KR100974083B1 - Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases - Google Patents

Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases Download PDF

Info

Publication number
KR100974083B1
KR100974083B1 KR1020070094585A KR20070094585A KR100974083B1 KR 100974083 B1 KR100974083 B1 KR 100974083B1 KR 1020070094585 A KR1020070094585 A KR 1020070094585A KR 20070094585 A KR20070094585 A KR 20070094585A KR 100974083 B1 KR100974083 B1 KR 100974083B1
Authority
KR
South Korea
Prior art keywords
iron oxide
pvla
oxide nanoparticles
solution
coated
Prior art date
Application number
KR1020070094585A
Other languages
Korean (ko)
Other versions
KR20090029390A (en
Inventor
조종수
유미경
정환정
정용연
Original Assignee
전북대학교산학협력단
전북대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단, 전북대학교병원 filed Critical 전북대학교산학협력단
Priority to KR1020070094585A priority Critical patent/KR100974083B1/en
Publication of KR20090029390A publication Critical patent/KR20090029390A/en
Application granted granted Critical
Publication of KR100974083B1 publication Critical patent/KR100974083B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 PVLA가 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제에 관한 것으로, 본 발명의 PVLA가 코팅된 초상자성 산화철 나노입자는 초상자성 산화철 용액(ferrofluid)의 안정성을 확보하고 간에 선택적으로 전달됨으로써 정확하게 간질환을 진단하는 안정한 조영제로서 유용하게 사용될 수 있다.The present invention relates to a superparamagnetic iron oxide nanoparticles coated with PVLA, a method for preparing the same, and a contrast agent for diagnosing liver disease, including the same, wherein the superparamagnetic iron oxide nanoparticles coated with PVLA are stable in a superparamagnetic iron oxide solution (ferrofluid). It can be usefully used as a stable contrast agent to accurately diagnose liver disease by securing and selectively delivering to the liver.

조영제, 초상자성, 산화철 나노입자 Contrast Agent, Superparamagnetic, Iron Oxide Nanoparticles

Description

PVLA가 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제{Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases}Superparamagnetic iron oxide nanoparticles coated with PPLA, preparation method thereof, and contrast agent for diagnosing liver disease, including the same

본 발명은 PVLA가 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제에 관한 것이다.The present invention relates to a superparamagnetic iron oxide nanoparticles coated with PVLA, a preparation method thereof, and a contrast agent for diagnosing liver disease, including the same.

최근 평균 수명이 늘어남에 따라 노인 인구가 증가하여 다양한 암질환 및 뇌혈관질환을 갖는 환자가 증가하고 있으며, 식습관과 생활환경이 변화함 따라 성인병 발병이 나타나는 환자의 연령이 낮아지는 추세에 있다. 이에 각종 질환을 조기에 발견하여 치료율을 높이는 것이 국민 생활 건강증진에 있어 매우 중요하다.As the average life expectancy increases, the elderly population has increased, and patients with various cancer diseases and cerebrovascular diseases have increased. As the eating habits and the living environment have changed, the age of patients with adult disease has been decreasing. Therefore, early detection of various diseases and increasing treatment rates are very important for improving the health of people's lives.

질병의 조기 발견을 위해 다양한 진단 방법이 개발되고 있으며, 특히 자각 증상이 나타나기 전에 시각적으로 조기 발견이 가능한 최첨단 방법인 핵자기공명 단층촬영술 (magnetic reasonance image,MRI)의 사용이 증가되고 있다.Various diagnostic methods are being developed for the early detection of diseases, and the use of nuclear magnetic resonance imaging (MRI), a state-of-the-art method for visually early detection before subjective symptoms appear, is increasing.

MRI는 양성자에서 나오는 신호를 측정하여 나타낸 것으로, 인체에 비침습적인 방법으로 진단하였으나, MRI를 위한 조영제(contrast agent)를 사용하면 진단의 민감도와 특이도를 증가시킬 수 있음이 밝혀진 이후, 최근에는 MRI 혈관 조영술, 관류영상에 이르기까지 MRI 조영제의 적용영역이 확대되고 있다. MRI is a measurement of a signal from a proton and is diagnosed by non-invasive methods in humans.However, the use of contrast agents for MRI can increase the sensitivity and specificity of the diagnosis. From MRI angiography to perfusion imaging, the area of application of MRI contrast agents is expanding.

조영제는 MRI의 자장이나 X-선의 통과에 영향을 미침으로써, 일반 MRI나 X-선 촬영으로는 확인 불가했던 조직이나 혈관, 위, 장 등의 내장기관에 투여하여 각 기관의 흡수차이를 이용하여 목적하는 부위를 관찰하거나 기능을 평가하기 위해 이용되는 물질로서 보다 선명한 영상을 형성시키는 역할을 하는 물질이다. 상기 조영제는 자장에 미치는 영향에 따라 상자성(paramagnetism), 초상자성(superparamagnetism) 제제로 구분되며, 각각 양성 조영제 및 음성 조영제라고도 불리운다. Contrast agent affects magnetic field and X-ray passage of MRI, and it is administered to internal organs such as tissues, blood vessels, stomach, and intestines that cannot be identified by general MRI or X-ray imaging. It is a substance used to observe a target site or to evaluate a function, and is a substance that forms a clearer image. The contrast agents are classified into paramagnetism and superparamagnetism agents according to their effect on the magnetic field, and are also called positive contrast agents and negative contrast agents, respectively.

양성 조영제는 조영제가 투여된 조직부분의 양성자 종축이완시간(T1, longitudinal relaxation time) 감쇄효과가 우세하여 T1 강조영상(T1 weighted image)에서 밝은 신호로 나타나며, 음성 조영제는 조직의 횡축이완시간(T2 transeverse relaxation time) 감쇄효과가 우세하여 T2 강조영상(T2 weighted image)에서 어두운 신호로 나타난다[R. Weissleder et. al. (2000) Nat. Med. 6: 351-355]. A positive contrast agent is predominantly T 1 due to the attenuation effect of the proton longitudinal relaxation time (T 1 ) in the tissue part to which the contrast agent is administered. Highlight image (T 1 In the weighted image, the negative contrast agent, T 2 transeverse relaxation time (T 2 transeverse relaxation time) attenuation effect of the tissue predominantly T 2 Highlight image (T 2 weighted image) [R. Weissleder et. al. (2000) Nat. Med. 6: 351-355.

상기 음성 조영제에 사용되는 초상자성 물질로는 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트 (maghemite, Fe2O3)와 같은 산화철(superparamagnetic iron oxide, SPIO)이 대표적으로 들 수 있다. 이들은 수십 나노미터 이하의 크기를 갖는 균일한 입자로 제조하여 안정한 콜로이드 형태로 이루어져 있는 산화철 용 액(ferrofluid)으로 제조되어 체내로 투여된다. The superparamagnetic material used for the negative contrast agent may be representative of superparamagnetic iron oxide (SPIO) such as magnetite (Fe 3 O 4 ) or maghemite (maghemite, Fe 2 O 3 ). They are made into uniform particles having a size of several tens of nanometers or less and made of ferrofluid, which is composed of a stable colloidal form, and administered into the body.

한편, 초상자성 나노입자가 효과적인 조영제로 이용하기 위해서는 높은 포화자화도를 가지면서 작고 균일한 안정한 마그네틱 산화철 용액(ferrofluid)이 제조되어야 한다. 상기 ferrofluid는 Fe3O4 나 Fe2O3와 같은 마그네틱 나노입자의 콜로이드 분산용액으로 매우 강한 자기장하에서도 액체상태를 유지할 수 있어야한다. 그러나, 순수한 초상자성 산화철 입자는 1) 소수성이면서 부피 대 표면적의 비가 크기 때문에 입자들 간에 소수성 인력(hydrophobic interaction)이 강하고 이로 인해 응집이 잘 일어나 클러스터(cluster)를 형성하고, 2) 충분히 안정하지 않으면 본래 구조가 변해서 자기적인 특성이 변할 수 있고, 3) 생체 환경에 접하게 되면 빠르게 생분해가 될 수 있으며, 4) 순수한 산화철 자체만으로는 독성이 있어 인체에 유해하므로 조영제로서의 이용에 제한이 따르는 문제가 있다. On the other hand, in order to use the superparamagnetic nanoparticles as an effective contrast agent, a small, uniform and stable magnetic iron oxide solution (ferrofluid) having high saturation magnetization should be prepared. The ferrofluid is Fe 3 O 4 It is a colloidal dispersion solution of magnetic nanoparticles such as Fe 2 O 3 and must be able to maintain liquid state even under very strong magnetic field. However, pure superparamagnetic iron oxide particles are 1) hydrophobic and have a high volume-to-surface area ratio, resulting in a strong hydrophobic interaction between the particles, leading to agglomeration and forming clusters. The original structure can be changed, the magnetic properties can be changed, 3) it can be rapidly biodegradable when it comes into contact with the living environment, 4) pure iron oxide itself is toxic and harmful to the human body, there is a problem that there is a limit to use as a contrast agent.

따라서, 이러한 문제를 개선하고 상기 초상자성 나노입자를 포함하는 산화철 용액의 안정성을 유지시키기 위해서는 입자의 표면 개질이 요구된다. 일반적으로 계면활성제나 고분자와 같은 안정제로 상기 나노입자를 코팅하는 방법이 개발되어 왔다. 종래 나노입자를 코팅하는 고분자로는 폴리아크릴산 (Polyacrylic acid, PAA), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에틸렌글리콜(Polyethylene, PEG)등의 합성 고분자[M.H. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; M. Chastellain et. al. (2004) J. Colloid Interface Sci. 278: 353-360]와 젤라틴(Gelatin), 덱스트란(Dextran), 키토산(Chitosan), 플루란(pullulan)의 천연 고분자[Y.C. Chang et. al. (2005) J. Collide Interface Sci. 283: 446-451) ; M. C. Bautista et. al. (2005) J. Magn. Magn. Mater. 293: 20-27]가 보고되어있다. Thus, surface modification of the particles is required to ameliorate these problems and maintain the stability of the iron oxide solution comprising the superparamagnetic nanoparticles. In general, a method of coating the nanoparticles with a stabilizer such as a surfactant or a polymer has been developed. Conventional polymers for coating nanoparticles include synthetic polymers such as polyacrylic acid (PAA), polyvinylpyrrolidone (PVP), polyvinyl alcohol (polyvinylalcohol, PVA), polyethylene glycol (Polyethylene, PEG), etc. MH Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; M. Chastellain et. al. (2004) J. Colloid Interface Sci. 278: 353-360] and natural polymers of gelatin, dextran, chitosan and pullulan [Y.C. Chang et. al. (2005) J. Collide Interface Sci. 283: 446-451); M. C. Bautista et. al. (2005) J. Magn. Magn. Mater. 293: 20-27.

이러한 고분자를 사용하는 코팅 방법으로는 1)산화철 나노입자가 제조되는 과정에 고분자를 코팅하는 in situ 코팅법과 2)산화철 나노입자의 제조가 완료된 후 고분자를 코팅하는 post-synthetic 코팅법이 알려져 있다. 그러나, 상기 코팅방법을 이용하는 경우, 코팅된 산화철 나노입자가 50 nm를 초과하면 간(liver)과 비장(spleen)에 존재하는 대식세포의 포식작용 때문에, 주입 후 망내계(reticuloendotherial system)에 의해 수 초 혹은 수 분내에 제거되어 다른 조직 부위의 영상을 얻기 어려우며, 최적의 크기로는 20 nm인 것으로 알려져 있다[L. Illum et. al. (1982) Int. J. Pharm. 12: 135-146]. As a coating method using such a polymer, 1) an in situ coating method for coating a polymer in a process of manufacturing iron oxide nanoparticles, and 2) a post-synthetic coating method for coating a polymer after the production of iron oxide nanoparticles is completed. However, when the coating method is used, if the coated iron oxide nanoparticles exceed 50 nm, due to the phagocytosis of macrophages present in the liver and spleen, it may be possible to rely on the reticuloendotherial system after injection. Removal in seconds or minutes makes it difficult to obtain images of other tissue sites, with an optimal size of 20 nm [L. Illum et. al. (1982) Int. J. Pharm. 12: 135-146.

한편, 실제로 상기에 언급된 고분자들을 이용한 코팅된 초상자성 산화철 나노입자는 조직이나 장기에 비특이적으로 축적되어 특정 조직이나 장기를 표적 하는 조영제로는 사용되기 힘들다. 이에 조직에 특이적이면서도, 조직에 장시간 잔류가능하고, 세포내로 침투 가능하여 국소 병변의 영상 효율을 향상시키고 부작용과 독성을 줄일 수 있는 고분자가 요구된다. On the other hand, the superparamagnetic iron oxide nanoparticles coated using the above-mentioned polymers are difficult to be used as contrast agents that target specific tissues or organs due to nonspecific accumulation in tissues or organs. Accordingly, there is a need for a polymer that is specific to tissue and can remain in tissue for a long time and can penetrate into cells to improve imaging efficiency of local lesions and to reduce side effects and toxicity.

PVLA(폴리(비닐벤질-O-β-D-갈락토피라노실-D-글루코나미드)(poly(vinylbenzyl-O-β-D-galactopyranosyl-D-gluconamide)))는 소수성의 폴리스티렌(polystyrene, PS) 주사슬(backbone)과 친수성의 탄수화물(carbohydrate)인 곁사슬(side chain)로 구성된 양성 (amphiphilic) 고분자로서 갈락토오즈가 포함되어 있는데, 상기 갈락토오즈가 간세포 표면에 존재하는 아시알로당단백질 수용체(asialoglycoprotein receptors (ASGP-R))에 인식되어 리간드-수용체 복합체(ligand-receptor complex)를 형성한다. 이 복합체를 통해 간세포 속으로의 특이적인 유입이 일어난다[Biochemistry, vol. 21, no. 24, pp. 6292-6298, 1982.; C. S. Cho et al.,Biomaterials, vol. 27, no. 4, pp. 576585, 2006]. 나아가, PVLA의 양성 성질은 소수성인 초상자성 나노입자를 수용액에 분산시킬 수 있는 유화제(emulsifier)역할을 한다.PVLA (poly (vinylbenzyl- O -β-D-galactopyranosyl-D-gluconamide)) is a hydrophobic polystyrene (polystyrene, O- β-D-galactopyranosyl-D-gluconamide) PS) Amphiphilic polymer consisting of a backbone and a side chain, which is a hydrophilic carbohydrate, contains galactose, which is an aminoal glycoprotein present on the surface of liver cells. It is recognized by receptors (asaloglycoprotein receptors (ASGP-R)) to form a ligand-receptor complex. This complex leads to specific influx into hepatocytes [ Biochemistry , vol. 21, no. 24, pp. 6292-6298, 1982 .; CS Cho et al., Biomaterials , vol. 27, no. 4, pp. 576585, 2006]. Furthermore, the positive nature of PVLA acts as an emulsifier to disperse hydrophobic superparamagnetic nanoparticles in aqueous solution.

삭제delete

삭제delete

이에, 본 발명자들은 상기의 요구에 맞는 고분자를 연구하던 중 갈락토오즈를 수반하는 고분자(galactose-carrying polymer)의 일종인 PVLA를 이용한 초상자성 산화철 나노입자의 코팅을 통해 조영제의 간세포 특이적 전달과 생리적 환경에서의 안정성을 크게 향상시킨 것을 확인하고 본 발명을 완성하였다.Therefore, the inventors of the present invention, while studying a polymer that meets the above requirements, hepatocyte-specific delivery of contrast agent through the coating of superparamagnetic iron oxide nanoparticles using PVLA, a kind of galactose-carrying polymer It was confirmed that the stability in the physiological environment was greatly improved and the present invention was completed.

본 발명의 목적은 초상자성 산화철 나노입자 간의 소수성 인력으로 인한 응집현상과 수용액상에서의 불안정성을 방지하기 위해 간세포로의 특이적 전달과 유화제 기능을 하는 PVLA가 코팅된 초상자성 산화철 나노입자 및 이의 제조방법을 제공하는데 있다. An object of the present invention is to provide a PVLA-coated superparamagnetic iron oxide nanoparticles and a method of preparing the same, which functions as a specific delivery to the hepatocytes and an emulsifier in order to prevent cohesion due to hydrophobic attraction between superparamagnetic iron oxide nanoparticles and instability in aqueous solution. To provide.

또한, 우수한 간 표적 지향성을 나타내는 PVLA가 코팅된 초상자성 산화철 나노입자를 이용한 간질환 진단용 조영제를 제공한다. In addition, the present invention provides a contrast agent for diagnosing liver disease using superparamagnetic iron oxide nanoparticles coated with PVLA, which shows excellent liver target directivity.

상기의 목적을 달성하기 위해, 본 발명은 PVLA가 코팅된 초상자성 산화철 나노입자를 제공한다. In order to achieve the above object, the present invention provides a superparamagnetic iron oxide nanoparticles coated with PVLA.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명에 따른 초상자성 산화철 나노입자는 PVLA가 산화철 나노입자 표면에 코팅되어 있는 구조를 갖는다.The superparamagnetic iron oxide nanoparticles according to the present invention have a structure in which PVLA is coated on the iron oxide nanoparticle surface.

삭제delete

삭제delete

상기 PVLA는 소수성인 폴리스티렌의 주사슬과 친수성인 탄수화물을 곁사슬로 하여 구성된 양성 고분자로서, 소수성인 초상자성 나노입자를 수용액에 분산시킬 수 있는 유화제의 역할을 한다. 나아가, 상기 PVLA에 포함되어 있는 갈락토오즈는 간세포 표면에 존재하는 아시알로당단백질 수용체(ASGP-R)에 인식되어 리간드-수용체 복합체(ligand-receptor complex)를 형성하여 본 발명에 따른 PVLA가 코팅된 산화철 나노입자를 간세포 속으로의 특이적인 유입이 일어날 수 있게 한다.The PVLA is a positive polymer composed of a hydrophobic polystyrene main chain and a hydrophilic carbohydrate as a side chain, and serves as an emulsifier capable of dispersing hydrophobic superparamagnetic nanoparticles in an aqueous solution. Furthermore, galactose contained in the PVLA is recognized by the asialo glycoprotein receptor (ASGP-R) present on the surface of hepatocytes to form a ligand-receptor complex, thereby coating the PVLA according to the present invention. Specific iron oxide nanoparticles can be introduced into hepatocytes.

본 발명에 의한 PVLA가 코팅된 초상자성 산화철 나노입자는 마그헤마이트(Fe2O3) 구조를 갖고 있으며, 10 ~ 20 nm의 평균 입자크기를 갖는다. 간세포 내로의 빠른 유입을 위해서는 입자의 크기가 50 nm 이하인 것이 바람직한바, 본 발명에 따른 초상자성 나노입자를 형광처리하여 간세포에 주입 1시간 이후 간세포 내 유입여부를 조사한 결과 관찰된 세포의 약 75%에 PVLA로 코팅된 산화철 나노입자가 유입된다. The superparamagnetic iron oxide nanoparticles coated with PVLA according to the present invention have a maghemite (Fe 2 O 3 ) structure and have an average particle size of 10 to 20 nm. For rapid inflow into hepatocytes, the size of the particles is preferably 50 nm or less. The superparamagnetic nanoparticles according to the present invention are fluorescently treated and examined for inflow into hepatocytes 1 hour after injection into hepatocytes. About 75% of the observed cells Introduces iron oxide nanoparticles coated with PVLA.

또한 본 발명은 PVLA가 코팅된 초상자성 산화철 나노입자를 포함하는 간질환 진단용 조영제를 제공한다. In another aspect, the present invention provides a contrast agent for diagnosing liver disease comprising a superparamagnetic iron oxide nanoparticles coated with PVLA.

본 발명에 따른 PVLA로 코팅된 산화철 나노입자를 래트(rat)의 꼬리정맥을 통해 주입한 후, MR 영상을 촬영한 결과 주입 후 간에서의 시그날 강도가 현저히 저하되고, 대조군에 비하여 T2 감쇄효과가 현저히 증가한 결과 훨씬 어두운 영상이 관찰되었다. 이로부터 본 발명에 따른 PVLA로 코팅된 산화철 나노입자는 우수한 간 표적지향성을 나타냄으로써 간질환 진단용 조영제로 사용될 수 있다. After injecting the iron oxide nanoparticles coated with PVLA according to the present invention through the tail vein of the rat (rat), the MR image was taken, the signal strength in the liver after the injection is significantly reduced, T 2 attenuation effect compared to the control group Significantly increased results in much darker images. From this, iron oxide nanoparticles coated with PVLA according to the present invention can be used as a contrast agent for diagnosing liver disease by showing excellent liver target orientation.

나아가, 본 발명은 염화철 수용액에 염기성 용액을 첨가하여 산화철 나노입자를 침전시키는 단계(단계 1);Furthermore, the present invention comprises the steps of precipitating iron oxide nanoparticles by adding a basic solution to the aqueous iron chloride solution (step 1);

상기 단계 1의 침전된 산화철 나노입자를 산화 및 투석시켜 저장 용액을 제조하는 단계(단계 2); 및Oxidizing and dialysis the precipitated iron oxide nanoparticles of step 1 to prepare a stock solution (step 2); And

상기 단계 2의 저장 용액에 PVLA 용액을 혼합하고 교반시켜 코팅하는 단계(단계 3)을 포함하여 이루어지는 PVLA로 코팅된 초상자성 산화철 나노입자의 제조방법을 제공한다. Provided is a method for producing superparamagnetic iron oxide nanoparticles coated with PVLA comprising the step (step 3) of mixing and stirring the PVLA solution to the stock solution of step 2.

본 발명에 따른 PVLA가 코팅된 나노입자를 제조하기 위한 단계 1은 염화철 수용액에 염기성 용액을 첨가하여 산화철 나노입자를 침전시키는 단계이다. Step 1 for preparing PVLA-coated nanoparticles according to the present invention is a step of precipitating iron oxide nanoparticles by adding a basic solution to an aqueous solution of iron chloride.

상기 단계 1의 염화철 수용액은 염화철(Ⅱ) 수화물(FeCl2·4H2O) 및 염화철(Ⅲ) 수화물(FeCl3·6H2O)을 증류수에 녹인 혼합수용액을 사용할 수 있다. 본 단계 에 있어서 산화철 나노입자의 침전은 2가 철이온(Fe2 +) 및 3가 철이온(Fe3+)의 공침전법[M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191]을 이용할 수 있다. 하기의 반응식으로 산화철 나노입자를 결합시킬 때 수산화 이온(OH-1)과 만나 마그네타이트(Fe3O4)로 이루어진 산화철 나노입자를 제조할 수 있다.The aqueous iron chloride solution of step 1 may use a mixed aqueous solution of iron (II) chloride hydrate (FeCl 2 · 4H 2 O) and iron (III) chloride hydrate (FeCl 3 · 6H 2 O) in distilled water. Precipitation of the iron oxide nanoparticles in this step is coprecipitation method of divalent iron ions (Fe 2 + ) and trivalent iron ions (Fe 3+ ) [M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; DB Shieh et. al. (2005) Biomaterials 26: 7183-7191. When the iron oxide nanoparticles are combined by the following reaction scheme, the iron oxide nanoparticles made of magnetite (Fe 3 O 4 ) may be produced by meeting with hydroxide ions (OH −1 ).

Fe2 + + 2Fe3 + + 8OH-1 -> Fe3O4 + 4H2OFe 2 + + 2 Fe 3 + + 8 OH -1- > Fe 3 O 4 + 4H 2 O

또한, 상기 염기성 용액으로는 수산화나트륨, 수산화칼륨, 암모니아 수용액 등을 사용할 수 있다. As the basic solution, sodium hydroxide, potassium hydroxide, aqueous ammonia solution or the like can be used.

상기 염화철 혼합 수용액을 격렬히 교반시키면서 염기성 용액을 첨가하면 상기 반응식 1과 같은 반응이 진행된 결과 검은색의 산화철 나노입자가 침전으로 얻어진다. 다음 단계의 진행을 위해 영구자석을 이용하여 침전물만을 분리 수거한다. When the basic solution is added with vigorous stirring of the mixed ferric chloride aqueous solution, the reaction proceeds as in Scheme 1, whereby black iron oxide nanoparticles are obtained by precipitation. Only sediments are collected separately using permanent magnets for the next step.

다음으로, 본 발명에 따른 단계 2는 상기 단계 1에서 침전된 산화철 나노입자를 산화 및 투석시켜 저장 용액을 제조하는 단계이다. Next, step 2 according to the present invention is a step of preparing a stock solution by oxidizing and dialysis the iron oxide nanoparticles precipitated in step 1.

상기 단계 2에 있어서, 침전된 산화철 나노입자를 산화시키기 위해 질 산(HNO3)용액을 사용할 수 있고, 질산 제2철(Fe(NO3)2)용액을 함께 사용할 수 있다. 산화철을 나노입자의 산화 후에 묽은 질산용액을 이용하여 이들 입자를 투석시켜 저장용액을 제조한다.In step 2, nitric acid (HNO 3 ) solution may be used to oxidize the precipitated iron oxide nanoparticles, and ferric nitrate (Fe (NO 3 ) 2 ) solution may be used together. Iron oxide is dialyzed with dilute nitric acid solution after oxidation of the nanoparticles to prepare a stock solution.

다음으로, 본 발명에 따른 상기 단계 3에 의해 상기 단계 2의 저장 용액에 PVLA용액을 혼합하고 교반시킴으로써 산화철 나노입자를 간단하게 코팅할 수 있다. Next, the iron oxide nanoparticles can be simply coated by mixing and stirring the PVLA solution in the stock solution of Step 2 by Step 3 according to the present invention.

본 발명에 따라 제조된 PVLA 초상자성 산화철 나노입자는 코팅된 PVLA가 마그네틱 산화철 용액 (ferrofluid)의 안정성을 확보하고 간에 선택적으로 전달되어 간질환의 진단을 위해 정확하고 안정한 조영제로서 사용할 수 있다.PVLA superparamagnetic iron oxide nanoparticles prepared according to the present invention is coated PVLA to secure the stability of the magnetic iron oxide solution (ferrofluid) and can be selectively delivered to the liver can be used as an accurate and stable contrast agent for the diagnosis of liver disease.

<실시예 1> PVLA로 코팅된 초상자성 산화철 나노입자의 제조Example 1 Preparation of Superparamagnetic Iron Oxide Nanoparticles Coated with PVLA

1) 산화철 나노입자의 제조1) Preparation of Iron Oxide Nanoparticles

산화철 나노입자를 제조하기 위하여, 염기성 용액으로 Fe(Ⅱ)와 Fe(Ⅲ) 이온을 환원시켜 산화철 나노입자를 침전시키는 공침전법(coprecipitation)을 이용하였다[M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191].     In order to prepare iron oxide nanoparticles, coprecipitation was performed in which Fe (II) and Fe (III) ions were reduced as basic solutions to precipitate iron oxide nanoparticles [M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191.

상용적으로 구입가능한 염화철(Ⅲ)(FeCl3·6H2O) 3.255 g과 염화철(Ⅱ)(FeCl2·4H2O) 1.197 g을 증류수 70 ㎖에 첨가하여 혼합 수용액을 제조한다. 상기 혼합 수용액을 격렬히 교반시키면서 암모니아 수용액 7 ㎖를 첨가한다. 이때, 검은 생성물이 생성되는데 이를 침전시키고 6000G의 자기력을 갖는 영구자석을 이용해 침전물만을 수거하였다. A mixed aqueous solution is prepared by adding 3.255 g of commercially available iron (III) chloride (FeCl 3 .6H 2 O) and 1.197 g of iron (II) chloride (FeCl 2 .4H 2 O) to 70 ml of distilled water. 7 ml of aqueous ammonia solution is added while vigorously stirring the mixed aqueous solution. At this time, a black product was produced, which precipitated and collected only the precipitate using a permanent magnet having a magnetic force of 6000G.

2) 산화철 나노입자의 저장 용액 제조2) Preparation of Stock Solution of Iron Oxide Nanoparticles

상기 침전물을 질산용액(HNO3)과 질산 제2철(Fe(NO3)3)용액을 이용하여 산화시킨 후 묽은 질산 용액에서 투석하여 저장 용액을 준비하였다.The precipitate was oxidized using nitric acid solution (HNO 3 ) and ferric nitrate (Fe (NO 3 ) 3 ) solution and dialyzed in a dilute nitric acid solution to prepare a stock solution.

상기 단계 1의 침전물을 2 M의 질산용액 20 ㎖ 과 0.35 M의 질산 제2철 수용액 30 ㎖으로 산화시킨 후, 0.01 M의 묽은 질산으로 투석하여 산화철 나노입자의 저장 용액을 제조하였다[G. A. van Ewiji et al., "Convenient preparation methods for magnetic colloids", Journal of Magnetism and Magnetic Materials, 201(1-3), 31-33. 1999, M. Chastellain et al., "Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles", Journal of Colloid and Interface Science, 278(2), 353-360, 2004.].The precipitate of step 1 was oxidized with 20 ml of 2 M nitric acid solution and 30 ml of 0.35 M ferric nitrate aqueous solution, and then dialyzed with 0.01 M dilute nitric acid to prepare a stock solution of iron oxide nanoparticles [GA van Ewiji]. et al., "Convenient preparation methods for magnetic colloids", Journal of Magnetism and Magnetic Materials , 201 (1-3), 31-33. 1999, M. Chastellain et al., "Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles", Journal of Colloid and Interface Science , 278 (2), 353-360, 2004.].

3) 산화철 나노입자의 PVLA 코팅3) PVLA Coating of Iron Oxide Nanoparticles

상기 산화철 나노입자 저장 용액에 증류수 4 ㎖에 0.32 g의 PVLA를 첨가하여 제조된 PLVA 수용액 1 ㎖를 첨가하여 30 분 동안 교반시켜 코팅된 산화철 나노입자를 제조하였다. To the iron oxide nanoparticles stock solution, 1 ml of an aqueous solution of PLVA prepared by adding 0.32 g of PVLA to 4 ml of distilled water was added and stirred for 30 minutes to prepare coated iron oxide nanoparticles.

<비교예 1>Comparative Example 1

종래 사용되고 있는 조영제로서 표면이 2-피롤리돈(2-pyrrolidone)으로 개질된 산화철 나노입자를 제조하여 사용하였다[Z. Li et. al. (2004) "One-pot reaction to synthesize water-soluble magnetite nanocrystals“ Chem. Mater. 16: 1391-1393]. As a conventionally used contrast agent, iron oxide nanoparticles whose surface is modified with 2-pyrrolidone were prepared and used [Z. Li et. al. (2004) "One-pot reaction to synthesize water-soluble magnetite nanocrystals" Chem. Mater. 16: 1391-1393.

<분석><Analysis>

1) 퓨리에 변환 적외선 분광(FT-IR) 분석1) Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

본 발명에 따라 제조된 산화철 나노입자의 표면에 PVLA로 코팅되어 있는지를 확인하기 위해, PVLA, 산화철 나노입자 및 실시예 1을 퓨리에 변환 적외선 분광기(Nicolet Magna 550 series II spectrometer,Midac, Atlanta, GA, USA)를 이용하여 분석하여 도 1에 나타내었다. 상기 분석을 진행하기 위하여, PVLA, 코팅되지 않은 산화철 나노입자 및 실시예 1의 각각을 실리콘 웨이퍼(silicon wafer)표면에 코팅하여 필름 형태로 준비하였다. In order to confirm that the surface of the iron oxide nanoparticles prepared according to the present invention is coated with PVLA, PVLA, iron oxide nanoparticles and Example 1 were Fourier transform infrared spectrometers (Nicolet Magna 550 series II spectrometer, Midac, Atlanta, GA, USA), and the results are shown in FIG. 1. In order to proceed with the analysis, PVLA, uncoated iron oxide nanoparticles and each of Example 1 was coated on a silicon wafer surface to prepare a film form.

도 1에 나타난 바와 같이, 코팅이 되지 않은 산화철 나노입자(도 1의 (a))의 스펙트럼에서는 631 cm- 1와 564 cm-1에서 강한 흡수 피크가 나타났다. 상기 피크는 마그네타이트의 FeO 결합에 의해 570 cm-1에서 나타나는 ν1의 갈라짐(split)에 의해 나타난 것이다. 또한, 440 cm-1에서 흡수 피크가 관찰되었는데 이는 375 cm-1에서 나타나는 FeO 결합의 ν2가 더 높은 주파수로 이동한 결과임을 알 수 있다[M. Yamaura et al.,Journal of Magnetism and Magnetic Materials, vol. 279, no. 2-3, pp. 210-217, 2004.]. As it is shown in Fig. 1, in the spectrum of the non-coated iron oxide nanoparticles ((a) of Fig. 1) 631 cm - was a strong absorption band at 1 and 564 cm -1. The peak is at 570 cm −1 by FeO bonding of magnetite This is caused by the split of ν 1 . In addition, an absorption peak was observed at 440 cm −1 , indicating that ν 2 of the FeO bond appearing at 375 cm −1 was shifted to a higher frequency [M. Yamaura et al., Journal of Magnetism and Magnetic Materials , vol. 279, no. 2-3, pp. 210-217, 2004.].

순수한 PVLA의 스펙트럼(도 1의 (b))은 올리고사카라이드에 포함되어 있는 CO 그룹의 신축진동(streching vibration)으로 인해 강한 흡수 피크가 1078 cm-1에서 나타나고, 폴리스티렌의 주사슬에 포함되어 있는 -CH2 그룹과 벤젠 그룹의 C=C 결합의 고리 신축진동에 해당하는 흡수 피크가 각각 2926 cm-1, 그리고 1542 cm- 1와 1423 cm- 1 에서 쌍으로 나타나고, -NH 그룹의 굽힘(bending)과 C=O 그룹의 신축진동으로 인한 흡수 피크가 1647 cm-1에서 겹쳐서 나타나 PVLA의 고유의 피크를 확인하였다[C. V. Luyen et al., Chitin and derivatives, in: J. C. Salomone (Ed.), Polymeric Materials Encyclopedia, vol. 2, CRC Press, Boca Raton, 1996, pp. 1208-1217, P. Galgali et al., Carbohydrate Polymers,vol. 67, no. 4, pp. 576-585, 2007.),Y. C. Chang et al., Reactive & Functional Polymers, vol. 66, no. 3, pp. 335-341, 2006]. The spectrum of pure PVLA (FIG. 1 (b)) shows strong absorption peaks at 1078 cm −1 due to the stretching vibrations of the CO groups contained in the oligosaccharides, which are included in the main chain of polystyrene. The absorption peaks corresponding to the ring stretching vibrations of the C = C bonds of the -CH 2 and benzene groups appear in pairs at 2926 cm -1 and 1542 cm - 1 and 1423 cm - 1 , respectively, and the bending of the -NH group ) And absorption peaks due to the stretching vibration of the C = O group overlapped at 1647 cm -1 to confirm the intrinsic peak of PVLA [CV Luyen et al., Chitin and derivatives, in: JC Salomone (Ed.), Polymeric Materials Encyclopedia, vol. 2, CRC Press, Boca Raton, 1996, pp. 1208-1217, P. Galgali et al., Carbohydrate Polymers , vol. 67, no. 4, pp. 576-585, 2007.), YC Chang et al., Reactive & Functional Polymers , vol. 66, no. 3, pp. 335-341, 2006].

실시예 1의 스펙트럼 (도 1(c))에서는 각각 PVLA의 올리고사카라이드와 폴리 스티렌 주사슬의 CH2 을 나타내는 1078 cm-1과 2926 cm-1에서의 흡수 피크를 관찰되어 PVLA가 코팅되어 있음을 알 수 있다. 또한 산화철 나노입자의 특성 피크인 631 cm-1과 564 cm-1에서의 흡수 피크은 산화철 나노입자가 PVLA와의 수소 결합하여 더 높은 파수인 636 cm-1과 588 cm-1로 각각 이동하였다. 이상으로, 산화철 나노입자 표면은 PVLA에 의해 코팅되어 있음을 확인하였고, 산화철 나노입자의 옥사이드(oxide) 표면과 PVLA의 OH 그룹 간의 수소결합에 의해 코팅된 것을 알 수 있다. In the spectrum of Example 1 (FIG. 1 (c)), absorption peaks at 1078 cm −1 and 2926 cm −1 , indicating CH 2 of oligosaccharides and polystyrene main chain of PVLA, respectively, were coated with PVLA. It can be seen. The absorption peaks at 631 cm -1 and 564 cm -1 , which are the characteristic peaks of the iron oxide nanoparticles, also shifted to higher frequencies, 636 cm -1 and 588 cm -1 , due to the hydrogen bonding with PVLA. Above, it was confirmed that the iron oxide nanoparticle surface is coated by PVLA, it can be seen that the coating by the hydrogen bond between the oxide (oxide) surface of the iron oxide nanoparticles and the OH group of PVLA.

2) X-선 회절 분석2) X-ray Diffraction Analysis

X-선 회절 분석기(X-ray diffractometer, XRD)(GADDS; Bruker-AXS D5005, Karlsruhe, Germany)를 이용하여 실시예 1과 비교예 1의 결정구조를 분석하여 도 2에 나타내었다. The crystal structures of Example 1 and Comparative Example 1 were analyzed using an X-ray diffractometer (XRD) (GADDS; Bruker-AXS D5005, Karlsruhe, Germany) and shown in FIG. 2.

도 2에 나타낸 바와 같이, 비교예 1의 회절 분석 그래프(도 3(a))에는 마그네타이트(Fe3O4) 형태의 산화철에 고유한 6 개의 특성 피크가 나타났다. 상기 비교예 1의 그래프의 피크는 마그네타이트와 관련된 JCPDS 파일(PCPDFWIN v.2.02, PDF No. 85-1436)의 데이터베이스와 일치하는 것으로 첨정석(spinel) 구조의 순수한 마그네타이트 산화철 나노입자가 제조되었음을 확인하였다. 반면, 실시예 1의 그래프(도 3(b))에는 마그헤마이트(Fe2O3) 형태의 산화철에 특징적인 피크가 나타났다. 이는 산화철 나노입자 제조 과정 중 두 번째 단계인 산화 과정에서 마그네타이트에서 마그헤마이트로 변환이 일어난 것을 확인하였다[J. P. Jolivet et al., Journal of Colloid and Interface Science, vol. 125, no. 2, pp. 688-701, 1988), T. H. Hyeon et al., Journal of the American Chemical Soiety, vol. 123, no. 51, pp. 12798-12801, 2001],. As shown in FIG. 2, six characteristic peaks unique to iron oxide in the form of magnetite (Fe 3 O 4 ) appeared in the diffraction analysis graph (FIG. 3 (a)) of Comparative Example 1. FIG. The peak of the graph of Comparative Example 1 is consistent with the database of JCPDS files (PCPDFWIN v.2.02, PDF No. 85-1436) related to magnetite, confirming that pure magnetite iron oxide nanoparticles of spinel structure were prepared. . On the other hand, the graph of Example 1 (Fig. 3 (b)) showed a peak characteristic for the iron oxide in the form of maghemite (Fe 2 O 3 ). It was confirmed that the conversion from magnetite to maghemite occurred during the second step of the iron oxide nanoparticle manufacturing process [JP Jolivet et al., Journal of Colloid and Interface Science , vol. 125, no. 2, pp. 688-701, 1988), TH Hyeon et al., Journal of the American Chemical Soiety , vol. 123, no. 51, pp. 12798-12801, 2001].

3) 투과전자 현미경 분석3) Transmission electron microscopy analysis

투과전자현미경 (transmission electron microscopy, TEM) (JEM 1010, JEOL, Japan)을 이용하여 비교예 1과 실시예 1의 크기와 형태를 측정하여 도 3에 나타내었다. 투과전자현미경 측정을 위한 시료는 증류수에 넣고 초음파 분산액을 구리 그리드(copper grid) 위에 소량 떨어뜨린 후 15 분간 공기 중에서 건조시켰다. The size and shape of Comparative Example 1 and Example 1 were measured using a transmission electron microscopy (TEM) (JEM 1010, JEOL, Japan) and shown in FIG. 3. Samples for transmission electron microscopy measurements were placed in distilled water, and the ultrasonic dispersion was dropped in small amounts onto a copper grid and dried in air for 15 minutes.

도 3에 나타낸 바와 같이, 비교예 1(도 3의 (a))은 크기가 10 nm이하의 매우 미세하고 고른 분포의 입자가 생성되었음을 알 수 있었다. 또한 PVLA가 코팅된 실시예 1의 형태 역시 구형을 이루면서 20 nm이하의 미세하고 균일한 크기분포를 갖는 입자임을 확인하였다. As shown in FIG. 3, Comparative Example 1 (FIG. 3A) shows that particles having a very fine and even distribution having a size of 10 nm or less were produced. In addition, it was confirmed that the form of Example 1 coated with PVLA was spherical and had particles having a fine and uniform size distribution of 20 nm or less.

4) 토탈 광산란 측정기(ELS) 분석4) Total Light Scattering Meter (ELS) Analysis

본 발명에 따라 제조된 실시예 1과 비교예 1의 크기와 그 분포를 측정하기 위해, 산란각 90°로 조절된 토탈 광산란 측정기(electrophoretic light scattering spectrophotometer, ELS 8000, Otsuka Electronics, Osaka, Japan)를 이용하여 25 ℃에서 측정하여 도 4에 나타내었다. 상기 토탈 광산란 측정기 분석을 위한 시료는 실시예 1과 비교예 1 각각을 증류수에 넣어 초음파 처리를 하여 준비하였다. In order to measure the size and distribution of Example 1 and Comparative Example 1 prepared according to the present invention, a total light scattering spectrometer (electrophoretic light scattering spectrophotometer, ELS 8000, Otsuka Electronics, Osaka, Japan) adjusted to a scattering angle of 90 ° was used. It was measured at 25 ℃ using it is shown in FIG. Samples for the analysis of the total light scattering meter were prepared by sonicating each of Example 1 and Comparative Example 1 in distilled water.

도 4에 나타낸 바와 같이, 비교예 1의 크기(도 4의(a))는 수 평균 20.8 ± 4.4 nm이었고, 실시예 1의 크기(도 4의 (b))는 수 평균 25.8 ± 6.1 nm로서 PVLA 코팅 후에도 나노입자의 크기가 대폭 증가하지 않는 것으로 확인되었다. 이것은 간세포내로 빠르게 유입하기 위해 입자의 크기가 50 nm이하가 되어야 한다는 조건에 잘 맞는 나노입자를 제조하였음을 알 수 있다. 그러나, TEM으로 측정한 결과에 비해 입자 크기가 크게 분석되었는데, 이는 TEM의 경우에는 입자 한 개의 크기가 측정가능한 반면, ELS는 수용액 상에서 2 ~ 3개로 응집된 입자까지 하나의 입자로 간주되어 측정되는 것에 따른 차이일 것으로 사료된다[K. M. K. Selim et al., Biomaterials,vol. 28, no. 4,pp. 710-716, 2007.]. 또한, 비교예 1과 실시예 1은 나노입자의 크기 분포가 매우 고른 것으로 나타났으며, 특히 PVLA로 코팅한 산화철 나노입자는 단분산에 가까운 분포 경향을 보이므로 PVLA가 유화제로서의 역할을 수행하고 있음을 알 수 있다. As shown in FIG. 4, the size of Comparative Example 1 (FIG. 4A) was 20.8 ± 4.4 nm in number average, and the size of Example 1 (FIG. 4B) was 25.8 ± 6.1 nm in number average. It was found that the size of the nanoparticles did not increase significantly after the PVLA coating. It can be seen that the nanoparticles were prepared to meet the conditions that the size of the particles should be less than 50 nm in order to quickly enter the hepatocytes. However, the particle size was analyzed to be larger than that measured by TEM. In the case of TEM, the size of one particle is measurable, whereas the ELS is regarded as one particle up to 2-3 aggregated particles in an aqueous solution. It is thought to be a difference according to KMK Selim et al., Biomaterials , vol. 28, no. 4, pp. 710-716, 2007.]. In addition, Comparative Example 1 and Example 1 showed that the size distribution of the nanoparticles is very even, especially since the iron oxide nanoparticles coated with PVLA show a distribution tending to be monodisperse, PVLA plays a role as an emulsifier. It can be seen.

<실험예 1> PVLA로 코팅된 산화철 나노입자의 간세포 내로의 유입Experimental Example 1 Influx of PVLA Coated Iron Oxide Nanoparticles into Hepatocytes

본 발명에 따른 실시예 1이 간세포로 유입되는 것을 확인하기 위해 시간에 따른 공초점 주사 현미경을 측정하였다. 본 분석에 필요한 시료는 하기의 방법으로 준비하였다.Confocal scanning microscopy over time was measured to confirm that Example 1 according to the present invention is introduced into hepatocytes. Samples required for this analysis were prepared by the following method.

1) 간세포(Hepatacyte)의 분리 및 배양1) Isolation and Culture of Hepatacyte

간세포는 Seglen 그룹이 제안한 이단계 콜라게나제 관류(two-step collagenase perfusion)기법을 이용하여 ICR 마우스의 간으로부터 분리하였다[P.O. Seglen et. al. (1976), Methods Cell Biol. 13: 29-83)]. ICR 마우스(Charles River Japan, Inc. Kanagaea, Japan)는 5 ~ 7 주령의 암컷을 사용하였다. Hepatocytes were isolated from the liver of ICR mice using the two-step collagenase perfusion technique proposed by Seglen group [P.O. Seglen et. al. (1976), Methods Cell Biol. 13: 29-83). ICR mice (Charles River Japan, Inc. Kanagaea, Japan) used females 5 to 7 weeks old.

우선, 간을 0.5 mM의 에틸렌 글리콜-비스-[베타-아미노 에틸 에테르]-N,N,N',N'-테트라아세트 산/HBSS(ethylene glycol-bis[β-amino ethyl ether]-N,N,N',N'-tetraacetic acid (EGTA)/Hank's balanced salt solution (HBSS))용액으로 관류(perfusion)시킨 후, 5×10-3 중량%의 콜라게나제/HBSS용액으로 관류시켰다. 상기 콜라게나제로 관류시킨 간을 절개하여 HBSS에 넣고 100 ㎛의 막을 이용하여 여과시키고, 4 ℃에서 45 % 퍼콜(Percoll)용액(Pharmacia, Piscataway, NJ, USA)을 이용해 50 g로 10 분 동안 밀도-구배 원심분리(density-gradient)시켜 순수한 간세포를 분리하였다. First, the liver was treated with 0.5 mM ethylene glycol-bis- [beta-amino ethyl ether] -N, N, N ', N' -tetraacetic acid / HBSS (ethylene glycol-bis [β-amino ethyl ether] -N, After perfusion with N, N ', N'- tetraacetic acid (EGTA) / Hank's balanced salt solution (HBSS) solution, it was perfused with 5 x 10 -3 wt% collagenase / HBSS solution. The liver perfused with the collagenase was cut and placed in HBSS, filtered using a membrane of 100 μm, and densified for 10 minutes at 50 g using 45% Percoll solution (Pharmacia, Piscataway, NJ, USA) at 4 ° C. Pure hepatocytes were isolated by gradient-gradient.

다음으로, 상기 분리한 간세포를 우태아혈청(fetal bovine serum:FBS) 없이 50 ㎍/㎖의 페니실린과 50 ㎍/㎖의 스트렙토마이신만 첨가한 윌리엄 배지 E(William's medium E, WE)에 부유시킨 후 콜라겐 타입 I가 코팅된 12-웰(well) 세포배양 플레이트에 웰 당 1 x 105cell을 분주하여 37 ℃ 온도와 5 % 이산화탄소 분위기 하에서 2 시간 동안 배양시켰다. 배양 후, 세포배양 플레이트의 배지를 제거하고 PBS로 3 회 세척하였다.Next, the isolated hepatocytes were suspended in William's medium E (WE) containing only 50 μg / ml penicillin and 50 μg / ml streptomycin without fetal bovine serum (FBS). Collagen type I-coated 12-well cell culture plates were dispensed 1 x 10 5 cells per well incubated for 2 hours at 37 ℃ temperature and 5% carbon dioxide atmosphere. After incubation, the medium of the cell culture plate was removed and washed three times with PBS.

2) 실시예 1의 주입2) Injection of Example 1

간세포에 존재하는 산화철 나노입자의 형광현미경 관찰을 위해 플로오르세인 이소티오시아네이트(fluorescein isothiocyanate, FITC)가 결합된 PVLA(FITC-PVLA)를 합성하여 실시예 1로 간주하여 사용하였다. For fluorescence microscopy observation of iron oxide nanoparticles present in hepatocytes, fluorescein isothiocyanate (FITC) -bound PVLA (FITC-PVLA) was synthesized and used as Example 1.

실시예 1을 1.0 중량% 보빈 세럼 알부민(Bovine Serum Albumin,BSA)가 포함된 WE배지에 분산시켜 1 ㎎/㎖의 농도를 갖는 분산액을 제조한다. 상기에서 준비한 간세포에 웰 당 1 ml 씩 투입하고 각각 15, 30, 60 분 동안 37 ℃의 온도와 5 % 이산화탄소 분위기하에서 배양시켰다.Example 1 was dispersed in a WE medium containing 1.0 wt% Bovine Serum Albumin (BSA) to prepare a dispersion having a concentration of 1 mg / ml. 1 ml per well was added to the prepared hepatocytes, and cultured at 37 ° C. and 5% carbon dioxide atmosphere for 15, 30, and 60 minutes, respectively.

<분석><Analysis>

1) 공초점 레이저 주사현미경 분석1) Confocal Laser Scanning Microscope Analysis

간세포내로 주입된 실시예 1을 확인하기 위하여, 정해진 인큐베이션 시간이 경과한 시료는 PBS로 3회 세척하여 세포 외부에 남아 있는 실시예 1을 제거한 후, 공초점 레이저 주사현미경(confocal laser scanning microscopy, Micro Systems CLSM 410, Carl Zeiss, Germany)을 이용하여 세포에 존재하는 산화철 나노입자의 형광과 위상차 이미지를 관찰하여 도 5(a)와 도5(b)에 나타내었다. In order to confirm Example 1 injected into the hepatocytes, the sample after a predetermined incubation time was washed three times with PBS to remove Example 1 remaining outside the cells, and then confocal laser scanning microscopy (Micro) Systems CLSM 410, Carl Zeiss, Germany) and observed the fluorescence and retardation image of the iron oxide nanoparticles present in the cells are shown in Figure 5 (a) and 5 (b).

이때, FITC를 이용해서 실시예 1을 표지해 주면 간세포내부로의 나노입자 유입 여부를 시각적으로 확인할 수 있다. 간세포도 자체적으로 형광을 나타낼 수 있으므로 실험 결과 얻은 형광 이미지가 산화철 나노입자에 표지된 FITC에 의한 것인지를 확인하기 위해 아무처리도 하지 않은 간세포를 대조군으로 사용하였다. At this time, if Example 1 is labeled using FITC, it may be visually confirmed whether nanoparticles are introduced into hepatocytes. Since hepatocytes can also fluoresce themselves, untreated hepatocytes were used as a control to confirm whether the fluorescence image obtained by the experiment resulted from FITC labeled on the iron oxide nanoparticles.

도 5(a)에서 볼 수 있듯이 대조군에서는 형광이 나타나는 부분이 거의 없는 반면, 실시예 1이 투입된 시료에서는 처리 시간이 경과함에 따라 점점 선명한 형광이 발현되는 것을 관찰가능하며, 실시예 1이 투입되어 1 시간이 경과된 간세포는 도 5(b)와 비교하여, 약 75 % 이상의 세포에서 형광발현되는 것을 확인하고 PVLA로 코팅된 나노입자가 간세포 안으로 유입되는 것을 확인하였다.As can be seen in Figure 5 (a) there is almost no fluorescence appears in the control group, while in the sample added to Example 1 it can be observed that the fluorescence is increasingly vivid as the treatment time elapses, Example 1 is added After 1 hour, hepatocytes were observed to fluoresce in about 75% or more of cells compared to FIG. 5 (b), and it was confirmed that PVLA-coated nanoparticles were introduced into hepatocytes.

또한 실시예 1이 세포 내부로 유입(internalization)되어 세포질에 확실히 위치하는지, 또는 단지 세포막에 부착만 되어 있는지를 확인하기 위하여 광학 단면의 갤러리 모드를 사용하여 도 6에 나타내었다. In addition, Example 1 is shown in Figure 6 using the gallery mode of the optical cross-section to confirm whether it is internalized inside the cell to ensure that it is located in the cytoplasm or only attached to the cell membrane.

도 6에 나타낸 바와 같이, 형광이 간세포의 세포질에 균일하게 발현되는 것을 관찰되어 실시예 1이 세포질 내로 유입되는 것을 확인할 수 있었다.As shown in Figure 6, the fluorescence was observed to be uniformly expressed in the cytoplasm of hepatocytes, it was confirmed that Example 1 is introduced into the cytoplasm.

<실험예 2> PVLA로 코팅된 산화철 나노입자를 이용한 자기 공명 영상촬영Experimental Example 2 Magnetic Resonance Imaging Using Iron Oxide Nanoparticles Coated with PVLA

실시예 1이 간질환 진단을 위한 조영제로서의 응용가능성을 조사하기 위하여, 실시예 1을 6 주령의 래트(rat)에 꼬리 정맥을 통해 주입한 후, 동물용 코일 (4.3 cm Quadrature volume coil, Nova Medical System, Wilmington, DE)을 이용한 1.5 T MR 스캐너(GE Signa Exite Twin-speed, GE Health Care, Milwaukee, WI)로 자기공명영상(Magnetic reasonance)을 촬영하였다. 이때 대조군으로 비교예 1을 사용하여 도 7에 도시하였다. 또한, T2 감쇄 효과을 위해, 실시예 1 및 비교예 1의 시그날 강도(signal intensity, SI)를 조영제의 주입 전(SI pre of liver)과 주입 후(SI post of liver) 동일한 간부위에서 ROI (regions of interest)로 측정하 였고, 간에 인접한 등 근육에 대해서도 조영제의 주입 전(SI pre of BM)과 주입 후(SI post of BM) 동일한 등 근육에서 ROI를 측정하여 표 1 및 표 2에 나타내었다. 실시예를 주입시킨 후 간에서의 상대적인 시그날 강도(SI) 증가는 하기 수학식 1에 의해 계산하였다.In order to investigate the applicability of Example 1 as a contrast agent for diagnosing liver disease, Example 1 was injected through a tail vein into a 6-week-old rat, followed by an animal coil (4.3 cm Quadrature volume coil, Nova Medical). Magnetic reasonance was taken with a 1.5 T MR scanner (GE Signa Exite Twin-speed, GE Health Care, Milwaukee, WI) using System, Wilmington, DE. At this time, it is shown in Figure 7 using Comparative Example 1 as a control. In addition, for the effect of T2 attenuation, the signal intensity (SI) of Example 1 and Comparative Example 1 was changed to ROI (regions of the pre-liver) and the post-injection (SI post of liver) in the same liver region. ROI was measured in the same dorsal muscle before injection (SI pre of BM) and after injection (SI post of BM) of the back muscles adjacent to the liver. The relative signal intensity (SI) increase in the liver after injection of the example was calculated by the following equation.

실시예 1Example 1 주입전 SISI before injection 주입후 SISI after injection 간부위Liver 3,6003,600 760760 등근육back muscles 2,6002,600 2,2002,200

비교예 1Comparative Example 1 주입전 SISI before injection 주입후 SISI after injection 간부위Liver 3,0003,000 2,7002,700 등근육back muscles 2,2502,250 3,2003,200

Figure 112007067402369-pat00003
Figure 112007067402369-pat00003

도 7, 표 1 및 표 2에 나타낸 바와 같이, 실시예 1의 주입전 자기공명사진(도 7의 (a))보다 실시예 1의 주입 후(도 7의(b))사진은 간에서의 SI가 현저하게 떨어져 상대적으로 어두운 영상이 나타났다. 또한, 비교예 1이 주입되기 전 자기 공명사진(도 7의(c))보다 비교예 1이 주입된 후 자기공명사진(도 7의 (d))이 더 어두운 영상이 나타났으나, 실시예 1의 주입후 자기공명 사진보다 밝은 영상이 관찰되었다. 이에 실시예 1과 비교예 1의 SI 증감을 상기 수학식을 대입하여 계산한 결과, 비교예 1의 주입 후에는 36%의 T2 감쇄 효과가 나타난 반면, 실시예 1의 주입 후에는 75.4%의 T2 감쇄 효과를 나타냄으로써 기존의 2-피롤리돈이 코팅된 산화철 나노입자보다 더 우수한 간표적 지향성을 나타내는 것을 확인하였다. As shown in Fig. 7, Table 1 and Table 2, after the injection of Example 1 (Fig. 7 (b)) than the magnetic resonance photograph (Fig. 7 (a)) before the injection of Example 1, SI dropped significantly, resulting in a relatively dark image. In addition, although the magnetic resonance photograph (FIG. 7 (d)) was darker than the magnetic resonance photograph (FIG. 7 (c)) before the comparative example 1 was injected, the image was darker. After injection of 1, a brighter image was observed than the magnetic resonance image. As a result of calculating the SI increase and decrease of Example 1 and Comparative Example 1 by the above equation, after the injection of Comparative Example 1 showed a T 2 attenuation effect of 36%, after the injection of Example 1 of 75.4% By exhibiting a T 2 attenuation effect, it was confirmed that conventional 2-pyrrolidone exhibited better target orientation than coated iron oxide nanoparticles.

따라서, 본 발명에 따라 제조된 PVLA가 코팅된 초상자성 나노입자는 Mn-DPDP로 알려진 망가포디 나트륨(mangafodipir trisodium)과 같은 간세포 특이적 조영제로의 사용가능한 것을 확인하였다. Therefore, it was confirmed that the PVLA-coated superparamagnetic nanoparticles prepared according to the present invention can be used as a hepatocyte-specific contrast agent such as mangafodipir trisodium known as Mn-DPDP.

도 1은 본 발명에 따라 제조된 일실시형태의 FT-IR 그래프이고;(PVLA 코팅 전 산화철 나노입자(a), PVLA(b), 실시예 1(c)1 is an FT-IR graph of one embodiment made in accordance with the present invention; (iron oxide nanoparticles before PVLA coating (a), PVLA (b), Example 1 (c))

도 2는 본 발명에 따라 제조된 일실시형태의 XRD 그래프이고;(비교예 1(a), 실시예 1(b))2 is an XRD graph of one embodiment prepared according to the present invention; (Comparative Example 1 (a), Example 1 (b))

도 3은 본 발명에 따라 제조된 일실시형태의 TEM 사진이고;(비교예 1(a), 실시예 1(b))3 is a TEM photograph of one embodiment prepared according to the present invention; (Comparative Example 1 (a), Example 1 (b))

도 4는 본 발명에 따라 제조된 일실시형태의 ELS 그래프이고;(비교예 1(a), 실시예 1(b))4 is an ELS graph of one embodiment prepared according to the present invention; (Comparative Example 1 (a), Example 1 (b))

도 5는 간세포에 존재하는 본 발명에 따라 제조된 일실시형태의 공초점 레이저 주사현미경 사진이고; (형광 현미경사진(a), 위상차 현미경사진(b))5 is a confocal laser scanning micrograph of one embodiment prepared according to the present invention present in hepatocytes; (Fluorescence micrograph (a), phase contrast micrograph (b))

도 6은 간세포에 존재하는 본 발명에 따라 제조된 일실시형태의 공초점 레이저 주사현미경의 갤러리 모드사진이고;6 is a gallery mode photograph of a confocal laser scanning microscope of one embodiment made according to the invention present in hepatocytes;

도7은 간세포에 존재하는 본 발명에 따라 제조된 일실시형태의 자기 공명사진이다.(실시예 1 투입 전(a), 실시예 1 투입후, 1시간 경과 후(b), 비교예 1투입 전(c), 비교예 1 투입 후(d))7 is a magnetic resonance image of one embodiment prepared according to the present invention present in hepatocytes. (Example 1 before (a), after Example 1, after 1 hour (b), Comparative Example 1 Before (c), after the introduction of Comparative Example 1 (d))

Claims (8)

PVLA가 코팅된 초상자성 마그헤마이트(Fe2O3)가 혼재되어 있는 PVLA가 코팅된 초상자성 산화철 나노입자.PVLA-coated superparamagnetic iron oxide nanoparticles containing PVLA-coated superparamagnetic maghemite (Fe 2 O 3 ). 삭제delete 제1항에 있어서, 상기 마그헤마이트(Fe2O3) 나노입자의 평균 입자크기는 10 ~ 20 nm의 크기인 것을 특징으로 하는 PVLA가 코팅된 초상자성 산화철 나노입자.The superparamagnetic iron oxide nanoparticles coated with PVLA according to claim 1, wherein the average particle size of the maghemite (Fe 2 O 3 ) nanoparticles is 10-20 nm. 제1항에 있어서, PVLA가 코팅된 초상자성 마그헤마이트(Fe2O3)가 혼재되어 있는 PVLA가 코팅된 초상자성 산화철 나노입자를 포함하는 간질환 진단용 조영제.The contrast agent for diagnosing liver disease according to claim 1, comprising PVLA-coated superparamagnetic iron oxide nanoparticles in which PVLA-coated superparamagnetic maghemite (Fe 2 O 3 ) is mixed. 염화철 수용액에 염기성 용액을 첨가하여 산화철 나노입자를 침전시키는 단계(단계 1);Adding a basic solution to the aqueous iron chloride solution to precipitate the iron oxide nanoparticles (step 1); 상기 단계 1의 침전된 산화철 나노입자를 산화 및 투석시켜 저장 용액을 제조하는 단계(단계 2); 및Oxidizing and dialysis the precipitated iron oxide nanoparticles of step 1 to prepare a stock solution (step 2); And 상기 단계 2의 저장 용액에 PVLA 용액을 혼합하고 교반시켜 코팅하는 단계(단계 3)을 포함하여 이루어지는 것을 특징으로 하는 청구항 제1항의 PVLA가 코팅된 초상자성 산화철 나노입자의 제조방법.The method for preparing PVLA-coated superparamagnetic iron oxide nanoparticles of claim 1, comprising the step (3) of coating the PVLA solution by mixing and stirring the stock solution of step 2. 제5항에 있어서, 상기 단계 1의 염화철 수용액은 염화철(Ⅱ)(FeCl2)수화물과 염화철(Ⅲ)(FeCl3)수화물의 혼합수용액인 것을 특징으로 하는 청구항 제1항의 PVLA가 코팅된 초상자성 산화철 나노입자의 제조방법.The superparamagnetic coating of claim 1, wherein the aqueous iron chloride solution of step 1 is a mixed aqueous solution of iron (II) chloride (FeCl 2 ) hydrate and iron (III) chloride (FeCl 3 ) hydrate. Method for producing iron oxide nanoparticles. 제5항에 있어서, 상기 단계 1의 염기성 용액은 수산화나트륨, 수산화칼륨 또는 암모니아 수용액인 것을 특징으로 하는 청구항 제1항의 PVLA가 코팅된 초상자성 산화철 나노입자의 제조방법.The method of claim 5, wherein the basic solution of step 1 is an aqueous solution of sodium hydroxide, potassium hydroxide or ammonia, wherein the PVLA-coated superparamagnetic iron oxide nanoparticles of claim 1 are used. 제5항에 있어서, 상기 단계 2의 산화는 질산(HNO3)용액과 질산 제2철(Fe(NO3)2)용액에 의해 수행되는 것을 특징으로 하는 청구항 제1항의 PVLA가 코팅된 초상자성 산화철 나노입자의 제조방법.The superparamagnetic coated PVLA of claim 1, wherein the oxidation of step 2 is performed by using a nitric acid (HNO 3 ) solution and a ferric nitrate (Fe (NO 3 ) 2 ) solution. Method for producing iron oxide nanoparticles.
KR1020070094585A 2007-09-18 2007-09-18 Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases KR100974083B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070094585A KR100974083B1 (en) 2007-09-18 2007-09-18 Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070094585A KR100974083B1 (en) 2007-09-18 2007-09-18 Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases

Publications (2)

Publication Number Publication Date
KR20090029390A KR20090029390A (en) 2009-03-23
KR100974083B1 true KR100974083B1 (en) 2010-08-04

Family

ID=40696115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070094585A KR100974083B1 (en) 2007-09-18 2007-09-18 Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases

Country Status (1)

Country Link
KR (1) KR100974083B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298773B1 (en) 2020-02-07 2021-09-07 주식회사 녹십자엠에스 Method for manufacturing nanoparticles having hydrophilic ligands and antibodies conjugated to each surface of them, nanoparticles manufactured using same method, complex containing same nanoparticles, and diagnostic kit containing same nanoparticles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077126A (en) * 1996-01-10 1999-10-25 토브 아스 헬지 Contrast agent
JP2004344025A (en) * 2003-05-20 2004-12-09 Dainippon Printing Co Ltd Cell culture substrate and method for producing the same
KR100541282B1 (en) * 2004-06-29 2006-01-10 경북대학교 산학협력단 Liver contrast agent using iron oxide nanoparticles and manufacture method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077126A (en) * 1996-01-10 1999-10-25 토브 아스 헬지 Contrast agent
JP2004344025A (en) * 2003-05-20 2004-12-09 Dainippon Printing Co Ltd Cell culture substrate and method for producing the same
KR100541282B1 (en) * 2004-06-29 2006-01-10 경북대학교 산학협력단 Liver contrast agent using iron oxide nanoparticles and manufacture method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles
US9755231B2 (en) 2013-01-25 2017-09-05 Lg Chem, Ltd. Method of preparing iron oxide nanoparticles

Also Published As

Publication number Publication date
KR20090029390A (en) 2009-03-23

Similar Documents

Publication Publication Date Title
Bae et al. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging
Li et al. Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging
Peng et al. Nanostructured magnetic nanocomposites as MRI contrast agents
Peng et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications
JP5799161B2 (en) MRI contrast medium for lymphatic imaging based on iron oxide nanoparticles and method for imaging a lymph node using the same
Martínez-Banderas et al. Magnetic core–shell nanowires as MRI contrast agents for cell tracking
Hsu et al. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications
Hu et al. High-performance nanostructured MR contrast probes
CN103143043B (en) Preparation method of Fe3O4/Au composite nanoparticles
Piché et al. Targeted T 1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles
Yang et al. Biodegradable yolk-shell microspheres for ultrasound/MR dual-modality imaging and controlled drug delivery
Xiao et al. Superparamagnetic iron oxide nanoparticles stabilized with multidentate block copolymers for optimal vascular contrast in T 1-weighted magnetic resonance imaging
Xiong et al. Gd-Chelated poly (propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications
US9775824B2 (en) Magnetic nanoparticle composition and manufacturing method and use thereof
Zhang et al. Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging
Slabu et al. Size-tailored biocompatible FePt nanoparticles for dual T 1/T 2 magnetic resonance imaging contrast enhancement
Tan et al. I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas
Lee et al. Anchoring ligand-effect on bright contrast-enhancing property of hollow Mn3O4 nanoparticle in T1-weighted magnetic resonance imaging
Biglione et al. Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels
KR100974083B1 (en) Iron oxide nano particles coated with PVLA, preparation method thereof and contrast agent for diagnosing liver diseases
Yan et al. Self-assembled magnetic luminescent hybrid micelles containing rare earth Eu for dual-modality MR and optical imaging
Wu et al. Facile one-pot synthesis of different surfactant-functionalized water-soluble Fe 3 O 4 nanoparticles as magnetic resonance imaging contrast agents for melanoma tumors
KR101143257B1 (en) MRI contrast agent coated with mannose-conjugated polymer and method for producing the same
Niu et al. Controlled synthesis of shell cross-linked magnetic micelles for efficient liver MR imaging
KR100949465B1 (en) Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E90F Notification of reason for final refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130510

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150729

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee