KR101011900B1 - Laminate structure comprising stainless foil, resin and metal foil - Google Patents

Laminate structure comprising stainless foil, resin and metal foil Download PDF

Info

Publication number
KR101011900B1
KR101011900B1 KR1020087024917A KR20087024917A KR101011900B1 KR 101011900 B1 KR101011900 B1 KR 101011900B1 KR 1020087024917 A KR1020087024917 A KR 1020087024917A KR 20087024917 A KR20087024917 A KR 20087024917A KR 101011900 B1 KR101011900 B1 KR 101011900B1
Authority
KR
South Korea
Prior art keywords
foil
resin
stainless
laminate structure
phase
Prior art date
Application number
KR1020087024917A
Other languages
Korean (ko)
Other versions
KR20080109843A (en
Inventor
쯔요시 야마모또
슈우지 나가사끼
아쯔시 미즈야마
쥰 나까쯔까
Original Assignee
신닛테츠 마테리알즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신닛테츠 마테리알즈 가부시키가이샤 filed Critical 신닛테츠 마테리알즈 가부시키가이샤
Publication of KR20080109843A publication Critical patent/KR20080109843A/en
Application granted granted Critical
Publication of KR101011900B1 publication Critical patent/KR101011900B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

본 발명은 스테인레스박과 수지와 금속박으로 이루어지는 휨이 적은 라미네이트 구조체를 제공하는 것이며, 스테인레스박과 수지와 금속박의 3층 구조로 구성되는 라미네이트 구조체에 있어서, 스테인레스박이 강자성 상과 비강자성 상을 갖는 혼상으로, 또한 강자성 상의 비율이 0.1 질량% 이상, 4.0 질량% 이하이다.The present invention provides a laminate structure having a low warpage composed of stainless foil, resin, and metal foil, and in a laminate structure composed of a three-layer structure of stainless foil, resin, and metal foil, a stainless steel has a ferromagnetic phase and a non-ferromagnetic phase In addition, the proportion of the ferromagnetic phase is 0.1% by mass or more and 4.0% by mass or less.

스테인레스박, 금속박, 강자성 상, 라미네이트 구조체 Stainless foil, metal foil, ferromagnetic phase, laminate structure

Description

스테인레스박과 수지 및 금속박으로 이루어지는 라미네이트 구조체{LAMINATE STRUCTURE COMPRISING STAINLESS FOIL, RESIN AND METAL FOIL}Laminated structure consisting of stainless steel foil, resin and metal foil {LAMINATE STRUCTURE COMPRISING STAINLESS FOIL, RESIN AND METAL FOIL}

본 발명은 메모리 장치, 회로 기판을 비롯한 전자 기기용 구조물에 이용할 수 있다. 특히, 안정된 위치 정밀도가 요구되는 하드디스크 드라이브용 서스펜션용 라미네이트 구조체에 적합하다.Industrial Applicability The present invention can be used for structures for electronic devices including memory devices and circuit boards. In particular, it is suitable for the laminate structure for suspension for hard disk drives which requires stable position precision.

복합 소재, 그중에서도 금속과 수지로 구성된 라미네이트 구조체는 단체(單體) 물질로는 얻을 수 없는 복수의 특성을 얻을 수 있기 때문에 다양한 분야에서 이용되고 있고, 가볍고 얇은 용도로도 점점 이용 분야가 확대되고 있다.Composite materials, especially laminate structures composed of metals and resins, have been used in various fields because they can obtain a plurality of properties that cannot be obtained with a single substance, and their fields of application are increasingly being used for light and thin applications. .

이들 분야에서는 소자에 자기적 혹은 전기적 혹은 유전적인 물리적 작용을 정밀도 좋게 발현시키기 위해, 소자를 지지하는 라미네이트 구조체에 엄밀한 위치 정밀도가 요구된다. 예를 들어, 자기적인 물리 작용을 이용한 것으로서는 하드디스크용 자기 헤드의 지지부, 전기적인 물리 작용을 응용한 것으로서는 가요성 프린트 기판, 유전적인 물리 작용을 응용한 것으로서는 강유전체 메모리용 헤드의 지지부 등을 들 수 있다.In these fields, precise positional precision is required for the laminate structure supporting the device in order to accurately express magnetic, electrical or dielectric physical action in the device. For example, the magnetic physics is used to support the magnetic head for a hard disk, the electrical physics is applied to the flexible printed circuit board, and the dielectric physics is applied to the ferroelectric memory head. Can be mentioned.

다양한 분야에 이용되는 라미네이트 구조체이지만, 소재마다 다른 열팽창성 및 열수축성으로 휨의 영향을 무시할 수 없게 된다. 특히 그 두께를 얇게 해 감에 따라서 그 영향은 커진다.Although it is a laminate structure used in various fields, thermal expansion properties and heat shrinkability that are different from material to material can not ignore the effects of warpage. In particular, the thinner the thickness, the greater the effect.

라미네이트 구조체의 휨을 억제하는 방법은, 열가소성 수지의 경우에는 온도를 높여 연화시키고, 또한 라미네이트 구조체에 프레스 장치 등으로 압력을 인가하여 휨을 보정 후, 수지를 냉각하여 점성을 높여 밀착력을 높이고 있었다. 한편, 열경화성 수지의 경우, 라미네이트 구조체에 프레스 장치 등으로 압력을 인가하여 휨을 보정하고, 그때에 온도를 가하여 경화시키고 있었다.In the method of suppressing warpage of the laminate structure, in the case of the thermoplastic resin, the temperature is increased and softened, and after the pressure is applied to the laminate structure using a press device or the like to correct the warpage, the resin is cooled to increase viscosity and increase adhesion. On the other hand, in the case of a thermosetting resin, pressure was applied to the laminate structure with a press device or the like to correct the warpage, and at that time, temperature was applied to cure.

이들 대책은 수지의 온도가 높은 상태에서는 휨에 대해 유효하지만, 실온 근방까지 온도를 내리면 열수축차에 기인하는 왜곡이 발생하여 해소되지 않는다. 가령 해소되었다고 해도, 휨을 교정하기 위해서는 프레스 장치로 장시간 가열 가압할 필요가 있어, 장치의 생산성을 현저하게 저하시킨다.These measures are effective against warping in a state where the temperature of the resin is high, but when the temperature is lowered to near the room temperature, distortion due to heat shrinkage occurs and is not eliminated. Even if it is eliminated, for example, in order to correct warpage, it is necessary to heat pressurize with a press apparatus for a long time, thereby significantly lowering the productivity of the apparatus.

하드디스크 드라이브용 서스펜션 라미네이트 구조체에 관한 종래의 기술은, 예를 들어 일본 특허 출원 공개 제2004-303358호 공보는 수지층의 열팽창 계수나 접착력에 대해, 일본 특허 출원 공개 제2005-125588호 공보는 수지의 접착력이나 에칭 가공성에 대해 언급하고 있지만, 상술한 바와 같이 라미네이트 구조체를 제조하는 과정에서 접착력을 증가시키기 위해 가열하는 프로세스를 경유하는 한, 휨을 안정적으로 저감시키는 것은 어렵다. 본 발명에서 기재하는 기술, 즉 스테인레스박 내부의 강자성 상 비율의 최적화가 라미네이트 구조체의 휨을 억제하는 것에 대해서는 전혀 언급되고 있지 않다.Conventional techniques relating to a suspension laminate structure for a hard disk drive include, for example, Japanese Patent Application Laid-Open No. 2005-125588 for a thermal expansion coefficient and adhesive force of a resin layer. Although the adhesive force and the etching workability of the alloy are mentioned, it is difficult to stably reduce the warpage as long as it goes through a heating process to increase the adhesive force in the process of manufacturing the laminate structure as described above. The technique described in the present invention, that is, optimization of the ferromagnetic phase ratio inside the stainless foil, is not mentioned at all to suppress the warpage of the laminate structure.

본 발명은 스테인레스박과 수지와 금속박의 3층 구조로 이루어지고, 휨이 억제된 라미네이트 구조체를 제공하는 것을 목적으로 하고 있다.An object of this invention is to provide the laminated structure which consists of three layers of stainless foil, resin, and metal foil, and was curvature suppressed.

본 발명의 요지로 하는 바는, 스테인레스박과 수지와 금속박의 3층 구조로 구성되는 라미네이트 구조체에 있어서, 스테인레스박이 강자성 상(相)과 비강자성 상의 혼상이고 또한 강자성 상의 비율이 질량으로, 0.1 % 이상, 4.0 % 이하인 것을 특징으로 하는 라미네이트 구조체이다. 더욱 바람직하게는, 스테인레스박과 수지와 금속박의 3층 구조로 구성되는 하드디스크 서스펜션용 라미네이트 구조체에 있어서, 스테인레스박이 강자성 상과 비강자성 상의 혼상이고 또한 강자성 상의 비율이 질량으로 0.1 % 이상, 4.0 % 이하이고, 또한 다른 한쪽의 금속박이 구리박 혹은 구리 합금박인 것을 특징으로 하는 라미네이트 구조체이다.Summary of the Invention The gist of the present invention is that in a laminate structure having a three-layer structure of stainless foil, resin, and metal foil, the stainless foil is a mixed phase of the ferromagnetic phase and the non-ferromagnetic phase, and the ratio of the ferromagnetic phase is 0.1% by mass. The laminate structure is 4.0% or less. More preferably, in the laminate structure for hard disk suspension composed of a three-layer structure of stainless foil, resin, and metal foil, the stainless foil is a mixed phase of ferromagnetic phase and non-ferromagnetic phase, and the ratio of ferromagnetic phase is 0.1% or more and 4.0% by mass. Hereinafter, the other metal foil is a copper foil or a copper alloy foil, which is a laminate structure.

도1은 본 발명의 라미네이트 구조체의 구성을 도시하는 단면의 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the cross section which shows the structure of the laminate structure of this invention.

이하, 본 발명을 구체적으로 설명한다. 도1은 본 발명의 라미네이트 구조체의 구성을 도시하는 단면 모식도이다. 도1로부터 알 수 있는 바와 같이 본 발명의 라미네이트 구조체(1)는 스테인레스박(2)과 금속박(3)과 그 사이에 있으며 양 박을 접합하기 위한 열가소성 수지 또는 열경화성 수지 또는 열가소성 수지와 열경화성 수지의 복합체(4)에 의해 구성된 3층 구조로 되어 있다.Hereinafter, the present invention will be described in detail. BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows the structure of the laminate structure of this invention. As can be seen from Fig. 1, the laminate structure 1 of the present invention is formed between a stainless foil 2 and a metal foil 3, and a thermoplastic resin or a thermosetting resin or a thermoplastic resin and a thermosetting resin for joining both foils. It has a three-layer structure composed of the composite body 4.

금속박(3)은 스테인레스박(2)과는 다른 조성의 금속 및/또는 합금의 박이다.The metal foil 3 is foil of a metal and / or alloy of a composition different from the stainless foil 2.

이 라미네이트 구조체(1)는 스테인레스박(2)과 이와는 다른 금속의 박(3) 사이에 접착하기 위한 열가소성 혹은 열경화성의 수지(4)를 도포하여 맞춘 후, 가열 에 의해 양자를 접착하여 제작된다. 이 가열에 의한 접착 온도는 100 내지 400 ℃가 일반적이지만, 이에 한정되지 않고, 사용하는 수지의 경화 혹은 가소화 온도에 의해 적절하게 선택할 수 있다.The laminate structure 1 is produced by applying a thermoplastic or thermosetting resin 4 for bonding between a stainless foil 2 and a foil 3 of a different metal, and then bonding them together by heating. Although the adhesion temperature by this heating is generally 100-400 degreeC, it is not limited to this, According to the hardening or plasticization temperature of resin to be used, it can select suitably.

그런데, 본 발명을 구성하는 스테인레스박과 성분이 다른 금속박을 수지를 사이에 끼워 라미네이트하면, 열수축량의 차에 수반하는 휨이 라미네이트 구조체에 발생한다.By the way, when laminating the resin between the stainless foil which comprises this invention, and metal foil from which a component differs, the curvature accompanying the difference of the amount of heat shrinkage will generate | occur | produce in a laminated structure.

스테인레스박은 강자성 상과 비자성 상 중 어느 한쪽 혹은 양 상이 혼재한다. 강자성 상은 열수축량이 작고, 예를 들어 구리 등의 금속과 라미네이트한 경우, 스테인레스측으로 휘는 경향이 있다. 한편, 비자성 상은 열수축량이 크고, 구리 등의 금속과 라미네이트한 경우, 비스테인레스측으로 휘는 경향이 있다.In the stainless foil, either or both of the ferromagnetic and nonmagnetic phases are mixed. The ferromagnetic phase has a small amount of heat shrinkage and, for example, tends to bend toward the stainless side when laminated with a metal such as copper. On the other hand, the nonmagnetic phase has a large amount of heat shrinkage and tends to bend to the non-stainless side when laminated with a metal such as copper.

이와 같이, 스테인레스박의 강자성 상은 열수축량이 작고, 한편 비자성 상은 열수축량이 크기 때문에, 이들 상 비율을 조정함으로써 라미네이트 구조체로 하였을 때의 휨을 제어할 수 있다. 본 발명에 있어서는, 강자성 상의 비율을 질량으로 0.1 % 내지 4.0 %로 한다. 강자성 상의 비율이 질량으로 0.1 % 미만에서는 휨을 억제하는 효과가 작아 스테인레스박 측으로 휘고, 한편 4.0 %를 초과하는 경우에는 금속박측으로 휘기 쉽기 때문이다. 또한, 휨의 정도는 라미네이트 구조체의 금속박의 종류에 따라서도 다르지만, 상기 범위 내에서 적절하게 선택함으로써 라미네이트 구조체의 휨을 억제할 수 있다.As described above, since the ferromagnetic phase of the stainless foil has a small amount of heat shrinkage, while the nonmagnetic phase has a large amount of heat shrinkage, it is possible to control the warping when the laminate structure is formed by adjusting the ratio of these phases. In the present invention, the proportion of the ferromagnetic phase is 0.1% to 4.0% by mass. This is because when the proportion of the ferromagnetic phase is less than 0.1% by mass, the effect of suppressing warpage is small, and when the ratio is more than 4.0%, the ferromagnetic phase is easily bent on the metal foil side. Moreover, although the degree of curvature changes also with the kind of metal foil of a laminated structure, the curvature of a laminated structure can be suppressed by selecting suitably within the said range.

강자성 상의 측정 방법은 특별히 한정되는 것은 아니며, 진동 시료형 자력계(VSM)나 페라이트 미터 등을 이용할 수 있다.The measuring method of the ferromagnetic phase is not particularly limited, and a vibration sample magnetometer (VSM), a ferrite meter, or the like can be used.

또한, 본 발명에 기재한 스테인레스박이라 함은 오스테나이트계 스테인레스강 혹은 2상 스테인레스강을 말한다. 스테인레스강은 박화되는 압연의 과정에서, 비자성 상의 일부가 자성 상에 유기 변태하여 2상이 된다. 스테인레스박의 강자성 상의 비율은 압연시의 압하율이나 압연시의 스테인레스강의 온도 등으로 제어 가능하다.In addition, the stainless foil described in this invention means an austenitic stainless steel or two-phase stainless steel. In the course of rolling, the stainless steel is thinned, and a part of the nonmagnetic phase is organically transformed into a magnetic phase to become two phase. The ratio of the ferromagnetic phase of the stainless foil can be controlled by the reduction ratio at the time of rolling, the temperature of the stainless steel at the time of rolling, and the like.

본 발명에 기재하는 금속박은 스테인레스박과 성분이 다른 두께 100 ㎛ 이하의 금속ㆍ합금을 총칭한다. 특히 금이나 은이나 구리는 연성이 있고 얇게 가공하기 쉬운 데다가, 전기 전도도가 높고, 에칭 처리에 의해 회로가 형성 가능하고, 또한 열전도성도 우수하여 방열 작용이 우수한 특장이 있다. 또한, 합금화함으로써, 기계적 강도를 개선하는 것이 가능해진다.As for the metal foil described in this invention, the metal and alloy of thickness 100 micrometers or less from a stainless foil and a component are named generically. In particular, gold, silver, and copper are ductile, easy to process thinly, have a high electrical conductivity, a circuit can be formed by an etching process, and also have excellent thermal conductivity and excellent heat dissipation. In addition, it is possible to improve the mechanical strength by alloying.

금속박 중 구리 합금에 대해서는, 그 합금화 원소로서 대표적으로는 Ni, Si, Mg, Be 등이 사용되지만, 이들에 한정되는 것은 아니며, Cu 단체와 대략 동등한 (기계적 강도 이외의) 물성을 유지하는 관점에서, Cu는 90 질량% 이상이 적합한 것으로 볼 수 있다.Regarding the copper alloy in the metal foil, Ni, Si, Mg, Be, etc. are typically used as the alloying element, but are not limited to these, and from the viewpoint of maintaining physical properties (other than mechanical strength) that are approximately equivalent to that of Cu alone , Cu may be considered to be more than 90% by mass.

본 발명에 기재하는 수지는 열가소성 수지와 열경화성 수지의 양쪽을 포함한다. 열가소성 수지라 함은, 열가소성 폴리이미드, 폴리스티렌, 폴리에틸렌, 폴리아미드 등을 가리키지만, 그들에 한정되는 것은 아니다. 특히 내열성이 우수한 폴리이미드의 경우, 실온과 고온도 사이의 열수축량이 크고, 본 발명 기재의 휨의 억제 효과가 크다.Resin described in this invention contains both a thermoplastic resin and a thermosetting resin. The thermoplastic resin refers to thermoplastic polyimide, polystyrene, polyethylene, polyamide and the like, but is not limited thereto. Especially in the case of the polyimide which is excellent in heat resistance, the amount of heat shrinkage between room temperature and high temperature is large, and the suppression effect of the curvature of the base material of this invention is large.

열경화성 수지는 열경화성 폴리이미드, 요소 수지, 멜라민 수지, 페놀 수지, 에폭시 수지, 불포화 폴리에스테르, 알키드 수지, 우레탄 수지, 에보나이트 수지 등을 가리키지만, 그들에 한정되는 것은 아니다. 본 발명은 가열 공정을 필요로 하는 모든 수지로 효과를 발휘한다. 수지는 1층이라도 좋고, 복수를 층 형상으로 해도 좋다. 열가소성 수지층과 열경화성 수지층의 선택과 조합은 임의이다. 수지의 두께(복층의 경우는 그 합계)는 5 ㎛ 이상 100 ㎛ 이하가 바람직하고, 경량화의 목적으로는 또한 5 ㎛ 이상 내지 25 ㎛가 바람직하지만, 이들 수치에 한정되는 것은 아니다.The thermosetting resin refers to a thermosetting polyimide, urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester, alkyd resin, urethane resin, ebonite resin and the like, but is not limited thereto. The present invention is effective for all resins requiring a heating step. The resin may be one layer or a plurality of layers. Selection and combination of a thermoplastic resin layer and a thermosetting resin layer are arbitrary. The thickness of the resin (the total in the case of multiple layers) is preferably 5 µm or more and 100 µm or less, and 5 µm or more and 25 µm is further preferable for the purpose of weight reduction, but is not limited to these numerical values.

최근 성장이 현저한 하드디스크 드라이브에 있어서는, 고밀도화에 수반하여 자기 헤드와 기록 매체의 간격이 해마다 좁아지고 있다. 1995년경 100 ㎚였던 간극은 현재 20 ㎚ 이하로 엄격화되어 있다. 한편, 자기 헤드를 지지하는 서스펜션에는, 내진동 특성 때문에 경량화가 요구되고 있어, 요구 두께가 100 ㎛ 이하(일반적으로 100 ㎛ 이하인 두께를 박이라 함)인 스테인레스강이 사용되고 있다.In the recent hard growth of the hard disk drive, the gap between the magnetic head and the recording medium is narrowing year by year with increasing density. The gap, which was 100 nm around 1995, is now tightened to 20 nm or less. On the other hand, the suspension supporting the magnetic head is required to be lightweight due to vibration resistance, and stainless steel having a required thickness of 100 µm or less (generally, a thickness of 100 µm or less) is used.

본 발명에 의해, 스테인레스박과 수지와 금속박의 3층 구조로 이루어지는 라미네이트 구조체의 휨을 해소하는 것이 가능해지고, 얇아도 수축차 기인의 휨에 의한 위치 정밀도의 문제점이 적은 하드디스크 드라이브 서스펜션용 라미네이트 구조체를 안정되게 제조할 수 있다.According to the present invention, it is possible to eliminate the warpage of a laminate structure having a three-layer structure of a stainless foil, a resin, and a metal foil, and a laminate structure for a hard disk drive suspension having a small problem of positional accuracy due to warpage caused by a shrinkage difference even if thin. It can manufacture stably.

이하, 실시예를 기초로 하여 본 발명을 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated concretely based on an Example.

(제1 실시예)(First embodiment)

스테인레스박으로서 두께 20 ㎛, 폭 400 ㎜의 SUS304박과 두께 20 ㎛ 구리박을 열가소성 폴리이미드 수지로 경화함으로써 접합시켜(경화 온도 : 350 ℃) 휨의 상태를 관측하였다. 휨은 라미네이트 구조체를 1 m로 절단 후, 상단부를 고정하여 늘어뜨린 라미네이트 구조체의 휨의 최대량이 수직면에 대해 100 ㎜ 이하를 양호라 판단하였다. 열가소성 폴리이미드 수지의 두께는 5 ㎛와 25 ㎛와 100 ㎛로 하였다.As stainless foil, SUS304 foil of thickness 20mm and width 400mm and 20micrometer thickness copper foil were bonded together by hardening with thermoplastic polyimide resin (hardening temperature: 350 degreeC), and the state of curvature was observed. The curvature judged that the maximum amount of the curvature of the laminated structure which fixed and hung the upper end part after cutting the laminated structure to 1 m was 100 mm or less with respect to a vertical plane. The thickness of the thermoplastic polyimide resin was 5 µm, 25 µm and 100 µm.

이 중, 휨이 양호한 샘플과 양호하지 않은 샘플에 사용한 스테인레스박에 대해, 각각 진동 시료형 자력계(VSM) 장치로 포화 자속 밀도를 측정한 결과, 비자성 상 중에 있는 범위에서 강자성 상이 존재하면 양호한 라미네이트 형상을 얻는 것을 확인할 수 있었다.Among these, stainless steel foils used for samples having good warpage and samples not having good results, respectively, as a result of measuring the saturation magnetic flux density with a vibration sample magnetometer (VSM) device. It was confirmed that the shape was obtained.

진동 시료형 자력계(VSM) 장치는 고가인 데다가, 깨끗한 환경에 설치하고, 보수 점검 비용도 고가가 되므로, 간편하게 강자성 상을 측정할 수 있는 페라이트 미터로 측정하였다. 결과를 표1에 나타낸다. 페라이트 미터에 의한 측정은 스테인레스박을 1.0 ㎜로 적층하여 자기 센서부를 접촉시켜 측정하였다. 진동 시료형 자력계(VSM) 장치 및 페라이트 미터의 측정 온도는 실온(25 ℃)으로 하였다.Since the vibration sample magnetometer (VSM) device was expensive, installed in a clean environment, and the maintenance and inspection cost were expensive, it was measured by a ferrite meter that can easily measure the ferromagnetic phase. The results are shown in Table 1. The measurement by the ferrite meter was carried out by laminating stainless steel foil to 1.0 mm and making a magnetic sensor part contact. The measurement temperature of the vibration sample magnetometer (VSM) apparatus and the ferrite meter was made into room temperature (25 degreeC).

또한, 진동 시료형 자력계(VSM) 장치에 의한 포화 자속 밀도의 측정치는 시료의 치수, 형상 의존성이 작은 것에 반해, 페라이트 미터에 의한 강자성 상의 비율의 측정치는 그 측정 원리로부터 시료의 두께에 관한 형상 의존성이 존재한다. 그로 인해, 본 발명에 있어서의 페라이트 미터에 의한 측정은 스테인레스박을 적층하여 시료 두께를 1.0 ㎜의 조건으로 통일하였다.In addition, while the measurement of the saturation magnetic flux density by the vibration sample magnetometer (VSM) device has a small dimension and shape dependency of the sample, the measurement of the ratio of the ferromagnetic phase by the ferrite meter has a shape dependency on the thickness of the sample from the measurement principle. This exists. Therefore, the measurement by the ferrite meter in this invention laminated | stacked the stainless foil, and unified the sample thickness on 1.0 mm conditions.

적층박의 시료 두께가 일정한 것에 의해, 스테인레스박의 포화 자속 밀도와 페라이트 미터의 측정에 의한 강자성 상 비율은 실시예 표1과 같이 일정한 대응 관 계를 갖는다.Since the sample thickness of the laminated foil is constant, the saturation magnetic flux density of the stainless foil and the ferromagnetic phase ratio measured by the ferrite meter have a constant corresponding relationship as shown in Table 1 of Example.

Figure 112008070948055-pct00001
Figure 112008070948055-pct00001

(제2 실시예)(2nd Example)

스테인레스박으로서 두께 100 ㎛, 폭 650 ㎜(단, 금속박이 Au, Ag인 경우에는 폭 20 ㎜)의 SUS304박과 각종 금속박(두께 100 ㎛, 폭 650 ㎜, 단 금속박이 Au, Ag인 경우에는 폭 20 ㎜)를 에폭시 수지(수지의 두께 18 ㎛)로 경화함으로써 양자를 접합시켜 (경화 온도 : 100 ℃) 휨의 상태를 관측하였다.Stainless steel foil with a thickness of 100 μm and a width of 650 mm (20 mm width for Au and Ag metals) and various metal foils (100 μm thick, 650 mm for width and short metal foils of Au and Ag) 20 mm) was hardened by epoxy resin (18 micrometers in thickness of resin), and both were bonded together (hardening temperature: 100 degreeC), and the state of curvature was observed.

또한, 구리 합금 Cu-Ni-Si-Mg는 Ni : 2.2 내지 4.2 질량%, Si : 0.025 내지 1.2 질량%, Mg : 0.05 내지 0.3 질량%의 조성 범위의 것을 사용하였다.In addition, as copper alloy Cu-Ni-Si-Mg, the thing of the composition range of Ni: 2.2-4.2 mass%, Si: 0.025-1.2 mass%, Mg: 0.05-0.3 mass% was used.

또한, 휨의 관측은 제1 실시예와 마찬가지로 하였다.In addition, observation of curvature was performed similarly to the 1st Example.

스테인레스박은 1050 ℃로 어닐링한 후, 100 ㎛까지 압연하고 그 때의 압하율을 바꾸어 자성 상의 비율을 측정하였다. 측정에 있어서는, 스테인레스박을 두께 1.0 ㎜로 적층하고, 페라이트 미터로 값을 측정하였다.The stainless foil was annealed at 1050 ° C., then rolled to 100 μm, and the reduction ratio at that time was changed to measure the ratio of the magnetic phase. In the measurement, the stainless foil was laminated | stacked to thickness 1.0mm, and the value was measured by the ferrite meter.

금속박의 종류마다 최적인 스테인레스박의 자성 상의 비율을 표2에 나타낸다. 자성 상의 비율을 최적화함으로써 휨이 없는 라미네이트 구조체를 얻을 수 있다.Table 2 shows the ratio of the magnetic phase of the stainless foil which is optimal for each kind of metal foil. By optimizing the proportion of the magnetic phase, a laminate structure without warpage can be obtained.

Figure 112008070948055-pct00002
Figure 112008070948055-pct00002

(제3 실시예)(Third Embodiment)

스테인레스박으로서 두께 20 ㎛, 폭 300 ㎜의 각종 스테인레스박과 구리박 (두께 20 ㎛, 폭 300 ㎜)을 열가소성 폴리이미드 수지(수지의 두께 10 ㎛)로 경화함으로써 접합시켜(경화 온도 : 350 ℃) 휨의 상태를 관측하였다.As the stainless foil, various stainless foils having a thickness of 20 μm and a width of 300 mm and copper foil (thickness of 20 μm, width of 300 mm) were bonded together by curing with a thermoplastic polyimide resin (thickness of the resin 10 μm) (curing temperature: 350 ° C.) The state of warpage was observed.

또한, 휨의 관측은 제1 실시예와 마찬가지로 하였다.In addition, observation of curvature was performed similarly to the 1st Example.

스테인레스박은 1150 ℃로 어닐링한 후, 20 ㎛까지 압연하여 그 때의 압하율을 바꾸어 자성 상의 비율을 측정하였다. 측정에 있어서는, 스테인레스박을 두께 1.0 ㎜로 적층하고, 페라이트 미터로 값을 측정하였다.After the stainless foil was annealed at 1150 ° C., it was rolled to 20 μm, and the reduction ratio at that time was changed to measure the ratio of the magnetic phase. In the measurement, the stainless foil was laminated | stacked to thickness 1.0mm, and the value was measured by the ferrite meter.

스테인레스박마다 최적의 자성 상의 비율을 표3에 나타낸다. 자성 상의 비율을 최적화함으로써 휨이 없는 라미네이트 구조체를 얻을 수 있다.Table 3 shows the ratio of the optimum magnetic phase for each stainless foil. By optimizing the proportion of the magnetic phase, a laminate structure without warpage can be obtained.

여기서, 스테인레스박의 강종은 JIS G4304 및 JIS G4305에 준거하는 것이다. 그리고, 이들 각 강종은 각각 ISO 및 관련 외국 규격의 UNS, AISI, DIN 등과 대응하는 강이 정해져 있다.Here, the steel grade of stainless foil is based on JIS G4304 and JIS G4305. In addition, each of these steel grades has been determined to correspond to ISO and related foreign standards UNS, AISI, DIN and the like.

Figure 112008070948055-pct00003
Figure 112008070948055-pct00003

본 발명에 따르면, 스테인레스박과 수지와 금속박의 3층 구조로 이루어지는 라미네이트 구조체의 휨을 낮은 위치로 안정화시키는 것이 가능해진다. 구체적으로는, 하드디스크용 자기 헤드의 지지부, 가요성 프린트 기판, 강유전체 메모리용 헤드 지지부 등의 전기적, 자기적, 유전적 소자의 지지체에 대표되는 엄밀한 위치 정밀도가 요구되는 분야에 광범하게 이용 가능하고, 특히 구조체가 얇고 또한 높은 정밀도가 요구되는 하드디스크 드라이브용 서스펜션용 부재에 있어서 유효한 수단이 될 수 있다.According to this invention, it becomes possible to stabilize the curvature of the laminated structure which consists of a three layer structure of stainless foil, resin, and metal foil to a low position. Specifically, the present invention can be widely used in a field where exact positional accuracy, which is represented by a support of electrical, magnetic and dielectric elements, such as a support of a magnetic head for a hard disk, a flexible printed circuit board, and a head support for a ferroelectric memory, is required. In particular, it can be an effective means in the suspension member for hard disk drives, in which the structure is thin and high precision is required.

Claims (2)

스테인레스박과 수지와 금속박의 3층 구조로 구성되는 라미네이트 구조체에 있어서, 스테인레스박이 강자성 상과 비강자성 상의 혼상이고 또한 강자성 상의 비율이 질량으로 0.1 % 이상, 4.0 % 이하인 것을 특징으로 하는 라미네이트 구조체.A laminate structure comprising a three-layer structure of stainless foil, resin, and metal foil, wherein the stainless foil is a mixed phase of the ferromagnetic phase and the non-ferromagnetic phase, and the ratio of the ferromagnetic phase is 0.1% or more and 4.0% or less by mass. 스테인레스박과 수지와 금속박의 3층 구조로 구성되는 하드디스크 서스펜션용 라미네이트 구조체에 있어서, 스테인레스박이 강자성 상과 비강자성 상의 혼상이고 또한 강자성 상의 비율이 질량으로 0.1 % 이상, 4.0 % 이하이며, 또한 금속박이 구리박 혹은 구리 합금박인 것을 특징으로 하는 라미네이트 구조체.In the laminate structure for a hard disk suspension composed of a three-layer structure of stainless foil, resin, and metal foil, the stainless foil is a mixed phase of a ferromagnetic phase and a non-ferromagnetic phase, and the ratio of the ferromagnetic phase is 0.1% or more and 4.0% or less by mass, and a metal foil It is this copper foil or copper alloy foil, The laminated structure characterized by the above-mentioned.
KR1020087024917A 2006-04-14 2006-04-14 Laminate structure comprising stainless foil, resin and metal foil KR101011900B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308368 WO2007122718A1 (en) 2006-04-14 2006-04-14 Laminate structure comprising stainless foil, resin and metal foil

Publications (2)

Publication Number Publication Date
KR20080109843A KR20080109843A (en) 2008-12-17
KR101011900B1 true KR101011900B1 (en) 2011-02-01

Family

ID=38624646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087024917A KR101011900B1 (en) 2006-04-14 2006-04-14 Laminate structure comprising stainless foil, resin and metal foil

Country Status (5)

Country Link
US (1) US20100233509A1 (en)
JP (1) JP4781429B2 (en)
KR (1) KR101011900B1 (en)
CN (1) CN101415548A (en)
WO (1) WO2007122718A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307020A (en) * 1995-05-08 1996-11-22 Nitto Denko Corp Substrate for forming circuits and circuit board
JP2005125588A (en) 2003-10-23 2005-05-19 Mitsui Chemicals Inc Polyimide metal laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491574B2 (en) * 2001-02-16 2010-06-30 大日本印刷株式会社 HDD suspension and manufacturing method thereof
JP2005293645A (en) * 2004-03-31 2005-10-20 Nippon Steel Chem Co Ltd Stacked body for hdd suspension and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307020A (en) * 1995-05-08 1996-11-22 Nitto Denko Corp Substrate for forming circuits and circuit board
JP2005125588A (en) 2003-10-23 2005-05-19 Mitsui Chemicals Inc Polyimide metal laminate

Also Published As

Publication number Publication date
WO2007122718A1 (en) 2007-11-01
US20100233509A1 (en) 2010-09-16
JP4781429B2 (en) 2011-09-28
KR20080109843A (en) 2008-12-17
JPWO2007122718A1 (en) 2009-08-27
CN101415548A (en) 2009-04-22

Similar Documents

Publication Publication Date Title
Mara et al. Deformability of ultrahigh strength 5 nm Cu∕ Nb nanolayered composites
WO2010110423A1 (en) Piezoelectric/magnetostrictive composite magnetic sensor
Hahnlen et al. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing
EP2515086B1 (en) Positioning device and scale
JP6661059B2 (en) Magnetic material, laminated magnetic material using the same, laminated packet and laminated core, and method for producing magnetic material
JP6839985B2 (en) Magnetic shield member, manufacturing method of magnetic shield member and magnetic shield panel
JP2012225912A5 (en)
US20090166067A1 (en) Clad member and printed-circuit board
Jing et al. Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite
KR101011900B1 (en) Laminate structure comprising stainless foil, resin and metal foil
JP2018122485A (en) Laminate of soft magnetic metal thin strips
Liesegang et al. Ultrasonic welding of magnetic hybrid material systems–316L stainless steel to Ni/Cu/Ni-coated Nd 2 Fe 14 B magnets
CN110603454B (en) Component carrier with integrated fluxgate sensor
KR101024937B1 (en) Double side flexible copper clad laminate and method for fabricating the same
Wenzel et al. Resonant bending sensor based on sputtered galfenol
JP4202800B2 (en) Scale for inductive transducer
Schwankl et al. Active functionality of piezoceramic modules integrated in aluminum high pressure die castings
JP6147559B2 (en) Laminated body, copper-clad laminated body, flexible wiring board and three-dimensional molded body
Hahnlen et al. Performance and modeling of active metal-matrix composites manufactured by ultrasonic additive manufacturing
JP2009009655A (en) Manufacturing method of metal film layered body and fixture for manufacturing metal film layered body
WO2022124185A1 (en) Power-generating magnetostrictive element and magnetostrictive power generation device
JP2005293645A (en) Stacked body for hdd suspension and its manufacturing method
JP4060066B2 (en) Material design method for laminated structures
JP2022090601A (en) Magnetostriction element for power generation and magnetostriction power generation device
Marschner et al. Electromagnetic network models of planar coils on a thin or thick magnetic layer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 10