KR100983666B1 - A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick - Google Patents

A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick Download PDF

Info

Publication number
KR100983666B1
KR100983666B1 KR1020030071725A KR20030071725A KR100983666B1 KR 100983666 B1 KR100983666 B1 KR 100983666B1 KR 1020030071725 A KR1020030071725 A KR 1020030071725A KR 20030071725 A KR20030071725 A KR 20030071725A KR 100983666 B1 KR100983666 B1 KR 100983666B1
Authority
KR
South Korea
Prior art keywords
waste
sulfuric acid
compound
weight
chromite
Prior art date
Application number
KR1020030071725A
Other languages
Korean (ko)
Other versions
KR20050036131A (en
Inventor
전명철
김선욱
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020030071725A priority Critical patent/KR100983666B1/en
Publication of KR20050036131A publication Critical patent/KR20050036131A/en
Application granted granted Critical
Publication of KR100983666B1 publication Critical patent/KR100983666B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite

Abstract

본 발명은 폐마그크로 연와를 기계적으로 분쇄하고; 상기 폐마그크로 분쇄물을 황산 수용액과 반응시켜 높은 Cr2O3 함량을 가지는 크로마이트질 화합물을 제조하고; 상기 크로마이트질 화합물, 결합분산제로 퓸드 실리카(fumed silica) 및 물을 혼합하여 열복사율이 높은 세라믹 열복사 단열코팅제를 제조하는 방법을 제공한다.The present invention mechanically pulverizes the lead with waste magnet; Reacting the waste grinds with an aqueous sulfuric acid solution to prepare a chromite compound having a high Cr 2 O 3 content; Provided is a method of preparing a ceramic thermal radiation insulation coating agent having a high thermal radiation rate by mixing the chromate compound, fumed silica and water as a bond dispersant.

폐마그크로내화물, 열복사. 크롬광, 내화도료Waste macrorefractories, heat radiation. Chrome Ore, Fireproof Paint

Description

폐마그크로 연와로부터 세라믹 열복사 단열코팅제의 제조방법{A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick}A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick}

본 발명은 폐마그크로 연와로부터 세라믹 열복사 단열코팅제의 제조방법에 관한 것으로, 보다 상세하게는 제철, 시멘트, 및 유리공업 분야에서 사용 후 폐기되고 있는 마그크로 연와 폐기물을 이용하여 열복사율이 높은 세라믹 열복사 단열코팅제를 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a ceramic thermal radiation insulation coating agent from waste macro lead, more specifically, ceramic heat radiation with high thermal radiation rate using the magnesium lead and waste which are discarded after use in steel, cement, and glass industries. The present invention relates to a method for producing an insulation coating agent.

최근 들어 공업용 요로를 사용하고 있는 국내외 산업현장에서 열에너지 절감을 위해 열복사 단열코팅제가 주로 사용되고 있다. 기존의 열복사 단열코팅제로 주로 각광을 받고 있는 재료인 크로마이트(chromite; FeCr2O4; 복사율 0.95)는 단일 화합물로 천연에 존재하지 않으며 존재 주로 천연으로 산출되는 크롬철광에 많이 포함되어 있다. 이러한 크로마이트의 높은 열복사 특성을 이용하기 위하여 일본특허공개 소63-29712에서는 이들 크로마이트 성분이 소량 포함된 천연크롬광을 복사단열재용 도료의 주요 복사재 필러(filler)로 채용하고 있다. 그러나 이 방법은 고가의 천연 크롬광만을 주원료로 채택하는 일본의 특허 방식은 내화도료의 값이 비 싸 경제성이 떨어지는 단점이 있다. Recently, heat radiation insulation coating agent is mainly used to reduce heat energy in domestic and foreign industrial sites using industrial urinary tracts. Chromite (FeCr 2 O 4 ; emissivity 0.95), a material that is mainly spotlighted as a conventional thermal radiation insulation coating agent, is not present in nature as a single compound and is mainly included in chromite produced mainly in nature. In order to take advantage of such high thermal radiation characteristics of chromite, Japanese Patent Laid-Open No. 63-29712 employs natural chromium light containing a small amount of these chromite components as a main radiant filler of a radiation insulating material. However, this method has a disadvantage in that the Japanese patent method that adopts only expensive natural chromium ore as the main raw material is expensive and the economical efficiency of the refractory paint.

최근 들어 국내에서는 크롬계 산화물이 함유되어 있는 폐마그크로 연와를 "미분쇄 후 부유선광"을 통하여 크롬성분이 많은 부분을 선별채취하고 이 채취물을 천연크롬광에 일정량 첨가한 혼합물을 주요 복사물질로 한 복사 코팅재를 제조할 수 있다고 기재하고 있다(대한민국 특허공개 제2002-58174호). Recently, in Korea, chromium-containing wastes containing chromium-based oxides have been selectively collected through crushing flotation, which contains a large amount of chromium, and the mixture is added to natural chromium. It is described that the radiation coating material can be prepared (Korean Patent Publication No. 2002-58174).

그러나 상기 방법은 비용 절감을 목적으로 천연크롬광에 폐마그크로 연와로부터 단순 분쇄 및 부유선광을 통해 얻어진 분쇄물을 첨가하는 방식을 이용하고 있으나 기술적으로 실현 가능성이 떨어진다. 폐마그크로 연와로부터의 크롬성분 제거방식은 폐연와 분쇄물내 화합물 성분간의 비중차이를 이용, 부유선광을 통한 고농도의 크롬화합물의 추출을 전제로 하고 있으나, 마그크로 연와의 미세구조상 고온에서의 연와 소성공정에 의해 대부분의 연와내 크롬성분은 주요 연와성분인 마그네시아와 별개로 존재하지 않고 확산을 통하여 마그네시아 클링커 입자내에 균질하게 스피넬화합물 형태로서 존재하며 또한 각각의 화합물간의 비중차가 거의 나지 않기 때문이다. 따라서 이들 크롬-rich 화합물상을 분쇄를 통하여 부유선광 한다는 것은 기술적으로 실현가능성이 없으며, 실제로 이러한 부유선광 설비를 갖추기 위해서는 대규모 설비가 소요 되므로 오히려 복사코팅재용 필러물질의 수요물량을 감안할 때 천연 크롬광만을 채용하는 것보다 오히려 경제성이 떨어진다. However, the above method uses a method of adding a pulverized product obtained through simple grinding and flotation from waste chrome to natural chromium ore for the purpose of cost reduction. The removal method of chromium component from waste macro lead is based on the extraction of high concentration of chromium compound through flotation by using specific gravity difference between waste lead and the compound component in the pulverized product. This is because most of the chromium components in the wort are not separated from the magnesia, which is the main wort, by the process. Therefore, floating beneficiation of these chromium-rich compound phases is not technically feasible, and in fact, such a flotation facility requires large-scale facilities. Rather than employing it is less economical.

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여, 저가의 크로마이트 화합물을 얻기 위한 방법으로, 폐마그크로 연와로부터 보다 경제적이면서도 기술적 으로 용이한 저가의 크로마이트 함유 원료를 얻고, 얻어진 크로마이트계 화합물을 이용하여 열복사율이 높은 세라믹 열복사 단열코팅제를 제조하는 방법을 제공하기 위한 것이다. The present invention is a method for obtaining a low-cost chromite compound in order to solve the above problems, to obtain a low-cost chromite-containing raw material more economically and technically from waste magnesia lead, and obtained chromite compound It is to provide a method for producing a ceramic thermal radiation insulation coating agent having a high thermal radiation rate.

상기 목적을 달성하기 위하여 본 발명은, 폐마그크로 연와를 기계적으로 분쇄하고; 상기 폐마그크로 분쇄물을 황산 수용액과 반응시켜 높은 Cr2O3 함량을 가지는 크로마이트질 화합물을 제조하고; 상기 크로마이트질 화합물, 결합분산제로 퓸드 실리카(fumed silica) 및 물을 혼합하여 열복사율이 높은 세라믹 열복사 단열코팅제를 제조하는 방법을 제공한다.In order to achieve the above object, the present invention is to mechanically pulverize the lead with a waste magnet; Reacting the waste grinds with an aqueous sulfuric acid solution to prepare a chromite compound having a high Cr 2 O 3 content; Provided is a method of preparing a ceramic thermal radiation insulation coating agent having a high thermal radiation rate by mixing the chromate compound, fumed silica and water as a bond dispersant.

이하, 본 발명을 보다 상세히 기술한다.Hereinafter, the present invention will be described in more detail.

우선 폐마그크로 연와로부터 고농도의 Cr2O3를 포함하는 크로마이트질 화합물을 제조하기 위하여 Cr2O3 함량이 10~30 중량%, 바람직하게는 20~30 중량%인 MgO-Cr2O3계 폐마그크로 연와를 기계적인 분쇄를 통하여 미분말로 만든다. 폐내화물의 분쇄 미분말의 크기는 제한은 없으나 200# 이하의 미분말 상태가 가장 적합하다. First, MgO-Cr 2 O 3 having a Cr 2 O 3 content of 10 to 30% by weight, preferably 20 to 30% by weight, in order to prepare a chromite compound containing a high concentration of Cr 2 O 3 from waste Mg The waste scrap is made into fine powder through mechanical grinding. The size of the ground fine powder of the waste refractories is not limited, but a fine powder of 200 # or less is most suitable.

얻어진 미분말을 황산 수용액과 반응시켜 폐연와내에 과잉으로 존재하는 MgO 성분을 MgSO4(액상) 형태로 반응 제거한다. 폐연와 미분말을 농도 10%이상의 황산 수용액속에 적정량을 첨가하여 교반하면 반응용액의 온도가 급격히 상승하며 격렬한 속도로 반응이 진행된다. 이때 용액 내에서 주로 일어나는 주요 반응은 폐연와 내에서 과잉으로 존재하여 크롬화합물과 화합물을 형성하지 않고 있는 free MgO 성분이 황산과 반응하는 것으로서 다음과 같은 반응식으로 진행된다. The obtained fine powder is reacted with an aqueous sulfuric acid solution to remove the MgO component present in excess in the spent lead in the form of MgSO 4 (liquid). When the waste lead and fine powder are added and stirred in an aqueous sulfuric acid solution having a concentration of 10% or more, the temperature of the reaction solution rapidly increases and the reaction proceeds at a violent rate. In this case, the main reaction that occurs mainly in the solution is that the free MgO component, which is present in excess in waste smoke and in the chromium compound and does not form a compound, reacts with sulfuric acid.

Free MgO + H2SO4 = MgSO4(액상) + H2Free MgO + H 2 SO 4 = MgSO 4 (Liquid) + H 2

이 반응은 폐연와 미분쇄물내의 free MgO가 완전히 소모될 때까지 반응이 지속되며 반응완료시점은 반응계의 온도가 다시 떨어져 상온으로 되는 시점이다. 반응이 끝나면 용액은 MgSO4가 과량 포함된 수용액과 미반응물(고체분말) 형태로 존재하게 되며 냉각이 완료되면 공업적인 필터링 과정을 통하여 용이하게 높은 Cr2O3 함량을 가진 미반응 광물을 회수할 수 있다. The reaction is continued until the free MgO in the waste smoke and the pulverized product is completely consumed, and the completion point of the reaction is when the temperature of the reaction system falls back to room temperature. After the reaction, the solution is present in the form of an aqueous solution containing excess MgSO 4 and unreacted (solid powder). When cooling is completed, an unreacted mineral having a high Cr 2 O 3 content can be easily recovered through an industrial filtering process. Can be.

황산반응에 사용되는 황산 수용액의 농도는 2~90%, 바람직하게는 10~90%의 황산수용액을 이용할 수 있으나 반응속도와 안전성을 고려하여 20~50%의 황산수용액이 최적이다.The concentration of sulfuric acid solution used in the sulfuric acid reaction is 2 to 90%, preferably 10 to 90% sulfuric acid solution can be used, but considering the reaction rate and safety 20 to 50% sulfuric acid solution is optimal.

황산 반응후 잔류하는 미반응물을 수세 및 건조 공정을 통하여 상대적으로 황산 반응 전의 폐연와에 비하여 높은 Cr2O3 함량을 가지는 크로마이트질(FeCr 2O4) 화합물을 제조한다. 상기 크로마이트질 화합물은 35~55 중량%의 Cr2O3를 포함하며, 이는 상업적으로 판매되고 있는 천연크롬광의 Cr2O3 함량과 동등 내지는 유사하다. 크로마이트질 화합물은 고효율의 복사능을 가지므로 열복사 단열 코팅재의 주요원료가 된다. The unreacted material remaining after the sulfuric acid reaction is washed with water and dried to prepare a chromite (FeCr 2 O 4 ) compound having a relatively high Cr 2 O 3 content compared with the waste smoke before the sulfuric acid reaction. The chromite compound comprises 35-55 wt% Cr 2 O 3 , which is equivalent to or similar to the Cr 2 O 3 content of commercially available natural chromium ores. Chromite compounds have a high efficiency of radiation and are therefore a major raw material for thermal radiation insulation coatings.

상기와 같은 방법으로 얻어진 고순도의 크로마이트질 화합물은 평균 입자크 기가 10~20 마이크로미터로 통상 황산 반응전의 폐연와 분말의 입도보다 감소하며 따라서 추가적인 분쇄공정은 소요되지 않는다. 상기 크로마이트질 화합물에 결합제와 분산제 역할을 동시에 할 수 있는 퓸드 실리카와 물을 혼합/교반하여 열복사율이 높은 세라믹 열복사 단열코팅제를 제조한다. 상기 퓸드 실리카는 용액 상태의 단열코팅제 총량에 대하여 2중량% 미만, 바람직하게는 0.1 ~ 1.0중량%의 양으로 사용된다. The high-purity chromite compound obtained by the above method has an average particle size of 10-20 micrometers, which is lower than the particle size of the waste smoke and powder before sulfuric acid reaction, and thus no additional grinding process is required. A ceramic heat radiation insulation coating agent having high heat radiation rate is prepared by mixing / stirring fumed silica and water, which may simultaneously act as a binder and a dispersant, to the chromite compound. The fumed silica is used in an amount of less than 2% by weight, preferably 0.1 to 1.0% by weight based on the total amount of the heat-insulating coating agent in solution.

상기 퓸드 실리카는 상온 및 고온에서의 도료내 복사물질 및 도료와 내화물과의 결합분산제로서 작용하며 7~100nm, 바람직하게는 7~50nm 크기의 평균입경을 가지는 것이 바람직하게 사용될 수 있다. 상기 물은 단열코팅제에 대하여 20~50 중량%, 바람직하게는 28~48중량%의 양으로 사용된다. 크로마이트질 화합물은 상기 퓸드 실리카와 물을 제외하고 단열코팅제의 함량이 100 중량%가 되도록 사용한다. 상기 교반은 통상의 교반기를 사용하여 실시할 수 있으며, 교반시간은 24 시간 이상 실시한다. 교반공정이 완료된 도료는 크로마이트 화합물과 초미세 퓸드 실리카 입자가 균질하게 혼합분산된 상태이다.The fumed silica acts as a dispersant in the paint at room temperature and high temperature, and a bond dispersant between the paint and the refractory, and preferably has a mean particle size of 7 to 100 nm, preferably 7 to 50 nm. The water is used in an amount of 20 to 50% by weight, preferably 28 to 48% by weight with respect to the insulating coating agent. The chromite compound is used so that the content of the insulating coating agent is 100% by weight except for the fumed silica and water. The stirring can be carried out using a conventional stirrer, the stirring time is carried out for 24 hours or more. The paint having the stirring process is in a state where the chromite compound and the ultra fine fumed silica particles are mixed and dispersed homogeneously.

또한 상기 단열코팅제에는 크롬의 함량이 40~56중량%인 소량의 천연크롬광을 추가로 첨가할 수 있다. 바람직하게는 천연크롬광을 단열코팅제 100 중량부에 대하여 5~50 중량부, 바람직하게는 5~20 중량부의 양으로 첨가할 수 있다. In addition, a small amount of natural chromium light having a chromium content of 40 to 56% by weight may be additionally added to the insulation coating agent. Preferably, natural chromium light may be added in an amount of 5 to 50 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the heat insulating coating agent.

천연크롬광은 200# 이하의 미분말 상태로 첨가되는 것이 바람직하다. 천연크롬광은 크롬광 미분 표면에 존재하는 MgO성분들이 물에 용해되어 단열코팅제 조성물의 pH를 최대 12이상까지 높여주는 역할을 한다. 이러한 높은 pH조건은 크로 마이트 화합물 및 분산결합제로 첨가제로 들어간 퓸드 실리카의 최적 분산 pH에 해당됨으로써 코팅제의 균질한 분산에 도움을 주며, 또한 퓸드 실리카의 용해도를 증가시킴으로써, 용해된 규산질 수화물이 상대적으로 소량의 첨가량만으로도 크로마이트 화합물 주변에 치밀하게 위치하게 하고, 단열코팅제의 도포후 상온건조 상태와 고온에서의 코팅제 입자간 그리고 코팅제와 내화물간 결합력을 증진시켜 준다. 이러한 천연크롬광의 물속에서의 반응성과 고 pH에서의 퓸드 실리카의 거동은 24시간이라는 비교적 긴 교반 시간과도 연관성을 지닌다. Natural chromium light is preferably added in a fine powder state of 200 # or less. Natural chromium light is MgO components present in the surface of the chromium fine powder is dissolved in water to increase the pH of the heat insulating coating composition up to 12 or more. These high pH conditions correspond to the optimal dispersion pH of fumed silica, which has been added to the chromite compound and additives as a dispersing binder, to aid in homogeneous dispersion of the coating and also to increase the solubility of the fumed silica, thereby allowing the dissolved silicate hydrate to be relatively Even small amounts of additives are placed close to the chromite compound and improve the bonding strength between the coating particles at room temperature and at high temperature after application of the insulation coating agent and between the coating agent and the refractory material. The reactivity of the natural chromium in water and the behavior of fumed silica at high pH are associated with a relatively long stirring time of 24 hours.

본 발명에 따라 제조된 단열코팅제는 도포 작업성 및 고온에서의 도료의 접합특성이 우수하여 700℃ 이상의 고온에서 조업되는 공업용 요로의 내벽 내화물위에 도포하여 열차단 및 열복사성능이 우수한 내화단열 코팅 도료로 사용될 수 있다. The heat-insulating coating prepared according to the present invention has excellent coating workability and bonding property of the paint at high temperature, and is applied to the inner wall refractory of an industrial urinary furnace operated at a high temperature of 700 ° C. or higher to provide a heat-resistant and heat-resistant insulating coating material. Can be used.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다. The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1Example 1

Cr2O3 함량이 10~30 중량% 인 폐마그크로 연와 2종(RDB-63F, RDB-71C)을 기계적인 분쇄를 통하여 200# 이하의 분말로 만들고 이들 각각의 분말 100g을 50% 황산 수용액 1리터가 담긴 비이커에 각각 넣고 기계적인 교반을 해주었다. 교반이 시작되면서 비이커내의 폐연와/황산수용액의 온도는 급격히 상승하여 10분이내에 90℃ 이상에 달하였다. 이러한 상태에서 1시간 동안 계속 교반해준 결과 폐연와 미분과 황산수용액간의 반응이 완료되어 비이커내의 수용액의 온도가 떨어지기 시작하여 2시간내에 상온에 도달함으로써 반응이 완료 되었음을 확인하였다. 교반을 멈추고 황산 반응이 완료된 각각의 비이커내의 수용액을 2시간 이상 더 유지하여 부유된 미반응 잔사들의 자연침강을 유도한 후 침전된 미반응물을 필터를 이용하여 포집하였다. 포집된 미반응물은 3번의 수세과정을 통하여 잔류 황산을 제거하고 110℃ 건조기에 넣어 24시간 건조하여 수분이 완전히 제거된 미반응 분말을 얻었다. 이들 2종의 미반응 잔사를 XRD 분석한 결과 2종의 미반응물 모두 전형적인 FeCr2O4 결정상을 나타내었으며 이들 화학성분을 XRF를 이용한 결과를 표 1에 나타내었다. Waste Magnesium Lead and 2 kinds (RDB-63F, RDB-71C) with Cr 2 O 3 content of 10 ~ 30% by weight are mechanically pulverized to below 200 # powder and 100g of each powder is 50% sulfuric acid solution Each beaker was put in a 1 liter beaker was mechanically stirred. As the stirring started, the temperature of the spent smoke and sulfuric acid solution in the beaker rapidly increased to reach 90 ° C. or more within 10 minutes. As a result of continuous stirring for 1 hour in this state, the reaction between the waste smoke and the fine powder and sulfuric acid aqueous solution was completed and the temperature of the aqueous solution in the beaker began to drop and reached room temperature within 2 hours to confirm that the reaction was completed. After stopping the stirring and maintaining the aqueous solution in each beaker for more than 2 hours to induce spontaneous sedimentation of the suspended unreacted residues, the precipitated unreacted material was collected using a filter. The collected unreacted material was removed with residual sulfuric acid through three washing processes and placed in a 110 ° C. dryer for 24 hours to obtain an unreacted powder from which moisture was completely removed. XRD analysis of these two unreacted residues showed typical FeCr 2 O 4 crystalline phases of the two unreacted materials, and the results using XRF for these chemical components are shown in Table 1.

[표 1] 폐연와의 황산 반응 전후의 성분 변화[Table 1] Changes in components before and after sulfuric acid reaction with spent smoke

(단위: 중량%)(Unit: weight%)

성분
연와종류
ingredient
Yeonwa type
MgOMgO Cr2O3 Cr 2 O 3 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO SiO2 SiO 2
RDB-63F(폐연와)RDB-63F (closed) 64.0664.06 24.0824.08 4.704.70 6.136.13 0.540.54 0.500.50 RDB-63F(황산반응물)RDB-63F (Sulfate Reactant) 21.2021.20 54.6054.60 10.5410.54 11.8811.88 0.570.57 1.211.21 RDB-71C(폐연와)RDB-71C (closed smoke) 63.3363.33 22.5422.54 4.624.62 7.847.84 0.880.88 1.291.29 RDB-71C(황산반응물)RDB-71C (Sulfate Reactant) 20.3220.32 49.8249.82 13.1113.11 14.5214.52 0.320.32 1.911.91

표 1에서 바와 같이 2종의 폐마그크로 연와는 황산반응 전후에 주요 연와 성분인 MgO의 양은 크게 감소하고 이에 따라 상대적으로 Cr2O3의 함량은 2배이상 증가하여 최대 54.6 중량%에 이른다는 것을 알 수 있다. 따라서 황산반응이 폐연와로부터 높은 Cr2O3 함량의 크로마이트질 화합물을 얻는 데 매우 효율적이라는 것을 알 수 있다. As shown in Table 1, the amount of MgO, which is the main lead and component of the two types of waste macro lead, significantly decreased before and after the sulfuric acid reaction, and thus the content of Cr 2 O 3 was more than doubled to reach up to 54.6 wt%. It can be seen that. Therefore, it can be seen that sulfuric acid reaction is very efficient for obtaining a high Cr 2 O 3 chromite compound from the waste smoke.

표 1에서 얻어진 실험 자료를 바탕으로 열차단용 복사단열코팅제를 제조하였다. 먼저 RDB-71C 폐연와로부터 얻어진 황산 반응후 잔사(Cr2O3 함량 49%) 6000g에 입자크기 40nm인 퓸드 실리카 분말 50g을 정량하여 혼합한 후 3950g의 물을 첨가하여 강력한 교반기를 이용하여 분당 500rpm의 속도로 24시간동안 교반하여 주었다. 교반이 완료된 도료 혼합물은 균질한 교반상태를 나타내었으며 크로마이트 화합물과 퓸드 실리카간의 분리 현상은 나타나지 않았다. 잘 혼합된 도료를 알루미나 플레이트에 도포한 후 1200도에서 10시간 유지한 후 자연 냉각시켜 복사단열코팅제 도포시편을 제조하였다. 열처리를 마친 도포시편은 도포표면에 균열이 발생하지 않은 상태로 잘 밀착되어 있어 소량의 결합제 첨가만으로도 부착성이 우수하다는 것을 알 수 있었다. 제조된 도포시편을 복사능 측정기를 이용하여 300℃에서 복사효율을 측정한 결과 전복사율(Total Emissivity) 0.84를 나타냄으로써 폐연와로부터 황산반응을 통해 얻어진 크로마이트 화합물을 이용하여 제조된 도포제의 복사성능이 우수함을 확인할 수 있었다. Based on the experimental data obtained in Table 1 was prepared a thermal insulation thermal insulation coating agent. First, 50 g of fumed silica powder having a particle size of 40 nm was weighed and mixed with 6000 g of residue (Cr 2 O 3 content 49%) after sulfuric acid reaction obtained from RDB-71C waste smoke, and then 3950 g of water was added and 500rpm per minute using a strong stirrer. Stirred at a rate of 24 hours. The paint mixture after stirring was homogeneous, and there was no separation between the chromite compound and the fumed silica. The well mixed paint was applied to the alumina plate, and then maintained at 1200 ° C for 10 hours to naturally cool to prepare a radiation insulating coating agent coated specimen. After the heat treatment, the coated specimen was well adhered without cracks on the coated surface, and it was found that the adhesion was excellent even with the addition of a small amount of binder. The radiation efficiency of the coating agent prepared using the chromite compound obtained by the sulfuric acid reaction from waste smoke was shown as the result of measuring the radiation efficiency at 300 ℃ using the radiation tester. This excellence could be confirmed.

실시예 2Example 2

실시예 1의 표 1에서 나타낸 바와 같이 RDB-63F 폐연와로부터 황산반응을 통해 얻어진 크로마이트 화합물(Cr2O3 함량: 약 55 중량%)을 이용하여 실시예 1과 같은 방법으로 복사단열도포제를 제조하였다. 단 이 경우 크롬함량 46 중량% 급의 천연 크롬광을 200# 이하로 분쇄하여 도료 전체 100 중량부에 대하여 10 중량부를 추가로 첨가한 후 12시간 교반하여 주었다. 천연 크롬광을 첨가해준 결과 첨가하지 않 은 경우에 비하여 도료 수용액의 급격한 pH증가 현상이 관찰되었으며 교반이 시작된지 1시간내에 도료 수용액의 pH는 12이상에 도달하는 현상을 나타내었다. 제조된 도료를 실시예 1과 동일한 방법으로 열복사코팅제 도포시편를 제조한 후 동일한 조건에서 열복사능을 측정한 결과 전복사율(total emissivity)은 0.86을 나타냄으로써 복사능이 우수함을 확인할 수 있었다. As shown in Table 1 of Example 1, using a chromite compound (Cr 2 O 3 content: about 55% by weight) obtained through the sulfuric acid reaction from the RDB-63F waste smoke and the radiation insulation coating agent in the same manner as in Example 1 Prepared. However, in this case, the chromium content of 46% by weight of natural chromium ore was pulverized to 200 # or less, 10 parts by weight were added to 100 parts by weight of the paint, and then stirred for 12 hours. As a result of the addition of natural chromium ore, a sharp increase in pH of the paint solution was observed, and the pH of the paint solution reached 12 or more within 1 hour after the stirring was started. As a result of measuring the thermal radiation performance under the same conditions after preparing the coating material with the thermal radiation coating agent in the same manner as in Example 1, it was confirmed that the total emissivity was excellent as the total emissivity was 0.86.

본 발명은 일반 폐기물인 폐마그크로 연와를 이용하여 고효율의 복사능을 가지는 크로마이트(Fe2SO4)질 화합물을 얻고 이 화합물을 이용하여 복사단열 코팅제를 제조함으로써, 고효율 복사물질과 복사단열코팅제의 경제적인 제조방법을 제공할 수 있으며 폐내화물의 재활용성을 향상시키는 부가적인 효과를 얻을 수 있다. 본 발명의 복사단열코팅제를 제반 산업현장의 공업로에 채용함으로써 열효율성 향상을 통한 산업 경쟁력 향상을 유도할 수 있다.The present invention obtains a chromite (Fe 2 SO 4 ) nitrite compound having a high efficiency of radiation using waste magnesia waste that is a general waste, and by using the compound to prepare a radiation insulation coating, high efficiency radiation material and radiation insulation coating agent It is possible to provide an economical manufacturing method of the present invention and to obtain the additional effect of improving the recyclability of waste refractory materials. By employing the radiation insulation coating agent of the present invention in the industrial furnace of the industrial site, it is possible to induce an improvement in the industrial competitiveness by improving the thermal efficiency.

Claims (7)

폐마그크로 연와를 기계적으로 분쇄하고;Mechanically pulverizing the lead with the waste magnet; 상기 폐마그크로 분쇄물을 황산 수용액과 반응시켜 Cr2O3을 함유하는 크로마이트질 화합물을 제조하고; Reacting the waste grinds with an aqueous sulfuric acid solution to prepare a chromite compound containing Cr 2 O 3 ; 상기 크로마이트질 화합물, 결합분산제로 퓸드 실리카(fumed silica) 및 물을 혼합하여 세라믹 열복사 단열코팅제를 제조하는 방법.A method of manufacturing a ceramic thermal radiation insulating coating by mixing the chromate compound, fumed silica and water as a bond dispersant. 제1항에 있어서, 상기 폐마그크로 분쇄물이 200# 이하의 미분말 상태이고 황산 수용액은 2~90% 황산수용액인 세라믹 열복사 단열코팅제를 제조하는 방법.The method of claim 1, wherein the pulverized powder is a fine powder of 200 # or less and the sulfuric acid aqueous solution is a 2 to 90% aqueous sulfuric acid solution. 제1항에 있어서, 상기 퓸드 실리카의 사용량은 단열코팅제에 대하여 2 중량% 미만이고 상기 물의 사용량은 단열코팅제에 대하여 20~50 중량%인 세라믹 열복사 단열코팅제를 제조하는 방법.The method of claim 1, wherein the fumed silica is used in an amount less than 2% by weight based on the insulating coating and the water is used in an amount of 20 to 50% by weight based on the insulating coating. 제1항에 있어서, 상기 퓸드 실리카는 7~100nm 의 평균입경을 가지는 것인 세라믹 열복사 단열코팅제를 제조하는 방법.The method of claim 1, wherein the fumed silica has an average particle diameter of 7 to 100 nm. 제1항에 있어서, 상기 단열코팅제는 단열코팅제 100 중량부에 대하여 5~50 중량부의 천연크롬광을 추가로 포함하는 것인 세라믹 열복사 단열코팅제를 제조하는 방법.The method of claim 1, wherein the thermal insulation coating agent further comprises 5 to 50 parts by weight of natural chromium light based on 100 parts by weight of the thermal insulation coating agent. 제5항에 있어서, 상기 천연크롬광은 200# 이하의 미분말 상태인 세라믹 열복사 단열코팅제를 제조하는 방법.The method of claim 5, wherein the natural chromium light has a fine powder of 200 # or less. 제1항에 있어서,The method of claim 1, 상기 크로마이트질 화합물은 35 내지 55중량%의 Cr2O3을 함유하는 세라믹 열복사 단열코팅제를 제조하는 방법.The chromite compound is a method for producing a ceramic heat radiation insulating coating containing 35 to 55% by weight of Cr 2 O 3 .
KR1020030071725A 2003-10-15 2003-10-15 A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick KR100983666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030071725A KR100983666B1 (en) 2003-10-15 2003-10-15 A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030071725A KR100983666B1 (en) 2003-10-15 2003-10-15 A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick

Publications (2)

Publication Number Publication Date
KR20050036131A KR20050036131A (en) 2005-04-20
KR100983666B1 true KR100983666B1 (en) 2010-09-24

Family

ID=37239404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030071725A KR100983666B1 (en) 2003-10-15 2003-10-15 A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick

Country Status (1)

Country Link
KR (1) KR100983666B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580079B1 (en) * 2004-12-22 2006-05-16 재단법인 포항산업과학연구원 Method of preparing ceramic thermal radiation coating material
CN110317075A (en) * 2019-06-28 2019-10-11 江苏大学 A kind of composite ceramics and preparation method and propose selenium application
CN110372344A (en) * 2019-06-28 2019-10-25 江苏大学 A kind of regeneration ceramic material and preparation method and propose tellurium application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329712B2 (en) * 1980-12-27 1988-06-15 Tatsuo Myake
KR20020052829A (en) * 2000-12-26 2002-07-04 신현준 A method for preparing chrome containing ores using refractory wastes
KR100388035B1 (en) 1998-12-23 2003-09-19 주식회사 포스코 Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory
JP2005075650A (en) * 2003-08-29 2005-03-24 Sumitomo Chemical Co Ltd Method for producing barium-containing metal oxide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329712B2 (en) * 1980-12-27 1988-06-15 Tatsuo Myake
KR100388035B1 (en) 1998-12-23 2003-09-19 주식회사 포스코 Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory
KR20020052829A (en) * 2000-12-26 2002-07-04 신현준 A method for preparing chrome containing ores using refractory wastes
JP2005075650A (en) * 2003-08-29 2005-03-24 Sumitomo Chemical Co Ltd Method for producing barium-containing metal oxide powder

Also Published As

Publication number Publication date
KR20050036131A (en) 2005-04-20

Similar Documents

Publication Publication Date Title
CN114174227B (en) Method for obtaining powdery sodium silicate from sandy tailings generated in ore dressing process of iron ore
CN100415679C (en) Making process of electrofused mullite
Zhang et al. Feasibility of aluminum recovery and MgAl 2 O 4 spinel synthesis from secondary aluminum dross
CN102311136A (en) Method for producing low iron aluminum sulfate by utilization of coal gangue
CN103030312B (en) Treatment method of magnesium metal smelting waste slag
CN101698567A (en) Electrolytic manganese slag microcrystalline glass and preparation method thereof
CN114212799B (en) Fly ash pretreatment method for molecular sieve preparation
CN102515234A (en) Method for producing low-iron aluminum sulfate and polymeric aluminum ferric sulfate by using coal gangue
KR20230093138A (en) Pozzolan cement composition and method for preparing the same
KR100983666B1 (en) A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick
KR101070509B1 (en) Method of preparing thermal radiation coating material from waste magnesia chrome brick
Fursman Utilization of red mud residues from alumina production
CN115532795A (en) Synchronous high-temperature solid caustic soda and material method for high-iron red mud and electromagnetic wave absorption powder functional material
CN107857277B (en) A method of utilizing the direct synthetic calcium silicate of dicalcium silicate
JPS5939371B2 (en) Chromite crushing method
CN102173430B (en) Technique for preparing wollastonite ultrafine powder from calcium silicate hydrate
TW201341340A (en) Far-infrared emitting material and method of making the same
CN107857276B (en) A method of utilizing dicalcium silicate alkaline process synthetic calcium silicate
EP1840083A1 (en) A process for the production of silicon carbide
RU2188245C1 (en) Silicate mineral degradation process
KR101072491B1 (en) Method of preparing ceramic thermal radiation coating material
JPH0774096B2 (en) Method for manufacturing mullite material
CN102259915A (en) Method for preparing chromium hydroxide and co-producing manganese chloride and mixture of calcium hydroxide, magnesium hydroxide and aluminium hydroxide by using chromium residues
CN113896494A (en) Ferronickel slag building material and preparation method thereof
CN102259918A (en) Method for preparing chromic hydroxide with joint products of potassium chloride and calcium, magnesium and aluminum mixed hydroxide from chromium residues

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130911

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140828

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170727

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180716

Year of fee payment: 9