtg accatncatc tcangagcgg 540 tagttacgga aaccgccaca ccaacaggga attgcatcag aaccaccaac tacacaaggc 600 gcatcgatat tatacangga agtatcagct accataactg ccagtgctac gaaacaaatg 660 gcctttatct atctccttac cttttaaatt tcctcaagga agcgcgcggg tcaaggtcaa 720 tgatatc 727 <210> 28 <211> 702 <212> DNA <213> Bacteriophage YS01 <400> 28 atcggaactt cccttgctgg tggcatccca atctggctca ttgcaattca gcagggcggt 60 cagattaagg atagttttgg tggcattgct aataccgcaa ggtttgcatt agcagcaatt 120 aacccattaa cagcagttgt tgggactttg ggtttagctc ttggcgctct tggtgttgca 180 gcttaccagg cagacaagaa tactcgagga ctagcatcta cgataacgtt ggttggcaac 240 tcaactatca cgtctacagc gcagataaat caggttgttg atggaattga gagatcaaca 300 ctagctactc gcggtcttat tcaggagata gcgaacagcc ttgtagcaaa cggcaaccta 360 acgcttacgc agatagataa gataactaaa gcaactgctc agtgggcaac tgtaacatca 420 acggattcaa agacaatact tgggtacttt gatcaaatca caaaagaccc gatacaaggc 480 ttgattgcgc ttgataagca atttaacttc cttcagtccg ggcagcttaa atacattgag 540 agcatcagga agacggctgg agaaacagag gcagtaaccg cagctactga gttattcgct 600 aacgttatgg aaaacaggct tgcggacgtt gcgctaagcc tcaatcctct tngaagtgca 660 tggaatagct tcaggaagtt tgtgagtgag atctnggatg at 702 <210> 29 <211> 693 <212> DNA <213> Bacteriophage YS01 <400> 29 atcatcccag atctcactca caaacttcct gaagctattc catgcacttt caagaggatt 60 gaggcttagc gcaacgtccg caagcctgtt ttccataacg ttagcgaata actcagtagc 120 tgcggttact gcctctgttt ctccagccgt cttcctgatg ctctcaatgt atttaagctg 180 cccggactga aggaagttaa attgcttatc aagcgcaatc aagccttgta tcgggtcttt 240 tgtgatttga tcaaagtacc caagtattgt ctttgaatcc gttgatgtta cagttgccca 300 ctgagcagtt gctttagtta tcttatctat ctgcgtaagc gttaggttgc cgtttgctac 360 aaggctgttc gctatctcct gaataagacc gcgagtagct agtgttgatc tctcaattcc 420 atcaacaacc tgatttatct gcgctgtaga cgtgatagtt gagttgccaa ccaacgttat 480 cgtagatgct agtcctcgag tattcttgtc tgcctggtaa gctgncacac caagagcgcc 540 aagagctaaa ccccaagtcc aacactgctg ttaatggngt attgctgcta tgcaaccttt 600 gcgtatagca atgcacaaaa ctatcctaat ctgaccgcct gctgaatgca tgagcagatt 660 ggatgccaca gcaaggaagt ccgattcagc tat 693 <210> 30 <211> 856 <212> DNA <213> Bacteriophage YS01 <400> 30 nnnggggcgt cagggaggct gcaggcgata agttgggtaa cgccangggt tttcccagtc 60 acgacgttgt aaaacgacgg ttcgtgaatt cgagctcggt acccatccta cttggtgagt 120 ttgcaatagc ggcaaccaag acacttcagt caatacctgg acttggcgat ttaggtaata 180 aagcaatcgc tgagcagcaa aagattgtcg atgctgctaa gaagcaaaac attgagttag 240 cgaaaagcat agctgagcga gatgctagaa tcaggaaggg tgaacttggt tatgttgagg 300 gcaacaataa taccaacctg agcggcaata acgcatcaag cgataaggag tttgcagcaa 360 ggaagaaggc gcttgcggat gagtatgatg cgataaagaa agcgaggagt gagaggagca 420 aggcagtaaa agaagaaagg gatttaactt tatcttatga atctggtgtt cttgctcttc 480 aggctcagct gaaggtttta caagagcaca ggacgataaa cgatgtaata agcaacgaac 540 gcaagcagct attccaggaa gaagctaagt ttgcaatact tgagcaaagg aaagcggatg 600 gcacgcttac aaaatcacag gctaagctac ttgcgcagaa gaatatcatt cttgaacaag 660 ctaaacagaa ggctgaactt ggtgaccaga ttgtacttca ggagaggtca aacaagttac 720 ttgatgacaa cccttagaag actgtgcaga ttaagaatga ggncaataat ggttcgcttg 780 ctgctaattt atctgacagg nagaagcaga agagcaaaga gcttcaggca cttcaatcca 840 tcagataaac aaggtg 856 <210> 31 <211> 869 <212> DNA <213> Bacteriophage YS01 <400> 31 nnnnnnaagt atgtgcgatc ttatgcagct ggcacgacag gtttcccgac tggaaagcgg 60 gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 120 actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag 180 gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcaggtcgac tctagaggat 240 ccccccttgc tccatactct tcgccacgga atgtaattgt cttggctggt agtgactgac 300 cagatgcctg agcttgcatg atttcctcgg gcgtgtatga gatgttctcc ccatgaaacc 360 tgtaaaccct tgcgccgaac ttactgccgt caacctcaat aagcgtaacc acctcgccag 420 ggaaaagtga ctgaagctgg ttctcaaact ttacacttgc catattctct ccaataaaaa 480 aggccctcaa tgggccttag tttaactcat tgacgtgaaa acttcagtaa attgcatgct 540 aacagtctga acttctttcg tgcttggcga gacgctaatg ctatcctgct gaataaaaaa 600 cagctttagt tcgccctgcg gtgtagtcca tgcgaaaggt tttacgatgt gatcaaagca 660 gaagttcatt accgcctccc aatcacgacc gacgtagcta acagtatatg tcctctntgt 720 agtcctgtat ccaccagttc cgcgctgctg ataaccattt cgcaatgaga caaccctaac 780 attgttggcg ttagtaaaat gagaagcctc cattgagaac attttaacac caattaaaag 840 tttgcaatgc cattttaaat cctttaggg 869 <210> 32 <211> 850 <212> DNA <213> Bacteriophage YS01 <400> 32 nnggggcgtc aggaggctca ggcgattagt tgggtaacgc cangggtttt cccagtcacg 60 acgttgtaaa acgacggcca gtgaattcga gctcggtacc cgtaaacaag tttatgataa 120 cgactgtctt gatcaagcac gtgcttacta gttggagtta cagcctcaat tccatctgag 180 tgaaggaaat caccaccaat cagtaaaact gccttagatg aatttggagc tttagcgacc 240 gcataatcaa aatattggtt aagcactctc tcagcaattt cggtgctgta gttttccccg 300 cactcagcat ggtgagccat tgcgccaatg tgcatatcaa atacagggta gaggctcaat 360 gtgtcttcgt agcttgattc actgagcggc tttggagtct cgcgagggac ttcatctgta 420 agagcctgaa caatctgctg aagcatctct tctagcttct cggcatcaat tgcagtctta 480 acccagcgca gcttctcatt gccttccgca tcaatcatgg ttgaagtgcc cttgactaaa 540 tatccatccg gcactagctt cttgatacct tcgttcccat gcccaatacc actcttagcc 600 aacttgctgc gacgaagttc aacgttgcga atgttcatac cgtacttctc tgcaatggcc 660 ttattagtca tgccattttt caactcttcg ataagctgct ctgtggaaat ctttgctact 720 gccattttta agtccttagt tcatcacgat aaaatataag atagtaaagc taaacagtgg 780 tactaatgct actagggctg cgtacttcat acaacctctt tcaccagtaa tcaattaaat 840 ccgcactaat 850 <210> 33 <211> 855 <212> DNA <213> Bacteriophage YS01 <400> 33 nnnnnnnggc agtggcgatc ttatgcagct ggcacgacag ggtttcccga ctggaaagcg 60 ggcagtgagc gcaacgcaat taatgtgagt tagctcactc attaggcacc ccaggcttta 120 cactttatgc ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca 180 ggaaacagct atgaccatga ttacgccaag cttgcatgcc tgcaggtcga ctctagagga 240 tccccatcac tgcgaagttg ccctgtcggt tgttaattcg cgcaagacct tcaggcgtag 300 tatcggatac cgggaacaca atatcacaca gcttctcaag tttttcctcg aggtcttctt 360 tttcttcaaa cagtgaagcc atctcagaag gtgacttctc ctgtttcatc tctttagata 420 gagccgacag tttagccata atctttttgc gatcacgttt acgcacttca ttcaaccgct 480 cagtctcagc aatcattggg gcaatcgaca gggagttgat agccgatttg ccagttgatg 540 gaggctggct agttactacc ctcgcaagta tgtcagggtt aagcctggtg tcacgataaa 600 cacgaatgag ttcctganag atcagggatt caaatttaag ataacgaagg gttagttatg 660 ttgggattag atttttcacc ctgagcatta tgatttagtt catggcagta gtggtgctaa 720 atttagagtg atacctatta ctgactggtt tccacctgac tatggggaat gtaatgcgaa 780 gaccaaagat ggtaagtggg gggcaaaatt accactcttc agctttgcgg tatctctggt 840 tgacaaacct gaacg 855 <210> 34 <211> 853 <212> DNA <213> Bacteriophage YS01 <400> 34 nnnnggggcg tcagggaggc tgcaggcgat taagttgggt aacgcncagg gttttcccag 60 tcacgacgtt gtaaaacgac ggccagtgaa ttcgagctcg gtacccatct gacgaagcaa 120 caagcgtaaa ctcactgctt ggcatgacgt atggcgatgg ctctaagaaa acgaacagcg 180 aactcgtcct taaagcctgg gatgctggta acgtgtccat tgcgcgtgcg aacgcagaaa 240 acaatatgag cttcgtagct atgggatgta tctctgtaat tgcccaggat gaaacaatta 300 acgccatcat gaatgccggt gctcgtggta ttggtgtgtc ggaacgtttt cttctggtgc 360 gtgaaaagtc atttcttggc gatcgcgtgt ttgttgatga gaatggtaat tcaacatatg 420 aggctattga tggtgggcta aaggctgatt acttccgact cgttcatgag attatgaatg 480 aagtagaagt gaaactaact gtaagtgctt cttcaatgcg ttacctgaac cgtgcgcgcc 540 aggaaatgga gccgcatctt ggtgacggag gtaagtattc tcacacaatg ttgcgcggtg 600 ctctaggtaa gtttgataag caagcaatcc gtatcgcttc tgttctgcac gttattcgta 660 actggttcgc accagcaggc tccagccctc ataaatccag agagattgaa ctggagacca 720 tgcangaagc gggtatgaat tttcacgaac taagtaaaac ttatttgtca tctgccaacg 780 ctgctggtca cgctggtgac catgctgaga tgaataaact gattgatggg atctcctaga 840 gtccacctgc agg 853 <210> 35 <211> 856 <212> DNA <213> Bacteriophage YS01 <400> 35 nttttgcggc aatgcgattt tatgcagctg gcacgacagg gtttcccgac tggaaagcgg 60 gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 120 actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag 180 gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcaggtcgac tctagaggat 240 cccatcaatc agcttattca tctcagcatt gtcaccagcg tgaccagcag cgtttgcaga 300 tgacaaataa gttttactta gttcgttgaa aatcataacc gcttcctgca ttgtctccag 360 ttcaatctct ctggatttat gagggcttga gcctgctggt gcgaaccagt tacgaataac 420 gtgcagaaca gaagcgatac ggattgcttg cttatcaaac ttacctagag caccgcgcaa 480 cattgtgtga gaatacttac ctccgtcacc aagatgcggc tccatttcct ggcgcgcacg 540 gttcaggtaa cgcattgaag aagcacttac agttagtttc acttctactt cattcataat 600 ctcatgaacg agtcggaagt aatcagcctt tagcccacca tcaatagcct catatgttga 660 attaccattc tcatcaacaa acacgcgatc gccaagaaat gacttttcac gcaccagaag 720 aaaacgttcc gacacaccaa taccacgagc accggcattc atgatggcct taaatgtttc 780 atcctgggca attacagaaa tacatcccat agctacgaag ctcatattgg tttctgcggt 840 cgcacgcgca atggac 856 <210> 36 <211> 855 <212> DNA <213> Bacteriophage YS01 <400> 36 nnnggggcgt cagggaggct gcaggcgata agttgggtaa cgccangggt tttcccagtc 60 acgacgttgt aaaacgacgg ccagtgaatt cgagctcggt accatcagca aaaggacact 120 tggggcgctt aacttaataa ctgacgttgt tgctggtacg attgagcaga taaggtcgtt 180 aataaactcc ggtgatatcc cgctatccac acaaacttat ccctcgcgat tagcgtagaa 240 actggacccc aaacctgagt aatcagtgcc gccacaactt tgtcatcttt cttcttcgca 300 cccagcttgc cgtattcgtc gtttagctta tcagcctggc gcttaactgc attaaagtat 360 gcgtcgttta atccaaacat tattcaccat cctcgtaatt tgaaccagct tcgcgtttat 420 ctccatcaca agtgaattcg cgcccaacca gcaaattgaa gaaaataagg tcatccaata 480 tctcatcttc gtatgggatt gctacgggga tcctctagag tcgacctgca ggcatgcaag 540 cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc 600 acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta 660 actcacatta attgcgttgc gctcactgcc cgctttccag tcnggaaacc tgtcgtgcca 720 gctgcattaa tgaaatcgnc aacgcgaatt nccgacagta agacgggtaa gcctgntgat 780 gataccgctg ccttactggg tgcattagcc agtctgaatg acctgtcacn ggataatccg 840 aagtggtcag actgg 855 <210> 37 <211> 845 <212> DNA <213> Bacteriophage YS01 <400> 37 nnngggccgg tgttgcattt tatgcagctg gccgacaggt ttcccgactg gaaagcgggc 60 agtgagcgca acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac 120 tttatgcttc cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga 180 aacagctatg accatgatta cgccaagctt gcatgcctgc aggtcgactc tagaggatcc 240 ccgtagcaat cccatacgaa gatgagatat tggatgacct tattttcttc aatttgctgg 300 ttgggcgcga attcacttgt gatggagata aacgcgaagc tggttcaaat tacgaggatg 360 gtgaataatg tttggattaa acgacgcata ctttaatgca gttaagcgcc aggctgataa 420 gctaaacgac gaatacggca agctgggtgc gaagaagaaa gatgacaaag ttgtggcggc 480 actgattact caggtttggg gtccagtttc tacgctaatc gcgagggata agtttgtgtg 540 gatagcggga tatcaccgga gtttattaac gaccttatct gctcaatcgt accagcaaca 600 acgtcagtta ttaagttaag cgccccaagt gtccttttgc tgatggtacc gagctcgaat 660 tcactggccg tcgttttaca acgtcgtgac tggaaaaacc tggcgttacc caacttaatc 720 gccttgcagc acatcccccc ttcgncagct ggcgaatagc gaaaaggccc gcacgatcgc 780 ctttccaaca gtgcgcagcc tgatgccaat gcggctgatg cgtatttctc ttaccatctg 840 ggcga 845 <210> 38 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> M13 forward primer <400> 38 gtaaaacgac ggccag 16 <210> 39 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> M13 reverse primer <400> 39 caggaaacag ctatgac 17  

Claims (8)

대장균(Escherichia coli) 특이적 감염 및 사멸능을 갖고, 서열번호 1의 아미노산 서열을 갖는 꼬리 단백질(tail protein) 및 서열번호 2 내지 서열번호 37로 구성된 염기서열로 표시되는 핵산 분자를 포함하는 유전체를 갖는 것을 특징으로 하는 시포비리대 과(Siphoviridae family), T1-유사 파아지(T1-like phage genus) 속에 속하는 박테리오파아지.E. coli (Escherichia coli) specific infection and killing ability, the genome comprising a nucleic acid molecule represented by a tail protein having the amino acid sequence of SEQ ID NO: 1 and the base sequence consisting of SEQ ID NO: 2 to SEQ ID NO: 37 Siphoviridae family, characterized in that it has a bacteriophage belonging to the genus T1-like phage (T1-like phage genus). 제1항에 있어서, 상기 박테리오파아지는 기탁번호 KCCM10947인 박테리오파아지 YSO1것인 박테리오파아지.The bacteriophage according to claim 1, wherein the bacteriophage is bacteriophage YSO 1 having accession number KCCM10947. i) 대장균이 아닌 미생물을 종모 배양하는 단계, 및 i) seedling the microorganisms that are not E. coli, and ii) 상기 종모 배양된 미생물을 대장균 특이적 감염 및 사멸능을 갖는 박테리오파아지와 함께 본 배양용 배지에 접종하는 단계를 포함하고, 상기 박테리오파아지는 서열번호 1의 아미노산 서열을 갖는 꼬리 단백질(tail protein) 및 서열번호 2 내지 서열번호 37로 구성된 염기서열로 표시되는 핵산 분자를 포함하는 유전체를 갖는 것을 특징으로 하는 시포비리대 과(Siphoviridae family), T1-유사 파아지 속(T1-like phage genus)에 속하는 박테리오파아지인 것인 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법. ii) inoculating the cultured microorganism with the bacteriophage having E. coli specific infection and killing ability in the culture medium, wherein the bacteriophage has a amino acid sequence of SEQ ID NO. And a genome comprising a nucleic acid molecule represented by a nucleotide sequence consisting of SEQ ID NO: 2 to SEQ ID NO: 37 in the Siphoviridae family, T1-like phage genus A method for preventing or controlling contamination of E. coli in fermentation by culturing a microorganism which is a belonging bacteriophage. 삭제delete 제3항에 있어서, 상기 박테리오파아지는 기탁번호 KCCM10947인 박테리오파아지 YSO1것인 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법. The method according to claim 3, wherein the bacteriophage is bacteriophage YSO1 having accession number KCCM10947. 제3항 또는 제5항에 있어서, 상기 대장균이 아닌 미생물은 L-아미노산 생산능을 갖는 코리네박테리움인 것인 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법. The method according to claim 3 or 5, wherein the microorganism other than E. coli is Corynebacterium having L-amino acid production ability. 제3항 또는 제5항에 있어서, 상기 단계 ii)에서 상기 박테리오파아지를 본 배양용 배지 1L 당 104 pfu 내지 106 pfu농도로 접종하는 것인 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법.The method of claim 3 or 5, wherein the bacteriophage is inoculated at a concentration of 10 4 pfu to 10 6 pfu per 1 L of the culture medium in step ii). Or how to control. 제3항 또는 제5항에 있어서, 상기 단계 ii)에서 상기 박테리오파아지를 접종하는 본 배양용 배지의 온도는 30℃ 내지 33℃인 것인 미생물의 배양에 의한 발효에서 대장균의 오염을 예방 또는 통제하는 방법. The method of claim 3 or 5, wherein the temperature of the culture medium inoculating the bacteriophage in step ii) is 30 ℃ to 33 ℃ prevent or control the contamination of E. coli in fermentation by the culture of microorganisms How to.
KR1020080054305A 2008-06-10 2008-06-10 Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same KR101023995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080054305A KR101023995B1 (en) 2008-06-10 2008-06-10 Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080054305A KR101023995B1 (en) 2008-06-10 2008-06-10 Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same

Publications (2)

Publication Number Publication Date
KR20090128239A KR20090128239A (en) 2009-12-15
KR101023995B1 true KR101023995B1 (en) 2011-03-28

Family

ID=41688687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080054305A KR101023995B1 (en) 2008-06-10 2008-06-10 Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same

Country Status (1)

Country Link
KR (1) KR101023995B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133301A1 (en) * 2013-02-27 2014-09-04 Cj Cheiljedang Corporation Novel bacteriophage and antibacterial composition comprising the same
US11058131B2 (en) 2015-04-16 2021-07-13 Kennesaw State University Research And Service Foundation, Inc. Escherichia coli O157:H7 bacteriophage Φ241

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299179B1 (en) * 2012-04-18 2013-08-22 씨제이제일제당 (주) Novel bacteriophage and antibacterial composition comprising the same
KR101381795B1 (en) * 2013-02-27 2014-04-07 씨제이제일제당 (주) Novel bacteriophage and antibacterial composition comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090356A1 (en) 2000-06-06 2002-07-11 Waddell Thomas E. Use of bacteriophages for control of escherichia coli 0 157
KR20090030532A (en) * 2007-09-20 2009-03-25 재단법인서울대학교산학협력재단 Bacteriophage belonging to siphoviridae and bacteriocidal composition comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090356A1 (en) 2000-06-06 2002-07-11 Waddell Thomas E. Use of bacteriophages for control of escherichia coli 0 157
KR20090030532A (en) * 2007-09-20 2009-03-25 재단법인서울대학교산학협력재단 Bacteriophage belonging to siphoviridae and bacteriocidal composition comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied and Environmental Microbiology, 2006, 72(9):6405-6410*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133301A1 (en) * 2013-02-27 2014-09-04 Cj Cheiljedang Corporation Novel bacteriophage and antibacterial composition comprising the same
US9938506B2 (en) 2013-02-27 2018-04-10 Cj Cheiljedang Corporation Bacteriophage and antibacterial composition comprising the same
US10704027B2 (en) 2013-02-27 2020-07-07 Cj Cheiljedang Corporation Bacteriophage and antibacterial composition comprising the same
US11058131B2 (en) 2015-04-16 2021-07-13 Kennesaw State University Research And Service Foundation, Inc. Escherichia coli O157:H7 bacteriophage Φ241

Also Published As

Publication number Publication date
KR20090128239A (en) 2009-12-15

Similar Documents

Publication Publication Date Title
RU1838410C (en) Method of obtaining alpha-amylase
CN112195158B (en) Vibrio parahaemolyticus bacteriophage RDP-VP-19003 and application thereof
CN107406833B (en) Novel lactococcus lactis bacteriophage Lac-GAP-1 and application thereof in inhibiting proliferation of lactococcus lactis
CN112760296B (en) Vibrio parahaemolyticus bacteriophage RDP-VP-19010 and application thereof
Sakakibara et al. A temperature-sensitive Escherichia coli mutant defective in DNA replication: dnaA, a new gene adjacent to the dnA, gene
CN109642217B (en) Novel vibrio parahaemolyticus phage Vib-PAP-5 and application thereof in inhibiting proliferation of vibrio parahaemolyticus
CN112029733B (en) High-lytic vibrio alginolyticus phage RDP-VP-19001 and application thereof
CN112831474A (en) Wide lysis spectrum salmonella bacteriophage RDP-NSA-19050 and application thereof
CN108699532B (en) Vibrio parahaemolyticus bacteriophage Vib-PAP-2 and use thereof for inhibiting proliferation of Vibrio parahaemolyticus
CN108699533B (en) Vibrio parahaemolyticus bacteriophage Vib-PAP-1 and use thereof for inhibiting proliferation of Vibrio parahaemolyticus
CN110129280A (en) Wide fragmentation pattern vibrio alginolyticus bacteriophage and combinations thereof, kit and application
KR101023995B1 (en) Escherichia coil specific bactriophage and method of preventing or controlling E. coli contamination using the same
CN110184241A (en) Vibrio alginolyticus bacteriophage resistant to high temperature and combinations thereof, kit and application
US4332897A (en) Novel bacteriophage and method for preparing same
CN110709510A (en) Novel Vibrio parahaemolyticus bacteriophage Vib-PAP-7 and use thereof for inhibiting proliferation of Vibrio parahaemolyticus bacteria
KR101592175B1 (en) Method for prevention and treatment of Streptococcus parauberis
CN109913399B (en) Aeromonas intermedia integron containing multiple drug-resistant gene cassettes and obtaining method and application thereof
JPS62503074A (en) Methods for stabilizing unstable genetic replicons
Mahbub et al. Prevalence of Vibrio spp and antibiogram of isolates from shrimp rearing ponds in Bangladesh
RU2112800C1 (en) Strain of pili-specific bacteriophage of pseudomonas aeruginosa &#34;гнцпм&#34; n 03 used for preparing medicinal preparation against pyocyanic rod
CN111742046A (en) Novel aeromonas hydrophila phage Aer-HYP-3 and application thereof in inhibiting growth of aeromonas hydrophila bacteria
Mural et al. Isolation and characterization of a temperate bacteriophage specific for Rhodopseudomonas spheroides
KR20180072055A (en) Novel Vibrio parahaemolyticus bacteriophage Vib-PAP-4 and its use for preventing proliferation of Vibrio parahaemolyticus
CN108676719B (en) Method for preserving ralstonia solanacearum bacteriophage
TWI284150B (en) Plasmid-free clone of E. coli strain DSM 6601

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191125

Year of fee payment: 10