KR101012089B1 - Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof - Google Patents

Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof Download PDF

Info

Publication number
KR101012089B1
KR101012089B1 KR1020090043450A KR20090043450A KR101012089B1 KR 101012089 B1 KR101012089 B1 KR 101012089B1 KR 1020090043450 A KR1020090043450 A KR 1020090043450A KR 20090043450 A KR20090043450 A KR 20090043450A KR 101012089 B1 KR101012089 B1 KR 101012089B1
Authority
KR
South Korea
Prior art keywords
solar cell
cell device
quantum dot
polymer
organic
Prior art date
Application number
KR1020090043450A
Other languages
Korean (ko)
Other versions
KR20100124446A (en
Inventor
최원국
박동희
손동익
이상엽
최지원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020090043450A priority Critical patent/KR101012089B1/en
Priority to US12/629,628 priority patent/US20100294355A1/en
Publication of KR20100124446A publication Critical patent/KR20100124446A/en
Application granted granted Critical
Publication of KR101012089B1 publication Critical patent/KR101012089B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 일체형 코어/쉘 구조의 고분자-양자점 복합체를 포함하는 태양전지 소자 및 이의 제조방법에 관한 것으로서, p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액의 코팅층으로부터 가열에 의해 얻어진 일체형 코어/쉘 구조의 p-i-n 형태의 고분자-양자점 복합체 박막을 활성층으로서 이용하면 다층 박막의 층간 계면 문제를 갖지 않는 고효율 태양전지 소자를 간편하게 제조할 수 있다.The present invention relates to a solar cell device including a polymer-quantum dot composite having an integrated core / shell structure, and a method for manufacturing the same. An organic-inorganic material prepared by adding a p-type organic polymer, an n-type organic molecule, and a semiconductor quantum dot to an organic solvent. When the pin-type polymer-quantum dot composite thin film having an integral core / shell structure obtained by heating from the coating layer of the mixed solution is used as an active layer, a high efficiency solar cell device having no interlayer interface problem of the multilayer thin film can be easily manufactured.

고분자-양자점 복합체, 단일 활성층, 태양전지 Polymer-quantum dot composite, single active layer, solar cell

Description

일체형 코어/쉘 구조의 고분자-양자점 복합체를 포함하는 태양전지 소자 및 이의 제조방법{SOLAR CELL DEVICE COMPRISING A CONSOLIDATED CORE/SHELL POLYMER-QUANTUM DOT COMPOSITE AND PREPARATION THEREOF}Solar cell device comprising a polymer-quantum dot composite having an integral core / shell structure and a manufacturing method therefor {SOLAR CELL DEVICE COMPRISING A CONSOLIDATED CORE / SHELL POLYMER-QUANTUM DOT COMPOSITE AND PREPARATION THEREOF}

본 발명은 일체형 코어/쉘(core/shell) 구조의 고분자-양자점 복합체로 이루어진 단일 활성층을 포함하는 태양전지 소자, 및 상기 태양전지 소자의 제조방법에 관한 것이다.The present invention relates to a solar cell device comprising a single active layer consisting of a polymer-quantum dot composite having an integral core / shell structure, and a method of manufacturing the solar cell device.

태양전지는 광전효과(photovoltaic effect)를 이용해 빛에너지를 전기에너지로 전환하는 반도체 소자로서, 햇빛이 흡수되면 전지 내부에서 전자(electron)와 정공(hole)이 생겨나고, 이 전자와 정공이 p-n 접합에 의해 생긴 전계(build-in field)를 거쳐 각각 n형 반도체(전자 수송층)와 p형 반도체(정공 수송층)로 이동하면서 공간적으로 분리된 후, 전극을 통해 내부 전자가 외부 회로로 흘러 들어가며 전류가 발생하는 원리에 근거한다.A solar cell is a semiconductor device that converts light energy into electrical energy using a photovoltaic effect. When sunlight is absorbed, electrons and holes are generated inside the cell, and the electrons and holes are pn junctions. After moving to the n-type semiconductor (electron transport layer) and p-type semiconductor (hole transport layer) through the build-in field generated by the spatially separated respectively, the internal electrons flow into the external circuit through the electrode and the current Based on the principle that arises.

최근 많이 연구되고 있는 이러한 태양전지는 일반적으로 나노입자를 이용하 는 염료감응형 태양전지, 복합구조형 태양전지 및 나노결정 박막 태양전지 등으로 구분된다.These solar cells, which have been studied recently, are generally classified into dye-sensitized solar cells, composite structure solar cells, and nanocrystalline thin film solar cells using nanoparticles.

이들 기존의 태양전지 소자는 p-n 또는 p-i-n 형태로서 대부분 정공 수송층과 전자 수송층을 포함하는 다층 박막 구조를 가지므로 (대한민국 특허공개 제2008-64438호, 제2008-77532호 및 제2008-72425호 참조), 박막을 성장하는 단계가 많아 제조비용이 높고, 다층 박막의 층간 계면(interface) 부분에 여러 가지 문제가 생겨 전지효율이 저하된다는 단점을 갖는다.These conventional solar cell devices have a multi-layered thin film structure including a hole transport layer and an electron transport layer, in the form of pn or pin (see Korean Patent Publication Nos. 2008-64438, 2008-77532, and 2008-72425). In addition, there are many stages of growing a thin film, which leads to a high manufacturing cost, and various problems occur in an interface portion of a multilayer thin film, thereby degrading battery efficiency.

따라서, 본 발명의 목적은 다층 박막 구조의 기존 태양전지 소자의 단점을 최소화하기 위해, p-i-n 형태의 고분자-양자점 복합체의 박막 형태로서 활성층을 포함하는 고효율 태양전지 소자, 및 이의 제법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a high efficiency solar cell device including an active layer as a thin film form of a polymer-quantum dot composite of p-i-n type in order to minimize the disadvantages of the conventional solar cell device of a multi-layer thin film structure, and a method for manufacturing the same.

상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

기판, 양극, 활성층 및 음극이 순차적으로 적층되고, 상기 활성층으로서, p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액의 코팅층으로부터 가열에 의해 얻어진 일체형 코어/쉘(core/shell) 구조의 p-i-n 형태의 고분자-양자점 복합체 박막을 포함하는 태양 전지 소자를 제공하는 것이다.A substrate, an anode, an active layer, and a cathode are sequentially stacked, and as the active layer, an integral type obtained by heating from a coating layer of an organic-inorganic mixed solution prepared by adding a p-type organic polymer, an n-type organic molecule, and a semiconductor quantum dot to an organic solvent. The present invention provides a solar cell device including a pin-shaped polymer-quantum dot composite thin film having a core / shell structure.

본 발명은 또한, The present invention also provides

기판 위에 양극, 활성층 및 음극이 순차적으로 적층된 태양전지 소자를 제조하는 방법에 있어서,In the method for manufacturing a solar cell device in which an anode, an active layer and a cathode are sequentially stacked on a substrate,

기판 위에 양극을 형성한 후, 상기 양극을 p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액으로 코팅한 다음 가열하여 p-i-n 형태의 고분자-양자점 복합체의 박막 형태로서 상기 활성층을 형성하는 것을 특징으로 하는 태양전지 소자의 제조방법을 제공한다.After forming an anode on a substrate, the anode was coated with an organic-inorganic mixed solution prepared by adding a p-type organic polymer, an n-type organic molecule and a semiconductor quantum dot to an organic solvent, and then heated to obtain a pin-type polymer-quantum dot composite. It provides a method of manufacturing a solar cell device, characterized in that to form the active layer in the form of a thin film.

본 발명의 태양전지 소자 제조방법에 의하면, 양극과 음극 사이에, 일체형 코어/쉘 구조를 갖는 p-i-n 형태의 고분자-양자점 복합체의 박막 형태로서 활성층을 형성할 수 있어, 다층 박막의 층간 계면 문제를 최소화하면서 적은 비용으로 간단히 넓은 면적을 코팅할 수 있고, 낮은 온도에서도 박막을 형성할 수 있으며, 유리 기판을 비롯한 거의 모든 종류의 기판을 기판 형태의 제한 없이 다양하게 사용할 수 있다. 이와 같이 제조된 본 발명의 고효율 태양전지 소자는 구부리거나 접을 수 있어 휴대하기 편리하고, 사람의 옷, 가방, 및 휴대용 전기, 전자 제품에 부착하여 사용하기 편리하며, 빛에 대한 투명도가 높아 건물 또는 자동차의 유리창 등에 부착하여 밖을 볼 수 있게 하면서도 전력을 생산할 수 있는 등 매우 다양하게 응용될 수 있다.According to the solar cell device manufacturing method of the present invention, an active layer can be formed as a thin film of a pin-type polymer-quantum dot composite having an integrated core / shell structure between the anode and the cathode, thereby minimizing the interlayer interface problem of the multilayer thin film. While it is possible to coat a large area simply at a low cost, to form a thin film even at low temperature, almost all kinds of substrates, including glass substrates, can be used in various ways without limitation of the substrate form. The high efficiency solar cell device of the present invention manufactured as described above can be bent or folded, which is convenient to carry, and is convenient to attach to human clothes, bags, and portable electric and electronic products, and has high transparency to light or buildings. It can be applied to a wide range of applications, such as being able to produce power while being attached to a window of a car and looking outside.

본 발명에 따른 태양전지 소자는 p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액의 코팅층으로부터 가열에 의해 얻어진 일체형 코어/쉘(core/shell) 구조의 p-i-n 형태의 고분자-양자점 복합체 박막을 활성층으로서 포함하는 것을 특징으로 한다.The solar cell device according to the present invention has an integral core / shell structure obtained by heating from a coating layer of an organic-inorganic mixed solution prepared by adding a p-type organic polymer, an n-type organic molecule, and a semiconductor quantum dot to an organic solvent. It characterized in that it comprises a pin-shaped polymer-quantum dot composite thin film as the active layer.

본 발명의 태양전지 소자 제법의 바람직한 실시양태에 따르면,According to a preferred embodiment of the solar cell device manufacturing method of the present invention,

(1) 기판(유리, 금속, 고분자, 세라믹 등) 위에 인듐-주석-산화물 (ITO, indium-tin-oxide) 박막을 증착하여 ITO 전극을 형성하고;(1) depositing an indium-tin-oxide (ITO) thin film on a substrate (glass, metal, polymer, ceramic, etc.) to form an ITO electrode;

(2) p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 유-무기 혼합용액을 제조한 후, 상기 단계 (1)에서 형성된 ITO 전극을 상기 유-무기 혼합용액으로 코팅한 다음 코팅층을 가열하여 고분자-양자점 복합체 박막을 형성하고;(2) preparing an organic-inorganic mixed solution by adding a p-type organic polymer, an n-type organic molecule, and a semiconductor quantum dot to an organic solvent, and then coating the ITO electrode formed in step (1) with the organic-inorganic mixed solution. The coating layer is then heated to form a polymer-quantum dot composite thin film;

(3) 상기 단계 (2)에서 형성된 고분자-양자점 복합체 박막 위에 LiF 및 Al 박막을 순차적으로 증착하여 LiF 및 Al 전극을 형성함으로써 목적하는 태양전지 소자를 제조할 수 있다.(3) The desired solar cell device may be manufactured by sequentially depositing LiF and Al thin films on the polymer-quantum dot composite thin film formed in step (2) to form LiF and Al electrodes.

본 발명에 사용되는 p형 유기 고분자의 구체적인 예로는 폴리(N-비닐카바졸)(PVK), 폴리[1-메톡시-4-(2-에틸헥실옥시-2,5-페닐렌비닐렌)](MEH-PPV), 폴리(페닐렌비닐렌)(PPV), 디메틸페닐로 말단-캡핑된 폴리(9,9-디옥틸플루오레닐-2,7- 디일)(PFO-DMP) 및 이들의 혼합물을 들 수 있다. 이 p형 유기 고분자는 태양전지 소자에서 정공 수송층의 역할을 수행한다.Specific examples of the p-type organic polymer used in the present invention include poly (N-vinylcarbazole) (PVK), poly [1-methoxy-4- (2-ethylhexyloxy-2,5-phenylenevinylene )] (MEH-PPV), poly (phenylenevinylene) (PPV), poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO-DMP) end-capped with dimethylphenyl and And mixtures thereof. This p-type organic polymer acts as a hole transport layer in the solar cell device.

본 발명에 사용되는 n형 유기 분자의 구체적인 예로는 1,3,5-트리스-(N-페닐벤즈이미다졸-2-일)벤젠(TPBi), N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-비페닐-4,4'-디아민(TPD), 2-(4-비페닐일)-5-(4-tert-부틸페닐)-1,3,4-옥사디아졸(PBD), 2,9-디메틸-4,7-디페닐-1,10-페난트롤린(BCP), 4,7-디페닐-1,10-페난트롤린(Bphen) 및 이들의 혼합물을 들 수 있다. 이 n형 유기 분자는 태양전지 소자에서 전자 수송층의 역할을 수행한다.Specific examples of n-type organic molecules used in the present invention include 1,3,5-tris- (N-phenylbenzimidazol-2-yl) benzene (TPBi), N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD), 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4 -Oxadiazole (PBD), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and And mixtures thereof. This n-type organic molecule serves as an electron transporting layer in the solar cell device.

본 발명에 사용되는 반도체 양자점은 태양광 스펙트럼 중 200 내지 1100 nm 영역의 자외선-근적외선을 흡수하고 1.1 내지 6.0 eV 정도의 밴드갭을 갖는 반도체 나노입자로서, IV족, II족-VI족, III족-V족, I족-III족-VI족 화합물 또는 이들의 혼합물일 수 있으며, 바람직하게는 코어/쉘 구조를 갖는 II족-VI족/II족-VI족 화합물일 수 있다. 이의 구체적인 예로는 AlN(밴드갭: 6.0 eV), GaN(밴드갭: 3.4 eV), ZnO(밴드갭: 3.37 eV), InP, Si, Ge, GaAs, CuInS2, CuInSe2, CdS, CuInGaSe2, CdTe, ZnSe, CdSe/ZnS(코어/쉘) 및 이들의 혼합물을 들 수 있다. 이 반도체 양자점은 태양전지 소자에서 전기적으로 진성층(intrinsic layer)(또는 빛흡수층)의 역할을 수행한다.The semiconductor quantum dots used in the present invention are semiconductor nanoparticles that absorb ultraviolet-near infrared rays in the 200-1100 nm region of the solar spectrum and have a bandgap of about 1.1 to 6.0 eV. Group IV, Group II-VI, Group III Group-V, Group-III-VI-VI compounds or mixtures thereof, preferably Group II-VI / Group II-VI compounds having a core / shell structure. Specific examples thereof include AlN (bandgap: 6.0 eV), GaN (bandgap: 3.4 eV), ZnO (bandgap: 3.37 eV), InP, Si, Ge, GaAs, CuInS 2 , CuInSe 2 , CdS, CuInGaSe 2 , CdTe, ZnSe, CdSe / ZnS (core / shell) and mixtures thereof. This semiconductor quantum dot serves as an electrically intrinsic layer (or light absorbing layer) in the solar cell device.

본 발명에 사용되는 유기용매의 구체적인 예로는 톨루엔, 클로로포름, 디메틸포름아미드 및 이들의 혼합물을 들 수 있다.Specific examples of the organic solvent used in the present invention include toluene, chloroform, dimethylformamide and mixtures thereof.

바람직하게는, 유기용매 100 중량부에 대해 p-형 유기 고분자 0.1 ~ 10 중량부, 바람직하게는 0.6 ~ 1 중량부, n-형 유기 분자 0.1 ~ 10 중량부, 바람직하게는 0.4 ~ 1 중량부, 및 반도체 양자점 0.1 ~ 10 중량부, 바람직하게는 0.5 ~ 1 중량부를 사용할 수 있다. 이때, 최종적으로 형성되는 태양전지 소자의 전기적 특성의 조절을 위해 반도체 양자점의 사용량을 적절히 조절할 수 있다.Preferably, 0.1 to 10 parts by weight of the p-type organic polymer, preferably 0.6 to 1 part by weight, 0.1 to 10 parts by weight of the n-type organic molecule, and preferably 0.4 to 1 part by weight based on 100 parts by weight of the organic solvent. And 0.1 to 10 parts by weight, and preferably 0.5 to 1 part by weight of the semiconductor quantum dot. At this time, the amount of the semiconductor quantum dots can be appropriately adjusted to control the electrical characteristics of the finally formed solar cell device.

스핀 코팅, 잉크젯 프린팅, 롤 코팅 또는 닥터 블레이드(doctor blade)법 등을 이용하여 상기 유-무기 혼합용액으로 ITO 전극을 코팅하는데, 예를 들어 스핀 코팅의 경우 회전 속도 및 회전 시간을 조절함으로써 형성되는 코팅층, 나아가서는 고분자-양자점 복합체 박막의 두께를 정교하게 조절할 수 있다. 스핀 코팅시 회전 속도는 1000 ~ 3000 rpm으로, 회전 시간은 10 ~ 30 초로 조절할 수 있다. 코팅 두께는 0.1 ~ 10 ㎛ 일 수 있다.Coating the ITO electrode with the organic-inorganic mixed solution using spin coating, inkjet printing, roll coating or doctor blade method, for example, spin coating is formed by adjusting the rotation speed and rotation time The thickness of the coating layer, and further, the polymer-quantum dot composite thin film can be finely controlled. When spin coating, the rotation speed can be adjusted to 1000 to 3000 rpm, and the rotation time can be adjusted to 10 to 30 seconds. The coating thickness can be 0.1-10 μm.

이와 같이 형성된 코팅층을 50 내지 100℃에서 10 내지 30분 동안 가열하여 용매를 제거함으로써 ITO 전극 위에 두께 0.1 ~ 10 ㎛의 고분자-양자점 복합체 박막을 형성할 수 있다.The coating layer thus formed may be heated at 50 to 100 ° C. for 10 to 30 minutes to remove the solvent, thereby forming a polymer-quantum dot composite thin film having a thickness of 0.1 to 10 μm on the ITO electrode.

상기 단계 (1) 및 (3)에서, ITO 박막, 및 LiF 및 Al 박막은 통상적인 방법으로 증착할 수 있다.In the above steps (1) and (3), the ITO thin film, and the LiF and Al thin films can be deposited by conventional methods.

이와 같이 제조된 본 발명에 따른 태양전지 소자는 일체형 유-무기 하이브리드 입자가 개개의 독립된 p(p형 유기 고분자)-i(반도체 양자점)-n(n형 유기 분자) 형태를 갖는 고분자-양자점 복합체로 이루어진 단일 활성층을 포함한다. 이 고분자-양자점 복합체는 p-형 유기 고분자를 내부핵으로 하고, 그 고분자 입자 표면을 전기적으로 진성층(빛흡수층) 역할을 하는 반도체 양자점 나노입자들이 균일하게 둘러싸고 있으며, 또다시 그 주위를 n-형 유기 분자 입자들이 캡 형태로 둘러싸고 있는 p-i-n 형태의 일체형 코어-쉘 구조를 갖는다. 이러한 일체형 코어/쉘 구조의 고분자-양자점 복합체는 1 내지 10 nm의 입자 크기를 가질 수 있다.The solar cell device according to the present invention manufactured as described above is a polymer-quantum dot composite in which the integral organic-inorganic hybrid particles have individual independent p (p-type organic polymer) -i (semiconductor quantum dots) -n (n-type organic molecules) forms. It comprises a single active layer consisting of. This polymer-quantum dot complex has a p-type organic polymer as its inner nucleus, and is uniformly surrounded by semiconductor quantum dot nanoparticles serving as an intrinsic layer (light absorbing layer) on the surface of the polymer particle. Type organic molecular particles have a pin-shaped integral core-shell structure surrounded by a cap shape. Such monolithic core / shell structure polymer-quantum dot composite may have a particle size of 1 to 10 nm.

이러한 독립된 p-i-n 형태에서는, 정공 수송층, 진성층(빛흡수층) 및 전자 수송층이 단일층 내에 존재하게 되며, 외부에서 빛이 입사되었을 때 광전효과(photovoltaic effect)에 의해 반도체 양자점 진성층에서 광자(photon)가 흡수되어 전자-정공쌍이 생성되면 공간전하영역의 전계(build-in field)에 의해 전자와 정공이 각각 반대방향으로 흘러서 공간적으로 분리되어 전자는 전자 수송층으로, 정공은 정공 수송층으로 이동한 후 각각 전극으로 이동하게 된다. In this independent pin shape, a hole transport layer, an intrinsic layer (light absorbing layer), and an electron transport layer exist in a single layer, and photons in the intrinsic layer of the semiconductor quantum dot due to a photovoltaic effect when light is incident from the outside. When electrons are generated by the absorption of electron-hole pairs, electrons and holes flow in opposite directions by the build-in field of the space charge region, and are separated spatially, and electrons move to the electron transport layer and holes move to the hole transport layer, respectively. To the electrode.

이와 같이, 본 발명의 태양전지 소자 제조방법에 의하면, 양극과 음극 사이에, 일체형 코어/쉘 구조를 갖는 p-i-n 형태의 고분자-양자점 복합체의 박막 형태로서 활성층을 형성할 수 있어, 다층 박막의 층간 계면 문제를 최소화하면서 적은 비용으로 간단히 넓은 면적을 코팅할 수 있고, 낮은 온도에서도 박막을 형성할 수 있으며, 유리 기판을 비롯한 거의 모든 종류의 기판을 기판 형태의 제한 없이 다양하게 사용할 수 있다. 이와 같이 제조된 본 발명의 고효율 태양전지 소자는 구부리거나 접을 수 있어 휴대하기 편리하고, 사람의 옷, 가방, 및 휴대용 전기, 전자 제품에 부착하여 사용하기 편리하며, 빛에 대한 투명도가 높아 건물 또는 자동차의 유리창 등에 부착하여 밖을 볼 수 있게 하면서도 전력을 생산할 수 있는 등 매우 다양하게 응용될 수 있다.As described above, according to the solar cell device manufacturing method of the present invention, an active layer can be formed as a thin film of a pin-type polymer-quantum dot composite having an integral core / shell structure between an anode and a cathode, and thus an interlayer interface of a multilayer thin film. It is possible to coat a large area simply at a low cost while minimizing the problem, to form a thin film even at a low temperature, and almost any kind of substrate including a glass substrate can be used in various ways without limitation of the substrate form. The high efficiency solar cell device of the present invention manufactured as described above can be bent or folded, which is convenient to carry, and is convenient to attach to human clothes, bags, and portable electric and electronic products, and has high transparency to light or buildings. It can be applied to a wide range of applications, such as being able to produce power while being attached to a window of a car and looking outside.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[실시예 1]Example 1

유리 기판 위에 인듐-주석-산화물 (ITO, indium-tin-oxide) 박막을 증착한 후 식각 공정을 거쳐 종방향과 같은 형태의 ITO 전극을 형성하였다. 폴리(N-비닐카바졸)(PVK)(중량평균분자량: 25,000 내지 50,000), 1,3,5-트리스-(N-페닐벤즈이미다졸-2-일)벤젠(TPBi) 및 코어/쉘 구조의 CdSe/ZnS 양자점을 톨루엔에 첨가하여 유-무기 혼합용액을 제조하였다. 이때, 톨루엔 100 중량부에 대해 PVK, TPBi 및 CdSe/ZnS 양자점을 각각 0.5 중량부, 0.6 중량부 및 0.4 중량부의 양으로 사용하였다.After depositing an indium-tin-oxide (ITO) thin film on a glass substrate, an ITO electrode was formed in the longitudinal direction through an etching process. Poly (N-vinylcarbazole) (PVK) (weight average molecular weight: 25,000 to 50,000), 1,3,5-tris- (N-phenylbenzimidazol-2-yl) benzene (TPBi) and core / shell structure CdSe / ZnS quantum dots of to was added to toluene to prepare an organic-inorganic mixed solution. At this time, PVK, TPBi and CdSe / ZnS quantum dots were used in an amount of 0.5 parts by weight, 0.6 parts by weight and 0.4 parts by weight based on 100 parts by weight of toluene, respectively.

상기 유-무기 혼합용액으로 ITO 전극을 스핀 코팅하였으며, 스핀 코팅시 회전 속도는 2000 rpm으로, 회전 시간은 20 초로 조절하였다. 이와 같이 형성된 코팅층을 약 100℃에서 약 10분 동안 가열하여 용매를 제거함으로써 ITO 전극 위에 두께 150 nm의 단일 활성층으로서의 고분자-양자점 복합체 박막을 형성하였다.The ITO electrode was spin-coated with the organic-inorganic mixed solution, and the spin speed was adjusted to 2000 rpm and the spin time was 20 seconds. The coating layer thus formed was heated at about 100 ° C. for about 10 minutes to remove the solvent to form a polymer-quantum dot composite thin film as a single active layer having a thickness of 150 nm on the ITO electrode.

이어, 형성된 고분자-양자점 복합체 박막 위에, 열 증류기(thermal evaporator)를 사용하여 LiF 및 Al 박막을 순차적으로 증착하여 횡방향으로 LiF 및 Al 전극을 형성한 후, 형성된 적층체에 대해서 구동 회로를 형성하여 목적하는 태양전지 소자를 제조하였다.Subsequently, LiF and Al thin films are sequentially deposited on the formed polymer-quantum dot composite thin film using a thermal evaporator to form LiF and Al electrodes in the transverse direction, and then a driving circuit is formed for the formed laminate. The desired solar cell device was manufactured.

상기 실시예 1에서 제조된, 일체형 코어/쉘 구조를 갖는 p-i-n 형태의 고분자-양자점 복합체의 박막을 단일 활성층으로서 포함하는 태양전지 소자의 단면도를 도 1에 나타내었다. 1 is a cross-sectional view of a solar cell device including a thin film of p-i-n type polymer-quantum dot composite having an integrated core / shell structure as a single active layer prepared in Example 1.

상기 실시예 1에서 얻어진 코어/쉘 구조의 고분자-양자점 복합체의 투과전자현미경(transmission electron microscopy, TEM) 사진을 도 2에 나타내었다. 도 2로부터, 100-200 nm 크기의 PVK 고분자 표면에 수 nm 크기의 양자점이 흡착되어 있는 것처럼 분포하고 있으며, PVK와 양자점 전체를 TPBi 저분자 유기물이 감싸는 것을 확인할 수 있고, 이로 인해 p(PVK)-i(CdSe/ZnS)-n(TPBi) 구조가 형성되어 있음을 최초로 확인하였다.A transmission electron microscopy (TEM) photograph of the polymer-quantum dot composite having a core / shell structure obtained in Example 1 is shown in FIG. 2. From FIG. 2, it can be seen that quantum dots of several nm size are distributed on the surface of 100-200 nm PVK polymer, and TPBi low molecular weight organic material is wrapped around PVK and the quantum dots, thereby p (PVK)- It was confirmed for the first time that the i (CdSe / ZnS) -n (TPBi) structure was formed.

도 2의 TEM 사진을 기초로 하여 상기 실시예 1에서 제조된 태양전지 소자의 모식도를 도 3에 나타내었다. 도 3으로부터, Al 전극과 ITO 전극 양단 사이에, TPBi (n형 전자 수송층)가 PVK 고분자 (p형 정공 수송층)를 감싸고 그 사이 진성층으로서 CdSe/ZnS 양자점 나노입자가 형성되어 빛이 입사할 때 빛을 흡수하는 등 p-i-n 형태의 층이 형성되었음을 알 수 있다.A schematic diagram of the solar cell device manufactured in Example 1 based on the TEM photograph of FIG. 2 is shown in FIG. 3. From Fig. 3, when TPBi (n-type electron transport layer) surrounds PVK polymer (p-type hole transport layer) between the Al electrode and the ITO electrode, CdSe / ZnS quantum dot nanoparticles are formed as the intrinsic layer therebetween, and the light is incident. It can be seen that a pin-like layer is formed to absorb light.

상기 실시예 1에서 제조된 태양전지 소자의 전류밀도-전압 (J-V) 측정 곡선을 도 4에 나타내었다. 이때, 태양광 시뮬레이터(solar simulator) 장치를 사용하 여 태양 빛을 입사시켜 측정하였다. 도 4로부터, 처음 시작점의 전류밀도가 태양 빛의 입사를 통해 전자와 정공이 전극을 통해 들어가면서 커지다가 시간이 지남에 따라 전압 1.2 V 근처에서 감소하는 것을 알 수 있다. A current density-voltage (J-V) measurement curve of the solar cell device manufactured in Example 1 is shown in FIG. 4. In this case, the solar light was measured by using a solar simulator device. From FIG. 4, it can be seen that the current density of the initial starting point increases as electrons and holes enter through the electrode through the incidence of solar light, and then decreases around 1.2 V with time.

상기 실시예 1에서 제조된 태양전지 소자의 에너지 밴드 다이어그램을 도 5에 나타내었다. 도 5로부터, 빛의 흡수를 통해서 전자와 정공이 나뉘어져 서로 각각 다르게 이동함을 알 수 있다. 전자의 구체적인 이동 경로를 살펴보면, 전자는 TPBi LUMO (the lowest unoccupied molecular orbital) 레벨까지 호핑 메카니즘(hopping machanism)을 통하여 이동한 후 TPBi LUMO 레벨에서 다음 단계인 Al 전극으로 이동한다. 반대편에 있는 정공의 이동 경로를 살펴보면, 정공은 PVK HOMO (the highest occupied molecular orbital) 레벨로 이동한 후 PVK HOMO 레벨에서 다음 단계인 ITO 투명전극으로 이동하여 기전력을 발생시켜 전류를 흐르게 한다. An energy band diagram of the solar cell device manufactured in Example 1 is illustrated in FIG. 5. 5, it can be seen that electrons and holes are divided and moved differently through absorption of light. Looking at the specific path of the electron, the electron moves through the hopping mechanism (hopping machanism) to the lowest unoccupied molecular orbital (TPBi LUMO) level, and then to the Al electrode of the next step at the TPBi LUMO level. Looking at the movement path of the hole on the opposite side, the hole moves to the highest occupied molecular orbital (PVK HOMO) level, and then moves to the next step, the ITO transparent electrode, at the PVK HOMO level to generate electromotive force to flow the current.

상기 실시예 1에서 제조된 태양전지 소자의 광발광 (photoluminescence, PL) 측정 곡선을 도 6에 나타내었다. 도 6의 곡선에서, PVK 및 TPBi 입자로부터의 발광은 400-500 nm 영역에 걸쳐 관찰되었고, CdSe 반도체 양자점으로부터의 발광은 585 nm 근처에서 오렌지색 발광이 관측되었다. A photoluminescence (PL) measurement curve of the solar cell device manufactured in Example 1 is shown in FIG. 6. In the curve of FIG. 6, luminescence from PVK and TPBi particles was observed over the 400-500 nm region, and luminescence from the CdSe semiconductor quantum dots was observed at around 585 nm.

도 1은 상기 실시예 1에서 제조된, 일체형 코어/쉘 구조를 갖는 p-i-n 형태의 고분자-양자점 복합체의 박막을 단일 활성층으로서 포함하는 태양전지 소자의 단면도이고,1 is a cross-sectional view of a solar cell device including a thin film of a polymer-quantum dot composite of p-i-n type having an integrated core / shell structure prepared in Example 1 as a single active layer,

도 2는 상기 실시예 1에서 얻어진 코어/쉘 구조의 고분자-양자점 복합체의 투과전자현미경(TEM) 사진이고,2 is a transmission electron microscope (TEM) photograph of a polymer-quantum dot composite having a core / shell structure obtained in Example 1,

도 3은 도 2의 TEM 사진을 기초로 하여 상기 실시예 1에서 제조된 태양전지 소자의 모식도이고,FIG. 3 is a schematic diagram of the solar cell device manufactured in Example 1 based on the TEM photograph of FIG. 2.

도 4는 상기 실시예 1에서 제조된 태양전지 소자의 전류밀도-전압 (J-V) 측정 곡선이고,4 is a current density-voltage (J-V) measurement curve of the solar cell device manufactured in Example 1,

도 5는 상기 실시예 1에서 제조된 태양전지 소자의 에너지 밴드 다이어그램이고,5 is an energy band diagram of the solar cell device manufactured in Example 1,

도 6은 상기 실시예 1에서 제조된 태양전지 소자의 광발광 (PL) 측정 곡선이다. 6 is a photoluminescence (PL) measurement curve of the solar cell device manufactured in Example 1.

Claims (13)

기판, 양극, 활성층 및 음극이 순차적으로 적층되고, 상기 활성층으로서, p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액의 코팅층으로부터 가열에 의해 얻어진 일체형 코어/쉘(core/shell) 구조의 p-i-n 형태의 고분자-양자점 복합체 박막을 포함하는 태양전지 소자.A substrate, an anode, an active layer, and a cathode are sequentially stacked, and as the active layer, an integral type obtained by heating from a coating layer of an organic-inorganic mixed solution prepared by adding a p-type organic polymer, an n-type organic molecule, and a semiconductor quantum dot to an organic solvent. A solar cell device including a pin-shaped polymer-quantum dot composite thin film having a core / shell structure. 제 1 항에 있어서,The method of claim 1, 상기 p형 유기 고분자가 폴리(N-비닐카바졸)(PVK), 폴리[1-메톡시-4-(2-에틸헥실옥시-2,5-페닐렌비닐렌)](MEH-PPV), 폴리(페닐렌비닐렌)(PPV), 디메틸페닐로 말단-캡핑된 폴리(9,9-디옥틸플루오레닐-2,7-디일)(PFO-DMP) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 태양전지 소자.The p-type organic polymer is poly (N-vinylcarbazole) (PVK), poly [1-methoxy-4- (2-ethylhexyloxy-2,5-phenylenevinylene)] (MEH-PPV) , Poly (phenylenevinylene) (PPV), poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO-DMP) end-capped with dimethylphenyl and mixtures thereof Solar cell device, characterized in that selected. 제 1 항에 있어서,The method of claim 1, 상기 n형 유기 분자가 1,3,5-트리스-(N-페닐벤즈이미다졸-2-일)벤젠(TPBi), N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-비페닐-4,4'-디아민(TPD), 2-(4-비페닐일)-5-(4-tert-부틸페닐)-1,3,4-옥사디아졸(PBD), 2,9-디메틸-4,7-디페닐-1,10-페난트롤린(BCP), 4,7-디페닐-1,10-페난트롤린(Bphen) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 태양전지 소자.The n-type organic molecule is 1,3,5-tris- (N-phenylbenzimidazol-2-yl) benzene (TPBi), N'-diphenyl-N, N'-bis (3-methylphenyl) -1 , 1'-biphenyl-4,4'-diamine (TPD), 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD) , 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and mixtures thereof Solar cell device, characterized in that selected. 제 1 항에 있어서,The method of claim 1, 상기 반도체 양자점이 태양광 스펙트럼 중 200 내지 1100 nm 영역의 자외선-근적외선을 흡수하고 1.1 내지 6.0 eV의 밴드갭을 갖는 반도체 나노입자임을 특징으로 하는 태양전지 소자.The semiconductor quantum dot is a solar cell device, characterized in that the semiconductor nanoparticles absorbing ultraviolet-near infrared rays in the 200-1100 nm region of the solar spectrum and has a bandgap of 1.1 to 6.0 eV. 제 4 항에 있어서,The method of claim 4, wherein 상기 반도체 양자점이 IV족, II족-VI족, III족-V족, I족-III족-VI족 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 태양전지 소자.The semiconductor quantum dot is selected from the group consisting of Group IV, Group II-VI, Group III-V, Group I-III-VI compounds and mixtures thereof. 제 5 항에 있어서,The method of claim 5, 상기 반도체 양자점이 코어/쉘(core/shell) 구조를 갖는 II족-VI족/II족-VI족 화합물인 것을 특징으로 하는 태양전지 소자.The semiconductor quantum dot is a solar cell device, characterized in that the Group II-VI / Group II-VI compound having a core / shell (core / shell) structure. 제 5 항에 있어서,The method of claim 5, 상기 반도체 양자점이 AlN, GaN, ZnO, InP, Si, Ge, GaAs, CuInS2, CuInSe2, CdS, CuInGaSe2, CdTe, ZnSe, CdSe/ZnS(코어/쉘) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 태양전지 소자.The semiconductor quantum dot is selected from the group consisting of AlN, GaN, ZnO, InP, Si, Ge, GaAs, CuInS 2 , CuInSe 2 , CdS, CuInGaSe 2 , CdTe, ZnSe, CdSe / ZnS (core / shell) and mixtures thereof Solar cell device, characterized in that. 제 1 항에 있어서,The method of claim 1, 상기 유기용매 100 중량부에 대해 상기 p-형 유기 고분자, n-형 유기 분자 및 반도체 양자점을 각각 0.1 ~ 10 중량부의 양으로 사용하는 것을 특징으로 하는 태양전지 소자.The p-type organic polymer, n-type organic molecules and semiconductor quantum dots are used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the organic solvent, respectively. 제 1 항에 있어서,The method of claim 1, 상기 유-무기 혼합용액 코팅층의 가열이 50 내지 100℃에서 10 내지 30분 동안 수행되는 것을 특징으로 하는 태양전지 소자.The organic-inorganic mixed solution coating layer is heated in a solar cell device, characterized in that performed for 10 to 30 minutes at 50 to 100 ℃. 제 1 항에 있어서,The method of claim 1, 상기 고분자-양자점 복합체 박막이 0.1 ~ 10 ㎛의 두께를 갖는 것을 특징으로 하는 태양전지 소자.The polymer-quantum dot composite thin film has a thickness of 0.1 ~ 10 ㎛ solar cell device. 제 1 항에 있어서,The method of claim 1, 상기 고분자-양자점 복합체가 1 내지 10 nm의 입자 크기를 갖는 것을 특징으로 하는 태양전지 소자.The polymer-quantum dot composite is a solar cell device, characterized in that it has a particle size of 1 to 10 nm. 기판 위에 양극, 활성층 및 음극이 순차적으로 적층된 태양전지 소자를 제조하는 방법에 있어서,In the method for manufacturing a solar cell device in which an anode, an active layer and a cathode are sequentially stacked on a substrate, 기판 위에 양극을 형성한 후, 상기 양극을 p형 유기 고분자, n형 유기 분자 및 반도체 양자점을 유기용매에 첨가하여 제조된 유-무기 혼합용액으로 코팅한 다음 가 열하여 p-i-n 형태의 고분자-양자점 복합체의 박막 형태로서 상기 활성층을 형성하는 것을 특징으로 하는, 제 1 항의 태양전지 소자의 제조방법.After forming an anode on a substrate, the anode was coated with an organic-inorganic mixed solution prepared by adding p-type organic polymer, n-type organic molecule and semiconductor quantum dots to an organic solvent, and then heated to pin-type polymer-quantum dot composite. The method of manufacturing a solar cell device according to claim 1, wherein the active layer is formed as a thin film. 제 12 항에 있어서,13. The method of claim 12, 상기 유-무기 혼합용액으로 양극을 코팅할 때 1000 ~ 3000 rpm의 속도로 10 ~ 30 초 동안 스핀 코팅을 수행하는 것을 특징으로 하는, 태양전지 소자의 제조방법.When coating the positive electrode with the organic-inorganic mixed solution, characterized in that the spin coating for 10 to 30 seconds at a speed of 1000 ~ 3000 rpm, manufacturing method of a solar cell device.
KR1020090043450A 2009-05-19 2009-05-19 Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof KR101012089B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090043450A KR101012089B1 (en) 2009-05-19 2009-05-19 Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof
US12/629,628 US20100294355A1 (en) 2009-05-19 2009-12-02 Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and method of the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090043450A KR101012089B1 (en) 2009-05-19 2009-05-19 Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof

Publications (2)

Publication Number Publication Date
KR20100124446A KR20100124446A (en) 2010-11-29
KR101012089B1 true KR101012089B1 (en) 2011-02-07

Family

ID=43123751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090043450A KR101012089B1 (en) 2009-05-19 2009-05-19 Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof

Country Status (2)

Country Link
US (1) US20100294355A1 (en)
KR (1) KR101012089B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351336B1 (en) 2011-10-07 2014-01-16 한국과학기술연구원 Metal oxide Semiconductor-Nanocarbon Consolidated Core-shell Quantum dots and Ultraviolet Photovoltaic Cell using it and A fabrication process thereof
KR20190085251A (en) * 2018-01-10 2019-07-18 세종대학교산학협력단 Inorganic hybrid photonic film and method of preparing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741901B2 (en) * 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication
KR101651689B1 (en) * 2010-12-24 2016-08-26 서울시립대학교 산학협력단 Organic-inorganic hybrid solar cell and method of the manufacturing of the same
US9187692B2 (en) * 2013-03-12 2015-11-17 Pacific Light Technologies Corp. Nano-crystalline core and nano-crystalline shell pairing having group I-III-VI material nano-crystalline core
CN103346266B (en) * 2013-06-21 2016-03-30 深圳市华星光电技术有限公司 A kind of luminescent device, display floater and manufacture method thereof
US11205757B2 (en) * 2014-11-06 2021-12-21 Sn Display Co., Ltd. Core-shell structured perovskite particle light-emitter, method of preparing the same and light emitting device using the same
WO2017053514A1 (en) * 2015-09-22 2017-03-30 Florida State University Research Foundation, Inc. Organometal halide perovskite nanoplatelets, devices, and methods
JP7198688B2 (en) * 2019-03-04 2023-01-11 シャープ株式会社 hybrid particles, photoelectric conversion element, photoreceptor and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050116147A (en) * 2003-03-19 2005-12-09 테크니셰 유니베르시테트 드레스덴 Photoactive component comprising organic layers
KR20070044981A (en) * 2005-10-26 2007-05-02 삼성전자주식회사 Solar cell driven display device and manufacturing method thereof
KR20070101454A (en) * 2006-04-10 2007-10-17 삼성전자주식회사 Surface emitting device and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316786B1 (en) * 1998-08-29 2001-11-13 International Business Machines Corporation Organic opto-electronic devices
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7811479B2 (en) * 2005-02-07 2010-10-12 The Trustees Of The University Of Pennsylvania Polymer-nanocrystal quantum dot composites and optoelectronic devices
GB0515710D0 (en) * 2005-07-29 2005-09-07 Isis Innovation Charge separation polymers
KR100973172B1 (en) * 2008-08-05 2010-08-02 한국과학기술연구원 AC-driven light emitting device having single active layer of consolidated core-shell structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050116147A (en) * 2003-03-19 2005-12-09 테크니셰 유니베르시테트 드레스덴 Photoactive component comprising organic layers
KR20070044981A (en) * 2005-10-26 2007-05-02 삼성전자주식회사 Solar cell driven display device and manufacturing method thereof
KR20070101454A (en) * 2006-04-10 2007-10-17 삼성전자주식회사 Surface emitting device and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351336B1 (en) 2011-10-07 2014-01-16 한국과학기술연구원 Metal oxide Semiconductor-Nanocarbon Consolidated Core-shell Quantum dots and Ultraviolet Photovoltaic Cell using it and A fabrication process thereof
KR20190085251A (en) * 2018-01-10 2019-07-18 세종대학교산학협력단 Inorganic hybrid photonic film and method of preparing the same
KR102172248B1 (en) 2018-01-10 2020-10-30 세종대학교산학협력단 Inorganic hybrid photonic film and method of preparing the same

Also Published As

Publication number Publication date
US20100294355A1 (en) 2010-11-25
KR20100124446A (en) 2010-11-29

Similar Documents

Publication Publication Date Title
KR101012089B1 (en) Solar cell device comprising a consolidated core/shell polymer-quantum dot composite and preparation thereof
Duan et al. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber
Seo et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells
CN107431128B (en) Method for manufacturing device comprising organic and inorganic hybrid perovskite compound film and device comprising organic and inorganic hybrid perovskite compound film
CN104769736B (en) Photoelectric device
KR101461634B1 (en) High―efficiency Inorganic―Organic Hybrid Solar Cells and Their Fabrication Methods
Kim et al. Hybrid tandem quantum dot/organic solar cells with enhanced photocurrent and efficiency via ink and interlayer engineering
Ghosekar et al. Review on performance analysis of P3HT: PCBM-based bulk heterojunction organic solar cells
TW200810136A (en) Photovoltaic device with nanostructured layers
KR20100102111A (en) Photovoltaic cells comprising group iv-vi semiconductor core-shell nanocrystals
Li et al. Improved photovoltaic performance of heterostructured tetrapod‐shaped CdSe/CdTe nanocrystals using C60 interlayer
US10229952B2 (en) Photovoltaic cell and a method of forming a photovoltaic cell
CN101411001A (en) Nanoparticle sensitized nanostructured solar cells
Xie et al. Improving performance in CdTe/CdSe nanocrystals solar cells by using bulk nano-heterojunctions
Muhammad et al. Thermal stability and reproducibility enhancement of organic solar cells by tris (hydroxyquinoline) gallium dopant forming a dual acceptor active layer
US20110000542A1 (en) Hybrid photovoltaic modules
Aftab et al. Quantum junction solar cells: Development and prospects
JP2011119676A (en) Organic photoelectric conversion element
KR101495764B1 (en) Inverted organic solar cell containing quantum dot single layer in electron transfer layer and method for fabricating the same
KR101809869B1 (en) Solar cell and method for manufacturing the same
Hu et al. 3D Printing Technology toward State‐of‐the‐Art Photoelectric Devices
KR102135101B1 (en) Semi-transparent/flexible solar cell and method for manufacturing thereof
KR101942008B1 (en) Bulk hetero-junction solar cell and manufacturing the same
Beek et al. Hybrid polymer-inorganic photovoltaic cells
JP5845059B2 (en) Organic inorganic composite thin film solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180209

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191230

Year of fee payment: 10