KR100995772B1 - Ceramic heat sink and its manufacturing method - Google Patents

Ceramic heat sink and its manufacturing method Download PDF

Info

Publication number
KR100995772B1
KR100995772B1 KR1020100031362A KR20100031362A KR100995772B1 KR 100995772 B1 KR100995772 B1 KR 100995772B1 KR 1020100031362 A KR1020100031362 A KR 1020100031362A KR 20100031362 A KR20100031362 A KR 20100031362A KR 100995772 B1 KR100995772 B1 KR 100995772B1
Authority
KR
South Korea
Prior art keywords
heat sink
silicon carbide
ceramic heat
inorganic binder
manufacturing
Prior art date
Application number
KR1020100031362A
Other languages
Korean (ko)
Inventor
강성호
김인섭
윤성호
Original Assignee
주식회사 신한세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 신한세라믹 filed Critical 주식회사 신한세라믹
Priority to KR1020100031362A priority Critical patent/KR100995772B1/en
Application granted granted Critical
Publication of KR100995772B1 publication Critical patent/KR100995772B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: A ceramic heat radiation plate and a manufacturing method thereof are provided to control a pore rate by controlling the amount of silicon carbide and inorganic bond. CONSTITUTION: Slurry is formed by dispersing silicon carbide agglomerate particles and inorganic binder agglomerate particles(S100). Uniform slurry is formed by attaching the inorganic binder on the surface of the silicon carbide agglomerate(S200). The uniform slurry is made of granule powder(S300). The granule powder is formed with a preset shape(S400). The formed body is thermally treated at 600 to 1200 degrees centigrade at 10°C/min and then is thermally treated at 1200 to 1600 degrees centigrade at 5°C/min(S500). The surface of the ceramic heat radiation plate is polished(S700).

Description

세라믹 방열판 및 그 제조방법{Ceramic heat sink and its manufacturing method}Ceramic heat sink and its manufacturing method

본 발명은 세라믹 방열판에 관한 것으로서 보다 상세하게는 냉각 성능은 금속 방열판과 동등하거나 그 이상이며 전자파에 의해 발생되는 여러 문제점을 해결 할 수 있는 세라믹 방열판 및 그 제조 방법에 관한 것이다.
The present invention relates to a ceramic heat sink, and more particularly, to a ceramic heat sink having a cooling performance equal to or higher than that of a metal heat sink and capable of solving various problems caused by electromagnetic waves, and a method of manufacturing the same.

일반적으로 전기를 사용하는 전기전자제품에는 많은 열이 발생한다. 예컨대, 발광다이오드(LED)가 부착된 회로기판, 방송 수신 기기, CPU, 냉장고, 보일러 등과 같은 제품에서 발생되는 열을 외부로 방출시켜주지 않으면, 전기전자제품은 열로 인하여 작동 효율저하, 수명단축, 고장 등이 발생하게 된다.In general, a lot of heat is generated in the electrical and electronic products that use electricity. For example, if the heat generated from a product such as a circuit board with a light emitting diode (LED), a broadcast receiving device, a CPU, a refrigerator, a boiler, or the like is not discharged to the outside, electrical and electronic products may be deteriorated in operation efficiency, lifespan, Failure or the like will occur.

이를 방지하기 위해 전기전자제품에는 열을 방출 시킬 수 있는 다양한 방열장치들이 설치된다. 이러한 방열장치들로는 모터에 의해 팬을 회전시켜 강제로 송풍하는 송풍장치나 표면적을 넓혀 공기로 열을 낮출 수 있는 금속 방열판 등이 개시된 바 있다.To prevent this, various heat dissipation devices are installed in the electrical and electronic products to release heat. Such heat dissipation devices have been disclosed, such as a blower for forcibly blown by rotating the fan by a motor, or a metal heat dissipation plate for lowering heat with air by increasing a surface area.

상기한 송풍장치는 강제적으로 공기를 송풍하여 전기전자제품을 급속히 냉각시킬 수 있지만, 모터를 회전시키기 위하여 추가적인 전기가 소모되고, 팬과 모터의 회전에 의한 소음, 연속적으로 사용할 경우 고장(모터 및 팬 작동부)의 문제점, 최근 추세인 소형화, 슬림화에 있어서 송풍장치의 크기로 인한 디자인의 제약이 따르게 된다. 이에 반해 금속 방열판은 공기가 접할 수 있는 표면적을 넓히기 위해 복수의 방열 핀을 구비하여, 전기전자제품에서 발생되는 열을 자연상태에서 방출시킴으로써, 열의 냉각 속도가 송풍장치에 비해 느리지만 장기간 영구적으로 사용할 수 있으며, 소음을 방지할 수 있어 근래에는 많이 사용되고 있다.The blower can blow air rapidly to cool the electrical and electronic products, but additional electricity is consumed to rotate the motor, noise caused by the rotation of the fan and the motor, failure in continuous use (motor and fan The operation part), the recent trend in miniaturization, slimming is subject to design constraints due to the size of the blower. On the other hand, the metal heat sink is equipped with a plurality of heat dissipation fins to increase the surface area that can be contacted by air, thereby dissipating the heat generated by the electrical and electronic products in a natural state, so that the cooling rate of the heat is slower than that of the blower, but it can be used permanently for a long time. It can be used to prevent noise, and has been used a lot in recent years.

도 1에 도시된 종래의 금속 방열판(10)은 몸체(11)와 몸체(11)의 하부로 복수의 금속 방열핀(15)이 형성된다. 이러한 금속 방열판(10)은 열의 전도가 빠른 구리나 알루미늄합금 등으로 제작된다. 이 금속방열판(10)은 예컨대, 회로기판(31)에 발광다이오드(LED, 33)가 설치된 LED 램프(30)와 같은 전기전자제품의 부품에 설치된다. In the conventional metal heat sink 10 shown in FIG. 1, a plurality of metal heat dissipation fins 15 are formed at the bottom of the body 11 and the body 11. The metal heat sink 10 is made of copper, aluminum alloy, or the like, which has rapid heat conduction. The metal heat dissipation plate 10 is installed in parts of electrical and electronic products such as LED lamps 30 in which light emitting diodes LED 33 are provided on the circuit board 31, for example.

이때, 금속 방열판(10)은 발광다이오드(33)가 설치되는 회로기판(31)의 저면에 설치되어 발광다이오드(33)에서 발생되는 열을 외부로 방출시키게 된다. 상기 회로기판(31)에 설명의 편의상 발광다이오드(33)를 설치하는 것으로 설명하고 있으나 저항, 콘덴서 등의 전자부품들도 같이 설치된다.At this time, the metal heat sink 10 is installed on the bottom surface of the circuit board 31 on which the light emitting diodes 33 are installed to emit heat generated from the light emitting diodes 33 to the outside. For convenience of description, the light emitting diode 33 is provided on the circuit board 31, but electronic components such as a resistor and a capacitor are also installed.

상기와 같은 종래의 금속 방열판(10)은 금속 방열핀(15)을 몸체(11)에 형성하기 위해 뭉치의 금속을 NC선반이나 밀링으로 가공해야 하기 때문에, 버려지는 부분이 생겨 제작단가를 높이는 문제점이 있었다. In the conventional metal heat sink 10 as described above, since the metal of the bundle must be processed by NC lathe or milling in order to form the metal heat dissipation fins 15 on the body 11, there is a problem of raising the manufacturing cost due to the discarded portion. there was.

특히 종래의 금속 방열판(10)은 전기전자제품의 소형화, 슬림화하고 있는 최근 추세에서 전기전자제품의 슬림화에 따르는 전자파의 외부 누출, 소형화에 의한 전기전자제품내부의 전자부품들 간 및 근접한 전기전자제품들 간의 상호 전자파간섭에 의한 오작동의 원인이 될 수 있는 문제가 있다.In particular, in the recent trend of miniaturization and slimming of electrical and electronic products, the conventional metal heat sink 10 has external leakage of electromagnetic waves caused by slimming of electrical and electronic products, and electronic components within and close to electrical components within electrical and electronic products due to miniaturization. There is a problem that may be the cause of malfunction due to mutual electromagnetic interference between them.

상기와 같은 종래 문제점을 감안하여 안출된 대한민국 특허등록 제651151호의 미세공 구조를 가진 세라믹 히트 싱크는 열 소산층(heat dissipation layer) 및 열 전도층(heat conductive layer)의 2개 층으로 이루어진 세라믹 히트 싱크이다.The ceramic heat sink having a microporous structure of Korea Patent No. 651151, which was devised in view of the above-described conventional problem, is a ceramic heat consisting of two layers, a heat dissipation layer and a heat conductive layer. It's a sink.

상기 열 소산층은 미시적 화학 작용(microscopic chemistry)에 의한 액체-액체 상변화 원리를 이용하여 겔 형상 슬러리의 불균일한 분산에 의해 세라믹 마이크로-셀 구조체를 형성하도록 하고, 상기 세라믹 마이크로-셀 구조체는 1㎛ 이하의 파우더와 결합되어 소결됨으로써, 중공 결정체를 구비하며 5% 내지 40% 범위의 기공을 갖는 미세공 구조체를 갖는 구조이며, 상기 열 전도층은 열원으로부터 열 에너지를 흡수하고, 상기 열 소산층은 중공 결정체를 구비한 미세공 구조체를 가지며, 공기가 열 소산의 매질로서 작용하여 상기 열 소산 능력이 향상되도록 한 구조이다.The heat dissipation layer allows the ceramic micro-cell structure to be formed by non-uniform dispersion of gel-like slurry using the liquid-liquid phase change principle by microscopic chemistry, wherein the ceramic micro-cell structure is 1 It is a structure having a microporous structure having a hollow crystals and having pores in the range of 5% to 40% by being combined with the powder of 탆 or less and sintered, wherein the heat conducting layer absorbs heat energy from a heat source, and the heat dissipating layer Has a microporous structure with hollow crystals, and the air acts as a medium for heat dissipation to improve the heat dissipation capacity.

상기 열 소산층(heat dissipation layer) 및 열 전도층(heat conductive layer)으로 이루어진 대한민국 특허등록 제651151호의 미세공 구조의 열소산층을 가진 세라믹 히트 싱크는 열 소산층(heat dissipation layer)의 접촉면에 열 전도층(heat conductive layer)을 장착하는 구조로 이루어져 있어 제작 공정이 복잡하여 생산성이 저하될 수 있는 문제가 있다.
The ceramic heat sink having a heat dissipation layer having a microporous structure of Korean Patent No. 651151 consisting of the heat dissipation layer and the heat conductive layer is formed on the contact surface of the heat dissipation layer. It is made of a structure for mounting a heat conductive layer (heat conductive layer) there is a problem that the production process is complicated and productivity may be reduced.

상기한 문제점을 감안하여 안출한 본 발명의 목적은 The object of the present invention devised in view of the above problems

첫째, 전자파가 발생되지 않는 세라믹 방열판을 전기전자제품에 적용함으로 서 국내외 EMC(전자파 적합성)관련 법률의 규제를 만족시키는 세라믹 방열판을 제조함이며, First, by applying ceramic heat sinks that do not generate electromagnetic waves to electrical and electronic products, the ceramic heat sinks that satisfy the regulations of domestic and international EMC (Electromagnetic Compatibility) laws are manufactured.

둘째, 전기전자제품에 전자파가 발생하지 않는 세라믹 방열판을 사용함으로 서 전기전자제품의 슬림화에 따른 전자파 누출을 억제할 수 있으며, Second, by using a ceramic heat sink that does not generate electromagnetic waves in electrical and electronic products, it is possible to suppress the leakage of electromagnetic waves due to the slimming of electrical and electronic products,

셋째, 전기전자제품에 전자파가 발생하지 않는 세라믹 방열판을 사용함으로 서 전기전자제품의 소형화에 따른 전기 전자 제품 내부의 전자부품들 간 및 전기전자 제품들 간의 상호 전자파 간섭에 의한 오작동의 원인을 제거할 수 있으며, Third, by using a ceramic heat sink that does not generate electromagnetic waves in electrical and electronic products, it is possible to eliminate the cause of malfunction due to the interference of electromagnetic waves between the electronic components inside and the electrical and electronic products according to the miniaturization of electrical and electronic products. Can and

넷째, 기존 열전도층과 열소산층으로 나누어 제작하는 세라믹 히트 싱크에 비해 층 구별이 없이 단일층으로 이루어져 있어 제품의 제조공정이 단순화 됨으로 제품의 생산공정이 간단하고,Fourth, compared to the ceramic heat sink manufactured by dividing the heat conduction layer and the heat dissipation layer into a single layer without any distinction, the manufacturing process of the product is simplified and the production process of the product is simple.

다섯째, 탄화규소(SiC) 및 무기결합제의 중량부를 제어함으로 기공율을 조절할 수 있으며 이는 동일체적에서 방열을 위한 비표면적을 조절할 수 있어 방열 효과를 향상시킬 수 있는 등의 이점이 있는 세라믹 방열판 및 그 제조방법을 제공하는데 있다.
Fifth, the porosity can be adjusted by controlling the weight part of silicon carbide (SiC) and inorganic binder, which can adjust the specific surface area for heat dissipation in the same volume, and improve the heat dissipation effect, and the ceramic heat sink and its manufacture To provide a method.

이러한 상기 목적은 세라믹 방열판에 있어서, 1~300㎛ 입자크기를 갖는 탄화규소 60~98 중량부와 무기결합제 2~40 중량부로 구성된 것을 특징으로 하는 세라믹 방열판에 의하여 달성된다.This object is achieved by a ceramic heat sink comprising a 60 to 98 parts by weight of silicon carbide having a particle size of 1 ~ 300㎛ and 2 to 40 parts by weight of an inorganic binder.

상기 무기결합제는 Si, Al, Ca, Mg, Fe, Ti, K, Na 군에서 선택된 단일산화물 또는 둘 이상의 혼합산화물로 이루어진 것을 특징으로 하는 세라믹 방열판에 의하여 달성된다.The inorganic binder is achieved by a ceramic heat sink comprising a single oxide selected from Si, Al, Ca, Mg, Fe, Ti, K, Na group or two or more mixed oxides.

한편 상기 비중이 1.5~4.0이며, 3~45% 범위의 기공율을 갖는 것을 특징으로 하는 세라믹 방열판에 의하여 달성된다.On the other hand, the specific gravity is 1.5 to 4.0, it is achieved by a ceramic heat sink characterized in that it has a porosity in the range of 3 to 45%.

상기 세라믹 방열판을 구현하는 제조방법으로는 세라믹 방열판 제조방법에 있어서, 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 수용액상에서 분산제를 첨가하여 불균질하게 혼합된 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 분산시켜 슬러리(slurry)를 제조하는 분산공정과; 상기에서 제조된 슬러리에 유기바인더를 첨가하여 탄화규소(SiC) 입자 표면에 유기바인더를 이용하여 무기결합제를 균일하게 접착시켜 균일한 혼합 슬러리를 제조하는 원료입자결합공정; 상기 원료입자결합공정을 통하여 제조된 균일한 혼합 슬러리를 분무 건조하여 과립(granule) 분말로 제조하는 과립화공정과; 상기 과립화공정의 수행 후 제조된 과립 분말이 일정한 모양을 형성하도록 금형에 넣고 성형체로 제조하는 성형공정과; 상기 성형공정을 통하여 제조된 성형체를 2단계에 걸쳐 열처리하는 열처리공정과; 상기 열처리공정을 통하여 제조된 세라믹 방열판의 평탄도 등을 가공하여 제품을 완성하는 가공공정 순으로 제조하는 것을 특징으로 하는 세라믹 방열판의 제조방법에 의하여 달성된다.In the manufacturing method for implementing the ceramic heat sink, in the method of manufacturing a ceramic heat sink, silicon carbide (SiC) aggregated particles and inorganic binder aggregated particles are mixed heterogeneously by adding a dispersant in an aqueous solution and inorganic particles. A dispersion step of dispersing binder agglomerated particles to produce a slurry; Adding an organic binder to the slurry prepared above to uniformly bond the inorganic binder to the silicon carbide (SiC) particle surface using the organic binder to prepare a uniform mixed slurry; A granulation process of spray drying the uniform mixed slurry prepared through the raw material particle bonding process to produce granule powder; A molding step of manufacturing the molded granules into a mold so as to form a predetermined shape after the granulation step is performed; A heat treatment step of heat-treating the molded product manufactured through the molding process in two steps; It is achieved by a method of manufacturing a ceramic heat sink characterized in that the manufacturing process in order to complete the product by processing the flatness of the ceramic heat sink manufactured through the heat treatment process.

한편 제조방법에 있어서, 상기 원료입자결합공정을 통하여 제조된 균일한 혼합 슬러리에 초음파 진동을 통하여 탄화규소(SiC) 입자 표면에서 무기바인더를 접착시키고 있는 유기바인더의 접착력을 증가시키는 분리방지공정을 더 수행할 수도 있다.
Meanwhile, in the manufacturing method, a separation preventing process for increasing the adhesive force of the organic binder which bonds the inorganic binder on the surface of the silicon carbide (SiC) particles through the ultrasonic vibration is added to the uniform mixed slurry produced through the raw material particle bonding process It can also be done.

이와 같은 본 발명의 세라믹 방열판은 전기전자제품의 방열을 위하여 금속 방열판 사용시 발생되는 슬림화에 의한 외부로의 전자파 누출, 소형화에 의한 전기전자제품내부의 전자부품들 간의 및 근접한 전기전자제품들 간의 상호 전자파간섭에 의한 오작동의 원인인 전자파가 발생하지 않는 세라믹소재를 사용함으로 이러한 문제의 원인을 근본적으로 제거하게 되어 제품의 신뢰성을 향상시키고, 금속 방열판의 냉각 성능과 동등하거나 그 이상의 냉각 성능을 갖는 세라믹소재로 제조된 세라믹 방열판을 기존 열 전도층 과 열 소산층으로 나누어 제작하는 제조공정과 비교하여 열 전도층 과 열 소산층의 구별이 없이 단일층으로 이루어져 있어 제품의 제조공정이 단순화 됨으로 제품의 생산이 간단하고, 탄화규소(SiC) 및 무기결합제의 양을 제어함으로 기공율을 제어할 수 있게 되었고 이는 동일체적에서 방열을 위한 비표면적을 조절할 수 있어 방열 효과를 향상시킬 수 있는 등의 이점이 있는 매우 유용한 발명이다.
Such a ceramic heat sink of the present invention is the electromagnetic wave leakage to the outside due to the slimming caused by the use of a metal heat sink for the heat dissipation of electrical and electronic products, the mutual electromagnetic waves between the electronic components within the electrical and electronic products and the adjacent electrical and electronic products by miniaturization Ceramic material which does not generate electromagnetic waves which is a cause of malfunction due to interference is used to fundamentally eliminate the cause of such problems and to improve the reliability of the product and to provide a ceramic material having a cooling performance equal to or higher than the cooling performance of the metal heat sink The manufacturing process of the product is simplified because it is composed of a single layer without distinguishing between the heat conduction layer and the heat dissipating layer as compared with the manufacturing process in which the ceramic heat dissipating plate manufactured by using the heat conduction layer and the heat dissipating layer is divided into the existing heat conduction layer and the heat dissipating layer. Simple, by controlling the amount of silicon carbide (SiC) and inorganic binder It is possible to control the porosity, which is a very useful invention having the advantage of being able to adjust the specific surface area for heat dissipation in the same volume to improve the heat dissipation effect.

도 1은 종래 금속재로 이루어진 방열판의 구조를 보여주는 단면도.
도 2는 본 발명의 기술이 적용된 방열판의 제조방법을 보여주는 공정도.
도 3은 본 발명의 기술이 적용된 방열판의 다른 제조방법을 보여주는 공정도.
1 is a cross-sectional view showing the structure of a heat sink made of a conventional metal material.
Figure 2 is a process diagram showing a method of manufacturing a heat sink to which the technique of the present invention is applied.
Figure 3 is a process diagram showing another manufacturing method of the heat sink to which the technique of the present invention is applied.

이하 본 발명의 바람직한 실시 예를 첨부된 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부도면 도 2는 본 발명의 기술이 적용된 방열판의 구조를 보여주는 공정도로서 이에 따르면 본 발명의 세라믹 방열판에 의하면 1~300㎛ 입자크기를 갖는 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 수용액에서 분산제와 혼합하여 불균질하게 혼합된 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 분산시켜 원료가 균일하게 혼합된 슬러리(slurry)를 제조하는 분산공정(S100)을 수행한다.2 is a process chart showing the structure of a heat sink to which the technique of the present invention is applied. According to the ceramic heat sink of the present invention, silicon carbide (SiC) agglomerated particles and inorganic binder agglomerated particles having a particle size of 1 to 300 μm are formed in an aqueous solution. The dispersion process (S100) of dispersing heterogeneously mixed silicon carbide (SiC) aggregated particles and inorganic binder aggregated particles by mixing with a dispersant to produce a slurry in which raw materials are uniformly mixed is performed.

상기 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 분산시키는 이유는 탄화규소(SiC) 입자와 무기결합제 입자가 각각 응집되어 있는 상태로 원료가 혼합되어 과립분말이 제조되게 되면 최종 제품의 기공율의 분포 및 최종 제품의 부위별 원료 조성 편차에 의한 열전도도 차이로 제품의 냉각 성능의 저하를 초례하기 때문이다.The reason for dispersing the silicon carbide (SiC) agglomerated particles and the inorganic binder agglomerated particles is that the silicon carbide (SiC) particles and the inorganic binder particles are agglomerated in a state in which the raw materials are mixed to produce a granular powder. This is because the reduction in the cooling performance of the product is caused by the difference in the thermal conductivity due to the distribution and variation in the composition of the raw materials for each part of the final product.

상기 무기결합제는 Si, Al, Ca, Mg, Fe, Ti, K, Na 군에서 선택된 단일산화물 또는 둘 이상의 혼합산화물로 이루어진 것을 사용하며, 상기 분산공정(S100)에 의해 제조된 슬러리에 유기바인더를 첨가하여 탄화규소(SiC) 입자 표면에 유기바인더를 이용하여 무기결합제를 균일하게 접착시켜 균일한 혼합 슬러리를 제조하는 원료결합공정(S200)을 수행한다.The inorganic binder may be formed of a single oxide selected from Si, Al, Ca, Mg, Fe, Ti, K, Na or two or more mixed oxides, and the organic binder may be added to the slurry prepared by the dispersion process (S100). By adding the organic binder to the surface of the silicon carbide (SiC) particles using an organic binder uniformly to perform a raw material bonding process (S200) to produce a uniform mixed slurry.

상기 원료결합공정(S200)의 수행 후 제조된 슬러리를 분무 건조하여 과립(granule) 분말로 제조하는 과립화공정(S300)을 수행한다. 상기 과립화공정(S300)의 수행 후 제조된 과립 분말이 일정한 모양을 형성하도록 금형에 넣고 일정한 고압으로 상온에서 가압하여 성형체로 제조하는 성형공정(S400)를 수행한다. After performing the raw material combining process (S200) by spray-drying the prepared slurry to perform a granulation process (S300) to produce a granule (granule) powder. After performing the granulation process (S300) is put into a mold to form a granular powder is formed in a predetermined shape to perform a molding process (S400) to pressurized at room temperature at a constant high pressure to produce a molded body.

한편 상기 제조된 성형체는 열처리공정(S500)을 수행한다. 상기 열처리 공정은 2단계의 승온 속도를 갖는 열처리 공정을 통하여 제조되게 된다. 1단계 열처리공정(S500a)은 무기결합제의 결합 온도 이하인 600~1200℃이며, 상기 1단계 열처리공정(S500a)은 10℃/min의 높은 승온속도를 거치게 되며 상기 1단계 열처리공정(S500a) 중 성형체 내부의 유기바인더가 모두 열분해 되어 제거된다. On the other hand, the manufactured molded article is subjected to a heat treatment step (S500). The heat treatment process is to be manufactured through a heat treatment process having a temperature increase rate of two stages. The first step heat treatment step (S500a) is 600 ~ 1200 ℃ below the bonding temperature of the inorganic binder, the first step heat treatment step (S500a) is subjected to a high temperature increase rate of 10 ℃ / min and the molded body in the first step heat treatment step (S500a) All organic binders are thermally decomposed and removed.

상기 1단계 열처리공정(S500a)이 끝난 성형체는 1200~1600℃에서 2단계 열처리공정(S500b)을 거친다. 상기 2단계 열처리공정(S500b)은 5℃/min의 낮은 승온 속도로 성형체 내부에 균일하게 분포된 무기결합제의 온도편차 없이 균일하게 승온시켜 탄화규소(SiC) 입자 들 사이를 균일하게 결합시켜 제품 전체에 걸쳐 균일한 결합부(SiC-SiC neck)를 제조하게 된다. After the first step heat treatment step (S500a) the molded body is subjected to a two-step heat treatment step (S500b) at 1200 ~ 1600 ℃. The two-stage heat treatment process (S500b) is a temperature increase without uniform temperature distribution of the inorganic binder uniformly distributed inside the molded body at a low temperature increase rate of 5 ℃ / min to uniformly bond between the silicon carbide (SiC) particles A uniform joint (SiC-SiC neck) is produced throughout.

제품 전체에 걸쳐 균일한 결합부를 형성시키는 이유는 무기결합제를 균일하게 승온시켜 탄화규소 입자와 탄화규소 입자사이를 결합시키지 않고 무기결합제가 불균일하게 승온되어 국부적으로 탄화규소 입자와 탄화규소 입자 사이를 결합시키게 되면 제품의 강도가 저하되는 현상 및 열전도의 회로가 단락되어 제품의 냉각성능이 저하되기 때문이다.The reason for forming a uniform bonding portion throughout the product is that the inorganic binder is heated up uniformly without uniformly raising the inorganic binder to bond the silicon carbide particles with the silicon carbide particles, thereby locally bonding the silicon carbide particles with the silicon carbide particles. This is because the phenomenon that the strength of the product is lowered and the short circuit of the thermal conduction is shortened and the cooling performance of the product is lowered.

상기 2단계 열처리(S500b)이 끝난 세라믹 방열판 제품은 가공공정(S700)을 거치게 된다. 상기 가공공정(S700)은 세라믹 방열판이 전기전자제품의 발열부품에 들뜸현상 없이 부착되기 위하여 부착면의 연마(평탄도 증가) 및 제품의 모서리 부분 등 의 칩(chip)을 제거하기 위한 연마 공정을 통하여 제조된다.The ceramic heat sink product of the two-step heat treatment (S500b) is subjected to the processing step (S700). The processing step (S700) is a polishing process for removing the chips (such as the increase in flatness) and the edge of the product in order to attach the ceramic heat sink to the heating parts of the electrical and electronic products without lifting the phenomenon. It is manufactured through.

상기 가공공정(S700) 후 제조된 세라믹 방열판은 1~300㎛ 입자크기를 갖는 탄화규소 60~98 중량부 와 무기결합제 2~40 중량부로 구성된다. 또한 상기 방열판의 비중이 1.5~4.0이며 3~45% 범위의 기공율을 갖게 된다.The ceramic heat sink manufactured after the processing step (S700) is composed of 60 to 98 parts by weight of silicon carbide having a particle size of 1 ~ 300㎛ and 2 to 40 parts by weight of the inorganic binder. In addition, the heat sink has a specific gravity of 1.5 to 4.0 and has a porosity in the range of 3 to 45%.

한편 첨부도면 도 3에 도시된 바와 같이 상기 원료결합공정(S200)에 의해 균일하게 혼합된 슬러리(slurry)를 초음파 진동을 통하여 탄화규소(SiC) 입자 표면에서 무기바인더를 접착시키고 있는 유기바인더의 접착력을 증가시키는 분리방지공정(S800)을 더 수행할 수 있다.Meanwhile, as shown in FIG. 3, an adhesive force of an organic binder for bonding an inorganic binder on the surface of silicon carbide (SiC) particles through ultrasonic vibration of a slurry uniformly mixed by the raw material bonding process (S200). Separation prevention process (S800) to increase the can be further performed.

상기와 같이 분리방지공정(S800)을 더 수행하면 탄화규소(SiC) 입자 표면에서 무기바인더를 접착시키고 있는 유기바인더의 접착력을 증대시킬 수 있기 때문이며 접착력 증대는 제품의 품질 향상 및 신뢰성을 높일 수 있다.If the separation prevention process (S800) as described above is further carried out to increase the adhesive strength of the organic binder for bonding the inorganic binder on the surface of the silicon carbide (SiC) particles, and the increased adhesive strength can improve the quality and reliability of the product. .

한편 세라믹 방열판의 제조시 사용된 탄화규소(SiC) 입자크기와 탄화규소(SiC)의 함유량에 따른 실험을 통해 열전도도 및 냉각 성능은 아래 표 1 및 표 2와 같다. Meanwhile, thermal conductivity and cooling performance are shown in Tables 1 and 2 below through experiments according to silicon carbide (SiC) particle size and silicon carbide (SiC) content used in the manufacture of a ceramic heat sink.

<실험방법>Experimental Method

실험조건 Experimental conditions

1) 대기온도 : 20±1℃1) Air temperature: 20 ± 1 ℃

2) 발열체온도 : 80±0.5℃2) Heating element temperature: 80 ± 0.5 ℃

3) 냉각 능력 측정 시간 : 60분3) Cooling capacity measurement time: 60 minutes

상기와 같이 일정한 대기온도(20±1℃)로 유지되는 안정된 공간에서 일정한 온도(80±0.5℃)가 발열되는 발열체위에 방열판을 부착시켜 1시간 동안 온도변화를 측정하였다.  As described above, a heat sink was attached to a heating element that generates a constant temperature (80 ± 0.5 ° C.) in a stable space maintained at a constant atmospheric temperature (20 ± 1 ° C.), and the temperature change was measured for 1 hour.

4) 크기 4) size

가로 : 20mmWidth: 20mm

세로 : 20mmLength: 20mm

두께 : 2.5mm
Thickness: 2.5mm

[표1]Table 1

열소산층 및 열전도층의 복합 구조를 갖는 종래 세라믹 방열판과 본 발명의 기술이 적용된 세라믹 방열판의 열전도도 비교  Comparison of the thermal conductivity of a conventional heat sink having a composite structure of a heat dissipation layer and a heat conduction layer and a ceramic heat sink to which the technique of the present invention is applied

Figure 112010021866952-pat00001
Figure 112010021866952-pat00001

[표2] 열소산층 및 열전도층의 복합 구조를 갖는 종래 세라믹 방열판 및 종래 금속 방열판과 본 발명의 세라믹 방열판의 냉각성능 비교 [Table 2] Comparison of cooling performance between the conventional ceramic heat sink and the conventional metal heat sink and the ceramic heat sink of the present invention having a composite structure of the heat dissipation layer and the heat conducting layer

Figure 112010021866952-pat00002
Figure 112010021866952-pat00002

S100 : 분산공정
S200 : 원료결합공정
S300 : 과립화공정
S400 : 성형공정
S500 : 열처리공정
S500a : 1단계 열처리공정
S500b : 2단계 열처리공정
S700 : 가공공정
S100: Dispersion Process
S200: Raw Material Bonding Process
S300: Granulation Process
S400: Molding Process
S500: Heat Treatment Process
S500a: 1 step heat treatment process
S500b: Two stage heat treatment process
S700: Machining Process

Claims (6)

삭제delete 1~300㎛ 입자크기를 갖는 탄화규소 60~98 중량부와 무기결합제 2~40 중량부를 혼합, 성형 및 소결하여 이루어진 기공율 3 ~ 45 %의 미세공 구조체로서, 상기 무기결합제는 Si, Al, Ca, Mg, Fe, Ti, K, Na 군에서 선택된 단일산화물 또는 둘 이상의 혼합산화물인 것을 특징으로 하는 세라믹 방열판.
60 to 98 parts by weight of silicon carbide having a particle size of 1 ~ 300㎛ and 2 to 40 parts by weight of the inorganic binder is a microporous structure having a porosity of 3 to 45% by mixing, molding and sintering, the inorganic binder is Si, Al, Ca , Mg, Fe, Ti, K, Na selected from the group consisting of a single oxide or two or more mixed oxide ceramic heat sink.
제 2 항에 있어서, 상기 세라믹 방열판의 비중이 1.5 ~ 4.0 인 것을 특징으로 하는 세라믹 방열판.
The ceramic heat sink of claim 2, wherein specific gravity of the ceramic heat sink is 1.5 to 4.0.
삭제delete Si, Al, Ca, Mg, Fe, Ti, K, Na 군에서 선택된 단일산화물 또는 둘 이상의 혼합산화물인 무기결합제와 탄화규소(SiC)를 수용액상에서 분산제를 첨가하여 불균질하게 혼합된 탄화규소(SiC) 응집입자와 무기결합제 응집입자를 분산시켜 슬러리를 제조하는 분산공정과;
상기에서 제조된 슬러리에 유기바인더를 첨가하여 탄화규소(SiC) 입자 표면에 유기바인더를 이용하여 무기결합제를 균일하게 접착시켜 균일한 혼합 슬러리를 제조하는 원료결합공정과;
상기 원료결합공정을 통하여 제조된 균일한 슬러리를 분무 건조하여 과립(granule) 분말로 제조하는 과립화공정과;
상기 과립화공정의 수행 후 제조된 과립 분말이 일정한 모양을 형성하도록 금형에 넣고 성형체로 제조하는 성형공정과;
상기 성형공정을 통하여 제조된 성형체를 10℃/min의 속도로 600~1200℃ 온도에서 1차열처리 후 5℃/min의 낮은 속도에서 1200~1600℃ 온도에서 2차열처리 하는 열처리공정과;
상기 열처리공정을 통하여 제조된 세라믹 방열판의 표면을 연마하여 제품을 완성하는 가공공정 순으로 제조하는 것을 특징으로 하는 세라믹 방열판의 제조방법.

(SiC), which is a single oxide or a mixed oxide of two or more selected from the group consisting of Si, Al, Ca, Mg, Fe, Ti, K and Na and a silicon carbide A dispersion step of dispersing agglomerated particles and inorganic binder agglomerated particles to prepare a slurry;
A raw material bonding step of adding an organic binder to the slurry prepared above to homogeneously bond an inorganic binder to the surface of silicon carbide (SiC) particles using an organic binder to produce a uniform mixed slurry;
A granulation process of spray drying the uniform slurry prepared through the raw material combining process to produce granule powder;
A molding step of manufacturing the molded granules into a mold so as to form a predetermined shape after the granulation step is performed;
A heat treatment step of performing a second heat treatment at 1200 to 1600 ° C. at a low rate of 5 ° C./min after the first heat treatment of the molded product manufactured through the molding process at a temperature of 600 ° C./1200° C. at a rate of 10 ° C./min;
The method of manufacturing a ceramic heat sink characterized in that the manufacturing process in order to finish the product by polishing the surface of the ceramic heat sink manufactured by the heat treatment step.

제 5 항에 있어서, 상기 분산공정의 슬러리에 초음파 진동을 통하여 탄화규소(SiC) 입자 표면에서 무기바인더를 접착시켜 유기바인더의 접착력을 증가시키는 분리방지공정을 더 포함하는 것을 특징으로 하는 세라믹 방열판의 제조방법.[Claim 6] The ceramic heat sink of claim 5, further comprising a separation prevention step of adhering the inorganic binder on the surface of the silicon carbide (SiC) particles through ultrasonic vibration to the slurry of the dispersion process to increase the adhesion of the organic binder. Manufacturing method.
KR1020100031362A 2010-04-06 2010-04-06 Ceramic heat sink and its manufacturing method KR100995772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100031362A KR100995772B1 (en) 2010-04-06 2010-04-06 Ceramic heat sink and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100031362A KR100995772B1 (en) 2010-04-06 2010-04-06 Ceramic heat sink and its manufacturing method

Publications (1)

Publication Number Publication Date
KR100995772B1 true KR100995772B1 (en) 2010-11-22

Family

ID=43409960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100031362A KR100995772B1 (en) 2010-04-06 2010-04-06 Ceramic heat sink and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100995772B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185295B1 (en) 2011-04-19 2012-09-21 주식회사 삼전 Ceramic heat sink using low temperature sintering and glaze and manufacturing process thereof
KR20150079158A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Slurry Composition and Method For Manufacturing Spray Coating Powder Using the Same
KR101584916B1 (en) 2014-10-13 2016-01-14 안우영 Manufacturing method for solder resister
CN111592275A (en) * 2020-06-29 2020-08-28 广州视源电子科技股份有限公司 Radiator and preparation method thereof
US10875091B2 (en) 2014-12-05 2020-12-29 Industry-University Cooperation Foundation Metal powder, feedstock, and preparation method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185665A (en) * 1999-12-24 2001-07-06 Ibiden Co Ltd Radiating plate made of silicon carbide and metal composite material and board for module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185665A (en) * 1999-12-24 2001-07-06 Ibiden Co Ltd Radiating plate made of silicon carbide and metal composite material and board for module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185295B1 (en) 2011-04-19 2012-09-21 주식회사 삼전 Ceramic heat sink using low temperature sintering and glaze and manufacturing process thereof
KR20150079158A (en) * 2013-12-31 2015-07-08 현대자동차주식회사 Slurry Composition and Method For Manufacturing Spray Coating Powder Using the Same
KR101585446B1 (en) 2013-12-31 2016-01-15 현대자동차주식회사 Slurry Composition and Method For Manufacturing Spray Coating Powder Using the Same
KR101584916B1 (en) 2014-10-13 2016-01-14 안우영 Manufacturing method for solder resister
WO2016060323A1 (en) * 2014-10-13 2016-04-21 안우영 Method for preparing solder resist to which polymer ball coated with aluminum nitride is added
US10875091B2 (en) 2014-12-05 2020-12-29 Industry-University Cooperation Foundation Metal powder, feedstock, and preparation method therefor
CN111592275A (en) * 2020-06-29 2020-08-28 广州视源电子科技股份有限公司 Radiator and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100995772B1 (en) Ceramic heat sink and its manufacturing method
CA2455794A1 (en) A high solids hbn slurry, hbn paste, spherical hbn powder, and methods of making and using them
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
CN104276823A (en) High-insulation silicon carbide/boron nitride ceramic material and preparation method thereof
US7141309B2 (en) High thermal conductive material having high thermal conductivity and process for producing the same
TW201120394A (en) Radiating panel including silicon carbide and method of manufacturing the same
CN102465213A (en) High heat conduction diamond heat sink material and preparation method thereof
JP5366859B2 (en) Silicon nitride substrate and semiconductor module using the same
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
CN105254285A (en) Preparation process of ceramic base plate for high-power LED (light emitting diode) heat radiation
CN203503711U (en) Copper-covered AlSiC composite radiating substrate
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP5481725B2 (en) Manufacturing method of ceramic-insulated substrate integrated metal-ceramic composite heat sink
JP6263301B1 (en) Ceramic substrate and semiconductor module
KR101891405B1 (en) Metal foam and manufacturing method of the metal foam
JP5048266B2 (en) Heat dissipation board and manufacturing method thereof
JPWO2018025911A1 (en) SiC heater
KR101419740B1 (en) Bi-layer ceramic substrate for heat dissipation and method for manufacturing the same
KR101185295B1 (en) Ceramic heat sink using low temperature sintering and glaze and manufacturing process thereof
CN105405955A (en) Preparation technology of ceramic heat-radiation substrate for LED
JP2016074935A (en) Composite powder material for flame spray and flame sprayed insulation base plate
JP2017045979A (en) Heat radiating member, power semiconductor module, and led package
KR101742063B1 (en) Silicon Carbide Heatsink and Manufacturing Method Thereof
TWI799297B (en) Porous ceramic heat spreader and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 10