KR101015391B1 - A Natural Laminar Flow Airfoil for Very Light Jets - Google Patents

A Natural Laminar Flow Airfoil for Very Light Jets Download PDF

Info

Publication number
KR101015391B1
KR101015391B1 KR1020080131144A KR20080131144A KR101015391B1 KR 101015391 B1 KR101015391 B1 KR 101015391B1 KR 1020080131144 A KR1020080131144 A KR 1020080131144A KR 20080131144 A KR20080131144 A KR 20080131144A KR 101015391 B1 KR101015391 B1 KR 101015391B1
Authority
KR
South Korea
Prior art keywords
airfoil
laminar flow
present
small
natural laminar
Prior art date
Application number
KR1020080131144A
Other languages
Korean (ko)
Other versions
KR20100072668A (en
Inventor
이융교
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020080131144A priority Critical patent/KR101015391B1/en
Publication of KR20100072668A publication Critical patent/KR20100072668A/en
Application granted granted Critical
Publication of KR101015391B1 publication Critical patent/KR101015391B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Abstract

본 발명은 소형 제트기용 자연층류(Natural Laminar Flow) 익형(翼型)에 관한 것으로, 더욱 상세하게는 주날개의 표면에 흐르는 기류의 층류(Laminar Flow)에서 난류(Turbulence Flow)로의 천이(遷移)를 지연시켜 항력(Drag)을 감소시킬 수 있는 소형 제트기용 자연층류 익형에 관한 것이다.FIELD OF THE INVENTION The present invention relates to natural laminar flow airfoils for small jets, and more particularly to transition from laminar flow of turbulent flow to turbulence flow on the surface of the main blade. The present invention relates to a natural laminar flow airfoil for a small jet that can reduce drag by retarding.

본 발명의 소형 제트기용 자연층류 익형은 상기 소형 제트기의 에어포일에 적용되며, 상면으로 커브 곡면이 형성된 윗면과, 하부에 형성된 아랫면을 포함하고, 상기 익형은 상기 윗면 및 상기 아랫면에서의 유동(流動)의 천이(遷移)를 지연시키는 것을 특징으로 한다.The natural laminar flow airfoil for a small jet of the present invention is applied to the airfoil of the small jet, and includes an upper surface with a curved surface formed on the upper surface and a lower surface formed on the lower surface, wherein the airfoil flows from the upper surface and the lower surface. It is characterized by delaying the transition of c).

상기와 같은 구성에 의한 본 발명의 소형 제트기용 자연층류 익형은 저항력 익형을 적용하여 연료소모율을 줄임으로써 항공기 운항사와 승객에게 저렴한 비용으로 여행할 수 있게 하고, 화석연료의 소비를 줄이는 효과가 있다.The natural laminar flow airfoil for a small jet of the present invention by the configuration as described above can reduce the fuel consumption rate by applying a resistive airfoil to travel at low cost to the aircraft operator and passengers, it is effective to reduce the consumption of fossil fuel.

소형, 제트기, 자연층류, 익형, 에어포일 Small, Jet, Natural Laminar Flow, Airfoil, Airfoil

Description

소형 제트기용 자연층류 익형 {A Natural Laminar Flow Airfoil for Very Light Jets}Natural Laminar Flow Airfoil for Very Light Jets

본 발명은 소형 제트기용 자연층류(Natural Laminar Flow) 익형(翼型)에 관한 것으로, 더욱 상세하게는 주날개의 표면에 흐르는 기류의 층류(Laminar Flow)에서 난류(Turbulence Flow)로의 천이(遷移)를 지연시켜 항력(Drag)을 감소시킬 수 있는 소형 제트기용 자연층류 익형에 관한 것이다.FIELD OF THE INVENTION The present invention relates to natural laminar flow airfoils for small jets, and more particularly to transition from laminar flow of turbulent flow to turbulence flow on the surface of the main blade. The present invention relates to a natural laminar flow airfoil for a small jet that can reduce drag by retarding.

도 2에 도시된 바와 같이, 일반적으로 익형(300)이란 그 표면을 흐르는 공기로부터 유효한 반작용을 받는 것과 같은 장치로서 윗면(240)과 아랫면(250)에 의해 이루어지는데 주날개, 수평꼬리날개, 수직꼬리날개 및 프로펠러 등이 익형(300)의 예라 할 수 있다.As shown in FIG. 2, the airfoil 300 is generally a device such as an effective reaction from the air flowing through its surface, and is formed by the upper surface 240 and the lower surface 250. Tail wings and propellers may be an example of the airfoil (300).

이러한, 익형(300)은 앞전(Leading Edge)(210)과 뒷전(Trailing Edge)(220)의 각기 최선단 부분을 연결하는 직선인 시위선(Chord)(230)에 따라 양력의 발생량이 달라지고 항력의 발생량 또한 달라진다. The airfoil 300 has a different amount of lift depending on the demonstration line 230, which is a straight line connecting the leading edges of the leading edge 210 and the trailing edge 220. The amount of drag generated also varies.

받음각(Angle of Attack)이란 시위선(230)과 상대기류의 방향과의 사이에 각도를 말한다. 받음각은 항공기를 부양시킬 수 있는 항공 역학적 각이며 양력을 발생시키는 요소가 된다. 이 같은 받음각은 달리는 차창 밖으로 손을 내밀어 손의 각도에 따라 받음각의 형태를 느낄 수 있다. 손바닥을 지면과 수평으로 유지했을 때는 손바닥과 상대풍이 이루는 각이 거의 없기 때문에 손에 미치는 저항은 미미하나 손바닥과 지면이 각이 이루었을 때는 손은 위로 또는 아래로 향하려는 힘을 받게 됨을 느낄 수 있다. 이때 손바닥과 상대풍이 이루는 각이 받음각이다. Angle of attack refers to an angle between the demonstration line 230 and the direction of the relative airflow. The angle of attack is an aerodynamic angle that can support the aircraft and is a generating factor. This angle of attack can reach the out of the running car window, depending on the angle of the hand can feel the shape of the angle of attack. When the palm is level with the ground, there is little angle between the palm and the relative wind, so the resistance to the hand is minimal, but when the palm and the ground are at an angle, the hand is forced to move up or down. At this time, the angle between the palm and relative wind is the angle of attack.

취부각(Angle of Incidence)이란 기체의 전후 축과 시위선(230)사이의 각도를 말하는 것이다. 전후 축이라는 것은 동체의 기수에서부터 미부까지 전후방을 이은 직선 즉 종축을 말한다. 취부각(약 1~3도)은 주익이 동체에 취부 되는 각도로 측정한다. 취부각은 고정되어있어 조종사가 이것이 바뀌어 지도록 할 수는 없다.Angle of Incidence refers to an angle between the front and rear axis of the body and the demonstration line 230. The front-rear axis refers to a straight line, ie, a longitudinal axis, running from front to rear of the fuselage. The mounting angle (approximately 1-3 degrees) is measured by the angle at which the main wing is mounted on the fuselage. The mounting angle is fixed so that the pilot cannot change this.

취부각은 기체를 설계할 당시에 정해지며 그것은 양력과 항력의 비가 최대가 되는 받음각의 각도와 같은 것이다. 예를 들면 만약 취부각이 2도이면 통상 주익은 동체에 즉 익형(300)의 시위선(230)과 동체의 전후 축과의 각도가 2도가 되게 주익이 취부된 것이다. 취부각은 고정돼 있으나 받음각은 조종사가 변하게 할 수 있으며 이것은 비행방향과 관련이 있다.The mounting angle is determined at the time of designing the aircraft, which is equivalent to the angle of attack where the ratio of lift and drag is maximum. For example, if the mounting angle is 2 degrees, the main wing is normally mounted on the fuselage, that is, the main wing is mounted so that the angle between the demonstration line 230 of the airfoil 300 and the front and rear axes of the fuselage is 2 degrees. The mounting angle is fixed but the angle of attack can change the pilot, which is related to the direction of flight.

받음각(Angle of Attack) 0도의 상태에서는 주날개 아랫면(250)의 압력은 대기압과 같고, 이 경우 모든 양력을 주날개 윗면(240)의 압력 감소(대기압보다 낮은)에 의해 발생한다.At zero angle of angle of attack, the pressure at the lower surface 250 of the main wing is equal to the atmospheric pressure, in which case all lift is caused by the pressure reduction (lower than atmospheric pressure) of the upper surface of the main wing 240.

받음각이 적은 상태에서는 주날개 아랫면(250)에 부딪히는 공기의 충격이나 압력(대기압보다 높은)의 영향은 거의 무시할 수 있으므로 양력의 대부분은 주날개 윗면(240)의 압력 감소에 의해 발생한다.In the state where the angle of attack is small, the impact of air or the pressure (higher than atmospheric pressure) hitting the lower wing 250 is almost negligible, so most of the lift is caused by the decrease in pressure of the upper wing 240.

그리고 받음각이 증가함에 따라 주날개 아랫면(250)의 공기의 충격이나 정(正)압이 증가하는데, 주날개 윗면(240)에서도 공기가 주날개의 커브를 따라 흐르고 있는 한 익형의 유효만곡도가 증가하여 주날개 윗면(240)의 기류는 보다 긴 거리를 흘러야 하므로 압력은 감소해 간다.And as the angle of attack increases, the impact or positive pressure of the air on the lower surface of the main wing 250 increases, but the effective curvature of the airfoil also increases as long as air flows along the curve of the main wing on the upper surface of the main wing 240. Since the air flow of the main wing upper surface 240 must flow a longer distance, the pressure is reduced.

이것은 베르누이 정의에 의해 보다 긴 거리를 흐르기 위해서는 더욱 빨리 흘러야 하므로 보다 큰 압력감소 현상이 발생하기 때문인데, 주날개 아랫면(250)의 압력증가와 주날개 윗면(240)의 압력감소, 이 두 가지 이유로 주날개의 윗면(240)과 아랫면(250)에서 큰 압력 차이가 발생한다. 이와 같은 큰 압력 차이에 의해 위로 향하려는 힘 즉 양력이 발생하는 것이다. 동시에 뒤에서 잡아당기려는 힘인 항력도 발생하게 된다.This is because Bernoulli's definition requires a faster flow in order to flow longer distances, resulting in a greater pressure drop, for two reasons: an increase in the pressure at the bottom of the main wing 250 and a pressure drop at the top of the main wing 240. A large pressure difference occurs in the upper surface 240 and the lower surface 250 of the main blade. This large pressure difference generates upward force, or lift. At the same time, drag, the force to pull behind, also occurs.

그러나 받음각이 약 18도에서 20도까지 증가하면 대부분의 주날개 윗면(240)에서는 공기가 유연하게 흐를 수 없게 된다. 이것은 흐름의 방향에 과도한 변화를 필요로 하기 때문이다. 기류(Airflow)는 캠버(Camber)가 최대가 되는 윗면(240) 근처에서 이탈하여 곧바로 후방으로 흐른다. 이 지점을 천이 점이라고 하는데, 천이 점에서 기류가 날개표면에 따라 흐르려고 하면 소용돌이나 기포 즉 난류가 발생하게 된다. 날개표면에서의 난류 발생은 항력의 증가로 이어지게 된다.However, when the angle of attack increases from about 18 degrees to 20 degrees, air cannot flow smoothly on most of the main wings 240. This is because an excessive change in the direction of flow is required. Airflow flows back immediately after leaving the upper surface 240 where the camber is maximized. This point is called a transition point. At the transition point, when air flows along the wing surface, vortex or bubbles, or turbulence, are generated. Turbulence at the wing surface leads to an increase in drag.

천이 점은 받음각이 증가함에 따라 앞전(210)쪽으로 이동하게 되고, 주날개 윗면(240)에서 이탈한 난류 발생 범위가 앞전(210)쪽으로 계속 확장되어, 항력이 급격하게 증가하게 된다.The transition point is moved toward the front edge 210 as the angle of attack increases, and the turbulence generation range deviated from the main wing upper surface 240 continues toward the front edge 210 so that the drag increases rapidly.

종래에는 NASA64시리즈 및 NLF시리즈 익형이 개발되어 항공기에 적용된 바 있으며, 최근에는 소형 제트기인 혼다젯(Hondajet)과 이클립스500 등에 채택되었으나, 위와 같은 난류 발생 범위 확장에 따른 항력 증가의 문제점은 개선되지 않고 있다.In the past, NASA64 series and NLF series airfoils have been developed and applied to aircrafts. Recently, Hondajet and Eclipse 500, which are small jets, have been adopted. However, the problems of drag increase due to the expansion of turbulence generation range are not improved. have.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 에어포일을 따라 흐르는 기류의 층류에서 난류로의 천이를 지연시켜 즉, 천이 점을 날개 뒷부분으로 이동시켜, 항력이 작고 저항력영역(Drag Bucket)이 넓어 순항 및 상승 비행 시 연료소모율이 낮은 친환경적이고 경제적인 소형 제트기용 자연층류 익형을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention is to delay the transition from the laminar flow of the air flow along the airfoil to the turbulent flow, that is, to move the transition point to the back of the wing, the drag is small The large drag bucket provides an eco-friendly and economical natural laminar airfoil for small jets with low fuel consumption during cruising and ascending flights.

본 발명의 소형 제트기용 자연층류 익형은 상기 소형 제트기의 에어포일에 적용되며, 상면으로 커브 곡면이 형성된 윗면과, 하부에 형성된 아랫면을 포함하고, 상기 익형은 상기 윗면 및 상기 아랫면에서의 유동(流動)의 천이(遷移)를 지연시키는 것을 특징으로 한다.The natural laminar flow airfoil for a small jet of the present invention is applied to the airfoil of the small jet, and includes an upper surface with a curved surface formed on the upper surface and a lower surface formed on the lower surface, wherein the airfoil flows from the upper surface and the lower surface. It is characterized by delaying the transition of c).

또한, 상기 익형은 최대두께비가 14~16%이고, 최대두께비가 존재하는 지점은 시위선상의 앞전으로부터 50~60% 지점인 것을 특징으로 한다.In addition, the airfoil is characterized in that the maximum thickness ratio is 14 to 16%, the point where the maximum thickness ratio is 50 to 60% from the front line on the protest line.

또한, 상기 익형은 운전레이놀즈수가

Figure 112008087879540-pat00001
인 것을 특징으로 한다.In addition, the airfoil has a driving Reynolds number
Figure 112008087879540-pat00001
It is characterized by that.

또한, 상기 윗면과 아랫면의 프로파일(Profile)은 시위선을 따라 상기 앞전으로부터 뒷전으로의 거리를 x/c라고 할 때, x/c에서 정의되는 상기 윗면 좌표값 y_upper/c와 아랫면 좌표값 y_lower/c를 정의하고, x/c를 기준으로 아래의 표에 대응하는 윗면좌표(y_upper/c)와 아랫면좌표(y_lower/c)에 의해 형성되는 것을 특징으로 한다.In addition, the profile of the upper surface and the lower surface is the upper coordinate value y_upper / c and lower coordinate value y_lower / defined in x / c when a distance from the front forward to the rear forward along the protest line is x / c . defining a c, and is characterized in that the upper surface formed by the coordinates (y_upper / c) and a lower surface coordinates (y_lower / c) corresponding to the table below, based on the x / c.

x/cx / c y_upper/cy_upper / c x/cx / c y_lower/cy_lower / c 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000850.000085 0.0008730.000873 0.0000280.000028 0.0001600.000160 0.0002970.000297 0.0019020.001902 0.0004220.000422 -0.00177-0.00177 0.0011780.001178 0.0047420.004742 0.0014740.001474 -0.00446-0.00446 0.0025400.002540 0.0079570.007957 0.0031130.003113 -0.00691-0.00691 0.0041970.004197 0.0109270.010927 0.0052110.005211 -0.00851-0.00851 0.0060710.006071 0.0134670.013467 0.0076520.007652 -0.00999-0.00999 0.0081650.008165 0.0156430.015643 0.0103230.010323 -0.01135-0.01135 0.0104830.010483 0.0177040.017704 0.0131520.013152 -0.01264-0.01264 0.0130300.013030 0.0198790.019879 0.0161390.016139 -0.01389-0.01389 0.0158110.015811 0.0221540.022154 0.0193010.019301 -0.01508-0.01508 0.0188350.018835 0.0244760.024476 0.0226640.022664 -0.01622-0.01622 0.0221110.022111 0.0267610.026761 0.0262530.026253 -0.01731-0.01731 0.0256490.025649 0.0289610.028961 0.0300950.030095 -0.01837-0.01837 0.0294650.029465 0.0310890.031089 0.0342170.034217 -0.01944-0.01944 0.0335880.033588 0.0331760.033176 0.0386500.038650 -0.02055-0.02055 0.0380500.038050 0.0352740.035274 0.0434290.043429 -0.02179-0.02179 0.0428890.042889 0.0374150.037415 0.0485940.048594 -0.02310-0.02310 0.0481500.048150 0.0395980.039598 0.0541960.054196 -0.02430-0.02430 0.0538890.053889 0.0418150.041815 0.0602950.060295 -0.02559-0.02559 0.0601700.060170 0.0440560.044056 0.0669630.066963 -0.02697-0.02697 0.0670700.067070 0.0463220.046322 0.0742850.074285 -0.02841-0.02841 0.0746730.074673 0.0486240.048624 0.0823600.082360 -0.02989-0.02989 0.0830780.083078 0.0509770.050977 0.0912950.091295 -0.03143-0.03143 0.0923960.092396 0.0533940.053394 0.1012110.101211 -0.03304-0.03304 0.1027390.102739 0.0558750.055875 0.1122200.112220 -0.03475-0.03475 0.1142160.114216 0.0584170.058417 0.1244210.124421 -0.03657-0.03657 0.1269200.126920 0.0610090.061009 0.1378920.137892 -0.03847-0.03847 0.1409080.140908 0.0636360.063636 0.1526640.152664 -0.04043-0.04043 0.1561840.156184 0.0662790.066279 0.1686990.168699 -0.04244-0.04244 0.1726830.172683 0.0689050.068905 0.1858930.185893 -0.04446-0.04446 0.1902780.190278 0.0714800.071480 0.2040870.204087 -0.04646-0.04646 0.2088040.208804 0.0739710.073971 0.2230960.223096 -0.04841-0.04841 0.2280800.228080 0.0763460.076346 0.2427340.242734 -0.05026-0.05026 0.2479340.247934 0.0785810.078581 0.2628340.262834 -0.05199-0.05199 0.2682180.268218 0.0806570.080657 0.2832560.283256 -0.05358-0.05358 0.2888140.288814 0.0825590.082559 0.3038890.303889 -0.05501-0.05501 0.3096310.309631 0.0842770.084277 0.3246500.324650 -0.05627-0.05627 0.3306040.330604 0.0858020.085802 0.3454770.345477 -0.05733-0.05733 0.3516830.351683 0.0871300.087130 0.3663200.366320 -0.05820-0.05820 0.3728310.372831 0.0882530.088253 0.3871370.387137 -0.05885-0.05885 0.3940240.394024 0.0891660.089166 0.4078920.407892 -0.05927-0.05927 0.4152440.415244 0.0898590.089859 0.4285500.428550 -0.05943-0.05943 0.4364760.436476 0.0903230.090323 0.4490850.449085 -0.05931-0.05931 0.4577040.457704 0.0905410.090541 0.4694840.469484 -0.05886-0.05886 0.4789180.478918 0.0904880.090488 0.4897710.489771 -0.05799-0.05799 0.5001080.500108 0.0901330.090133 0.5100190.510019 -0.05666-0.05666 0.5212650.521265 0.0894650.089465 0.5303120.530312 -0.05450-0.05450 0.5423740.542374 0.0884850.088485 0.5507250.550725 -0.05145-0.05145 0.5634210.563421 0.0872050.087205 0.5713260.571326 -0.04797-0.04797 0.5843890.584389 0.0856550.085655 0.5921350.592135 -0.04424-0.04424 0.6052640.605264 0.0838650.083865 0.6131130.613113 -0.04037-0.04037 0.6260270.626027 0.0818530.081853 0.6341890.634189 -0.03645-0.03645 0.6466500.646650 0.0796230.079623 0.6553030.655303 -0.03256-0.03256 0.667108 0.667108 0.0771680.077168 0.6764240.676424 -0.02874-0.02874 0.6873790.687379 0.0744640.074464 0.6975310.697531 -0.02504-0.02504 0.7074610.707461 0.0714560.071456 0.7186130.718613 -0.02148-0.02148 0.7273940.727394 0.0680820.068082 0.7396630.739663 -0.01809-0.01809 0.7472560.747256 0.0643330.064333 0.7606790.760679 -0.01490-0.01490 0.7671320.767132 0.0602160.060216 0.7816580.781658 -0.01191-0.01191 0.7871180.787118 0.0557910.055791 0.8025900.802590 -0.00916-0.00916 0.8072590.807259 0.0511420.051142 0.8234690.823469 -0.00666-0.00666 0.8275450.827545 0.0463280.046328 0.8442850.844285 -0.00443-0.00443 0.8479340.847934 0.0413850.041385 0.8650250.865025 -0.00250-0.00250 0.8683750.868375 0.0363290.036329 0.8856720.885672 -0.00089-0.00089 0.8888060.888806 0.0311480.031148 0.9062040.906204 -0.00038-0.00038 0.9091420.909142 .0.025820.0.025820 0.9266010.926601 0.0012590.001259 0.9292700.929270 0.0203270.020327 0.9468420.946842 0.0017090.001709 0.9490480.949048 0.0146700.014670 0.9669100.966910 0.0016720.001672 0.9683870.968387 0.0088680.008868 0.9868030.986803 0.0010290.001029 0.9873480.987348 0.0031810.003181 1.0000001.000000 0.0000000.000000 1.0000001.000000 0.0000000.000000

상기와 같은 구성에 의한 본 발명의 소형 제트기용 자연층류 익형은 저항력 익형을 적용하여 연료소모율을 줄임으로써 항공기 운항사와 승객에게 저렴한 비용으로 여행할 수 있게 하고, 화석연료의 소비를 줄이는 효과가 있다.The natural laminar flow airfoil for a small jet of the present invention by the configuration as described above can reduce the fuel consumption rate by applying a resistive airfoil to travel at low cost to the aircraft operator and passengers, it is effective to reduce the consumption of fossil fuel.

이하, 상기와 같은 본 발명의 일실시예에 대하여 도면을 참조하여 상세히 설명한다. 하기의 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In adding reference numerals to components of the following drawings, it is determined that the same components have the same reference numerals as much as possible even if displayed on different drawings, and it is determined that they may unnecessarily obscure the subject matter of the present invention. Detailed descriptions of well-known functions and configurations will be omitted.

도 1은 일반적인 소형 제트기의 사시도이며, 도 2는 에어포일의 AA'단면을 설명하는 단면도이고, 도 3은 본 발명의 실시예에 따른 익형의 단면도이다.1 is a perspective view of a general small jet, Figure 2 is a cross-sectional view illustrating the AA 'cross section of the airfoil, Figure 3 is a cross-sectional view of the airfoil according to an embodiment of the present invention.

도 4는 본 발명의 익형과 NLF0115 에어포일의 공력특성 비교 그래프이고, 도 5는 본 발명의 익형과 NLF0115 에어포일의 천이 점 위치 비교 그래프이다.4 is a comparison graph of the aerodynamic characteristics of the airfoil and the NLF0115 airfoil of the present invention, Figure 5 is a graph of the transition point position of the airfoil and NLF0115 airfoil of the present invention.

먼저, 본 발명을 설명하기 위해 기재되는 용어 및 소형 제트기의 구조와 에어포일의 구조를 정리한다.First, the terms and structures of the small jet and the structure of the airfoil are described to describe the present invention.

도 1을 참조하면, 일반적인 소형 제트기(100)는 도 1에 도시된 바와 같으며, 소형 제트기(100)는 순항고도 10Km에서 최고 속도 마하(Mach) 0.6으로 순항하는 6인승 급의 소형 제트엔진을 장착한 항공기를 의미한다. Referring to FIG. 1, a general small jet 100 is as shown in FIG. 1, and the small jet 100 includes a six-seater small jet engine cruising at a maximum speed of Mach 0.6 at a cruise altitude of 10 km. Means onboard aircraft.

도 1 및 도 2를 참조하면, 익형(300)(이하 Karifoil)은 상기 소형 제트기(100)의 에어포일(200)에 적용된다. 상기 익형(300)은 앞전(Leading edge)(210)과, 상기 앞전(210)으로부터 공간을 가지며 형성되는 뒷전(Trailing edge)(220)과, 상기 앞전(210)과 뒷전(220) 사이에 형성되는 윗면(240) 및 아랫면(250)을 포함한 다. 상기 익형(300)(이하 Karifoil)이 소형 제트기(100)의 성능 및 효율을 증가하는데 반영된다.1 and 2, the airfoil 300 (hereinafter Karifoil) is applied to the airfoil 200 of the small jet 100. The airfoil 300 is formed between a leading edge 210 and a trailing edge 220 formed with a space from the front edge 210 and between the front edge 210 and the rear edge 220. The upper surface 240 and the lower surface 250 are included. The airfoil 300 (hereinafter Karifoil) is reflected in increasing the performance and efficiency of the small jet 100.

양항비는 에어포일(200)이 받는 양력(Lift)과 항력(Drag)의 비를 말한다. 또는 양항비는 양력계수와 항력계수의 비로 표현하는 것도 가능하다. 이를 식으로 나타내면 다음과 같다.Lifting ratio refers to the ratio of the lift (Lift) and drag (Drag) received by the airfoil (200). Alternatively, the drag ratio may be expressed as the ratio of the lift coefficient and the drag coefficient. This is expressed as follows.

Figure 112008087879540-pat00002
Figure 112008087879540-pat00002

Figure 112008087879540-pat00003
Figure 112008087879540-pat00003

Figure 112008087879540-pat00004
Figure 112008087879540-pat00004

도 2를 참조하면, 코드길이(c)는 상기 Karifoil(300) 단면의 수평방향 최대길이를 의미한다. 또 두께비(Thickness-ratio)는 상기 Karifoil(300)의 임의의 위치에서의 두께(t)/코드길이(c)로 정의한다.2, the code length (c) means the maximum horizontal length of the cross section of the Karifoil (300). In addition, thickness-ratio is defined as thickness t / code length c at any position of the Karifoil 300.

일반적으로 내부 구조물의 제작을 위하여 두께비가 높아야 한다. 그러나 두께비가 커지면 양항비 등의 에어포일(200)의 성능이 감소하게 된다. 그러므로 두께비는 구조물 응력설계와 에어포일 성능설계에서 타협점이 존재하게 된다. 일반적인 연구결과에서 에어포일(200)의 두께는 얇아질수록 성능향상이 있으나 지나치게 얇으면 내부 구조물의 제작 및 구조 강도에 문제가 생기기 때문에 12% 이상이 적절한 것으로 알려져 있다. In general, the thickness ratio should be high for the manufacture of the internal structure. However, when the thickness ratio is increased, the performance of the airfoil 200 such as the lifting ratio is reduced. Therefore, there is a compromise between thickness ratio and structural design of airfoil. In general research results, the thinner the thickness of the airfoil 200, the better the performance, but too thin is known to be more than 12% is appropriate because of problems in the fabrication and structural strength of the internal structure.

이에 따라 본 발명의 Karifoil(300)의 평균 두께비는 12~13%로 정하고 에어포일 형상을 설계하였으며, 최대두께비는 14~16%로 최대두께비가 존재하는 지점은 시위선(230)상의 앞전(210)으로부터 45~50% 지점으로 설계하였다. 이는 윗면(240) 및 아랫면(250)에서의 유동(流動)의 천이(遷移)를 지연시키는 효과가 있으며, 기존의 NLF-0115의 40%보다 최대두께비 지점을 후방으로 많이 이동시킴으로써, 순항조건인 양력계수 0.3에서의 항력계수가 0.0034로 NLF-0115의 0.0039 보다 약 12% 감소하였고, 이를 통하여 운항 시 연료 소모율이 줄어들게 되었다.Accordingly, the average thickness ratio of the Karifoil (300) of the present invention is set to 12 to 13% and designed the airfoil shape, the maximum thickness ratio is 14 to 16% at the point where the maximum thickness ratio is present on the protest line 230 (210) ) To 45-50% point. This has the effect of delaying the transition of the flow on the upper surface 240 and the lower surface 250, by moving the maximum thickness ratio point to the rear more than 40% of the existing NLF-0115, The drag coefficient at the lift coefficient of 0.3 was 0.0034, about 12% less than the 0.0039 of NLF-0115, which reduced fuel consumption during operation.

레이놀즈수는 유체 역학적인 운전 조건을 나타내기 위해 사용되는 일반적인 무차원 계수를 의미하며, 수식으로 표현하면 다음과 같다.Reynolds number refers to a general dimensionless coefficient used to represent hydrodynamic operating conditions.

Figure 112008087879540-pat00005
Figure 112008087879540-pat00005

운전레이놀즈수는 풍속에 따른 Karifoil(300)의 운전조건을 말하며, 본 발명의 Karifoil(300)은 일반적인 소형 제트기의 속도를 마하(Mach) 0.6(Mach 1= 1200 Km/h)으로 볼 때, 운전레이놀즈수의 범위는 바람직하게

Figure 112008087879540-pat00006
로 설정하였다.Operation Reynolds number refers to the operating conditions of the Karifoil (300) according to the wind speed, the Karifoil (300) of the present invention, when the speed of a typical small jet Mach (Mach) 0.6 (Mach 1 = 1200 Km / h), driving The range of Reynolds numbers is preferably
Figure 112008087879540-pat00006
Set to.

도 2를 참조하면, 항공기의 에어포일 단면 형상 즉 익형에는 캠버(Mean Camber Line)(260)가 존재한다. 캠버(260)는 에어포일의 윗면(240)과 아랫면(250)의 중간지점을 앞전(210)에서부터 뒷전(220)까지 연결한 선이다.Referring to FIG. 2, a camber (Mean Camber Line) 260 is present in the airfoil cross-sectional shape of the aircraft. The camber 260 is a line connecting an intermediate point between the upper surface 240 and the lower surface 250 of the airfoil from the front 210 to the rear 220.

도 3을 참조하면, 본 발명의 Karifoil(300)은 기존의 자연층류 익형보다 캠버(260)의 굴곡을 다소 크게 제작하여 저항력영역(Drag bucket)이 넓은 양력 범위에 걸치도록 하였다.Referring to FIG. 3, the Karifoil 300 of the present invention makes the bending of the camber 260 somewhat larger than the existing natural laminar airfoil so that the drag bucket covers a wide lifting range.

도 3을 참조하면, 본 발명의 Karifoil(300)은 특별히 설계된 윗면(240)과 아 랫면(250)의 형상을 가지고 있다. 이의 자세한 형상은 <표 1>에 나와 있다. 표의 y_upper/cy_lower/c는 모두 시위선(230)의 길이에 의해 무차원화 된 값이다.Referring to FIG. 3, the Karifoil 300 of the present invention has a shape of a top surface 240 and a bottom surface 250 that are specially designed. The detailed shape thereof is shown in Table 1. Both y_upper / c and y_lower / c in the table are dimensionless values by the length of the protest line 230.

x/cx / c y_upper/cy_upper / c x/cx / c y_lower/cy_lower / c 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000850.000085 0.0008730.000873 0.0000280.000028 0.0001600.000160 0.0002970.000297 0.0019020.001902 0.0004220.000422 -0.00177-0.00177 0.0011780.001178 0.0047420.004742 0.0014740.001474 -0.00446-0.00446 0.0025400.002540 0.0079570.007957 0.0031130.003113 -0.00691-0.00691 0.0041970.004197 0.0109270.010927 0.0052110.005211 -0.00851-0.00851 0.0060710.006071 0.0134670.013467 0.0076520.007652 -0.00999-0.00999 0.0081650.008165 0.0156430.015643 0.0103230.010323 -0.01135-0.01135 0.0104830.010483 0.0177040.017704 0.0131520.013152 -0.01264-0.01264 0.0130300.013030 0.0198790.019879 0.0161390.016139 -0.01389-0.01389 0.0158110.015811 0.0221540.022154 0.0193010.019301 -0.01508-0.01508 0.0188350.018835 0.0244760.024476 0.0226640.022664 -0.01622-0.01622 0.0221110.022111 0.0267610.026761 0.0262530.026253 -0.01731-0.01731 0.0256490.025649 0.0289610.028961 0.0300950.030095 -0.01837-0.01837 0.0294650.029465 0.0310890.031089 0.0342170.034217 -0.01944-0.01944 0.0335880.033588 0.0331760.033176 0.0386500.038650 -0.02055-0.02055 0.0380500.038050 0.0352740.035274 0.0434290.043429 -0.02179-0.02179 0.0428890.042889 0.0374150.037415 0.0485940.048594 -0.02310-0.02310 0.0481500.048150 0.0395980.039598 0.0541960.054196 -0.02430-0.02430 0.0538890.053889 0.0418150.041815 0.0602950.060295 -0.02559-0.02559 0.0601700.060170 0.0440560.044056 0.0669630.066963 -0.02697-0.02697 0.0670700.067070 0.0463220.046322 0.0742850.074285 -0.02841-0.02841 0.0746730.074673 0.0486240.048624 0.0823600.082360 -0.02989-0.02989 0.0830780.083078 0.0509770.050977 0.0912950.091295 -0.03143-0.03143 0.0923960.092396 0.0533940.053394 0.1012110.101211 -0.03304-0.03304 0.1027390.102739 0.0558750.055875 0.1122200.112220 -0.03475-0.03475 0.1142160.114216 0.0584170.058417 0.1244210.124421 -0.03657-0.03657 0.1269200.126920 0.0610090.061009 0.1378920.137892 -0.03847-0.03847 0.1409080.140908 0.0636360.063636 0.1526640.152664 -0.04043-0.04043 0.1561840.156184 0.0662790.066279 0.1686990.168699 -0.04244-0.04244 0.1726830.172683 0.0689050.068905 0.1858930.185893 -0.04446-0.04446 0.1902780.190278 0.0714800.071480 0.2040870.204087 -0.04646-0.04646 0.2088040.208804 0.0739710.073971 0.2230960.223096 -0.04841-0.04841 0.2280800.228080 0.0763460.076346 0.2427340.242734 -0.05026-0.05026 0.2479340.247934 0.0785810.078581 0.2628340.262834 -0.05199-0.05199 0.2682180.268218 0.0806570.080657 0.2832560.283256 -0.05358-0.05358 0.2888140.288814 0.0825590.082559 0.3038890.303889 -0.05501-0.05501 0.3096310.309631 0.0842770.084277 0.3246500.324650 -0.05627-0.05627 0.3306040.330604 0.0858020.085802 0.3454770.345477 -0.05733-0.05733 0.3516830.351683 0.0871300.087130 0.3663200.366320 -0.05820-0.05820 0.3728310.372831 0.0882530.088253 0.3871370.387137 -0.05885-0.05885 0.3940240.394024 0.0891660.089166 0.4078920.407892 -0.05927-0.05927 0.4152440.415244 0.0898590.089859 0.4285500.428550 -0.05943-0.05943 0.4364760.436476 0.0903230.090323 0.4490850.449085 -0.05931-0.05931 0.4577040.457704 0.0905410.090541 0.4694840.469484 -0.05886-0.05886 0.4789180.478918 0.0904880.090488 0.4897710.489771 -0.05799-0.05799 0.5001080.500108 0.0901330.090133 0.5100190.510019 -0.05666-0.05666 0.5212650.521265 0.0894650.089465 0.5303120.530312 -0.05450-0.05450 0.5423740.542374 0.0884850.088485 0.5507250.550725 -0.05145-0.05145 0.5634210.563421 0.0872050.087205 0.5713260.571326 -0.04797-0.04797 0.5843890.584389 0.0856550.085655 0.5921350.592135 -0.04424-0.04424 0.6052640.605264 0.0838650.083865 0.6131130.613113 -0.04037-0.04037 0.6260270.626027 0.0818530.081853 0.6341890.634189 -0.03645-0.03645 0.6466500.646650 0.0796230.079623 0.6553030.655303 -0.03256-0.03256 0.667108 0.667108 0.0771680.077168 0.6764240.676424 -0.02874-0.02874 0.6873790.687379 0.0744640.074464 0.6975310.697531 -0.02504-0.02504 0.7074610.707461 0.0714560.071456 0.7186130.718613 -0.02148-0.02148 0.7273940.727394 0.0680820.068082 0.7396630.739663 -0.01809-0.01809 0.7472560.747256 0.0643330.064333 0.7606790.760679 -0.01490-0.01490 0.7671320.767132 0.0602160.060216 0.7816580.781658 -0.01191-0.01191 0.7871180.787118 0.0557910.055791 0.8025900.802590 -0.00916-0.00916 0.8072590.807259 0.0511420.051142 0.8234690.823469 -0.00666-0.00666 0.8275450.827545 0.0463280.046328 0.8442850.844285 -0.00443-0.00443 0.8479340.847934 0.0413850.041385 0.8650250.865025 -0.00250-0.00250 0.8683750.868375 0.0363290.036329 0.8856720.885672 -0.00089-0.00089 0.8888060.888806 0.0311480.031148 0.9062040.906204 -0.00038-0.00038 0.9091420.909142 .0.025820.0.025820 0.9266010.926601 0.0012590.001259 0.9292700.929270 0.0203270.020327 0.9468420.946842 0.0017090.001709 0.9490480.949048 0.0146700.014670 0.9669100.966910 0.0016720.001672 0.9683870.968387 0.0088680.008868 0.9868030.986803 0.0010290.001029 0.9873480.987348 0.0031810.003181 1.0000001.000000 0.0000000.000000 1.0000001.000000 0.0000000.000000

도 4는 Dan Somers가 개발한 기존의 NLF-0115 자연층류 익형과 본 발명의 Karifoil(300)의 공력특성에 관한 것으로 양력계수(Cl)에 따른 항력계수(Cd)를 비교한 것이다. 도 4에 도시된 바와 같이 Karifoil(300)은 NLF-0115보다 항력이 더 작고 저항력영역이 더 넓어 순항 및 상승비행시 유리하게 제작되었다.4 is related to the aerodynamic characteristics of the conventional NLF-0115 natural laminar flow airfoil developed by Dan Somers and the Karifoil (300) of the present invention is to compare the drag coefficient (Cd) according to the lift coefficient (Cl). As shown in FIG. 4, the Karifoil 300 has a smaller drag force than the NLF-0115 and a wider resistive area, which is advantageous in cruising and rising flight.

도 5는 천이 점의 위치에 관한 것으로 받음각(Angle of Attack)에 따른 천이 점 위치를 시위선(230)상의 퍼센트로 나타내었다. 도 5에 도시된 바와 같이 Karifoil(300)은 윗면에서 천이점이 NLF-0015 보다 더 뒤에 위치하고 아랫면에서도 받음각 -1.0도 이하에서는 천이점이 뒤에 위치하여 항력이 작아짐을 알 수 있다.FIG. 5 relates to the position of the transition point and shows the position of the transition point according to the angle of attack in percent on the protest line 230. As shown in FIG. 5, the Karifoil 300 is located behind the transition point at the upper side of the NLF-0015 and the lower side at the angle of attack of -1.0 degrees or less.

이하에서는 상기와 같이 구성된 본 발명의 작용에 대하여 도면을 참조하여 설명한다.Hereinafter, the operation of the present invention configured as described above will be described with reference to the drawings.

도 3에 도시된 바와 같이, 본 발명의 Karifoil(300)을 소형 제트기(100)의 에어포일(200)에 적용하면 에어포일(200)의 표면을 흐르는 기류에서 발생하는 천이 점을 뒤쪽으로 이동시켜, 에어포일(200)에 발생하는 항력(Drag)을 감소시킬 수 있다. 이는 곧 항공기의 기동성 증대, 비행한계 증가 및 연료소비율 감소의 효과를 얻을 수 있다.As shown in FIG. 3, when the Karifoil 300 of the present invention is applied to the airfoil 200 of the small jet 100, the transition point generated in the airflow flowing through the surface of the airfoil 200 is moved backward. The drag generated in the airfoil 200 may be reduced. This can result in increased maneuverability, increased flight limits and reduced fuel consumption.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 만족하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not satisfy all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be water and variations.

도 1은 일반적인 소형 제트기의 사시도.1 is a perspective view of a typical small jet.

도 2는 에어포일의 AA'단면을 설명하는 단면도.2 is a cross-sectional view illustrating a cross-section AA ′ of an airfoil.

도 3은 본 발명의 실시예에 따른 익형의 단면도.3 is a cross-sectional view of the airfoil according to the embodiment of the present invention.

도 4는 본 발명의 익형과 NLF0115 에어포일의 공력특성 비교 그래프.Figure 4 is a graph comparing the aerodynamic characteristics of the airfoil and NLF0115 airfoil of the present invention.

도 5는 본 발명의 익형과 NLF0115 에어포일의 천이 점 위치 비교 그래프.Figure 5 is a graph of the transition point position of the airfoil and NLF0115 airfoil of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 소형 제트기 100: small jet

200 : 에어포일 210 : 앞전(Leading Edge)200: airfoil 210: leading edge

220 : 뒷전(Trailing Edge) 230 : 시위선(Chord)220: trailing edge 230: chord

240 : 윗면 250 : 아랫면240: upper side 250: lower side

260 : 캠버(Mean Camber Line) 260: Camber (Mean Camber Line)

300 : 익형300: airfoil

Claims (4)

소형 제트기(100)용 자연층류(自然層流) 익형(翼型)(300)에 있어서,In the natural laminar flow airfoil (300) for the small jet 100, 상기 익형(300)은 상기 소형 제트기(100)의 에어포일(200)에 적용되며, 상면으로 커브 곡면이 형성된 윗면(240)과, 하부에 형성된 아랫면(250)을 포함하고,The airfoil 300 is applied to the airfoil 200 of the small jet 100, and includes an upper surface 240 having a curved curved surface on the upper surface, and a lower surface 250 formed on the lower surface, 상기 익형(300)은 상기 윗면(240) 및 상기 아랫면(250)에서의 유동(流動)의 천이(遷移)를 지연시키되,The airfoil 300 delays the transition of the flow in the upper surface 240 and the lower surface 250, 상기 윗면(240)과 아랫면(250)의 프로파일(Profile)은 시위선(230)을 따라 앞전(210)으로부터 뒷전(220)으로의 거리를 x/c라고 할 때, x/c에서 정의되는 상기 윗면 좌표값 y_upper/c와 아랫면 좌표값 y_lower/c를 정의하고, x/c를 기준으로 아래의 표에 대응하는 윗면좌표(y_upper/c)와 아랫면좌표(y_lower/c)에 의해 형성되는 것을 특징으로 하는 소형 제트기용 자연층류 익형.The profile of the upper surface 240 and the lower surface 250 is defined as x / c when a distance from the front 210 to the rear 220 along the protest line 230 is x / c . top coordinate y_upper / c and the lower surface coordinate values being defined to y_lower / c and, formed by the upper surface coordinates (y_upper / c) and a lower surface coordinates (y_lower / c) corresponding to the table below, based on the x / c Laminar flow airfoil for small jets. x/cx / c y_upper/cy_upper / c x/cx / c y_lower/cy_lower / c 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000000.000000 0.0000850.000085 0.0008730.000873 0.0000280.000028 0.0001600.000160 0.0002970.000297 0.0019020.001902 0.0004220.000422 -0.00177-0.00177 0.0011780.001178 0.0047420.004742 0.0014740.001474 -0.00446-0.00446 0.0025400.002540 0.0079570.007957 0.0031130.003113 -0.00691-0.00691 0.0041970.004197 0.0109270.010927 0.0052110.005211 -0.00851-0.00851 0.0060710.006071 0.0134670.013467 0.0076520.007652 -0.00999-0.00999 0.0081650.008165 0.0156430.015643 0.0103230.010323 -0.01135-0.01135 0.0104830.010483 0.0177040.017704 0.0131520.013152 -0.01264-0.01264 0.0130300.013030 0.0198790.019879 0.0161390.016139 -0.01389-0.01389 0.0158110.015811 0.0221540.022154 0.0193010.019301 -0.01508-0.01508 0.0188350.018835 0.0244760.024476 0.0226640.022664 -0.01622-0.01622 0.0221110.022111 0.0267610.026761 0.0262530.026253 -0.01731-0.01731 0.0256490.025649 0.0289610.028961 0.0300950.030095 -0.01837-0.01837 0.0294650.029465 0.0310890.031089 0.0342170.034217 -0.01944-0.01944 0.0335880.033588 0.0331760.033176 0.0386500.038650 -0.02055-0.02055 0.0380500.038050 0.0352740.035274 0.0434290.043429 -0.02179-0.02179 0.0428890.042889 0.0374150.037415 0.0485940.048594 -0.02310-0.02310 0.0481500.048150 0.0395980.039598 0.0541960.054196 -0.02430-0.02430 0.0538890.053889 0.0418150.041815 0.0602950.060295 -0.02559-0.02559 0.0601700.060170 0.0440560.044056 0.0669630.066963 -0.02697-0.02697 0.0670700.067070 0.0463220.046322 0.0742850.074285 -0.02841-0.02841 0.0746730.074673 0.0486240.048624 0.0823600.082360 -0.02989-0.02989 0.0830780.083078 0.0509770.050977 0.0912950.091295 -0.03143-0.03143 0.0923960.092396 0.0533940.053394 0.1012110.101211 -0.03304-0.03304 0.1027390.102739 0.0558750.055875 0.1122200.112220 -0.03475-0.03475 0.1142160.114216 0.0584170.058417 0.1244210.124421 -0.03657-0.03657 0.1269200.126920 0.0610090.061009 0.1378920.137892 -0.03847-0.03847 0.1409080.140908 0.0636360.063636 0.1526640.152664 -0.04043-0.04043 0.1561840.156184 0.0662790.066279 0.1686990.168699 -0.04244-0.04244 0.1726830.172683 0.0689050.068905 0.1858930.185893 -0.04446-0.04446 0.1902780.190278 0.0714800.071480 0.2040870.204087 -0.04646-0.04646 0.2088040.208804 0.0739710.073971 0.2230960.223096 -0.04841-0.04841 0.2280800.228080 0.0763460.076346 0.2427340.242734 -0.05026-0.05026 0.2479340.247934 0.0785810.078581 0.2628340.262834 -0.05199-0.05199 0.2682180.268218 0.0806570.080657 0.2832560.283256 -0.05358-0.05358 0.2888140.288814 0.0825590.082559 0.3038890.303889 -0.05501-0.05501 0.3096310.309631 0.0842770.084277 0.3246500.324650 -0.05627-0.05627 0.3306040.330604 0.0858020.085802 0.3454770.345477 -0.05733-0.05733 0.3516830.351683 0.0871300.087130 0.3663200.366320 -0.05820-0.05820 0.3728310.372831 0.0882530.088253 0.3871370.387137 -0.05885-0.05885 0.3940240.394024 0.0891660.089166 0.4078920.407892 -0.05927-0.05927 0.4152440.415244 0.0898590.089859 0.4285500.428550 -0.05943-0.05943 0.4364760.436476 0.0903230.090323 0.4490850.449085 -0.05931-0.05931 0.4577040.457704 0.0905410.090541 0.4694840.469484 -0.05886-0.05886 0.4789180.478918 0.0904880.090488 0.4897710.489771 -0.05799-0.05799 0.5001080.500108 0.0901330.090133 0.5100190.510019 -0.05666-0.05666 0.5212650.521265 0.0894650.089465 0.5303120.530312 -0.05450-0.05450 0.5423740.542374 0.0884850.088485 0.5507250.550725 -0.05145-0.05145 0.5634210.563421 0.0872050.087205 0.5713260.571326 -0.04797-0.04797 0.5843890.584389 0.0856550.085655 0.5921350.592135 -0.04424-0.04424 0.6052640.605264 0.0838650.083865 0.6131130.613113 -0.04037-0.04037 0.6260270.626027 0.0818530.081853 0.6341890.634189 -0.03645-0.03645 0.6466500.646650 0.0796230.079623 0.6553030.655303 -0.03256-0.03256 0.6671080.667108 0.0771680.077168 0.6764240.676424 -0.02874-0.02874 0.6873790.687379 0.0744640.074464 0.6975310.697531 -0.02504-0.02504 0.7074610.707461 0.0714560.071456 0.7186130.718613 -0.02148-0.02148 0.7273940.727394 0.0680820.068082 0.7396630.739663 -0.01809-0.01809 0.7472560.747256 0.0643330.064333 0.7606790.760679 -0.01490-0.01490 0.7671320.767132 0.0602160.060216 0.7816580.781658 -0.01191-0.01191 0.7871180.787118 0.0557910.055791 0.8025900.802590 -0.00916-0.00916 0.8072590.807259 0.0511420.051142 0.8234690.823469 -0.00666-0.00666 0.8275450.827545 0.0463280.046328 0.8442850.844285 -0.00443-0.00443 0.8479340.847934 0.0413850.041385 0.8650250.865025 -0.00250-0.00250 0.8683750.868375 0.0363290.036329 0.8856720.885672 -0.00089-0.00089 0.8888060.888806 0.0311480.031148 0.9062040.906204 -0.00038-0.00038 0.9091420.909142 .0.025820.0.025820 0.9266010.926601 0.0012590.001259 0.9292700.929270 0.0203270.020327 0.9468420.946842 0.0017090.001709 0.9490480.949048 0.0146700.014670 0.9669100.966910 0.0016720.001672 0.9683870.968387 0.0088680.008868 0.9868030.986803 0.0010290.001029 0.9873480.987348 0.0031810.003181 1.0000001.000000 0.0000000.000000 1.0000001.000000 0.0000000.000000
제 1항에 있어서,The method of claim 1, 상기 익형(300)은 최대두께비가 14~16%이고, 최대두께비가 존재하는 지점은 시위선(230)상의 앞전(210)으로부터 50~60% 지점인 것을 특징으로 하는 소형 제트기용 자연층류 익형.The airfoil 300 has a maximum thickness ratio of 14 to 16%, the point where the maximum thickness ratio is 50 ~ 60% point from the front line 210 on the protest line 230, characterized in that for small jet natural laminar flow. 제 1항에 있어서,The method of claim 1, 상기 익형(300)은 운전레이놀즈수가
Figure 112008087879540-pat00007
인 것을 특징으로 하는 소형 제트기용 자연층류 익형.
The airfoil 300 has a driving Reynolds number
Figure 112008087879540-pat00007
Natural laminar flow airfoil for small jets.
삭제delete
KR1020080131144A 2008-12-22 2008-12-22 A Natural Laminar Flow Airfoil for Very Light Jets KR101015391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080131144A KR101015391B1 (en) 2008-12-22 2008-12-22 A Natural Laminar Flow Airfoil for Very Light Jets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080131144A KR101015391B1 (en) 2008-12-22 2008-12-22 A Natural Laminar Flow Airfoil for Very Light Jets

Publications (2)

Publication Number Publication Date
KR20100072668A KR20100072668A (en) 2010-07-01
KR101015391B1 true KR101015391B1 (en) 2011-02-22

Family

ID=42635808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080131144A KR101015391B1 (en) 2008-12-22 2008-12-22 A Natural Laminar Flow Airfoil for Very Light Jets

Country Status (1)

Country Link
KR (1) KR101015391B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564632A (en) * 2014-10-11 2016-05-11 中国航空工业集团公司西安飞机设计研究所 Natural laminar flow aerofoil profile with high lift

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747343B2 (en) * 2010-12-14 2015-07-15 国立研究開発法人宇宙航空研究開発機構 Design method of natural laminar flow wings at Reynolds number equivalent to real aircraft of supersonic aircraft
CN106828875B (en) * 2016-12-27 2018-11-16 西北工业大学 A kind of laminar flow airfoil laying particular stress on characteristic of climbing suitable for general purpose vehicle
CN111498084A (en) * 2020-04-15 2020-08-07 成都飞机工业(集团)有限责任公司 Low-resistance laminar flow airfoil applied to high-altitude high-speed long-endurance unmanned aerial vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of of Aircraft, 제38권, 제1호, pp.57-63, 2001.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564632A (en) * 2014-10-11 2016-05-11 中国航空工业集团公司西安飞机设计研究所 Natural laminar flow aerofoil profile with high lift

Also Published As

Publication number Publication date
KR20100072668A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US5322242A (en) High efficiency, supersonic aircraft
US7900868B2 (en) Noise-shielding wing configuration
CN107428410B (en) Propeller-driven propulsion system integrated with fuselage
EP3284667B1 (en) Wing-tip arrangement having vortilons attached to a lower surface, an aircraft having such a wing-tip arrangement and the use of vortilons on a wing-tip arrangement
US7048228B2 (en) Slotted aircraft wing
US20110260008A1 (en) Fluid flow control device for an aerofoil
US10625847B2 (en) Split winglet
US20110309202A1 (en) Wingtec Holding Limited
US10384766B2 (en) Aircraft wing roughness strip and method
JP2013212834A (en) Performance-enhancing winglet system and method therefor
US20070262205A1 (en) Retractable multiple winglet
US8317128B2 (en) Laminar flow wing optimized for transonic cruise aircraft
CN101547829A (en) Highly efficient supersonic laminar flow wing
US20100301172A1 (en) Aerodynamic structure with series of shock bumps
CA2713362C (en) Shock bump
KR101015391B1 (en) A Natural Laminar Flow Airfoil for Very Light Jets
CN107336842B (en) Hypersonic wave-rider canard aerodynamic layout method
CN112124561B (en) Aerodynamic drag reduction structure for wingtip winglet of aircraft and aircraft
US5575442A (en) Guided wing for aircraft flying at high angles of attack
RU2757938C1 (en) Aerodynamic wing airfoil for transonic speeds
CN111003143B (en) Wing of airplane and airplane comprising same
Munson et al. Airfoils and Wings
US20230174231A1 (en) Airfoil With Supersonic Wave-Tripping Structure
RU2272745C1 (en) Flying vehicle wing
WO2019198349A1 (en) High-lift device, main wing of airplane, hydrofoil of hydrofoil craft, and engine cowl for airplane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee