KR100388035B1 - Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory - Google Patents
Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory Download PDFInfo
- Publication number
- KR100388035B1 KR100388035B1 KR10-1998-0057613A KR19980057613A KR100388035B1 KR 100388035 B1 KR100388035 B1 KR 100388035B1 KR 19980057613 A KR19980057613 A KR 19980057613A KR 100388035 B1 KR100388035 B1 KR 100388035B1
- Authority
- KR
- South Korea
- Prior art keywords
- mgso
- refractory
- chromium
- aqueous solution
- solution
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/40—Magnesium sulfates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/58—Construction or demolition [C&D] waste
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명은 마그네시아크롬계 폐내화물로부터 MgSO4수용액 제조 방법에 관한 것으로,The present invention relates to a method for producing an aqueous solution of MgSO 4 from magnesia chromium waste refractories,
마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조함에 있어서, 상기 폐내화물을 140mesh통과분이 100%가 되도록 분쇄하고 10∼30%의 농도로 희석시킨 황산과 반응시켜 폐내화물중의 유리 MgO를 용출해내고 금속철 성분을 2가 철이온으로 용해시키고 6가 크롬을 용해시킨 다음, 여과처리하여 잔사를 분리해내고, 잔류 반응액에 과산화수소수를 투입하여 2가 철이온을 Fe(OH)3로 산화시키고, 나아가 Mg(OH)2를 투입하여 반응액을 pH 7∼8로 중화함으로써 Cr(OH)3의 형태로 처리하고 생성된 슬러지는 여과하여 MgSO4수용액을 제조한다.In preparing an aqueous solution of MgSO 4 using magnesia-chromium waste refractory, the waste refractory is pulverized to a 100% mesh content and reacted with sulfuric acid diluted to a concentration of 10-30% to free MgO in waste refractory. Elution was carried out to dissolve the metal iron component with divalent iron ions, hexavalent chromium, and then filtered to separate the residue. Hydrogen peroxide solution was added to the remaining reaction solution to convert the divalent iron ion into Fe (OH) 3. The reaction solution was neutralized to pH 7-8 by adding Mg (OH) 2 , and then treated in the form of Cr (OH) 3 , and the produced sludge was filtered to prepare an aqueous solution of MgSO 4 .
상기한 바에 따르면, 대부분 폐기처분되고 있는 마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조함으로써 유리 MgO성분말을 효과적으로 이용할 수 있으며, 또한 반응도중 분리해낸 잔사는 재생 내화물 제조시 열간 하중 강도를 저하시키지 않으므로 내화물 제조 원료로 재활용할 수 있다.According to the above, by using the magnesia-chromium waste refractory, which is mostly disposed of, MgSO 4 aqueous solution can be used to effectively utilize free MgO powder, and the residue separated during the reaction can increase the hot load strength during regeneration refractory preparation. Since it does not lower, it can be recycled as a refractory raw material.
Description
본 발명은 마그네시아크롬계 폐내화물로부터 황산마그네슘 수용액 제조 방법에 관한 것으로, 보다 상세하게는 마그네시아-크롬계 폐내화물중에 함유된 금속철, 유리 CaO 및 6가 크롬 성분을 제거하고 마그네슘 성분만을 추출해내어 MgSO4수용액을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an aqueous magnesium sulfate solution from magnesia chromium waste refractory, and more particularly, to remove the metal iron, free CaO and hexavalent chromium components contained in the magnesia-chromium waste refractory, and extract only magnesium to extract MgSO. 4 relates to a method for producing an aqueous solution.
마그네시아-크롬계 내화물은 슬래그, 용융금속, 용융시멘트 클링커등에 대하여 우수한 내침식성을 갖을 뿐만 아니라 성분중의 Cr2O3는 융점이 2265℃인 고온 산화물로서 내화물 조성으로서 우수한 특성을 가지고 있기 때문에, 제강공정, 비철금속 야금 및 시멘트 제조 공정등에 상당량이 사용되고 있다.The magnesia-chromium refractory has excellent corrosion resistance against slag, molten metal, molten cement clinker, etc., and Cr 2 O 3 is a high temperature oxide with melting point of 2265 ° C. A considerable amount is used in the process, nonferrous metallurgy and cement manufacturing process.
그러나 이러한 Cr2O3는 슬래그나 시멘트클링커의 주성분인 CaO와 반응하여 6가 크롬을 형성하게 되며, 이와 같이 형성된 6가 크롬이 폐내화물을 내화물 제조 원료로 재활용하는데 가장 큰 문제점으로 대두되고 있다.However, Cr 2 O 3 reacts with CaO, which is a main component of slag or cement clinker, to form hexavalent chromium. The hexavalent chromium thus formed is a major problem in recycling waste refractories as a refractory material.
따라서 마그네시아-크롬계 폐내화물을 안정화 처리를 통하여 재활용하는 것이 현재 요구되고 있다.Therefore, it is currently required to recycle magnesia-chromium waste refractory materials through stabilization treatment.
이러한 재활용 방법의 하나로써 John Noga등은 마그네시아-크롬계 폐내화물을 분리수거하고 분쇄후 자석을 이용하여 Fe를 떼어내는 자선분리 및 수세를 통하여 폐내화물중의 6가 크롬 성분을 용출해낸 후 배수된 물은 수처리를 실시하고 나머지 잔사는 수분이 0.1%이하가 되도록 건조후 이를 재생 내화물의 제조 원료로 재활용하는 방법을 제시하고 있다.(Ceram, Eng. Sci. Proc 15[2], p73-77(1994)참조).As one of the recycling methods, John Noga et al. Dissipated the hexavalent chromium component in the waste refractory through charity separation and water washing to separate and collect the magnesia-chromium waste refractories, and to remove Fe using a magnet after grinding. Water treatment is carried out, and the remaining residues are dried to make the water less than 0.1%, and then recycled as a raw material for regeneration refractory materials (Ceram, Eng. Sci. Proc 15 [2], p73-77 ( 1994).
그러나 이와 같이 처리된 폐내화물을 재생 내화물의 원료로 사용하는데는 다음과 같은 문제점이 있다.However, there is a problem in using the waste refractories treated in this way as a raw material of the regenerated refractory.
즉, 상기와 같은 방법으로는 금속 철이 모두 제거되지 못하므로 재생 내화물로 제조된 내화물중에 침윤되어있는 철이 온도가 올라감에 따라 함께 녹게 되어 열간 하중강도가 저하되는 문제가 있으며, 제철소의 제강 공정의 정련중에서 탈가스용 공정(RH-OB)에서는 마그네시아-크롬 폐내화물의 가동면에 슬래그 성분이 침윤되게 되며 이로 인한 성분의 편차가 발생하는 문제점이 있으며, 폐기시에는 유리 MgO의 팽창으로 인한 매립장의 융기현상을 초래하는 문제점이 있다.That is, the metal iron is not removed by the method as described above, the iron infiltrated in the refractories made of recycled refractory is melted together as the temperature rises, the hot load strength is reduced, the steelmaking process of steel mill In the degassing process (RH-OB), the slag component is infiltrated on the moving surface of the magnesia-chromium waste refractory, and there is a problem in that the variation of the component occurs, and during disposal, the elevation of the landfill due to the expansion of free MgO There is a problem that causes the phenomenon.
또한 반응도중 얻어지는 잔사를 수세처리한 다음에도 Petty, A.V.등이 "Bureau of Mines RI 8685, 1982"에서 언급한 바와 같이, 마그네시아-크롬 내화물 매트릭스중의 유리 MgO 및 유리 CaO가 수화되므로 재생 내화물을 제조하는 경우에 수산화칼슘 및 수산화마그네슘을 발생시키는 문제가 있다.In addition, even after washing the residue obtained during the reaction, Petty, AV et al., As mentioned in "Bureau of Mines RI 8685, 1982," hydrated free MgO and free CaO in the magnesia-chromium refractory matrix, thereby producing regenerated refractory materials. If there is a problem of generating calcium hydroxide and magnesium hydroxide.
즉, 하기 반응식 1 및 2에서와 같이 Ca(OH)2와 Mg(OH)2가 생성됨에 따라 부피가 팽창되게 되어 건조 성형물에 크래킹을 일으키게 되는 것이다.That is, as Ca (OH) 2 and Mg (OH) 2 are generated as in Schemes 1 and 2 below, the volume is expanded to cause cracking in the dry molding.
이에 본 발명의 목적은 마그네시아-크롬계 폐내화물로부터 MgO성분만을 유리해내어 MgSO4수용액을 제조하는 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to provide a method for preparing an aqueous solution of MgSO 4 by releasing only MgO components from magnesia-chromium waste refractory.
도 1은 본 발명의 마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조하는 공정 개략도이다.1 is a process schematic diagram of preparing an aqueous solution of MgSO 4 using the magnesia-chromium waste refractory material of the present invention.
본 발명에 의하면,According to the invention,
마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조함에 있어서,In preparing an aqueous solution of MgSO 4 using magnesia-chromium waste refractory,
(a)상기 폐내화물을 폐내화물을 140mesh통과분이 100%가 되도록 분쇄하고 10∼30%의 농도로 희석시킨 황산과 반응시켜 폐내화물중의 유리 MgO를 용출해내고 금속철 성분을 2가 철이온으로 용해시키고 6가 크롬을 용해시키는 단계;(a) The waste refractory is pulverized so that the waste refractory becomes 100% through 140 mesh and reacted with sulfuric acid diluted to a concentration of 10-30% to elute free MgO in the waste refractory and divalent iron ion of the metal iron component. Dissolving with water and dissolving hexavalent chromium;
(b)상기 황산 반응 용액을 여과처리하여 잔사를 분리해내는 단계;(b) filtering the sulfuric acid reaction solution to separate the residues;
(c)잔사를 분리해내고 잔류하는 반응액에 과산화수소수를 투입하여 상기 (a)단계에서 용해시킨 2가 철이온을 Fe(OH)3로 산화시키는 단계;(c) separating the residue and adding hydrogen peroxide solution to the remaining reaction solution to oxidize the divalent iron ions dissolved in step (a) with Fe (OH) 3 ;
(d)Mg(OH)2를 투입하여 반응액을 pH 7∼8로 중화함으로써 상기 (a)단계에서 용해시킨 3가 크롬을 Cr(OH)3의 형태로 처리하고 잔류 황산을 제거하는 단계; 및(d) treating the trivalent chromium dissolved in step (a) in the form of Cr (OH) 3 by removing Mg (OH) 2 and neutralizing the reaction solution to pH 7-8, and removing residual sulfuric acid; And
(e)중화된 반응액을 여과하여 상기 (c) 및 (d)단계에서 생성된 슬러지를 제거하는 단계;를 포함하는 마그네시아크롬계 폐내화물로부터 MgSO4수용액을 제조하는 방법이 제공된다.(e) filtering the neutralized reaction solution to remove the sludge produced in the steps (c) and (d); provides a method for producing an aqueous solution of MgSO 4 from magnesia chromium-based waste refractory.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에서는 폐기처분되던 마그네시아-크롬계 폐내화물로부터 MgSO4수용액을 제조해낼 수 있을 뿐만 아니라 폐내화물에 존재하던 불순물을 포함하지 않으므로 내화물 제조 원료로 재활용가능한 잔사를 얻을 수 있다.In the present invention, not only can an aqueous solution of MgSO 4 be prepared from the magnesia-chromium waste refractory that has been disposed of, but it does not contain impurities present in the waste refractory, thereby obtaining a recyclable residue as a refractory material.
도 1은 본 발명의 마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조하는 공정 개략도이다.1 is a process schematic diagram of preparing an aqueous solution of MgSO 4 using the magnesia-chromium waste refractory material of the present invention.
도 1을 참조하면, 본 발명의 단계(a)에서는 상기 폐내화물을 140mesh 통과분이 100%가 되도록 분쇄한다. 여기서 폐내화물을 140mesh통과분이 100%가 되지 않도록 분쇄할 경우에는 유리 MgO를 완전하게 용출할 수 없다.Referring to FIG. 1, in step (a) of the present invention, the waste refractory is pulverized such that the amount passed through 140mesh is 100%. In this case, when the waste refractory is pulverized so that the passage amount of 140 mesh is not 100%, free MgO cannot be completely eluted.
분쇄된 폐내화물을 황산 10∼30%와 반응시킨다. 이때 사용하는 황산은 진한 황산을 10∼30% 농도로 희석하여 사용한다. 사용하는 황산의 농도가 10%미만이 되면 황산의 농도가 낮아 유리 MgO가 반응되지 않고 잔류하게 되며, 30%를 초과하게 되면 MgSO4ㆍ7H2O의 수화물이 형성되어 생성된 MgSO4에 있어 손실이 발생하므로 바람직하지 않다.The pulverized waste refractories are reacted with 10-30% sulfuric acid. The sulfuric acid used at this time is diluted to 10-30% concentrated sulfuric acid. When the concentration of sulfuric acid used is less than 10%, the concentration of sulfuric acid is low and the free MgO remains unreacted. When the concentration of sulfuric acid exceeds 30%, the hydrate of MgSO 4 ㆍ 7H 2 O is formed, resulting in loss of MgSO 4 produced. This is undesirable because it occurs.
황산 반응 자체가 급격한 발열 반응이므로 별도로 가열 처리할 필요는 없다.Since the sulfuric acid reaction itself is a rapid exothermic reaction, there is no need to heat treatment separately.
이와 같은 황산 반응을 통하여 폐내화물의 가동면에 침윤된 금속철은 FeSO4형태의 2가 철이온으로 용해되며, 6가 크롬 성분은 CrO3의 형태로 용해되며 유리 MgO성분은 SO4이온과 반응하여 MgSO4형태로 용해된다.Through the sulfuric acid reaction, the metal iron infiltrated into the moving surface of the waste refractory is dissolved with divalent iron ion in the form of FeSO 4 , the hexavalent chromium component is dissolved in the form of CrO 3 , and the free MgO component reacts with SO 4 ions. Is dissolved in MgSO 4 form.
여기서 6가 크롬성분은 마그네시아-크롬계 내화물내에 존재하는 Cr2O3가 슬래그나 시멘트 클링커의 주성분인 CaO와 반응하게 되면 하기식 3과 같이 6가 크롬 CrO3가 미량으로 형성되어 폐내화물내에 존재하게 된다.Here, the hexavalent chromium component is present in the waste refractory by forming a small amount of hexavalent chromium CrO 3 as shown in Equation 3 below when Cr 2 O 3 present in the magnesia-chromium refractory reacts with slag or CaO, the main component of the cement clinker. Done.
이와 같이 존재하는 6가 크롬은 마그네시아-크롬계 폐내화물과 황산과의 반응후 여과 용액에 있어서 하기식 4와 같이 용액의 pH가 산성일 경우에 2가의 철이온이 존재하면 환원될 수 있는데, 폐내화물의 침윤면에 오염 물질로 존재하는 금속철이 황산으로 인해 용액내에 이미 2가 철이온의 형태로 용해되어 있기 때문에 별도의 2가 철이온없이도 3가 크롬으로 환원된다.The hexavalent chromium present in this way may be reduced in the presence of divalent iron ions when the pH of the solution is acidic in the filtrate solution after the reaction between the magnesia-chromium waste refractory and sulfuric acid, as shown in Equation 4 below. Metal iron, which is present as a contaminant on the infiltrating surface of the refractory, is already dissolved in the form of divalent iron ions in the solution due to sulfuric acid, so it is reduced to trivalent chromium without a separate divalent iron ion.
즉, 미량의 6가 크롬(일반적으로는 2∼3ppm)이 폐내화물에서 검출될 경우 또는 금속철이 부착된 폐내화물을 처리할 경우에는 이와 같은 황산반응에 의해서 생성된 FeSO4만으로 충분히 6가 크롬을 3가 크롬으로 환원시킬 수 있으며, 따라서 6가 크롬을 재처리하기 위한 수처리 설비를 별도로 갖출 필요가 없다.That is, when trace amounts of hexavalent chromium (generally 2-3 ppm) are detected in waste refractories, or when treating waste iron refractories with metal iron, FeSO 4 produced by such sulfuric acid reaction is sufficient to form hexavalent chromium. It can be reduced to trivalent chromium, thus eliminating the need for a separate water treatment plant for reprocessing hexavalent chromium.
단지 6가 크롬 함량이 1000ppm정도로 다량 존재하는 시멘트 클링커용 마그네시아-크롬 폐내화물을 사용하는 경우에는 황산 반응시 약간의 Fe분말을 별도로 투입하여 FeSO4를 만들어주면 상기식 4의 반응을 촉진시킬 수도 있다. 이 경우 투여하는 철분말의 양은 존재하는 6가 크롬의 당량비만큼 사용하는 것이 바람직하다.In case of using magnesia-chrome waste refractories for cement clinker that contain only a large amount of hexavalent chromium in the amount of about 1000 ppm, a small amount of Fe powder may be added to the sulfuric acid reaction to make FeSO 4 to promote the reaction of Equation 4. . In this case, the amount of iron powder to be administered is preferably used as the equivalent ratio of hexavalent chromium present.
상기한 바와 같이 마그네시아-크롬계 폐내화물을 황산으로 반응시킴으로써 6가 크롬을 간단히 처리할 수 있으며, 또한 유리 MgO성분을 이용하여 MgSO4수용액을 제조함으로써 종래에 유리 MgO가 잔류시 재생 내화물의 제조도중 발생할 수 있는 크래킹 현상을 전적으로 방지할 수 있다.As described above, hexavalent chromium can be easily treated by reacting magnesia-chromium waste refractories with sulfuric acid. Also, by preparing an aqueous solution of MgSO 4 using a free MgO component, conventionally, during production of regenerated refractories when free MgO remains It can completely prevent cracking phenomenon that can occur.
단계(b)에서는 황산 반응된 용액으로 부터 잔사를 분리해낸다. 잔사를 분리하는데는 고액분리를 이용하면 충분하다.In step (b), the residue is separated from the sulfuric acid reaction solution. Solid-liquid separation is sufficient to separate the residue.
이상과 같은 황산 반응에 의해 금속 철 성분 및 6가 크롬 성분이 제거되고 유리 MgO 성분이 추출된 다음 얻어진 잔사는 ((Mg, Fe)(Al,Cr)2O4)를 주결정상으로 하는 스핀넬 구조를 하고 있으며, 이는 수세한 다음 내화물 원료나 크롬광으로 재활용할 수 있다.By the sulfuric acid reaction as described above, the metal iron component and the hexavalent chromium component are removed and the free MgO component is extracted, and then the obtained residue is a spinel having ((Mg, Fe) (Al, Cr) 2 O 4 ) as the main crystal phase. It is constructed and can be washed and then recycled as refractory raw materials or chrome ore.
종래에는 잔사내에 금속철이 잔류하였으므로 내화물 제조시 금속철이 내화물에 침윤된 상태로 존재하게 되어 제조도중 온도를 올리면 녹아서 재생 내화물의 열간하중 강도를 저하시켰으나, 본 발명에 의하여 얻은 잔사중에는 금속철이 완전하게 제거되므로 이러한 문제를 완벽하게 해결할 수 있는 잇점이 있다.Conventionally, since metal iron remained in the residue, when the refractory was manufactured, the metal iron was infiltrated in the refractory, and melted when the temperature was raised during manufacture, thereby lowering the hot load strength of the regenerated refractory. However, in the residue obtained according to the present invention, the metal iron was completely This eliminates the benefit of solving this problem perfectly.
단계(c)에서는 분리된 반응액에 과산화수소수를 투입하여 상기(a)단계에서 용해시킨 2가 철이온을 Fe(OH)3로 산화시킨다.In step (c), hydrogen peroxide solution is added to the separated reaction solution to oxidize the divalent iron ions dissolved in step (a) to Fe (OH) 3 .
이는 MgSO4수용액을 차후에 ABS수지 응집제등으로 제품화하기 위해서는 투명한 무색이어야 하는 것을 감안한 것으로, 따라서 MgSO4수용액내에 혼입되는 철분 함량을 엄격히 제한하면 ABS수지의 황변 현상을 막을 수 있다.This is to be taking into account that it should be clear, colorless to commercialize a MgSO 4 solution to the later ABS resin coagulant or the like, Therefore, strictly limit the iron content of which is incorporated into the aqueous solution of MgSO 4 can prevent the yellowing of the ABS resin.
즉, 과산화수소를 투입함으로써 대부분 2가 상태로 존재하는 FeSO4혹은 상기 (b)단계에서 6가 크롬과 반응하여 Fe2(SO4)3의 형태로 존재하는 철이온을 산화시켜 Fe(OH)3형태로 침전시키게 된다.That is, by adding hydrogen peroxide, FeSO 4 , which is mostly in a divalent state, or reacted with hexavalent chromium in step (b), oxidizes iron ions present in the form of Fe 2 (SO 4 ) 3 to form Fe (OH) 3. It will precipitate in form.
여기서 투여하는 과산화수소의 양은 산화시키려는 2가 철이온의 당량비이상으로 첨가하는 것이 바람직하다. 과산화수소를 철이온의 당량비미만으로 첨가하면 2가 철이온이 완전히 3가 철이온으로 산화되지 못하므로 MgSO4수용액내에 2가 철이온이 잔존하게 되어 바람직하지 않다.It is preferable to add the amount of hydrogen peroxide administered here more than equivalent ratio of the divalent iron ion to oxidize. When hydrogen peroxide is added in an amount less than the equivalent of iron ions, divalent iron ions cannot be completely oxidized to trivalent iron ions, and thus, divalent iron ions remain in the aqueous solution of MgSO 4 , which is not preferable.
단계(d)에서는 pH 조절제로서 Mg(OH)2를 투입하여 상기 반응액을 pH 7∼8로 중화한다. 이와 같은 처리로 인해 상기 단계(a)에서 Cr2(SO4)3형태로 존재하는 크롬을 Cr(OH)3형태로 침전시키게 되며, 이와 동시에 상기 (a)단계에서 반응에 사용되고 남은 황산을 모두 중화 제거한다.In step (d), Mg (OH) 2 is added as a pH regulator to neutralize the reaction solution to pH 7-8. As for the same processes, and thereby precipitating the chromium present in the above step (a) to Cr 2 (SO 4) 3 forms a Cr (OH) 3 form, and at the same time used for the reaction in the step (a) all of the remaining sulfuric acid Remove neutralization.
여기서 pH가 7미만이 되면, 3가 크롬이 완전히 제거되지 않아 용액이 연녹색을 띠게 되며, 8이상이면 필요이상의 Mg(OH)2를 사용하게 되므로 바람직하지 않다.If the pH is less than 7, the trivalent chromium is not completely removed, so the solution becomes pale green, and if it is 8 or more, more than necessary Mg (OH) 2 is used.
단계(e)에서는 생성된 슬러지를 여과하여 MgSO4수용액을 얻는다. 즉, 상기 (c)단계에서 생성된 슬러지 Fe(OH)3와 상기 (d)단계에서 생성된 슬러지, Cr(OH)3를 여과에 의해 제거함으로써 MgSO4수용액내에서 Fe 및 Cr성분을 완전히 제거할 수 있다.In step (e), the produced sludge is filtered to obtain an aqueous solution of MgSO 4 . That is, by removing the sludge Fe (OH) 3 generated in the step (c) and the sludge produced in the step (d), Cr (OH) 3 by filtration to completely remove the Fe and Cr components in the aqueous solution of MgSO 4 can do.
이하, 실시예를 통하여 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described through examples.
<실시예><Example>
본 실시예에서는 제철소에 제강공정도중 탈가스 정련(RH-OB)시 생성되는 마그네시아-크롬 폐내화물을 사용하였으며, 그 화학 조성은 하기표 1에 나타낸 바와 같다.In the present embodiment, magnesia-chromium refractory materials produced during degassing refining (RH-OB) during steelmaking were used in steel mills, and chemical compositions thereof are shown in Table 1 below.
<실시예 1><Example 1>
마그네시아-크롬계 폐내화물의 최적 분쇄 입도Optimum Grinding Particle Size of Magnesia-Chromium Waste Refractories
본 실시예에서는 폐내화물을 하기표 2에 기재한 바와 같이 30mesh, 100mesh, 140mesh 통과분이 각각 100%가 되도록 분쇄하고 20% 농도의 황산을 이용하여 황산 반응을 실시하였다. 잔사를 분리해내고 분리된 MgSO4용액에 Mg(OH)2를 용액의 pH가 7이 되도록 투여하여 중화처리한 다음 생성된 슬러지를 제거하였다.In this example, the waste refractory was pulverized such that 30 mesh, 100 mesh, and 140 mesh passages were 100%, respectively, as described in Table 2, and sulfuric acid reaction was performed using 20% sulfuric acid. The residue was separated and neutralized by administering Mg (OH) 2 to the separated MgSO 4 solution so that the pH of the solution was 7, and then the produced sludge was removed.
출발 폐내화물의 유리 MgO량은 XRD분석을 통한 상대강도 분석법 또는 폐내화물의 강제 수화후 열중량 분석을 통하여 실시한 결과 40중량%였다.The free MgO content of the starting waste refractories was 40% by weight based on the relative strength analysis through XRD analysis or thermogravimetric analysis after forced hydration of the waste refractories.
얻어진 MgSO4수용액 및 잔사 성분으로부터 열중량분석하여 유리 MgO 제거율을 조사하였다. The free MgO removal rate was investigated by thermogravimetric analysis from the obtained MgSO 4 aqueous solution and the residue component.
상기표에서 보듯이, 비교예 1과 같이 폐내화물 분쇄 분말의 입경이 30mesh 통과분이 100%일 때는 유리 MgO의 제거율은 85%였다.As shown in the above table, as in Comparative Example 1, the removal rate of free MgO was 85% when the particle size of the waste refractory pulverized powder was 100%.
한편 비교예 2와 같이 100mesh 통과분이 100%일 경우에는 유리 MgO의 제거율은 95%였다. 따라서 폐내화물중의 유리 MgO를 완전히 제거하기 위해서는 발명예와 같이 140mesh의 통과분이 100%가 되도록 잘게 분쇄하는 것이 바람직하다.On the other hand, as in Comparative Example 2, the removal rate of free MgO was 100% when the 100mesh passage was 100%. Therefore, in order to completely remove the free MgO in the waste refractories, it is preferable to grind finely so that the amount of passage of 140 mesh becomes 100% as in the invention example.
<실시예 2><Example 2>
최적의 황산 농도Optimal sulfuric acid concentration
본 실시예에서는 폐내화물로부터 황산 반응시 최적의 황산 농도를 조사하였다.In this example, the optimal sulfuric acid concentration during the sulfuric acid reaction from waste refractory was investigated.
폐내화물에 140mesh 통과분이 100%가 되도록 분쇄한 다음 하기표 3에 기재한 바와 같이 황산 농도를 5,10,30,35%로 변화시키면서 황산 반응시켰다.The waste refractory was pulverized so that the passage amount of 140mesh was 100%, and sulfuric acid was reacted while changing sulfuric acid concentration to 5,10,30,35% as shown in Table 3 below.
잔사를 제거하고 분리된 MgSO4용액에 Mg(OH)2를 용액의 pH가 7이 되도록 투여하여 중화처리한 다음 생성된 슬러리를 제거하고 MgSO4수용액을 제조하였다.The residue was removed and neutralized by administering Mg (OH) 2 to pH 7 of the separated MgSO 4 solution, and then the resulting slurry was removed to prepare an aqueous solution of MgSO 4 .
실시예 1과 동일한 방법으로 유리 MgO 함량을 열중량분석에 의해 측정하여 유리 MgO의 제거율을 결정하였다.Free MgO content was measured by thermogravimetric analysis in the same manner as in Example 1 to determine the removal rate of free MgO.
상기표에서 보듯이, 비교예 1에서는 황산의 농도를 5%로 첨가할 경우에는 황산의 농도가 낮기 때문에 반응하지 않은 유리 MgO가 잔존하는 문제가 있다.As shown in the above table, in Comparative Example 1, when the concentration of sulfuric acid is added at 5%, there is a problem in that unreacted free MgO remains because the concentration of sulfuric acid is low.
한편 비교예 2에서와 같이 황산의 농도가 35%로 높은 경우에는 MgSO4수용액내에는 MgSO4ㆍ7H2O의 형태로 수화물이 형성되어 생성된 MgSO4가 손실되므로 바람직하지 않다.Meanwhile, Comparative Example 2, as in the concentration of sulfuric acid as high as 35% is not preferable because the solution MgSO 4 MgSO 4 and is in the form of MgSO 4 7H this hydrate is a loss generated in the form of O 2.
따라서 황산은 발명예 1∼2와 같이 10∼30%정도의 농도를 사용하는 것이 바람직하다.Therefore, as for sulfuric acid, it is preferable to use the density | concentration about 10 to 30% like invention examples 1-2.
<실시예 3><Example 3>
MgSOMgSO 44 용액내의 철이온을 제거하는데 미치는 과산화수소수 및 pH의 영향Effect of Hydrogen Peroxide and pH on Removal of Iron Ions from Solution
본 실시예에서는 MgSO4용액내의 철이온을 제거하는데 미치는 과산화수소수의 영향 및 pH의 영향을 조사하였다. 여기서 제거하고자 하는 철(Ⅱ)는 MgSO4용액내에 2mg/㎖를 함유하였다.In this example, the effects of hydrogen peroxide and pH on the removal of iron ions in MgSO 4 solution were investigated. The iron (II) to be removed contained 2 mg / ml in MgSO 4 solution.
폐내화물을 140mesh통과분이 100%가 되도록 분쇄하고 황산 20%를 이용하여 황산 반응시켰다. 잔사를 분리해내고 분리된 MgSO4용액에 과산화수소수를 Fe+2몰비 대비 0, 0.5, 1당량비로 하기표 4에 기재한 바와 같이 투여한 다음 Mg(OH)2를 이용하여 하기표 4에 기재한 바와 같이 pH 4,7,4.5, 7, 9로 조절하여 중화처리하였다.The waste refractory was pulverized so that the passage amount of 140mesh was 100% and sulfuric acid reaction was performed using 20% sulfuric acid. The residue was separated and the hydrogen peroxide solution was added to the separated MgSO 4 solution at a ratio of 0, 0.5, and 1 equivalents to the Fe +2 molar ratio, as described in Table 4, and then described in Table 4 using Mg (OH) 2 . PH was adjusted to 4,7,4.5, 7, 9 and neutralized.
생성된 슬러지를 제거하고 MgSO4수용액을 제조하였다. 상기 MgSO4수용액으로부터 Fe+2및 Cr성분의 존재 여부를 ICP(Inductively Coupled Plasma)를 사용하여 조사하였으며, 이와 더불어 용액의 색상을 육안으로 관찰하였다.The produced sludge was removed to prepare an aqueous solution of MgSO 4 . The presence of Fe +2 and Cr components from the aqueous solution of MgSO 4 was investigated using ICP (Inductively Coupled Plasma), and the color of the solution was visually observed.
상기표에서 보듯이, 비교예 1과 같이 과산화수소수를 투입하지 않고 Mg(OH)2를 이용하여 용액의 pH를 4정도로 조절한 경우 이때 MgSO4용액은 2가 철이온 및 3가 크롬 성분을 함유하고 있어 색상이 녹색을 띠므로 바람직하지 않다.As shown in the above table, when the pH of the solution was adjusted to about 4 using Mg (OH) 2 without adding hydrogen peroxide solution as in Comparative Example 1, the MgSO 4 solution contained a divalent iron ion and a trivalent chromium component. It is not preferable because the color is green.
한편 비교예 2∼3에서처럼 MgSO4중에 함유된 2가 철이온의 몰비대비 과산화수소의 몰을 각각 0.5 및 1.0으로 첨가하고 이와 동시에 용액의 pH를 Mg(OH)2를 이용하여 각각 7 및 4.5로 유지한 후 여과할 경우에 비교예 2에서는 2가 철이온의 불완전 산화로 인하여 MgSO4내에 2가 철이온이 잔존하는 문제가 있으며, 비교예 3의 경우에는 3가 크롬이 완전히 제거되지 않아 용액의 색상이 연녹색을 띠므로 바람직하지 않다.Meanwhile, as in Comparative Examples 2 to 3, the molar ratio of hydrogen peroxide to the molar ratio of divalent iron ions contained in MgSO 4 was added at 0.5 and 1.0, respectively, and the pH of the solution was maintained at 7 and 4.5 using Mg (OH) 2 , respectively. In the case of filtration, Comparative Example 2 has a problem in that divalent iron ions remain in MgSO 4 due to incomplete oxidation of divalent iron ions. In Comparative Example 3, trivalent chromium is not completely removed. It is not preferable because it is light green.
따라서 발명예와 같이 과산화수소수는 2가 철이온의 당량비이상으로 투입하고 용액의 pH는 Mg(OH)2를 이용하여 7∼8정도가 되도록 조절하는 것이 바람직하였으며, 비교예 4의 경우와 같이 용액의 pH를 8이상이 되도록 하면 필요이상으로 과량의 Mg(OH)2를 사용하게 되므로 바람직하지 않다.Therefore, as in the invention example, the hydrogen peroxide solution was preferably added to the equivalent ratio of divalent iron ions and the pH of the solution was adjusted to 7 ~ 8 using Mg (OH) 2 , the solution as in the case of Comparative Example 4 The pH of 8 is not preferable because excess Mg (OH) 2 is used more than necessary.
상기한 바에 따르면, 대부분 폐기처분되고 있는 마그네시아-크롬계 폐내화물을 이용하여 MgSO4수용액을 제조함으로써 유리 MgO성분말을 효과적으로 이용할 수 있으며, 또한 반응도중 분리해낸 잔사는 재생 내화물 제조시 열간 하중 강도를 저하시키지 않으므로 내화물 제조 원료로 재활용할 수 있다.According to the above, by using the magnesia-chromium waste refractory, which is mostly disposed of, MgSO 4 aqueous solution can be used to effectively utilize free MgO powder, and the residue separated during the reaction can increase the hot load strength during regeneration refractory preparation. Since it does not lower, it can be recycled as a refractory raw material.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0057613A KR100388035B1 (en) | 1998-12-23 | 1998-12-23 | Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0057613A KR100388035B1 (en) | 1998-12-23 | 1998-12-23 | Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000041659A KR20000041659A (en) | 2000-07-15 |
KR100388035B1 true KR100388035B1 (en) | 2003-09-19 |
Family
ID=19564901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0057613A KR100388035B1 (en) | 1998-12-23 | 1998-12-23 | Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100388035B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100983666B1 (en) | 2003-10-15 | 2010-09-24 | 재단법인 포항산업과학연구원 | A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick |
CN104291367A (en) * | 2014-09-28 | 2015-01-21 | 西南科技大学 | Production method of magnesium sulfate monohydrate |
KR20210066118A (en) * | 2019-11-28 | 2021-06-07 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound |
KR20210066122A (en) * | 2019-11-28 | 2021-06-07 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound using sulfuric acid |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020052829A (en) * | 2000-12-26 | 2002-07-04 | 신현준 | A method for preparing chrome containing ores using refractory wastes |
KR100908852B1 (en) * | 2007-07-06 | 2009-07-22 | 한국세라믹기술원 | METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5788026A (en) * | 1980-11-12 | 1982-06-01 | Kenichi Nakagawa | Manufacture of magnesium sulfate |
US4707348A (en) * | 1984-06-27 | 1987-11-17 | Rijksuniversiteit Utrecht | Method for neutralizing waste sulfuric acid by adding a silicate |
KR960004215A (en) * | 1994-07-27 | 1996-02-23 | 김의현 | Method for preparing liquid magnesium sulfate |
KR100270086B1 (en) * | 1996-12-20 | 2000-10-16 | 이구택 | A method of producing aqueous magnesium sulphate |
-
1998
- 1998-12-23 KR KR10-1998-0057613A patent/KR100388035B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5788026A (en) * | 1980-11-12 | 1982-06-01 | Kenichi Nakagawa | Manufacture of magnesium sulfate |
US4707348A (en) * | 1984-06-27 | 1987-11-17 | Rijksuniversiteit Utrecht | Method for neutralizing waste sulfuric acid by adding a silicate |
KR960004215A (en) * | 1994-07-27 | 1996-02-23 | 김의현 | Method for preparing liquid magnesium sulfate |
KR100270086B1 (en) * | 1996-12-20 | 2000-10-16 | 이구택 | A method of producing aqueous magnesium sulphate |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100983666B1 (en) | 2003-10-15 | 2010-09-24 | 재단법인 포항산업과학연구원 | A method of preparing thermal radiation coating material from waste MgO-Cr2O3 brick |
CN104291367A (en) * | 2014-09-28 | 2015-01-21 | 西南科技大学 | Production method of magnesium sulfate monohydrate |
KR20210066118A (en) * | 2019-11-28 | 2021-06-07 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound |
KR20210066122A (en) * | 2019-11-28 | 2021-06-07 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound using sulfuric acid |
KR102316753B1 (en) | 2019-11-28 | 2021-10-22 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound using sulfuric acid |
KR102316751B1 (en) | 2019-11-28 | 2021-10-22 | 한국세라믹기술원 | Manufacturing method of needle-typed magnesium sulfate compound |
Also Published As
Publication number | Publication date |
---|---|
KR20000041659A (en) | 2000-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101643243B (en) | Method for recycling copper, nickel, chromium, zinc and iron from plating sludge | |
EP3535429B1 (en) | Process for the recovery of lithium | |
RU2710613C1 (en) | Method of reducing ammonia from a vanadium compound for producing an ammonia compound and recycling waste water | |
CN102703696B (en) | Method for recovering valuable metal from red soil nickel minerals comprehensively | |
KR101386245B1 (en) | separation method of silicon dioxide and magnesia using ferronickel slag, Menufacturing method of a fertilizer containing silicic acid and magnesia | |
KR100908852B1 (en) | METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY | |
US4233063A (en) | Process for producing cobalt powder | |
JP2017115196A (en) | Method for fixing arsenic | |
JP4880909B2 (en) | Purification method for removing sulfur from nickel compounds or cobalt compounds, and ferronickel production method | |
Kumar et al. | Utilization of iron values of red mud for metallurgical applications | |
CA1191698A (en) | Treatment of aluminous materials | |
CA3149664A1 (en) | Production of fine grain magnesium oxide and fibrous amorphous silica from serpentinite mine tailings | |
JP2013126927A (en) | Method for recycling used magnesia-carbon brick | |
KR100388035B1 (en) | Method for preparing magnesium sulfate aqueous solution from magnesia chromium waste refractory | |
US5395601A (en) | Re-calcination and extraction process for the detoxification and comprehensive utilization of chromic residues | |
JPH02285038A (en) | Treatment of metal chloride waste | |
FI93660C (en) | The method dissolves material containing zinc oxide and silicate | |
JPH0797638A (en) | Treatment of dust kinds produced in iron works | |
KR100401993B1 (en) | FABRICATION METHOD OF Cr203 FROM WASTE MgO-Cr REFRACTORY | |
US2381565A (en) | Chromium recovery | |
KR100227519B1 (en) | Hydrometallurgical treatment for the purification of waelz oxides through lixiviation with sodium carbonate | |
KR100467763B1 (en) | A preparation method of magnesia having low silica and ferric oxide contents | |
KR100467762B1 (en) | A preparation method of magnesia having low calcium and boron contents | |
CN112391537A (en) | Method for extracting vanadium by using hydrochloric acid, sulfuric acid and vanadium-containing high-calcium high-phosphorus slag | |
JPS603011B2 (en) | Production method of high-grade iron oxide for ferrite magnetic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070605 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |