KR100980636B1 - Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis - Google Patents

Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis Download PDF

Info

Publication number
KR100980636B1
KR100980636B1 KR1020100002500A KR20100002500A KR100980636B1 KR 100980636 B1 KR100980636 B1 KR 100980636B1 KR 1020100002500 A KR1020100002500 A KR 1020100002500A KR 20100002500 A KR20100002500 A KR 20100002500A KR 100980636 B1 KR100980636 B1 KR 100980636B1
Authority
KR
South Korea
Prior art keywords
foam
palladium
catalyst plate
solution
cathode
Prior art date
Application number
KR1020100002500A
Other languages
Korean (ko)
Inventor
이병노
황교현
안승훈
조상수
Original Assignee
주식회사 대진환경산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대진환경산업 filed Critical 주식회사 대진환경산업
Priority to KR1020100002500A priority Critical patent/KR100980636B1/en
Application granted granted Critical
Publication of KR100980636B1 publication Critical patent/KR100980636B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices

Abstract

PURPOSE: An apparatus for removing nitrate nitrogen using electrolysis is provided to enhance reduction reaction efficiency of nitrogen and nitrous acid nitrogen ion in a cathode chamber by blocking the reduction of nitrogen gas and oxidation using a cation exchange membrane. CONSTITUTION: An apparatus(100) for removing nitrate nitrogen using electrolysis comprises: titanium electrodes which are an anode(10) and a cathode(20) and platinum is spread on; a cation exchange membrane(30) which is installed between the anode and the cathode; a catalyst plate(40) which is plated with palladium/nickel and a palladium/copper and is installed around the cathode. The catalyst plate a Ni-Foam-palladium(Pd)-based catalyst plate, Cu-Foam-palladium(Pd)-based catalyst plate, or Ni-Foam-Cu-Pd-based catalyst plate.

Description

전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치{Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis}Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis}

본 발명은 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치에 관한 것으로, Ni-Foam 또는 Cu-Foam 에 파라듐(Pd) 도금한 촉매 또는, Ni-Foam 에 구리(Cu) 도금 후 파라듐(Pd) 도금한 촉매를 이용하여 정수 및 하수처리시설에서 질산성 질소를 전기분해로 제거할 수 있는 정수 및 하수처리시설용 질산성질소 제거장치에 관한 것이다.
The present invention relates to an apparatus for removing nitric acid nitrate for water purification and sewage treatment facilities using electrolysis. The present invention relates to a catalyst in which Ni-Foam or Cu-Foam is plated with palladium (Pd) or Ni-Foam after copper (Cu). The present invention relates to an apparatus for removing nitric acid nitrate for water purification and sewage treatment facilities using electrolysis of a radium (Pd) plated catalyst.

최근 호수 및 저수지 등 폐쇄성 수역 뿐 아니라 육지 인근해까지 부영양화로 인한 피해가 커지고 있으며, 이를 방지하기 위해 질소 및 인 함유 폐수의 규제가 강화 되면서 질산성질소 및 인의 폐수처리의 다양한 방법이 제안되어 있다. Recently, the damage caused by eutrophication is increasing not only in closed waters such as lakes and reservoirs but also near the land. To prevent this, various methods of wastewater treatment of nitrate nitrogen and phosphorus have been proposed due to tightening restrictions on wastewater containing nitrogen and phosphorus.

근래 질산성 질소 함유폐수의 처리방법으로 생물학적 처리방법으로는 무산소 상태에서 탈질 미생물에 의한 질산성 질소를 기체질소로 환원하여 질소를 제거하는 법이 있으나 탈질 미생물은 pH 및 온도 등에 민감하여 그 반응속도에 영향을 주는 등 어려운 점이 있었다. Recently, nitrate nitrogen-containing wastewater is treated as a biological treatment by reducing nitrate nitrogen by denitrification microorganisms to gaseous nitrogen in anoxic state, but denitrification microorganisms are sensitive to pH, temperature, etc. There were difficulties, such as affecting.

또한, 전기분해법에 의해 티타늄(Titanium)금속에 Pt(백금)을 도금한 것을 음극으로 사용하여 기체수소를 발생시키고 그 주위에 활성탄 지지물에 파라듐-구리(Pd-Cu)염의 수용액을 침적시키고 환원하여 촉매로 사용하는 방법이 사용되고는 있으나, 이 방법은 양극의 역할이 없으며, 전기분해가 일어나는 동안 수산이온(OH-)의 생성으로 원수의 pH가 상승하여 질산성 질소의 환원이 저해되는 현상이 발생된다.(이때, pH가 상승하면 질산성 질소가 산화되어 물에 용해도가 큰 암모니아(NH3)가 생성된다.) 또한 슬러지가 많이 함유되어 있는 원수에서는 그 슬러지가 촉매표면에 부착되어 촉매성능이 저하되므로 직접 수처리 장치 내에서는 사용할 수가 없었다.
In addition, by using Pt (platinum) plated on titanium metal by electrolysis as a cathode, gaseous hydrogen is generated, and an aqueous solution of palladium-copper (Pd-Cu) salt is deposited on the activated carbon support and reduced. this phenomenon is the reduction of nitrate nitrogen inhibited by generating a rising pH of the raw water-in is used to use a catalyst. However, this method is not the role of the positive electrode, hydroxyl ions (OH) while the electrolysis takes place (At this time, when the pH rises, nitrate nitrogen is oxidized to produce ammonia (NH 3 ), which has high solubility in water.) Also, in raw water containing a lot of sludge, the sludge adheres to the surface of the catalyst, thereby providing catalytic performance. As this deteriorated, it could not be used directly in a water treatment apparatus.

본 발명은 상기와 같은 문제점을 해소하기 위한 것으로, 그 목적은 Ni-Foam 또는 Cu-Foam 에 파라듐(Pd) 도금한 촉매를 이용하여 정수 및 하수처리시설에서 질산성 질소를 전기분해로 제거할 수 있는 질산성 질소 제거장치를 제공하는 것이다. The present invention is to solve the above problems, the object of the Ni-Foam or Cu-Foam by using a catalyst (Pd) plated on the catalyst to remove the nitrate nitrogen in water purification and sewage treatment by electrolysis It is to provide a nitrate nitrogen removal device that can be.

본 발명의 또다른 목적은 Ni-Foam 과 Cu-Foam에서 염화 파라듐(PdCl2)과 황산구리(CuSO4)의 최적 혼합비율에 의해 촉매를 형성하여, 촉매 존재하에서 질산 및 아질산성 질소의 제거효율을 향상시킬 수 있는 전기분해를 이용한 정수 및 하수처리시설용 질산성 질소 제거장치를 제공하는 것이다. Another object of the present invention is to form a catalyst by the optimum mixing ratio of palladium chloride (PdCl 2 ) and copper sulfate (CuSO 4 ) in Ni-Foam and Cu-Foam, the removal efficiency of nitric acid and nitrite nitrogen in the presence of the catalyst It is to provide a nitrate nitrogen removal device for water purification and sewage treatment facilities using electrolysis to improve the.

본 발명의 또다른 목적은 음극과 양극을 펀칭망 형상으로 형성하여, 활성슬러지의 유통을 원활하게 하고, 이를 통해 질산 및 아질산성 질소의 제거효율을 향상시킬 수 있는 전기분해를 이용한 정수 및 하수처리시설용 질산성 질소 제거장치를 제공하는 것이다.
Another object of the present invention is to form a cathode and anode in the form of a punching network, to facilitate the distribution of activated sludge, through which water and sewage treatment using electrolysis that can improve the removal efficiency of nitric acid and nitrite nitrogen It is to provide a nitrate nitrogen removal device for the facility.

본 발명은 전기분해를 이용한 정수 및 하수처리시설용 질산성 질소 제거장치에 있어서, 양극 및 음극으로 백금(Pt)을 도포한 티타늄(Titanium)전극이 설치되고, 양극과 음극 사이에 양이온 교환막이 설치되며, 음극 주위에 파라듐(Pd)이 도금된 촉매판이 설치되되, 상기 촉매판은 Ni-Foam 또는 Cu-Foam 에 파라듐(Pd) 도금되거나, Ni-Foam 에 구리(Cu) 도금 후 파라듐(Pd) 도금되어 있다.
In the present invention, in the nitrate nitrogen removal apparatus for water purification and sewage treatment facilities using electrolysis, a titanium electrode coated with platinum (Pt) as an anode and a cathode is installed, and a cation exchange membrane is installed between the anode and the cathode. A catalyst plate plated with palladium (Pd) is installed around the cathode, and the catalyst plate is plated with Pd on Ni-Foam or Cu-Foam, or after Cu (Cu) is plated on Ni-Foam. Pd) plated.

이와 같이 본 발명은 양극과 음극으로 백금(Pt)을 도포한 티타늄(Titanium)전극을 설치하고, 음극 주위에 Ni-Foam 또는 Cu-Foam 에 파라듐(Pd) 도금되거나, Ni-Foam 에 구리(Cu) 도금 후 파라듐(Pd) 도금된 촉매판이 설치되어, 음극에서의 수소발생 및 촉매에 따른 질산성질소의 질소가스 환원반응, 양극에서 발생되는 산화반응을 양이온 교환막으로 차단하여, 음극실에서 질산 및 아질산성 질소이온의 환원반응 효율을 높이는 효과가 있다. As described above, the present invention provides a titanium electrode coated with platinum (Pt) as the anode and the cathode, and is plated with Ni-Foam or Cu-Foam on palladium (Pd), or Ni-Foam on copper (Pt). After the plating of Cu), a catalyst plate plated with palladium (Pd) is installed to block the generation of hydrogen at the cathode, the nitrogen gas reduction reaction of nitric nitrate according to the catalyst, and the oxidation reaction at the anode with a cation exchange membrane, thereby nitric acid in the cathode chamber. And it is effective to increase the reduction reaction efficiency of nitrous acid nitrogen ions.

또한, 본 발명은 정수 및 하수처리시설내의 처리수에 직접 전기분해법을 가하도록 되어 있어, 시설비가 저렴하고, 기존 정수 및 하수처리시설에 쉽게 적용할 수 있다. In addition, the present invention is to apply the electrolysis method directly to the treated water in the purified water and sewage treatment facility, the equipment cost is low, it can be easily applied to existing water and sewage treatment facilities.

또한, 본 발명은 음극에서의 수소기체 형성 및 Ni-Foam 또는 Cu-Foam 에 파라듐이 도금된 촉매판에 의해 질산성 질소를 직접 접촉시켜 질소가스로 환원을 현저하게 촉진시키고, 질소가스의 생성을 향상시킬 수 있다. In addition, the present invention significantly promotes reduction of nitrogen gas by directly contacting nitrate nitrogen with the formation of hydrogen gas at the cathode and a catalyst plate plated with Ni-Foam or Cu-Foam with palladium plated. Can improve.

또한, 본 발명은 음극과 양극판을 펀칭망 형상으로 형성하여, 활성슬러지의 유통을 원활하게 하고, 이를 통해 질산 및 아질산성 질소와 인의 제거효율을 향상시킬 수 있는 등 많은 효과가 있다.
In addition, the present invention has a number of effects, such as to form a negative electrode and a positive plate in the form of a punching network, to facilitate the distribution of activated sludge, thereby improving the removal efficiency of nitric acid and nitrite nitrogen and phosphorus.

도 1 은 본 발명에 따른 양극과 음극의 구성을 보인 예시도
도 2 는 본 발명에 따른 촉매판의 구성을 보인 예시도
도 3 은 본 발명에 따른 구성을 보인 예시도
도 4 는 본 발명의 실시예1에 따른 구성을 보인 예시도
도 5 는 본 발명의 실시예2에 따른 구성을 보인 예시도
도 6 은 본 발명의 실시예3에 따른 구성을 보인 예시도
도 7 은 본 발명의 실시예4에 따른 구성을 보인 예시도
도 8 은 본 발명의 실시예5에 따른 구성을 보인 예시도
도 9 는 본 발명의 실시예6에 따른 구성을 보인 예시도
1 is an exemplary view showing a configuration of a positive electrode and a negative electrode according to the present invention
2 is an exemplary view showing a configuration of a catalyst plate according to the present invention
3 is an exemplary view showing a configuration according to the present invention
4 is an exemplary view showing a configuration according to Embodiment 1 of the present invention;
5 is an exemplary view showing a configuration according to a second embodiment of the present invention
6 is an exemplary view showing a configuration according to Embodiment 3 of the present invention.
7 is an exemplary view showing a configuration according to a fourth embodiment of the present invention
8 is an exemplary view showing a configuration according to a fifth embodiment of the present invention
9 is an exemplary view showing a configuration according to a sixth embodiment of the present invention

도 1 은 본 발명에 따른 양극과 음극의 구성을 보인 예시도를, 도 2 는 본 발명에 따른 촉매판의 구성을 보인 예시도를, 도 3 은 본 발명에 따른 구성을 보인 예시도를 도시한 것으로, 본 발명은 전기분해를 이용한 정수 및 하수처리시설용 질산성 질소 제거장치(100)에 있어서, 양극(10) 및 음극(20)으로 백금(Pt)을 도포한 티타늄(Titanium)전극이 설치되고, 양극(10)과 음극(20) 사이에 양이온 교환막(30)이 설치되며, 음극 주위에 파라듐(Pd)이 도금된 촉매판(40)이 설치되되, 상기 촉매판(40)은 Ni-Foam 또는 Cu-Foam 에 파라듐(Pd) 도금되거나, Ni-Foam 에 구리(Cu) 도금된 후 파라듐(Pd) 도금되어 있다.
1 is an exemplary view showing a configuration of a positive electrode and a negative electrode according to the present invention, Figure 2 is an exemplary view showing a configuration of a catalyst plate according to the present invention, Figure 3 is an exemplary view showing a configuration according to the present invention According to the present invention, in the nitrate nitrogen removal apparatus 100 for water purification and sewage treatment facilities using electrolysis, a titanium electrode coated with platinum (Pt) as the anode 10 and the cathode 20 is installed. The cation exchange membrane 30 is installed between the anode 10 and the cathode 20, and a catalyst plate 40 plated with palladium (Pd) is installed around the cathode, and the catalyst plate 40 is formed of Ni—. Palladium (Pd) is plated on Foam or Cu-Foam, or copper (Cu) is plated on Ni-Foam and then Pd is plated.

상기 양극(Anode)과 음극(Cathode)은 도 1 에 도시된 바와 같이, 펀칭망(Punching net)상태의 티타늄(Titanium)판(50)에 백금(Pt)(60)이 전기도금방법에 의해 도금되어 있다.
As shown in FIG. 1, the anode and the cathode are plated by a platinum (Pt) 60 on an titanium plate 50 in a punching net state by an electroplating method. It is.

상기 촉매판(40)은 Ni-Foam-팔라듐(Pd)계 촉매판 또는, Cu-Foam-팔라듐(Pd)계 촉매판 또는, Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판이다. 도 2 의 (a)는 Ni-Foam-팔라듐(Pd)계 촉매판이며, 도 2 의 (b)는 Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판이고, 도 2 의 (c)는 Cu-Foam-팔라듐(Pd)계 촉매판이다.
The catalyst plate 40 is a Ni-Foam-palladium (Pd) catalyst plate, a Cu-Foam-palladium (Pd) catalyst plate, or a Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate . (A) of FIG. 2 is a Ni-Foam-palladium (Pd) catalyst plate, (b) of FIG. 2 is a Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate, and (c) of FIG. ) Is a Cu-Foam-palladium (Pd) catalyst plate.

상기 Ni-Foam-팔라듐(Pd)계 촉매판은 Ni-Foam에 염화 팔라듐(PdCl2)용액 0.05 ∼ 0.2M용액을 바람직하게는 0.1M용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 5∼30분간 도금한다. 이때, Ni-Foam : 팔라듐(Pd)는 8∼3 : 2∼7 중량비율을 구비한다. 상기와 같은 비율은 촉매효율을 향상시키기 위한 것으로, 팔라듐(Pd) 비율이 7 을 초과할 경우, 비용만 증대될 뿐 비율증가에 따른 효과가 미비하며, 팔라듐(Pd) 비율이 2 미만일 경우, 팔라듐(Pd)으로 인한 촉매효과가 저하되므로, 팔라듐(Pd)의 비율을 설정하는 것이 중요한다.
In the Ni-Foam-palladium (Pd) catalyst plate, a Ni-Foam solution containing 0.05 to 0.2 M of a palladium chloride (PdCl 2 ) solution is preferably used as a plating solution, and the current density is 5 to 5 to 250 A / m 2. Plate for 30 minutes. At this time, Ni-Foam: Palladium (Pd) has a weight ratio of 8-3: 2-7. The above ratio is for improving the catalyst efficiency, and when the palladium (Pd) ratio exceeds 7, only the cost is increased, but the effect of increasing the ratio is insufficient, and when the palladium (Pd) ratio is less than 2, palladium Since the catalytic effect due to (Pd) is lowered, it is important to set the ratio of palladium (Pd).

상기 Cu-Foam-팔라듐(Pd)계 촉매판은 Cu-Foam에 염화 파라듐(PdCl2)용액 0.05 ∼ 0.2M용액을 바람직하게는 0.1M용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 5∼30분간 도금한다. 이때, Cu-Foam : 팔라듐(Pd)는 8∼3 : 2∼7 중량비율을 구비한다.
In the Cu-Foam-palladium (Pd) catalyst plate, a 0.05-0.2 M solution of a palladium chloride (PdCl 2 ) solution in Cu-Foam, preferably a 0.1 M solution is used as a plating solution, and the current density is 50-250 A / m 2. Plate for 30 minutes. At this time, Cu-Foam: Palladium (Pd) has a weight ratio of 8-3: 2-7.

상기 Ni-Foam-구리(Cu)-팔라듐(Pd)계(60) 촉매판은 Ni-Foam에 황산구리(CuSO4)용액 0.05 ∼ 0.2M용액을 바람직하게는 0.1M용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 30분간 도금하고 방냉 후 염화파라듐(PdCl2)용액 0.05 ∼ 0.2M용액을 바람직하게는 0.1M용액을 도금액으로 전류밀도 50∼250A/㎡로 5∼30분간 도금한다. 이때, Cu 전면도금된 Ni-Foam : 팔라듐(Pd)는 8∼3 : 2∼7 중량비율을 구비한다. The Ni-Foam-copper (Cu) -palladium (Pd) -based (60) catalyst plate is made of a copper sulfate (CuSO 4 ) solution in a Ni-Foam solution of 0.05 to 0.2 M, preferably a 0.1 M solution, and a current density of 50. After plating for 30 minutes at ˜250 A / m 2, and after cooling, a 0.05 to 0.2 M solution of a palladium chloride (PdCl 2 ) solution is preferably plated at a current density of 50 to 250 A / m 2 for 5 to 30 minutes with a plating solution. At this time, Cu-plated Ni-Foam: Palladium (Pd) has a weight ratio of 8 to 3: 2-7.

상기와 같은 Ni-Foam-팔라듐(Pd)계 촉매판, Cu-Foam-팔라듐(Pd)계 촉매판, 및 Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판의 조성비는 5∼30분간 촉매의 도금량을 조절하고 Ni-Foam, Cu-Foam에 도금 처리한다.
The composition ratio of the Ni-Foam-palladium (Pd) catalyst plate, the Cu-Foam-palladium (Pd) catalyst plate, and the Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate is 5 to 30. The plating amount of the catalyst is adjusted for a minute and the Ni-Foam and Cu-Foam are plated.

또한, 상기 촉매판(40)은 경우에 따라 위의 촉매의 염들을 부착하고 환원 처리하는 조작을 수회 반복하여 형성할 수 있고, 모든 촉매는 탈락을 방지하기 위해 불활성기체(He, Ar등)또는 질소(N2)기체 중에서 열처리하여 사용할 수 있다. 이때, 열처리 온도는 1100℃ 이내에서 이루어진다.
In addition, the catalyst plate 40 may be formed by repeating the operation of attaching the salts of the catalyst and reducing the treatment several times, and all catalysts are inert gas (He, Ar, etc.) or It can be used after heat treatment in nitrogen (N 2 ) gas. At this time, the heat treatment temperature is made within 1100 ℃.

상기와 같은 촉매판(40)은 음극(20) 주위에 설치되어 아질산성 및 질산성 질소를 질소 기체로 환원하여 제거하는 효율을 향상시킨다.
The catalyst plate 40 as described above is installed around the cathode 20 to improve the efficiency of reducing and removing nitrous and nitrate nitrogen with nitrogen gas.

상기와 같이 구성된 양극/음극(10,20) 및 촉매판(40)은 분해조(80)내에 설치되어 하나의 전극모듈을 형성하게 된다. 즉, 음극실내에 음극(20)과 촉매판(40)이 설치되고, 양극실내에 양극(10)이 설치되며, 상기 음극실과 양극실은 양이온 교환막(40)으로 차단되어 있다. The anode / cathode 10 and 20 and the catalyst plate 40 configured as described above are installed in the decomposition tank 80 to form one electrode module. That is, the cathode 20 and the catalyst plate 40 are provided in the cathode chamber, the anode 10 is installed in the anode chamber, and the cathode chamber and the anode chamber are blocked by the cation exchange membrane 40.

이를 더욱 구체적으로 설명하면, 상기 전극모듈은 Ni-Foam 과 Cu-Foam에 Pd과 Cu를 조건에 따라 도금한 촉매가 음극(Cathode)의 양측 또는 일측에 5㎜ 간격 이내로 설치되고, 음극실과 양극실 사이에 양이온교환막이 설치된다. 이때, 상기 양극은 양이온 교환막 5㎜ 이내 거리에 설치되고, 양극간의 거리는 10㎜ 내외를 구비한다. 또한, 상기 음극에서 발생하는 환원성 수소기체와 촉매판은 가까울수록 좋다.In more detail, the electrode module has a catalyst plated with Ni-Foam and Cu-Foam in accordance with conditions of Pd and Cu, which are installed within 5 mm intervals on both sides or one side of the cathode, and the cathode chamber and the anode chamber. A cation exchange membrane is provided in between. At this time, the positive electrode is installed within a distance of 5mm cation exchange membrane, the distance between the positive electrode is provided to about 10mm. In addition, the closer the reducing hydrogen gas generated in the cathode and the catalyst plate, the better.

또한, 음극과 촉매판 및 양극 사이의 위와 아래에는 배크라이트, PVC 등의 전기절연체가 설치되어 서로 닿지 않도록 되어 있으며, 전류를 차단하여 음극과 촉매판 및 양극이 하나의 전극모듈(SET)를 이루게 된다.
In addition, above and below the cathode, the catalyst plate, and the anode, electrical insulators such as baclight and PVC are installed so as not to touch each other, and the current is cut off so that the cathode, the catalyst plate, and the anode form one electrode module (SET). do.

또한, 상기 전극과 촉매판의 조(Set)의 수 즉, 전극모듈의 음극, 촉매판, 양극으로 순차적 배열되는 조(Set)의 수는 처리하는 하·폐수의 양에 따라 다수개가 조절되어 설치된다.
In addition, the number of sets of the electrode and the catalyst plate, that is, the number of sets sequentially arranged as the negative electrode, the catalyst plate, and the positive electrode of the electrode module is adjusted and installed depending on the amount of wastewater to be treated. do.

상기 본 발명에 따른 전극모듈(SET)의 설치방법을 상세히 설명하면, 먼저, 기체 수소 발생장치로 양극실과 음극실을 별도로 설치하고(음극 및 양극판은 티타늄에 백금도금을 사용), 양극실과 음극실 사이에는 양이온 교환막을 설치하여 양이온만 통과하게 함으로써, 양극실(산화반응)과 음극실(환원반응)의 화학반응을 차단하여 음극실에서 질산성질소이온의 환원반응 효율을 높인다.Referring to the installation method of the electrode module (SET) according to the present invention in detail, first, the anode chamber and the cathode chamber are separately installed as a gas hydrogen generator (cathode and the anode plate using platinum plating on titanium), the anode chamber and the cathode chamber By installing a cation exchange membrane in between to allow only cations to pass through, it blocks the chemical reaction between the anode chamber (oxidation reaction) and the cathode chamber (reduction reaction), thereby increasing the reduction reaction efficiency of the nitric acid ions in the cathode chamber.

또한, 음극 주위에 촉매판을 설치하고, 양극실 처리수는 반응시설에 재반송하고 음극실 처리수는 방류하며, 원수에 주기율표상 IA족 또는 ⅡA족에 속하는 금속이온(양이온)이 다량 존재하는 경우는 음극실내 처리수의 pH가 상승(pH 8∼11)하는 경우가 있으므로 이때 처리수의 T-N함량을 조절하여 적당량의 양극실 처리를 합쳐 pH를 조절하거나 한 단위(Munit) 더 설치하여 처리수의 T-N 함량을 조절 방출한다.
In addition, a catalyst plate is installed around the cathode, the anode chamber treated water is returned to the reaction facility, the cathode chamber treated water is discharged, and the raw water contains a large amount of metal ions (cations) belonging to group IA or IIA on the periodic table. In some cases, the pH of the treated water in the cathode chamber may rise (pH 8 ~ 11). At this time, adjust the TN content of the treated water and combine the appropriate amount of the cathode chamber treatment to adjust the pH or install one more unit. Controlled release of TN content.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

펀칭망(Punching net)상태의 티타늄(Titanium)판에 백금(Pt)으로 전기도금방법에 의해 도금하여, 양극(Anode(30))과 음극(Cathode)을 형성하였으며, Ni-Foam에 염화 파라듐(PdCl2)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 5∼25분간 도금하여 Ni-Foam-팔라듐(Pd)계 촉매판을 형성하였다.Plating (Pt) was plated on a titanium plate in the punching net state by electroplating to form an anode (Anode 30) and a cathode (Cathode), and Ni-Foam paradium chloride (PdCl 2 ) Solution A 0.1 M solution was used as a plating solution and plated at a current density of 100 A / m 2 for 5 to 25 minutes to form a Ni-Foam-palladium (Pd) catalyst plate.

또한, 아크릴을 이용하여 길이 520㎜ ㅧ 폭300㎜ ㅧ 높이300㎜ 의 반응조(501)를 제작하였으며, 상기 반응조의 음극실과 양극실 사이에 양이온 교환막(Nafion)을 설치하여 차단하고, 음극실에 상기 촉매판을 5㎜ 간격을 유지하도록 음극 양측에 설치하였고, 양이온 교환막에서 5㎜ 간격을 유지하도록 양극을 설치하였다. 또한, 상기 음극과 촉매판 사이와 양극 사이에 전기절연체를 설치하여, 하나의 전극모듈을 형성하였다. In addition, a reaction tank 501 having a length of 520 mm ㅧ 300 mm ㅧ height 300 mm was manufactured using acrylic, and a cation exchange membrane was installed between the cathode chamber and the anode chamber of the reactor to block and block the cathode chamber. Catalyst plates were installed on both sides of the cathode to maintain 5 mm spacing, and anodes were installed to maintain 5 mm spacing in the cation exchange membrane. In addition, an electrical insulator was installed between the cathode and the catalyst plate and between the anode to form one electrode module.

상기와 같이 이루어진 반응조내에 증류수 1L에 NaNO3 68.5g 을 투입하여 조제한 질산성질소(NO3 --N) 50mg/L 시료를 투입하여 운전기간동안 질산성질소(NO3 --N)농도변화를 측정하였으며, 그 결과는 도 4 와 같다. 50 mg / L of nitrogen nitrate (NO 3 -- N) prepared by adding 68.5 g of NaNO 3 to 1 L of distilled water in the reactor as described above was added to change the concentration of nitrate (NO 3 -- N) during operation. It measured, and the result is as FIG.

또한, 반응조 내부의 반응속도를 높이기 위하여 Daihan Scintific(HT50DX) 교반기(70)를 사용하여 250rpm으로 교반시켰으며, 전기분해를 하기 위한 정류기는 SM Techno사의 모델 SDP50-3D 를 사용하였으며, 이때 전류밀도는 100A/㎡로 하였다.
In addition, in order to increase the reaction speed inside the reactor was stirred at 250rpm using a Daihan Scintific (HT50DX) stirrer 70, the rectifier for electrolysis was used SM Techno's model SDP50-3D, the current density is It was 100 A / m <2>.

도 4 는 Ni-Foam과 Pd의 도금시간을 5분(Ni:Pd=8:2,(평균치)), 10분(Ni:Pd=7:3,(평균치)), 15분(Ni:Pd=5:5,(평균치)), 25분(Ni:Pd=3:7,(평균치))으로 각각 도금 후 질산성질소(NO3 --N) 50mg/L시료를 조제하여 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 70∼76.5%가 제거었음을 알 수 있다.
4 shows the plating time of Ni-Foam and Pd for 5 minutes (Ni: Pd = 8: 2, (average)), 10 minutes (Ni: Pd = 7: 3, (average)), and 15 minutes (Ni: Pd = 5: 5, (Average)), 25 minutes (Ni: Pd = 3: 7, (Average)) after 50mg / L sample of Nitrate Nitrogen (NO 3 -- N) after plating, The graph shows the change in the concentration of acidic nitrogen (NO 3 -- N), which shows the change in the concentration of nitrate nitrogen in the treated water for 10 hours, and the removal rate of 70 to 76.5% was removed. have.

실시예 2Example 2

Ni-Foam에 황산구리(CuSO4)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 30분간 도금하고 방냉 후 염화 파라듐(PdCl2)용액 0.1M용액을 도금액으로 전류밀도 100A/㎡로 5∼25분간 도금하여 Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판을 형성하였다. Ni-Foam in a copper sulfate (CuSO 4) solution of 5 a 0.1M solution in the plating solution for 30 minutes and then plated with a current density of 100A / ㎡ cooling palladium chloride (PdCl 2) solution, a current density of 100A / ㎡ a 0.1M solution in the plating solution Plating was performed for 25 minutes to form a Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate.

그 외의 조건은 실시예 1 과 동일하게 하여, 질산성질소(NO3 --N)농도변화를 측정하였으며, 그 결과는 도 5 와 같다.
Other conditions were the same as in Example 1, the change in the concentration of nitric acid (NO 3 -- N) was measured, the results are shown in FIG.

도 5 는 Ni-Foam과 Cu-Pd의 도금시간을 5분(Ni-Foam에 Cu 전면도금:Pd=8:2), 10분(Ni-Foam에 Cu 전면도금:Pd=7:3), 15분(Ni-Foam에 Cu 전면도금:Pd=5:5), 25분(Ni-Foam에 Cu 전면도금:Pd=3:7)으로 각각 도금 후 질산성질소(NO3 --N) 50㎎/L시료를 조제하여 운전기간동안 질산성질소(NO3 --N)농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 80∼90%가 제거됨을 알 수 있었다.
5 shows the plating time of Ni-Foam and Cu-Pd for 5 minutes (Cu front plating on Ni-Foam: Pd = 8: 2), 10 minutes (Cu front plating on Ni-Foam: Pd = 7: 3), Nitride Nitrogen (NO 3 -- N) 50 minutes after plating for 15 minutes (Pd = 5: 5 on Ni-Foam, Pd = 5: 5) and 25 minutes (Pd = 3: 7 on Cu on Ni-Foam) A graph showing the change in concentration of nitrate nitrogen (NO 3 -- N) during the operation period by preparing mg / L sample, which shows the change in the concentration of nitrate nitrogen in the treated water for 10 hours, and the concentration of nitrate nitrogen It can be seen that the removal rate of 80 to 90% is removed.

실시예 3Example 3

Cu-Foam에 염화 파라듐(PdCl2)용액 0.1M 용액을 도금액으로 전류밀도 100A/㎡로 5∼30분간 도금하여, Cu-Foam-팔라듐(Pd)계 촉매판을 형성하였다. 그 외의 조건은 실시예 1 과 동일하게 하여, 질산성질소(NO3 --N) 농도변화를 측정하였으며, 그 결과는 도 6 과 같다.
A 0.1 M solution of palladium chloride (PdCl 2 ) solution in Cu-Foam was plated with a plating solution at a current density of 100 A / m 2 for 5 to 30 minutes to form a Cu-Foam-palladium (Pd) catalyst plate. Other conditions were the same as in Example 1, the change in the concentration of nitrogen nitrate (NO 3 -- N) was measured, the results are as shown in FIG.

도 6 은 Cu-Foam과 Pd의 도금시간을 5분(Cu-Foam:Pd=8:2), 10분(Cu-Foam:Pd=7:3), 15분(Cu-Foam:Pd=5:5), 25분(Cu-Foam:Pd=3:7)으로 각각 도금 후 질산성질소(NO3 --N) 50㎎/L 시료를 조제하여 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 85∼92%가 제거됨을 알 수 있었다.
6 shows the plating time of Cu-Foam and Pd for 5 minutes (Cu-Foam: Pd = 8: 2), 10 minutes (Cu-Foam: Pd = 7: 3), and 15 minutes (Cu-Foam: Pd = 5 : 5), 25 minutes (Cu-Foam: Pd = 3 : 7) , each after plating nitrate nitrogen (NO 3 - -N) nitrate to prepare for 50㎎ / L sample operating period (NO 3 - - N) In the graph showing the change in concentration, the concentration of nitrate nitrogen in the treated water was shown for 10 hours, and the concentration removal rate of nitrate nitrogen was 85-92%.

실시예 4Example 4

전남 화순군의 공공하수처리시설 방류수를 사용하였으며, 상기 방류수의 질산성질소 농도는 32㎎/L 이었다. The effluent of the public sewage treatment facility of Hwasun-gun, Jeonnam was used, and the nitrate concentration of the effluent was 32 mg / L.

상기 방류수를 실시예 1 과 같은 방법에 의해 반응조내에 투입하여 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하였으며, 그 결과는 도 7 과 같다. The effluent of Example 1 and placed in a reaction vessel by the same method, the nitrate nitrogen during the operation period was measured (NO 3 -N) concentration change, and the results are shown in Fig.

도 7 은 Ni-Foam에 염화 파라듐(PdCl2)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 5∼25분간 도금한 촉매로 Ni-Foam과 Pd의 도금시간을 5분, 10분, 15분, 25분으로 각각 도금 후 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수 중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 72.3∼77.2%가 제거됨을 알 수 있다.
7 is a catalyst obtained by plating a 0.1 M solution of palladium chloride (PdCl 2 ) solution in Ni-Foam as a plating solution for 5 to 25 minutes at a current density of 100 A / m 2. The plating time of Ni-Foam and Pd is 5 minutes and 10 minutes. The graph shows the change in concentration of nitrate nitrogen (NO 3 -- N) during the operation period after plating for 15 minutes and 25 minutes, respectively. It can be seen that 72.3 to 77.2% of the concentration removal rate of nitrogen is removed.

실시예 5Example 5

실시예 4 와 같은 방류수를 실시예 2 와 같은 방법에 의해 반응조내에 투입하여, 운전시간동안 질산성질소(NO3 --N) 농도변화를 측정하였으며, 그 결과는 도 8 과 같다. Example 4 and the placed in a reaction vessel by the same effluent in the same manner as in Example 2, the nitrate nitrogen during the operating time - was measured (NO 3 -N) concentration change, and the results are shown in Fig.

도 8 은 Ni-Foam에 황산구리(CuSO4)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 30분간 도금하고 방냉 후 염화 파라듐(PdCl2)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 5∼25분간 도금한 촉매로 Ni-Foam과 Cu-Pd의 도금시간을 5분, 10분, 15분, 25분으로 각각 도금 후 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 81.5∼92.3%가 제거됨을 알 수 있었다.
8 is plated with a 0.1 M solution of copper sulfate (CuSO 4 ) solution in Ni-Foam as a plating solution for 30 minutes at a current density of 100 A / m 2, and after cooling, a 0.1 M solution of palladium chloride (PdCl 2 ) solution is used as a plating solution. / 5~25 5 minutes plating time, the Ni-Cu-Pd Foam with a plating catalyst minutes to, 10 minutes, 15 minutes, 25 minutes nitrate for driving period after each plated (NO 3 - -N) As a graph showing the measurement of the concentration change, the concentration of nitrate nitrogen in the treated water was shown during the reaction for 10 hours, and the concentration removal rate of nitrate nitrogen was found to be 81.5 to 92.3%.

실시예 6Example 6

실시예 4 와 같은 방류수를 실시예 3 과 같은 방법에 의해 반응조내에 투입하여, 운전시간동안 질산성질소(NO3 --N)농도변화를 측정하였으며, 그 결과는 도 9 와 같다. Example 4 and the placed in a reaction vessel by the method of the discharged water as in Example 3, the same, nitrate during operation time was measured (NO 3 -N) concentration changes, and as a result is shown in Fig.

도 9 는 Cu-Foam에 염화 파라듐(PdCl2)용액 0.1M 용액을 도금액으로 하여 전류밀도 100A/㎡로 5∼25분간 도금한 촉매로 Cu-Foam과 Pd의 도금시간을 5분, 10분, 15분, 25분으로 각각 도금 후 운전기간동안 질산성질소(NO3 --N) 농도변화를 측정하여 나타낸 그래프로, 반응 10시간 동안 처리수 중의 질산성 질소 농도변화를 나타내었으며, 질산성 질소의 농도 제거율 82.5∼91.2%가 제거됨을 알 수 있다.
9 shows a plating solution of Cu-Foam with a 0.1 M solution of palladium chloride (PdCl 2 ) solution as a plating solution for 5 to 25 minutes at a current density of 100 A / m 2. The plating time of Cu-Foam and Pd is 5 minutes and 10 minutes. The graph shows the change in concentration of nitrate nitrogen (NO 3 -- N) during the operation period after plating for 15 minutes and 25 minutes, respectively. It can be seen that the concentration removal rate of 82.5 to 91.2% of nitrogen is removed.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.
The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

(10) : 양극 (20) : 음극
(30) : 양이온 교환막 (40) : 촉매판
(50) : 펀칭망(Punching net)상태의 티타늄(Titanium)판
(60) : 백금도금 (70) : 교반기
(80) : 분해조 (100) : 질소제거장치
10: positive electrode 20: negative electrode
(30): cation exchange membrane (40): catalyst plate
(50): Titanium plate with punching net
60: Platinum Plating 70: Stirrer
(80): digestion tank (100): nitrogen removal device

Claims (6)

전기분해를 이용한 정수 및 하수처리시설용 질산성 질소 제거장치에 있어서,
양극 및 음극으로 백금(Pt)을 도포한 티타늄(Titanium)전극이 설치되고, 양극과 음극 사이에 양이온 교환막이 설치되며, 음극 주위에 파라듐/니켈 및 파라듐/구리계이 도금된 촉매판이 설치되되,
상기 촉매판은 Ni-Foam-팔라듐(Pd)계 촉매판 또는, Cu-Foam-팔라듐(Pd)계 촉매판 또는, Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판이고,
상기 Ni-Foam-팔라듐(Pd)계 촉매판의 Ni-Foam : 팔라듐(Pd) 중량비율,상기 Cu-Foam-팔라듐(Pd)계 촉매판의 Cu-Foam : 팔라듐(Pd) 중량비율, 상기 Ni-Foam-구리(Cu)-팔라듐(Pd)계(60) 촉매판의 Cu 전면도금된 Ni-Foam : 팔라듐(Pd) 중량비율은 8∼3 : 2∼7 중량비율을 구비하는 것을 특징으로 하는 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치.
In the nitrate nitrogen removal device for water purification and sewage treatment facilities using electrolysis,
Titanium electrodes coated with platinum (Pt) as the anode and cathode are installed, and a cation exchange membrane is installed between the anode and the cathode, and a catalyst plate plated with palladium / nickel and palladium / copper system is installed around the cathode. ,
The catalyst plate is a Ni-Foam-palladium (Pd) catalyst plate, a Cu-Foam-palladium (Pd) catalyst plate, or a Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate,
Ni-Foam: palladium (Pd) weight ratio of the Ni-Foam-palladium (Pd) catalyst plate, Cu-Foam: palladium (Pd) weight ratio of the Cu-Foam-palladium (Pd) catalyst plate, Ni Cu-plated Ni-Foam: Palladium (Pd) weight ratio of Cu-Padium (Pd) -based 60 catalyst plate is characterized by having a weight ratio of 8 to 3: 2 to 7 Nitrogen nitrate removal device for water purification and sewage treatment facilities using electrolysis.
청구항 1 에 있어서;
상기 양극(Anode)과 음극(Cathode)은 펀칭망(Punching net)상태의 티타늄(Titanium)판에 백금(Pt)으로 전기도금방법에 의해 도금되어 있는 것을 특징으로 하는 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치.
The method of claim 1,
The anode and the cathode are plated by platinum in an electroplating method with platinum (Pt) on a titanium plate in a punching net state. Nitric acid nitrate removal device for facilities.
청구항 1 에 있어서;
상기 Ni-Foam-팔라듐(Pd)계 촉매판은 Ni-Foam에 염화 팔라듐(PdCl2)용액 0.05∼0.2M 용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 5∼30분간 도금된 것을 특징으로 하는 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치.
The method of claim 1,
The Ni-Foam-palladium (Pd) catalyst plate was plated for 5 to 30 minutes at a current density of 50 to 250 A / m 2 using a 0.05 to 0.2 M solution of palladium chloride (PdCl 2 ) solution in Ni-Foam as a plating solution. Apparatus for removing nitric acid for water purification and sewage treatment facilities using electrolysis.
청구항 1 에 있어서;
상기 Cu-Foam-팔라듐(Pd)계 촉매판은 Cu-Foam에 염화 파라듐(PdCl2)용액 0.05∼0.2M 용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 5∼30분간 도금된 것을 특징으로 하는 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치.
The method of claim 1,
The Cu-Foam-palladium (Pd) catalyst plate was plated for 5 to 30 minutes at a current density of 50 to 250 A / m 2 using a 0.05 to 0.2 M solution of a palladium chloride (PdCl 2 ) solution in Cu-Foam. Nitrate removal equipment for water purification and sewage treatment facilities using electrolysis.
청구항 1 에 있어서;
상기 Ni-Foam-구리(Cu)-팔라듐(Pd)계 촉매판은 Ni-Foam에 황산구리(CuSO4)용액 0.05∼0.2M 용액을 도금액으로 하여 전류밀도 50∼250A/㎡로 30분간 도금하고 방냉한 후 염화파라듐(PdCl2)용액 0.05∼0.2M용액을 도금액으로 전류밀도 50∼250A/㎡로 5∼30분간 도금된 것을 특징으로 하는 전기분해를 이용한 정수 및 하수처리시설용 질산성질소 제거장치.
The method of claim 1,
The Ni-Foam-copper (Cu) -palladium (Pd) catalyst plate was plated with a 0.05-0.2M solution of copper sulfate (CuSO 4 ) solution in Ni-Foam as a plating solution for 30 minutes at a current density of 50-250 A / m 2, followed by cooling. After the palladium chloride (PdCl 2 ) solution 0.05 ~ 0.2M solution in a plating solution for 5 to 30 minutes at a current density of 50 ~ 250A / ㎡ characterized in that the device for removing water nitrate nitrogen nitrate for water purification and sewage treatment facilities .
삭제delete
KR1020100002500A 2010-01-12 2010-01-12 Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis KR100980636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100002500A KR100980636B1 (en) 2010-01-12 2010-01-12 Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100002500A KR100980636B1 (en) 2010-01-12 2010-01-12 Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis

Publications (1)

Publication Number Publication Date
KR100980636B1 true KR100980636B1 (en) 2010-09-07

Family

ID=43009815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100002500A KR100980636B1 (en) 2010-01-12 2010-01-12 Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis

Country Status (1)

Country Link
KR (1) KR100980636B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263719B1 (en) 2011-05-17 2013-05-13 한밭대학교 산학협력단 Wastewater treatment device having water pump equipped with catalyst for removing nitrates ions
CN103611535A (en) * 2013-11-19 2014-03-05 上海大学 Preparation method of copper-foam-based hierarchical composite oxide monolithic denitrification catalyst
CN109052586A (en) * 2018-09-10 2018-12-21 南昌航空大学 A kind of preparation method and applications of the ultra-fine Pd nano particle electrode of three-dimensional self-supporting porous foam nickel load
KR102321139B1 (en) 2020-12-18 2021-11-03 주식회사 삼공사 Nitrogen removal system using electrolysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339868B1 (en) 1999-02-10 2002-06-07 김용래 A method for treating waste water using electrode reactor charged with particle electrode and device there of
KR100479644B1 (en) 2002-12-20 2005-03-31 권호용 Electrolysis apparatus and electrolyzed water generator, oxygen dissolved water purifier and ionizer using thereof
KR20070092652A (en) * 2006-03-10 2007-09-13 니폰 쇼쿠바이 컴파니 리미티드 Catalyst for treating waste water and method for treating waste water using the same
KR100917146B1 (en) * 2009-02-09 2009-09-15 주식회사 대진환경산업 Electroyzing apparatus for treating nitrogen and phosphorus simultaneously in sewage and waste water and, its treating method for sewage and waste water using it thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339868B1 (en) 1999-02-10 2002-06-07 김용래 A method for treating waste water using electrode reactor charged with particle electrode and device there of
KR100479644B1 (en) 2002-12-20 2005-03-31 권호용 Electrolysis apparatus and electrolyzed water generator, oxygen dissolved water purifier and ionizer using thereof
KR20070092652A (en) * 2006-03-10 2007-09-13 니폰 쇼쿠바이 컴파니 리미티드 Catalyst for treating waste water and method for treating waste water using the same
KR100917146B1 (en) * 2009-02-09 2009-09-15 주식회사 대진환경산업 Electroyzing apparatus for treating nitrogen and phosphorus simultaneously in sewage and waste water and, its treating method for sewage and waste water using it thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263719B1 (en) 2011-05-17 2013-05-13 한밭대학교 산학협력단 Wastewater treatment device having water pump equipped with catalyst for removing nitrates ions
CN103611535A (en) * 2013-11-19 2014-03-05 上海大学 Preparation method of copper-foam-based hierarchical composite oxide monolithic denitrification catalyst
CN103611535B (en) * 2013-11-19 2016-01-13 上海大学 The preparation method of foam copper base hierarchy composite oxide monolithic denitrification catalyst
CN109052586A (en) * 2018-09-10 2018-12-21 南昌航空大学 A kind of preparation method and applications of the ultra-fine Pd nano particle electrode of three-dimensional self-supporting porous foam nickel load
KR102321139B1 (en) 2020-12-18 2021-11-03 주식회사 삼공사 Nitrogen removal system using electrolysis

Similar Documents

Publication Publication Date Title
KR100917146B1 (en) Electroyzing apparatus for treating nitrogen and phosphorus simultaneously in sewage and waste water and, its treating method for sewage and waste water using it thereof
US7309441B2 (en) Electrochemical sterilizing and bacteriostatic method
CN102701338B (en) Coking wastewater advanced treatment process
Abdallah et al. Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell
KR100948197B1 (en) Advanced treating apparatus for removing nitrogen and phosphorus using intermitted aeration, membrane, electrolysis apparatus, advanced method of water treatment using the same
KR100980636B1 (en) Apparatus for denitrification in purified water and wastewater treatment facility using electrolysis
CN105084648A (en) Treatment method for hardly biodegraded sewage
CN111115761A (en) Electrochemical reaction device and method for synchronously removing total nitrogen in electroplating wastewater
CN103159300B (en) Method for removing pentavalent antimony pollutant in water through electrochemical method
CN108191007A (en) A kind of application of Cu/GO/Ti electrodes with preparation method and its in water removal is gone in ammonia nitrogen and nitrate
CN105800821A (en) Up-to-standard treatment method and device for zinc-nickel alloy waste water
KR101214824B1 (en) Improved COD abatement process for electrochemical oxidation
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
JP3884329B2 (en) Decomposition method of organic substances in liquid to be treated
Ding et al. Ammonia abatement for low-salinity domestic secondary effluent with a hybrid electrooxidation and adsorption reactor
JP2007061681A (en) Nitrate nitrogen-containing wastewater treatment method and apparatus, and electrolytic cell for wastewater treatment
KR100626842B1 (en) Method of waste water treatment containing high concentration nitrogen combined electrolysis and biological process
CN212151934U (en) Sewage treatment device of electrocatalytic oxidation equipment
CN212770001U (en) Electrochemical synchronous denitrification and dephosphorization device
CN109052755A (en) The processing method of admiro waste water based on electrocatalytic oxidation
Wang et al. Advanced decomposition of coking wastewater in relation to total organic carbon using an electrochemical system
JP2006035158A5 (en)
JP2005103498A (en) Method and apparatus for electrolytic treatment of waste chemical plating liquid
CN111087049A (en) Method for treating organic nitrogen wastewater
Yi et al. REMOVAL OF AMMONIA NITROGEN FROM SWINE WASTERWATER BY ELECTROOXIDATION USING Ti/Mn-Ni/SnO 2-Sb-CeO 2 ANODE.

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130823

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150907

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170911

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 10