KR100949465B1 - Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases - Google Patents

Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases Download PDF

Info

Publication number
KR100949465B1
KR100949465B1 KR1020080015374A KR20080015374A KR100949465B1 KR 100949465 B1 KR100949465 B1 KR 100949465B1 KR 1020080015374 A KR1020080015374 A KR 1020080015374A KR 20080015374 A KR20080015374 A KR 20080015374A KR 100949465 B1 KR100949465 B1 KR 100949465B1
Authority
KR
South Korea
Prior art keywords
iron oxide
oxide nanoparticles
spions
mannan
met
Prior art date
Application number
KR1020080015374A
Other languages
Korean (ko)
Other versions
KR20090090104A (en
Inventor
유미경
박인규
정환정
정용연
권진숙
조종수
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080015374A priority Critical patent/KR100949465B1/en
Publication of KR20090090104A publication Critical patent/KR20090090104A/en
Application granted granted Critical
Publication of KR100949465B1 publication Critical patent/KR100949465B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 만난(mannan)이 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제에 관한 것으로, 본 발명의 만난이 코팅된 초상자성 산화철 나노입자는 초상자성 산화철 용액(ferrofluid)의 안정성을 확보하고 간의 쿱퍼 세포(Kupffer cell)에 선택적으로 전달됨으로써 정확하게 간질환을 진단하는 안정한 조영제로서 유용하게 사용될 수 있다.The present invention relates to a superparamagnetic iron oxide nanoparticles coated with mannan, a method for preparing the same, and a contrast agent for diagnosing liver disease, including the same, wherein the superparamagnetic iron oxide nanoparticles of the present invention are coated with a superparamagnetic iron oxide solution (ferrofluid). As a result of securing stability and selectively delivering to liver Kupffer cells, it can be usefully used as a stable contrast agent for accurately diagnosing liver disease.

조영제, 초상자성, 산화철 나노입자, 만난, 간질환 Contrast agent, superparamagnetic, iron oxide nanoparticles, met, liver disease

Description

만난이 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제{Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases}Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method approximately and contrast agent for diagnosing liver diseases}

본 발명은 만난(mannan)이 코팅된 초상자성 산화철 나노입자, 이의 제조방법 및 이를 포함하는 간질환 진단용 조영제에 관한 것으로, 보다 상세하게는 만난이 코팅되어 특이적으로 간의 Kupffer cell에 유입되며, 안정성이 높은 초상자성산화철 나노입자와 조영제로서의 용도에 관한 것이다.The present invention relates to a superparamagnetic iron oxide nanoparticles coated with mannan, a method for preparing the same, and a contrast agent for diagnosing liver disease, including the same. More specifically, the mannan is coated and specifically introduced into a liver Kupffer cell. The high superparamagnetic iron oxide nanoparticles and the use as a contrast agent.

최근 평균 수명이 늘어남에 따라 노인 인구가 증가하여 다양한 암질환 및 뇌혈관질환을 갖는 환자가 증가하고 있으며, 식습관과 생활환경이 변화함 따라 성인병 발병이 나타나는 환자의 연령이 낮아지는 추세에 있다. 이에 각종 질환을 조기에 발견하여 치료율을 높이는 것이 국민 생활 건강증진에 있어 매우 중요하다.As the average life expectancy increases, the elderly population has increased, and patients with various cancer diseases and cerebrovascular diseases have increased. As the eating habits and the living environment have changed, the age of patients with adult disease has been decreasing. Therefore, early detection of various diseases and increasing treatment rates are very important for improving the health of people's lives.

질병의 조기 발견을 위해 다양한 진단 방법이 개발되고 있으며, 특히 자각 증상이 나타나기 전에 시각적으로 조기 발견이 가능한 최첨단 방법인 핵자기공명 단층촬영술 (magnetic reasonance image,MRI)의 사용이 증가되고 있다.Various diagnostic methods are being developed for the early detection of diseases, and the use of nuclear magnetic resonance imaging (MRI), a state-of-the-art method for visually early detection before subjective symptoms appear, is increasing.

MRI는 양성자에서 나오는 신호를 측정하여 나타낸 것으로, 인체에 비침습적인 방법으로 진단하였으나, MRI를 위한 조영제(contrast agent)를 사용하면 진단의 민감도와 특이도를 증가시킬 수 있음이 밝혀진 이후, 최근에는 MRI 혈관 조영술, 관류영상에 이르기까지 MRI 조영제의 적용영역이 확대되고 있다. MRI is a measurement of a signal from a proton and is diagnosed by non-invasive methods in humans.However, the use of contrast agents for MRI can increase the sensitivity and specificity of the diagnosis. From MRI angiography to perfusion imaging, the area of application of MRI contrast agents is expanding.

조영제는 MRI의 자장이나 X-선의 통과에 영향을 미침으로써, 일반 MRI나 X-선 촬영으로는 확인 불가했던 조직이나 혈관, 위, 장 등의 내장기관에 투여하여 각 기관의 흡수차이를 이용하여 목적하는 부위를 관찰하거나 기능을 평가하기 위해 이용되는 물질로서 보다 선명한 영상을 형성시키는 역할을 하는 물질이다. 상기 조영제는 자장에 미치는 영향에 따라 상자성(paramagnetism), 초상자성(superparamagnetism) 제제로 구분되며, 각각 양성 조영제 및 음성 조영제라고도 불리운다. Contrast agent affects magnetic field and X-ray passage of MRI, and it is administered to internal organs such as tissues, blood vessels, stomach, and intestines that cannot be identified by general MRI or X-ray imaging. It is a substance used to observe a target site or to evaluate a function, and is a substance that forms a clearer image. The contrast agents are classified into paramagnetism and superparamagnetism agents according to their effect on the magnetic field, and are also called positive contrast agents and negative contrast agents, respectively.

양성 조영제는 조영제가 투여된 조직부분의 양성자 종축이완시간(T1, longitudinal relaxation time) 감쇄효과가 우세하여 T1강조영상(T1 weighted image)에서 밝은 신호로 나타나며, 음성 조영제는 조직의 횡축이완시간(T2 transeverse relaxation time) 감쇄효과가 우세하여 T2강조영상(T2 weighted image)에서 어두운 신호로 나타난다[R. Weissleder et. al. (2000) Nat. Med. 6: 351-355]. Positive contrast agents longitudinal axis proton relaxation time (T 1, longitudinal relaxation time) is dominant and T 1 weighted images damping effect of the systematic part of the contrast agent administration (T 1 weighted image) appears as a bright signal from the, audio contrast agent to the horizontal axis relaxation time (T 2 relaxation time transeverse) attenuation of tissue predominantly T 2 weighted images (T 2 weighted image) [R. Weissleder et. al. (2000) Nat. Med. 6: 351-355.

상기 음성 조영제에 사용되는 초상자성 물질로는 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트 (maghemite, Fe2O3)와 같은 산화철(superparamagnetic iron oxide, SPIO)이 대표적으로 들 수 있다. 이들은 수십 나노미터 이하의 크기를 갖는 균일한 입자로 제조하여 안정한 콜로이드 형태로 이루어져 있는 산화철 용액(ferrofluid)으로 제조되어 체내로 투여된다. The superparamagnetic material used for the negative contrast agent may be representative of superparamagnetic iron oxide (SPIO) such as magnetite (Fe 3 O 4 ) or maghemite (maghemite, Fe 2 O 3 ). They are made into uniform particles having a size of several tens of nanometers or less and made into a ferrofluid in the form of a stable colloid and administered into the body.

한편, 초상자성 나노입자가 효과적인 조영제로 이용하기 위해서는 높은 포화자화도를 가지면서 작고 균일한 안정한 마그네틱 산화철 용액(ferrofluid)이 제조되어야 한다. 상기 산화철 용액(ferrofluid)은 Fe3O4 나 Fe2O3와 같은 마그네틱 나노입자의 콜로이드 분산용액으로 매우 강한 자기장하에서도 액체상태를 유지할 수 있어야한다. 그러나, 순수한 초상자성 산화철 입자는 1) 소수성이면서 부피 대 표면적의 비가 크기 때문에 입자들 간에 소수성 인력(hydrophobic interaction)이 강하고 이로 인해 응집이 잘 일어나 클러스터(cluster)를 형성하고, 2) 충분히 안정하지 않으면 본래 구조가 변해서 자기적인 특성이 변할 수 있고, 3) 생체 환경에 접하게 되면 빠르게 생분해가 될 수 있으며, 4) 순수한 산화철 자체만으로는 독성이 있어 인체에 유해하므로 조영제로서의 이용에 제한이 따르는 문제가 있다. On the other hand, in order to use the superparamagnetic nanoparticles as an effective contrast agent, a small, uniform and stable magnetic iron oxide solution (ferrofluid) having high saturation magnetization should be prepared. The iron oxide solution (ferrofluid) is Fe 3 O 4 It is a colloidal dispersion solution of magnetic nanoparticles such as Fe 2 O 3 and must be able to maintain liquid state even under very strong magnetic field. However, pure superparamagnetic iron oxide particles are 1) hydrophobic and have a high volume-to-surface area ratio, resulting in a strong hydrophobic interaction between the particles, leading to agglomeration and forming clusters. The original structure can be changed, the magnetic properties can be changed, 3) it can be rapidly biodegradable when it comes into contact with the living environment, 4) pure iron oxide itself is toxic and harmful to the human body, there is a problem that there is a limit to use as a contrast agent.

따라서, 이러한 문제를 개선하고 상기 초상자성 나노입자를 포함하는 산화철 용액의 안정성을 유지시키기 위해서는 입자의 표면 개질이 요구된다. 일반적으로 계면활성제나 고분자와 같은 안정제로 상기 나노입자를 코팅하는 방법이 개발되어 왔다. 종래 나노입자를 코팅하는 고분자로는 폴리아크릴산 (Polyacrylic acid, PAA), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리비닐알 콜(polyvinylalcohol, PVA), 폴리에틸렌글리콜(Polyethylene, PEG)등의 합성 고분자[M.H. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; M. Chastellain et. al. (2004) J. Colloid Interface Sci. 278: 353-360]와 젤라틴(Gelatin), 덱스트란(Dextran), 키토산(Chitosan), 플루란(pullulan)의 천연 고분자[Y.C. Chang et. al. (2005) J. Collide Interface Sci. 283: 446-451) ; M. C. Bautista et. al. (2005) J. Magn. Magn. Mater. 293: 20-27]가 보고되어있다. Thus, surface modification of the particles is required to ameliorate these problems and maintain the stability of the iron oxide solution comprising the superparamagnetic nanoparticles. In general, a method of coating the nanoparticles with a stabilizer such as a surfactant or a polymer has been developed. Conventional polymers for coating nanoparticles include synthetic polymers such as polyacrylic acid (PAA), polyvinylpyrrolidone (PVP), polyvinyl alcohol (polyvinylalcohol, PVA), polyethylene glycol (Polyethylene, PEG), etc. [MH Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; M. Chastellain et. al. (2004) J. Colloid Interface Sci. 278: 353-360] and natural polymers of gelatin, dextran, chitosan and pullulan [Y.C. Chang et. al. (2005) J. Collide Interface Sci. 283: 446-451); M. C. Bautista et. al. (2005) J. Magn. Magn. Mater. 293: 20-27.

이러한 고분자를 사용하는 코팅 방법으로는 1)산화철 나노입자가 제조되는 과정에 고분자를 코팅하는 in situ 코팅법과 2)산화철 나노입자의 제조가 완료된 후 고분자를 코팅하는 post-synthetic 코팅법이 알려져 있다. As a coating method using such a polymer, 1) an in situ coating method for coating a polymer in a process of manufacturing iron oxide nanoparticles, and 2) a post-synthetic coating method for coating a polymer after the production of iron oxide nanoparticles is completed.

그러나, 상기 코팅방법을 이용하는 경우, 코팅된 산화철 나노입자가 50 nm를 초과하면 간(liver)과 비장(spleen)에 존재하는 대식세포의 포식작용 때문에, 주입 후 망내계(reticuloendotherial system)에 의해 수 초 혹은 수 분 내에 제거되어 다른 조직 부위의 영상을 얻기 어려우며, 최적의 크기로는 20 nm인 것으로 알려져 있다[L. Illum et. al. (1982) Int. J. Pharm. 12: 135-146]. However, when the coating method is used, if the coated iron oxide nanoparticles exceed 50 nm, due to the phagocytosis of macrophages present in the liver and spleen, it may be possible to rely on the reticuloendotherial system after injection. Removal in seconds or minutes makes it difficult to obtain images of other tissue sites, and is known to be 20 nm in optimal size [L. Illum et. al. (1982) Int. J. Pharm. 12: 135-146.

한편, 실제로 상기에 언급된 고분자들을 이용한 코팅된 초상자성 산화철 나노입자는 조직이나 장기에 비특이적으로 축적되어 특정 조직이나 장기를 표적 하는 조영제로는 사용되기 힘들다. 이에 조직에 특이적이면서도, 조직에 장시간 잔류가능하고, 세포내로 침투 가능하여 국소 병변의 영상 효율을 향상시키고 부작용과 독성을 줄일 수 있는 고분자가 요구된다. On the other hand, the superparamagnetic iron oxide nanoparticles coated using the above-mentioned polymers are difficult to be used as contrast agents that target specific tissues or organs due to nonspecific accumulation in tissues or organs. Accordingly, there is a need for a polymer that is specific to tissue and can remain in tissue for a long time and can penetrate into cells to improve imaging efficiency of local lesions and to reduce side effects and toxicity.

만난(mannan)은 몇몇 효모의 주된 구성성분으로 주로 D-만노스(mannose)로 구성되어 있다. 사카로미세스 세레비아에(Saccharomyces cereviae)의 만난은 α-(1,6)-, α-(1,3)- 및 α-(1,2)-로 결합되고, 부분적으로 인산화된 D-만노스 잔기로 구성된 수용성 분자이다. 상기 만난은 대식세포상의 만노스 수용체에 의하여 인식된다. Mannan is the main constituent of some yeasts and consists mainly of D-mannose. Saccharomyces cereviae encounters with α- (1,6)-, α- (1,3)-and α- (1,2)-and partially phosphorylated D-mannose It is a water-soluble molecule composed of residues. The encounter is recognized by mannose receptors on macrophages.

본 발명자는 상기 만난 고분자를 이용하여 코팅된 산화철 나노입자의 제조에 초점을 맞추게 되었다. The inventors have focused on the production of coated iron oxide nanoparticles using the met polymer.

조영제와 관련된 종래 기술을 살펴보면, 초상자성 산화철계 나노입자를 이용한 간 조영제 및 그 제조방법(대한민국 특허등록 제 10-0541282호), 초음파를 이용하여 제조된 MRI 조영제에 사용되는 산화철 나노분말 및 그 제조방법과 이를 이용한 MRI 조영제의 제조방법과 그 MRI 조영제(대한민국 특허등록 제 10-0637275호), 의료 및 진단절차에 사용하기 위한 조영제 및 그 이용방법(대한민국 특허 공개번호 10-2006-0052675호) 등이 있다. 하지만 고분자 코팅에 의하여 산화철 나노입자를 제조하는 방법에 관한 기술은 전혀 없으며, 상기 대한민국 특허 공개번호 10-2006-0052675호는 삼투제로 만난을 이용할 수 있다고 기재하고 있으나, 이는 만난을 해부학상 부분내로 전달을 촉진하기 위하여 사용한 것으로, 만난이 코팅되어 결합된 형태가 아닌바, 본 발명과는 구조상 현격한 차이를 보인다. Looking at the prior art related to the contrast agent, hepatic contrast agent using superparamagnetic iron oxide-based nanoparticles and its manufacturing method (Korean Patent Registration No. 10-0541282), iron oxide nanopowder used in MRI contrast agent prepared using ultrasound and its preparation Method and preparation method of MRI contrast agent using the same, MRI contrast agent (Korean Patent Registration No. 10-0637275), contrast agent for use in medical and diagnostic procedures and its use (Korean Patent Publication No. 10-2006-0052675) There is this. However, there is no description of a method for producing iron oxide nanoparticles by polymer coating, and the Republic of Korea Patent Publication No. 10-2006-0052675 discloses that manna can be used as an osmotic agent, which delivers the manna into an anatomical part. It was used to promote, the mannan is not coated and bound form, it shows a significant difference in structure with the present invention.

또한 종래기술들 중 만난을 이용하여 나노입자를 코팅하고, 이의 간세포 내의 유입을 확인한 적은 전혀 없었으며, 이에 본 발명자는 각고의 노력 끝에 만난을 이용한 초상자성 산화철 나노입자의 코팅을 통해 조영제의 간세포 특이적 전달과 생리적 환경에서의 안정성이 크게 향상되는 본 발명에 이르게 되었다. 상기 코팅성분인 만난은 D-만노스로 구성되며, 간의 대식세포상의 만노스 수용체에 의하여 인식되어 간세포 속으로의 특이적 유입이 가능해진다.In addition, the nanoparticles were coated with nanoparticles, and none of the prior arts confirmed the inflow of hepatocytes. Therefore, the present inventors endeavored to make the hepatocyte specificity of the contrast agent through the superparamagnetic iron oxide nanoparticle coating using the metnan. The present invention has led to a greatly improved stability in the delivery and physiological environment. The coating component, mannan, is composed of D-mannose and is recognized by the mannose receptor on the macrophages of the liver, thereby enabling specific inflow into hepatocytes.

따라서, 본 발명의 목적은 초상자성 산화철 나노입자 간의 소수성 인력으로 인한 응집현상과 수용액상에서의 불안정성을 방지하기 위해 간세포로의 특이적 전달과 유화제 기능을 하는 만난이 코팅된 초상자성 산화철 나노입자 및 이의 제조방법을 제공하는데 있다. Accordingly, an object of the present invention is a superparamagnetic iron oxide nanoparticles coated with mannan and specific delivery to hepatocytes and an emulsifier function in order to prevent cohesion due to hydrophobic attraction between the superparamagnetic iron oxide nanoparticles and instability in aqueous solution. It is to provide a manufacturing method.

또한, 우수한 간 표적 지향성을 나타내는 만난이 코팅된 초상자성 산화철 나노입자를 이용한 간질환 진단용 조영제를 제공하는데 있다. In addition, the present invention provides a contrast agent for diagnosing liver disease using superparamagnetic iron oxide nanoparticles coated with mannan exhibiting excellent liver target directivity.

본 발명의 상기의 목적은 만난이 코팅된 초상자성 산화철 나노입자를 제조하고, 이의 특성을 규명하고 세포독성, 세포내유입, MR 촬영, 프루시안 블루 염색 등을 통하여 간질환 진단용 조영제로서의 역할을 확인함으로써 달성하였다.The above object of the present invention is to prepare a superparamagnetic iron oxide nanoparticles coated with mannan, characterize it and confirm its role as a contrast agent for diagnosing liver disease through cytotoxicity, intracellular influx, MR imaging, Prussian blue staining, etc. By achieving this.

본 발명에서 초상자성 산화철 나노입자는 SPIONs(SuperParamagnetic Iron Oxide Nanopaticles)으로도 표시되며, 만난이 코팅된 초상자성 산화철 나노입자는 만난-SPIONs 또는 mannan-SPIONs로 표시될 수 있다.In the present invention, the superparamagnetic iron oxide nanoparticles may also be represented as SPIONs (SuperParamagnetic Iron Oxide Nanopaticles), and the manna coated superparamagnetic iron oxide nanoparticles may be represented as met-SPIONs or mannan-SPIONs.

본 발명은 만난이 코팅된 초상자성 산화철 나노입자를 제공함을 특징으로 한다. 상기 코팅성분인 만난은 효모에서 얻어지며, D-만노스로 구성되며, 간의 대식세포상의 만노스 수용체에 의하여 인식되어 간세포 속으로의 특이적 유입이 가능해진다.The present invention is characterized by providing superparamagnetic iron oxide nanoparticles coated with mannan. The coating component, mannan, is obtained from yeast, is composed of D-mannose, and is recognized by mannose receptors on the macrophages of the liver, thereby allowing specific inflow into hepatocytes.

상기 만난이 코팅된 초상자성 산화철 나노입자는 간세포 내로의 빠른 유입을 위하여 10-20nm의 평균입자크기를 갖는 것이 바람직하다.The manganese-coated superparamagnetic iron oxide nanoparticles preferably have an average particle size of 10-20 nm for rapid entry into hepatocytes.

또한 본 발명은 만난으로 코팅된 초상자성 산화철 나노입자를 포함하는 간질환 진단용 조영제를 제공함을 특징으로 한다.In another aspect, the present invention is characterized by providing a contrast agent for diagnosing liver disease comprising superparamagnetic iron oxide nanoparticles coated with metna.

또한 본 발명은 염화철 수용액에 염기성 용액을 첨가하여 산화철 나노입자를 침전시키는 1 단계, 상기 침전된 산화철 나노입자를 산화 및 투석시켜 저장 용액을 제조하는 2 단계 및 상기 저장 용액에 만난 용액을 혼합하고 교반시켜 코팅하는 3 단계를 포함하여 이루어지는 만난이 코팅된 초상자성 산화철 나노입자의 제조방법을 제공함을 특징으로 한다.In another aspect, the present invention is a step of precipitating iron oxide nanoparticles by adding a basic solution to the aqueous solution of iron chloride, step 2 of preparing a storage solution by oxidizing and dialysis the precipitated iron oxide nanoparticles, and mixing and stirring the solution met in the storage solution It characterized by providing a manufacturing method of the superparamagnetic iron oxide nanoparticles coated with mannan made comprising a three step of coating.

상기 제조방법 중 단계 1의 염화철 수용액은 염화철(Ⅱ) 수화물(FeCl24H2O) 및 염화철(Ⅲ) 수화물(FeCl36H2O)을 증류수에 녹인 혼합수용액을 사용할 수 있다. 본 단계에 있어서 산화철 나노입자의 침전은 2가 철이온(Fe2 +) 및 3가 철이온(Fe3+)의 공침전법[M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191]을 이용할 수 있다. 하기의 반응식으로 산화철 나노입자를 결합시킬 때 수산화 이온(OH-1)과 만나 마그네타이트(Fe3O4)로 이루어진 산화철 나노입자를 제조할 수 있다.The aqueous iron chloride solution of step 1 of the manufacturing method may use a mixed aqueous solution of iron (II) chloride hydrate (FeCl 2 4H 2 O) and iron (III) chloride hydrate (FeCl 3 6H 2 O) in distilled water. Precipitation of the iron oxide nanoparticles in this step is the co-precipitation method of divalent iron ions (Fe 2 + ) and trivalent iron ions (Fe 3+ ) [M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; DB Shieh et. al. (2005) Biomaterials 26: 7183-7191. When the iron oxide nanoparticles are combined by the following reaction scheme, the iron oxide nanoparticles made of magnetite (Fe 3 O 4 ) may be produced by meeting with hydroxide ions (OH −1 ).

[반응식 1]Scheme 1

Fe2 + + 2Fe3 + + 8OH-1 -> Fe3O4 + 4H2OFe 2 + + 2 Fe 3 + + 8 OH -1- > Fe 3 O 4 + 4H 2 O

또한, 상기 염기성 용액으로는 수산화나트륨, 수산화칼륨, 암모니아 수용액 등을 사용할 수 있다. As the basic solution, sodium hydroxide, potassium hydroxide, aqueous ammonia solution or the like can be used.

상기 염화철 혼합 수용액을 격렬히 교반시키면서 염기성 용액을 첨가하면 상기 반응식 1과 같은 반응이 진행된 결과 검은색의 산화철 나노입자가 침전으로 얻어진다. 다음 단계의 진행을 위해 영구자석을 이용하여 침전물만을 분리 수거한다. When the basic solution is added with vigorous stirring of the mixed ferric chloride aqueous solution, the reaction proceeds as in Scheme 1, whereby black iron oxide nanoparticles are obtained by precipitation. Only sediments are collected separately using permanent magnets for the next step.

상기 제조방법 중 단계 2에 있어서, 침전된 산화철 나노입자를 산화시키기 위해 질산(HNO3)용액을 사용할 수 있고, 질산 제2철(Fe(NO3)2)용액을 함께 사용할 수 있다. 산화철을 나노입자의 산화 후에 묽은 질산용액을 이용하여 이들 입자를 투석시켜 저장용액을 제조한다.In step 2 of the above production method, to oxidize the precipitated iron oxide nanoparticles can be used a nitric acid (HNO 3 ) solution, it can be used with a ferric nitrate (Fe (NO 3 ) 2 ) solution. Iron oxide is dialyzed with dilute nitric acid solution after oxidation of the nanoparticles to prepare a stock solution.

다음으로, 본 발명에 따른 상기 단계 3에 의해 상기 단계 2의 저장 용액에 만난용액을 혼합하고 교반시킴으로써 산화철 나노입자를 간단하게 코팅할 수 있다. Next, the iron oxide nanoparticles can be simply coated by mixing and stirring the met solution in the stock solution of Step 2 by Step 3 according to the present invention.

본 발명에 따라 제조된 만난-초상자성 산화철 나노입자는 마그네틱 산화철 용액 (ferrofluid)을 안정화시키고 간에 선택적으로 전달되어 간질환의 진단을 위해 정확하고 안정한 조영제로서 사용될 수 있는 바 의학분야에서 매우 유용한 발명이라 할 것이다.The met-superparamagnetic iron oxide nanoparticles prepared according to the present invention are very useful inventions in the medical field because they can be used as an accurate and stable contrast agent for the diagnosis of liver disease by stabilizing the magnetic ferrofluid and selectively delivering the liver. something to do.

이하 본 발명이 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples, but the scope of the present invention is not limited only to these examples.

실시예Example 1 : 만난( 1: Met ( mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( SPIONsSPIONs )의 제조Manufacturing

철 침전Iron precipitation

산화철 나노입자를 제조하기 위하여, 염기성 용액으로 Fe(Ⅱ)와 Fe(Ⅲ) 이온을 환원시켜 산화철 나노입자를 침전시키는 공침전법(coprecipitation)을 이용하였다[M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659 ; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191]. In order to prepare iron oxide nanoparticles, coprecipitation was performed in which Fe (II) and Fe (III) ions were reduced as basic solutions to precipitate iron oxide nanoparticles [M. Liao et. al. (2002) J. Mater. Chem. 12: 3654-3659; D.B. Shieh et. al. (2005) Biomaterials 26: 7183-7191.

시그마알드리치사(Sigma-Aldrich Co,; St.Louis, MO, USA)에서 구입한 염화철(Ⅲ)(FeCl36H2O) 3.255g과 염화철(Ⅱ)(FeCl24H2O) 1.197g을 증류수 70mL에 첨가하여 혼합 수용액을 제조하였다. 상기 혼합 수용액을 격렬히 교반시키면서 암모니아 수용액 7mL을 첨가하였다. 이때 검은 침전물이 형성되는데, 상기 침전물을 영구자석을 이용하여 고정시키면서 pH가 10에서 7로 떨어질 때까지 증류수로 여러번 세척하였다. 상기 pH 7이 된 침전물만을 수거하였다. 3.255 g of iron (III) chloride (FeCl 3 6H 2 O) and 1.197 g of iron (II) chloride (FeCl 2 4H 2 O) purchased from Sigma-Aldrich Co .; St. Louis, MO, USA It was added to 70 mL to prepare a mixed aqueous solution. 7 mL of aqueous ammonia solution was added while vigorously stirring the mixed aqueous solution. At this time, a black precipitate is formed, and the precipitate is washed with distilled water several times until the pH drops from 10 to 7 while fixing the precipitate using a permanent magnet. Only precipitates with pH 7 were collected.

철 산화 및 산화철 나노입자 저장 용액 제조Preparation of Iron Oxide and Iron Oxide Nanoparticle Storage Solutions

상기 침전물을 질산용액(HNO3)과 질산 제2철(Fe(NO3)3)용액을 이용하여 산화시킨 후 묽은 질산 용액에서 투석하여 산화철 나노입자 저장 용액을 준비하였다. 상기 침전물에 2M의 질산용액 20mL과 0.35M의 질산 제2철(Fe(NO3)3) 수용액 30mL을 가하여 1시간동안 두어 산화시켰다. 산화로 인하여 형성된 갈색 현탁액을 2일동안 0.01M의 질산으로 투석하여 산화철 나노입자 저장 용액을 제조하였으며, 4℃에서 보관하였다.The precipitate was oxidized using a nitric acid solution (HNO 3 ) and ferric nitrate (Fe (NO 3 ) 3 ) solution, and then dialyzed in a dilute nitric acid solution to prepare an iron oxide nanoparticle storage solution. 20 mL of 2 M nitric acid solution and 30 mL of 0.35 M ferric nitrate (Fe (NO 3 ) 3 ) aqueous solution were added to the precipitate for 1 hour to oxidize. The brown suspension formed due to oxidation was dialyzed with 0.01 M nitric acid for 2 days to prepare iron oxide nanoparticle stock solutions and stored at 4 ° C.

산화철 나노입자의 만난(Meeting of iron oxide nanoparticles mannanmannan ) 코팅) coating

상기 산화철 나노입자 저장 용액 2mL에 0.01 M의 질산 용액 1mL에 O.164g의 만난(mannan)을 첨가하여 제조된 만난 수용액 1mL를 첨가하여 4℃에서 12 시간 동안 교반시켜 코팅된 산화철 나노입자를 제조하였다. In vitro 및 in vivo 실험을 위해 암모니아수를 이용해 시료의 pH를 7로 조절하였다. To 2 mL of the iron oxide nanoparticle stock solution was added 1 mL of 0.01 M nitric acid solution to 1 mL of 0.14 g of mannan, which was prepared by adding 1 mL of an aqueous mannan solution and stirring at 4 ° C. for 12 hours to prepare coated iron oxide nanoparticles. . The pH of the sample was adjusted to 7 using ammonia water for in vitro and in vivo experiments.

대조군으로 폴리비닐알코올(polyvinyl alcohol)로 코팅된 초상자성 산화철 나노입자를 상기와 동일한 방법으로 제조하였다. As a control, superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol were prepared in the same manner as above.

실시예Example 2 : 만난( 2: Met mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( mannanmannan -SPIONs)의 특성규명Characterization of SPIONs

만난 코팅여부 확인 : 퓨리에 변환 적외선 분광(FT-IR) 분석Check the coating: Fourier transform infrared spectroscopy (FT-IR) analysis

본 발명에 따라 제조된 산화철 나노입자의 표면에 만난이 코팅되어 있는지를 확인하기 위해, 실시예 1에 의하여 제조된 만난-초상자성 산화철 나노입자(mannan-SPIONs)를 퓨리에 변환 적외선 분광기(Fourier transform infrared spectrometer; Nicolet Magna 550 series II spectrometer,Midac, Atlanta, GA, USA)를 이용하여 분석하였으며, 분석대상으로 코팅되지 않은 산화철 나노입자(SPIONs), 만난 자체(mannan) 및 만난-초상자성 산화철 나노입자(mannan-SPIONs) 각각을 실리콘 웨이퍼(silicon wafer)표면에 코팅하여 필름 형태로 준비하였으며, 각각의 분석 결과는 도 1에 나타내었다. In order to check whether the surface of the iron oxide nanoparticles prepared according to the present invention is coated with mannan-manganese-superparamagnetic iron oxide nanoparticles (mannan-SPIONs) prepared by Example 1 Fourier transform infrared spectroscopy (Fourier transform infrared) spectrometer; Nicolet Magna 550 series II spectrometer (Midac, Atlanta, GA, USA) and analyzed by uncoated iron oxide nanoparticles (SPIONs), mannan and met-superparamagnetic iron oxide nanoparticles ( Each mannan-SPIONs was coated on the surface of a silicon wafer to prepare a film, and the results of analysis are shown in FIG. 1.

도 1에 나타낸 바와 같이, 코팅 되지 않은 산화철 나노입자(a)의 스펙트럼에서는 631 cm-1와 578 cm-1에서 강한 흡수 피크가 나타났다. 상기 피크는 마그네타이트의 FeO 결합에 의해 570 cm-1에서 나타나는 ν1의 갈라짐(split)에 의해 나타난 것이다. 440 cm-1에서도 흡수 피크가 관찰되었는데 이는 375 cm-1에서 나타나는 FeO 결합의 ν2가 더 높은 주파수로 이동한 결과임을 알 수 있다[M. Yamaura et al.,Journal of Magnetism and Magnetic Materials, vol. 279, no. 2-3, pp. 210-217, 2004.]. As shown in FIG. 1, in the spectrum of the uncoated iron oxide nanoparticles (a), strong absorption peaks appeared at 631 cm −1 and 578 cm −1 . The peak is at 570 cm −1 by FeO bonding of magnetite This is caused by the split of ν 1 . Absorption peaks were also observed at 440 cm -1 , indicating that ν 2 of FeO bonds appearing at 375 cm -1 were shifted to higher frequencies [M. Yamaura et al., Journal of Magnetism and Magnetic Materials , vol. 279, no. 2-3, pp. 210-217, 2004.].

만난 자체의 스펙트럼(b)은 1650, 1370 및 1057 cm-1에서 다당류의 특징적인 흡수 피크를 나타내었고, 816cm-1에서 만난 고유의 피크를 나타내었다.Spectrum of met itself (b) is 1650, 1370 and showed the characteristic absorption peak of the polysaccharide in the 1057 cm -1, exhibited a unique peak met at 816cm -1.

코팅 되지 않은 산화철 나노입자(a)와 만난이 코팅된 산화철 나노입자(c)의 FTIR 스펙트럼을 비교하여 볼 때, 만난으로 인한 특징적인 흡수 피크가 1653cm-1과 816cm-1에서 나타남을 알 수 있었고, 이로써 만난이 나노입자의 표면에 코팅이 되어 있음을 확인할 수 있었다. 또한 코팅되지 않은 산화철 나노입자의 특성 피크인 631 cm-1과 578 cm-1에서의 흡수 피크는 상당히 약하고, 산화철 나노입자가 만난과 수소 결합하여 더 높은 파수인 639 cm-1과 586 cm-1로 각각 이동하였다는 것을 알 수 있었다. 이는 양자화된 산화철(iron oxide) 표면과 만난의 OH 그룹 간에 수소결합이 일어났다는 것을 보여준다. Comparing the FTIR spectra of the uncoated iron oxide nanoparticles (a) and the coated iron oxide nanoparticles (c), it was found that the characteristic absorption peaks due to the encounter were found at 1653 cm -1 and 816 cm -1 . As a result, it was confirmed that the met was coated on the surface of the nanoparticles. Also, the absorption peaks at 631 cm -1 and 578 cm -1 , the characteristic peaks of the uncoated iron oxide nanoparticles, are quite weak, and the higher frequencies 639 cm -1 and 586 cm -1 due to hydrogen bonding with the iron oxide nanoparticles met. It can be seen that each moved to. This shows that hydrogen bonding occurred between the quantized iron oxide surface and the OH group of the meet.

만난-Met- 초상자성Superparamagnetism 산화철 나노입자의 형태 측정 Morphology Measurement of Iron Oxide Nanoparticles

투과전자현미경 (transmission electron microscopy, TEM) (JEM 1010, JEOL, Japan)을 이용하여 만난 코팅된 산화철 나노입자(mannan-SPIONs)의 형태 및 크기를 측정하였다. 투과전자현미경 측정을 위한 시료는 증류수에 넣고 초음파 분산액을 구리 그리드(copper grid) 위에 소량 떨어뜨린 후 15 분간 공기 중에서 건조시켜 측정하였다. The shape and size of the coated iron oxide nanoparticles (mannan-SPIONs) that were met using a transmission electron microscopy (TEM) (JEM 1010, JEOL, Japan) were measured. The sample for measuring the transmission electron microscope was measured by distilled water in a small amount of ultrasonic dispersion on a copper grid and dried in air for 15 minutes.

분석 결과 도 2a에 나타낸 바와 같이, 만난이 코팅된 나노입자들은 10 nm이하 크기로, 잘 분리된 타원형을 형성하고 있음을 확인할 수 있었다. As a result of the analysis, as shown in FIG. 2a, the nanoparticles coated with mannan were 10 nm or less in size, and it was confirmed that a well-formed oval was formed.

하지만 도 2b에 나타낸 바와 같이, 코팅하지 않은 산화철 나노입자의 경우에는 상당히 뭉쳐있었으며, 이는 만난이 나노입자들의 안정성에 기여한다는 것을 보 여준다.However, as shown in FIG. 2B, in the case of uncoated iron oxide nanoparticles, they were considerably agglomerated, showing that the encounter contributes to the stability of the nanoparticles.

만난-Met- 초상자성Superparamagnetism 산화철 나노입자의 크기 분포도 측정 Measurement of Size Distribution of Iron Oxide Nanoparticles

본 발명에 따라 제조된 만난-초상자성 산화철 나노입자의 크기와 그 분포를 측정하기 위해, 산란각 90°로 조절된 토탈 광산란 측정기(electrophoretic light scattering spectrophotometer, ELS 8000, Otsuka Electronics, Osaka, Japan)를 이용하여 25 ℃에서 측정하였다. 상기 토탈 광산란 측정기 분석을 위한 시료는 각각을 증류수에 넣어 초음파 처리를 하여 준비하였다. In order to measure the size and distribution of the met-superparamagnetic iron oxide nanoparticles prepared according to the present invention, an electrophoretic light scattering spectrophotometer (ELS 8000, Otsuka Electronics, Osaka, Japan) adjusted to a scattering angle of 90 ° was used. Measured at 25 ° C. Samples for the total light scattering analyzer analysis were prepared by soaking each in distilled water.

분석결과 도 3a에서 볼 수 있듯이 고른 분포의 입자가 생성되었음을 알 수 있었다. 평균 입자 크기는 28.4± 7.2였으며, TEM으로 측정한 결과에 비해 입자 크기가 크게 분석되었는데, 이는 TEM의 경우에는 입자 한 개의 크기가 측정 가능한 반면, ELS는 수용액 상에서 2 ~ 3개로 응집된 입자까지 하나의 입자로 간주되어 측정되는 것에 따른 차이일 것으로 사료된다[K. M. K. Selim et al., Biomaterials,vol. 28, no. 4,pp. 710-716, 2007.]. As a result of the analysis, as shown in FIG. 3a, it was found that evenly distributed particles were generated. The average particle size was 28.4 ± 7.2, and the particle size was analyzed to be larger than that measured by TEM. In the case of TEM, the size of one particle is measurable, whereas ELS is one to two or three aggregated particles in aqueous solution. It is considered that the difference is regarded as the particle of KMK Selim et al., Biomaterials , vol. 28, no. 4, pp. 710-716, 2007.].

한편, 도 3b에서 볼 수 있듯이 코팅하지 않은 산화철 나노입자의 경우, 평균 입자 크기는 22.9± 4.3였다. 상기 분석 결과 나노입자의 크기 분포가 매우 고른 것으로 나타났으며, 특히 만난으로 코팅된 산화철 나노입자는 단분산에 가까운 분포 경향을 보이므로 만난이 유화제로서의 역할을 수행하고 있음을 알 수 있다. On the other hand, as can be seen in Figure 3b for the uncoated iron oxide nanoparticles, the average particle size was 22.9 ± 4.3. As a result of the analysis, the size distribution of the nanoparticles was found to be very uniform. In particular, the iron oxide nanoparticles coated with mannan show a distribution tending to be close to monodispersion, and thus it can be seen that the mannan serves as an emulsifier.

만난-Met- 초상자성Superparamagnetism 산화철 나노입자의 전기이동 이동도( Electrophoretic Mobility of Iron Oxide Nanoparticles electrophoreticelectrophoretic mobility) 및 유체역학적 크기( mobility) and hydrodynamic size ( hydrodynamichydrodynamic sizesize ) 측정) Measure

만난의 함량에 따른 나노입자 표면에의 흡착에 관해 살펴보기 위하여 만난-초상자성 산화철 나노입자의 전기이동 이동도 및 유체역학적 크기를 만난/철의 중량 비율을 변화시켜 가면서 백금 전극봉(platinum electrode)이 장착된 ELS를 이용하여 25 ℃에서 측정하였다. 모든 시료는 만난/철의 중량 비율이 0-20의 범위(0, 0.5, 1, 2, 3, 10, 20)에서 철의 최종 농도가 0.06 mg/ml이 되게 준비하였다. 만난/철의 중량 비율이 20인 시료를 만들기 위해 우선 2.34 mg/ml 농도의 만난 수용액 (만난 0.0117g을 0.01 M 질산 5 ml에 녹임)을 준비한 후, 실시예 1에서 제조한 산화철 나노입자 저장 용액의 100 배 희석액(철의 농도 0.117 mg/ml) 1mL에 상기 만난 수용액 1mL를 첨가하여 4℃에서 12 시간 동안 교반시켜 코팅된 산화철 나노입자를 제조하였다. 이 외에 만난/철의 중량 비율이 10, 3, 2, 1, 0.5인 시료는 0.01 M 질산을 이용하여 상기 만난 수용액을 적정 비율로 희석한 후 위와 동일한 방법으로 제조하였다. 백금 전극봉은 매 측정마다 10 ml의 증류수와 5 ml의 0.01 M의 질산을 이용하여 세척한 후 사용하였다. In order to investigate the adsorption on the surface of nanoparticles according to the content of mannan, the platinum electrode was changed by varying the weight ratio of met / iron to electrophoretic mobility and hydrodynamic size of mannan-superparamagnetic iron oxide nanoparticles. Measurement was carried out at 25 ° C. using an equipped ELS. All samples were prepared such that the weight ratio of met / iron was in the range of 0-20 (0, 0.5, 1, 2, 3, 10, 20) to a final concentration of iron of 0.06 mg / ml. To prepare a sample having a weight ratio of manna / iron 20, a manna solution (2.17 mg of manna was dissolved in 5 ml of 0.01 M nitric acid) at a concentration of 2.34 mg / ml was prepared first, and then the iron oxide nanoparticle stock solution prepared in Example 1 To 1 mL of a 100-fold dilution (concentration of 0.117 mg / ml of iron) was added 1 mL of the above-mentioned aqueous solution and stirred at 4 ° C. for 12 hours to prepare coated iron oxide nanoparticles. In addition, a sample having a weight ratio of met / iron of 10, 3, 2, 1, 0.5 was prepared in the same manner as above after diluting the met aqueous solution with an appropriate ratio using 0.01 M nitric acid. The platinum electrode was used after washing with 10 ml of distilled water and 5 ml of 0.01 M nitric acid for each measurement.

분석 결과 도 4a에 나타낸 바와 같이, pH 2의 산성 조건에서 만난-SPIONs의 이동도는 임계 수치인 만난/철 중량 비율 2까지 급격하게 감소하다가 일정하게 유지되었다. 또한 도 4b에 나타낸 바와 같이, 입자의 유체역학적 크기 역시 만난의 흡착이 증가함으로 인하여 동일한 임계 수치까지 증가하다가 임계 수치 이상에서는 일정하게 유지되었다. As a result of the analysis, as shown in Figure 4a, the mobility of the met-SPIONs in the acidic condition of pH 2 sharply decreased until the critical value met / iron weight ratio 2 and remained constant. In addition, as shown in Figure 4b, the hydrodynamic size of the particles also increased up to the same threshold value due to the increase in the adsorption of the mannan was maintained constant above the threshold value.

산성의 수용액 중에서 코팅 전 산화철 나노 입자의 표면은 양전기로 하전되 어 있어 주변에 전기장을 걸어 주면 입자는 음극 쪽으로 이동하게 되며, 이러한 이동도는 입자 표면의 전하량에 비례한다. 그러나 만난과 같은 폴리머로 산화철 나노 입자의 표면을 코팅하게 되면 흡착된 고분자에 의해 표면의 양전하가 차폐되어 이동도가 감소한다. In the acidic aqueous solution, the surface of the iron oxide nanoparticles before the coating is charged with a positive charge, and when the electric field is applied to the surroundings, the particles move toward the cathode, and the mobility is proportional to the amount of charge on the particle surface. However, when the surface of the iron oxide nanoparticles are coated with a polymer such as met, the positive charge of the surface is shielded by the adsorbed polymer, thereby reducing mobility.

따라서 만난/철 중량 비율이 2 이상에서 이동도와 입자의 유체역학적 크기가일정하게 유지되는 것으로 미루어 볼 때 이 중량 비율에서 산화철 나노 입자의 표면이 완전하게 만난으로 코팅되었음을 확인할 수 있었다.  Therefore, when the met / iron weight ratio was 2 or more, the mobility and the hydrodynamic size of the particles were constantly maintained.

실시예Example 3 : 만난( 3: met ( mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( mannanmannan -SPIONs)의 세포독성(Cytotoxicity of -SPIONs cytotoxicitycytotoxicity ) 측정) Measure

MTT 분석은 세포의 생존도를 측정하여 바이오물질의 독성을 알아보기 위한 측정방법이다. 본 실시에서는 만난-SPIONs의 세포독성을 측정하기 위하여 Raw 274.7 대식세포를 대상으로 한 하기에 기재한 방법에 의한 MTT 분석을 수행하였다.   MTT analysis is a measurement method for determining the toxicity of biomaterials by measuring the viability of cells. In this example, MTT analysis was performed using Raw 274.7 macrophages by the method described below to measure the cytotoxicity of met-SPIONs.

세포 배양Cell culture

Raw 264.7 세포주의 래트 대식세포(macrophage)를 세포주은행에서 분양받았으며, 10% 의 우태아혈청(fetal bovine serum:FBS), 100μg/mL의 스트렙토마이신 및 100 units/mL의 페니실린이 첨가된 DMEM 배지(Life Technologies, Paris, France)에서 배양하였다. 배양은 5%의 이산화탄소 함유 대기, 37℃ 하에서 수행하였다. Rat macrophages of the raw 264.7 cell line were obtained from the cell line bank, and DMEM medium containing 10% fetal bovine serum (FBS), 100 μg / mL of streptomycin and 100 units / mL of penicillin Life Technologies, Paris, France). The cultivation was performed at 37 ° C. in an atmosphere containing 5% carbon dioxide.

MTT 분석MTT analysis

Raw 264.7 대식세포를 웰당 1× 105 세포수의 농도로 24-웰 플레이트에 분주하고 24시간동안 배양하였다. 배양 후 다양한 농도의 PVA-SPIONs 또는 만난-SPIONs를 함유한 새로운 배지로 교체하였다. 24시간 후 대조군(SPIONs)과 실험군(만난-SPIONs, PVA-SPIONs)을 0.5mg/mL의 MTT 첨가후 4시간 더 배양하였다. 상기 배지를 버리고, 형성된 포르마잔염(formazan salt)을 디메틸설폭사이드(dimethylsulfoxide;DMSO)로 녹인 후 540nm에서 흡광도를 측정하였다. 대조군에 대한 비율(%)로 결과를 나타내었다.Raw 264.7 macrophages were aliquoted into 24-well plates at a concentration of 1 × 10 5 cells per well and incubated for 24 hours. After incubation, the medium was replaced with fresh medium containing various concentrations of PVA-SPIONs or Mannan-SPIONs. After 24 hours, the control group (SPIONs) and the experimental group (Mann-SPIONs, PVA-SPIONs) were further incubated for 4 hours after the addition of 0.5 mg / mL MTT. The medium was discarded, and the formed formazan salt was dissolved in dimethylsulfoxide (DMSO), and the absorbance was measured at 540 nm. Results are shown as percentages relative to the control.

분석 결과 도 5에 나타낸 바와 같이, SPIONs 농도가 증가함에 따라 만난-SPIONs의 세포 생존도가 감소하긴 하였지만, 만난-SPIONs는 PVA-SPIONs보다 뛰어난 세포 생존도를 나타내었다. 이로써 만난-SPIONs가 안전성이 있는 조영제로서 PVA-SPIONs를 대체할 수 있음을 확인할 수 있었다.As shown in FIG. 5, although the cell viability of the met-SPIONs decreased with increasing SPIONs concentration, the met-SPIONs showed better cell viability than the PVA-SPIONs. As a result, the met-SPIONs could replace PVA-SPIONs as a safe contrast medium.

실시예Example 4 : 만난( 4: met ( mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( mannanmannan -SPIONs)의 -SPIONs) 세포내Intracellular 유입 측정 Inflow measurement

나노입자에 플로오르세인 이소티오시아네이트(fluorescein isothiocyanate, FITC)를 결합시키면 형광 유세포 분석(Fluorescent flow cytometry)으로 나노입자가 세포내로 유입되었는지 여부를 정량적으로 분석할 수 있다. 이를 이용하여 만난-SPIONs와 대조군인 PVA-SPIONs의 세포내 유입 효율을 비교하였다. When fluorescein isothiocyanate (FITC) is bound to the nanoparticles, fluorescence flow cytometry can be used to quantitatively analyze whether the nanoparticles have been introduced into cells. The inflow efficiency of the met-SPIONs and the control PVA-SPIONs was compared.

Raw 264.7 세포를 웰당 1× 106 세포수로 6-웰 플레이트에 분주하였다. 세포들을 0.1M의 PBS로 세척하고 100μL의 FITC-만난-SPIONs(6.3 Fe mg/mL)를 함유하고 있는 DMEM배지 1mL를 각 웰에 첨가한 후 37℃에서 1시간 동안 배양하였다. 배양된 세포를 PBS로 세 번 세척한 후 트립신 처리 후 플레이트에서 빼내고 500μL의 PBS에 재용해시켰다. 세포-관련 형광 탐색은 FACSCalibur(Beckton Dickinson, Mansfield, MA, USA)를 이용하여 형광-활성화 세포 분류(Fluorescence-activated cell sorting)에 의하여 수행하였다. 상기 데이터는 CELLQuest 소프트웨어를 이용하여 분석하였다. Raw 264.7 cells were dispensed into 6-well plates at 1 × 10 6 cells per well. Cells were washed with 0.1 M PBS and 1 mL of DMEM medium containing 100 μL of FITC-Mann-SPIONs (6.3 Fe mg / mL) was added to each well and incubated at 37 ° C. for 1 hour. The cultured cells were washed three times with PBS and then removed from the plate after trypsin treatment and redissolved in 500 μL of PBS. Cell-related fluorescence screening was performed by Fluorescence-activated cell sorting using FACSCalibur (Beckton Dickinson, Mansfield, Mass., USA). The data were analyzed using CELLQuest software.

분석 결과는 도 6에 나타내었으며, 도 6상의 (a)는 대조군으로서 시료가 미 함유된 배지로만 배양한 Raw 264.7의 대식세포, (b)는 FITC-PVA-SPIONs를 함유한 배지에서 배양한 대식세포, (c)는 FITC-만난-SPIONs를 함유한 배지에서 배양한 대식세포의 형광 탐색 결과이다. 도 5의 그래프는 대식 세포내 유입된 산화철 나노입자의 FITC에 의한 형광 정도를 나타내는데, M1 게이트 (gate) 안에 들어오는 그래프 면적이 넓을수록 FITC에 의한 형광 정도가 큰 것을 의미하고 이는 더 많은 산화철 나노 입자가 세포내로 유입된 것을 의미한다. 도 6에서 볼 수 있듯이, 만노스(mannose) 수용체(receptor) 양성 대식세포인 Raw 264.7 세포가 만노스를 가진 FITC-만난-SPIONs가 함유된 상태에서 배양될 경우 만노스가 없는 FITC-PVA-SPIONs와 비교하여 볼 때, FITC 유입이 높음을 알 수 있었다. 이는 만노스-수용체를 통하여 이루어지는 SPIONs의 대식세포로의 엔도시토시스(내포작용; endocytosis)가 효 율적이라는 것을 보여준다. The results of the analysis are shown in FIG. 6, (a) of FIG. 6 is a macrophage of Raw 264.7 cultured only in a medium containing no sample as a control, and (b) is incubated in a medium containing FITC-PVA-SPIONs. Phagocytes, (c) are the results of fluorescent screening of macrophages cultured in a medium containing FITC-Men-SPIONs. The graph of FIG. 5 shows the degree of fluorescence by FITC of the iron oxide nanoparticles introduced into the macrophages, and the larger the graph area entering the M1 gate, the greater the degree of fluorescence by the FITC, which means more iron oxide nanoparticles. Means introduced into the cell. As can be seen in Figure 6, when raw 264.7 cells, which are mannose receptor-positive macrophages, are cultured in the presence of FITC-mannan-SPIONs with mannose, compared to FITC-PVA-SPIONs without mannose It can be seen that the inflow of FITC is high. This shows that the endocytosis of SPIONs through the mannose-receptors into macrophages is efficient.

실시예Example 5 : 만난( 5: met ( mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( mannanmannan -SPIONs)를 이용한 자기공명 영상 촬영Magnetic resonance imaging using SPIONs

만난-SPIONs의 간질환 진단을 위한 조영제로서의 응용가능성을 조사하기 위하여, 래트에 만난-SPIONs를 주입하고, 자기공명 영상촬영을 수행하였다.In order to investigate the applicability of Mannan-SPIONs as a contrast agent for diagnosing liver disease, rats with Mann-SPIONs were injected and magnetic resonance imaging was performed.

1:2 비율의 산소:질소에 1.5%의 이소플루란(isoflurane)이 함유된 혼합가스로 6주령의 래트(rat)를 마취시킨 후 꼬리 정맥을 통해 만난-SPIONs를 주입하였다. 대조군으로 PVA-SPIONs를 주입하였다. 그리고 나서, 동물용 코일 (4.3 cm Quadrature volume coil, Nova Medical System, Wilmington, DE)을 이용한 1.5 T MR 스캐너(GE Signa Exite Twin-speed, GE Health Care, Milwaukee, WI)로 자기공명영상(Magnetic reasonance)을 촬영하였다. 패스트-스핀 에코(fast-spin echo;FSE) T2-weighted(repetition time ms/echo time ms of 4,200/102, flip angle 90˚, echo train lenth of 10, 5cm field of view, 2mm section thickness, 0.2-mm intersection gap, 256× 160 matrix) MR 이미지를 수행하였다. Six-week old rats were anesthetized with a mixed gas containing 1.5% isoflurane in a 1: 2 ratio of oxygen: nitrogen and injected with SPIONs through the tail vein. PVA-SPIONs were injected as a control. Then, magnetic reasonance with a 1.5 T MR scanner (GE Signa Exite Twin-speed, GE Health Care, Milwaukee, WI) using an animal coil (4.3 cm Quadrature volume coil, Nova Medical System, Wilmington, DE) ) Was taken. Fast-spin echo (FSE) T2-weighted (repetition time ms / echo time ms of 4,200 / 102, flip angle 90 °, echo train lenth of 10, 5 cm field of view, 2mm section thickness, 0.2- mm intersection gap, 256 × 160 matrix) MR images were performed.

실험 결과는 도 7에 나타내었으며, 도 7상의 (a)는 대조군인 PVA-SPIONs의 주입 전을, (b)는 주입 후를, (c)는 실험군인 만난-SPIONs의 주입전을, (d)는 주입후를 의미한다.The experimental results are shown in FIG. 7, (a) before the injection of PVA-SPIONs as a control group, (b) after the injection, (c) before injection of the met-SPIONs as the experimental group, (d ) Means after injection.

분석 결과 도 7에 나타낸 바와 같이, 대조군인 PVA-SPIONs가 주입되기 전 자기공명사진(도 7a)보다 주입된 후 자기공명사진(도 7b)이 더 어두운 영상이 나타났 으며, 만난-SPIONs 역시 주입전 자기공명사진(도 7c)보다 주입 후(도 7d) 사진이 어두웠다. 대조군과 실험군을 비교하여 볼 때, 실험군인 만난-SPIONs의 주입 후의 사진이 대조군인 PVA-SPIONs 주입후보다 더 어두웠다. 이를 통하여, 만난-SPIONs가 보다 효과적인 조영제임을 확인할 수 있었다.As a result of the analysis, as shown in FIG. 7, the magnetic resonance image (FIG. 7B) was darker than the magnetic resonance image (FIG. 7A) before the control PVA-SPIONs were injected, and the met-SPIONs were also injected. The picture was darker after the injection (FIG. 7D) than before the magnetic resonance picture (FIG. 7C). When comparing the control group and the experimental group, the photograph after the injection of the experimental group, Mannan-SPIONs, was darker than after the injection of the control group, PVA-SPIONs. Through this, met-SPIONs was found to be a more effective contrast agent.

또한, T2 감쇄 효과의 정량분석을 위해, 만난-SPIONs 및 PVA-SPIONs의 시그날 강도(signal intensity, SI)를 조영제의 주입 전(SI pre of liver)과 주입 후(SI post of liver) 동일한 간부위에서 ROI (regions of interest)로 측정하였다.였고, 간에 인접한 등 근육에 대해서도 조영제의 주입 전(SI pre of BM)과 주입 후(SI post of BM) 동일한 등 근육에서 ROI를 측정하였다. 측정결과를 하기 수학식 1에 대입하여 시그날 강도 저하 정도를 계산하였다.In addition, for the quantitative analysis of T2 attenuation effects, the signal intensity (SI) of met-SPIONs and PVA-SPIONs was measured in the same liver region before and after injection of the contrast agent (SI pre of liver). ROI (regions of interest) was measured. ROI was also measured in the same dorsal muscle before and after injection (SI pre of BM) and after injection (SI post of BM). The measurement result was substituted into Equation 1 to calculate the degree of decrease in signal strength.

[수학식 1][Equation 1]

시그날 강도 저하도(%)Signal intensity drop (%)

Figure 112008012654561-pat00001
Figure 112008012654561-pat00001

만난-SPIONs에 의한 시그날 강도 저하도Signal strength drop by met-SPIONs 만난-SPIONsMet-SPIONs 주입전 SISI before injection 주입후 SISI after injection 간부위Liver 15521552 441441 등근육back muscles 11531153 13391339 시그날 강도 저하도(%) = 75.6 (1.5시간 후)% Decrease in signal intensity = 75.6 (after 1.5 hours)

PVA-SPIONs에 의한 시그날 강도 저하도Signal strength drop by PVA-SPIONs PVA-SPIONsPVA-SPIONs 주입전 SISI before injection 주입후 SISI after injection 간부위Liver 15521552 441441 등근육back muscles 11531153 13391339 시그날 강도 저하도(%) = 75.6 (1.5시간 후)% Decrease in signal intensity = 75.6 (after 1.5 hours)

실험 결과 표 1 및 표 2에 나타낸 바와 같이, PVA-SPIONs의 주입 1.5시간 후에는 65%의 T2 감쇄 효과가 나타난 반면, 만난-SPIONs의 주입 1.5 시간 후에는 75.6%의 T2 감쇄 효과를 나타내었다.As shown in Table 1 and Table 2, after 1.5 hours of injection of PVA-SPIONs, a 65% T 2 attenuation effect was observed, whereas after 1.5 hours of infusion of mannan-SPIONs, a 75.6% T 2 attenuation effect was observed. It was.

상기 결과를 통하여, 만난-SPIONs가 PVA-SPIONs보다 간으로의 흡수가 잘되며 만난-SPIONs의 유입이 만노스 수용체-관계 유입(mannose receptor-mediated uptake)을 통해서 이루어진다는 것을 확인할 수 있었다.Through the above results, it was confirmed that the met-SPIONs are better absorbed into the liver than the PVA-SPIONs, and the influx of the met-SPIONs is achieved through the mannose receptor-mediated uptake.

실시예Example 6 : 만난( 6: met ( mannanmannan )이 코팅된 ) Coated 초상자성Superparamagnetism 산화철 나노입자( Iron oxide nanoparticles ( mannanmannan -SPIONs)의 간 Liver of -SPIONs 대식세포내의In macrophages 존재 여부 확인 Check for existence

만난-SPIONs가 간에 존재하는 대식세포내에 존재하는지 여부를 확인하기 위하여 프루시안 블루 염색(Prussian blue staining)을 수행하였다. 프루시안 블루 염색법은 철 이온이 페로시안화합물과 반응하여 철 페로시안화합물을 생성하는 것을 응용한 것이다. 만난-SPIONs과 PVA-SPIONs의 주입 후 간 조직을 포름알데하이드로 고정시키고 염색을 위하여 절개하였다. 상기 조직은 또한 세포질의 역염색(counter-staining)을 위하여 에오신(eosin)을 처리하였다. Prussian blue staining was performed to determine whether the met-SPIONs were present in the macrophages present in the liver. Prussian blue dyeing is an application of iron ions reacting with ferrocyanide compounds to produce iron ferrocyanide compounds. After injection of the met-SPIONs and PVA-SPIONs, liver tissues were fixed with formaldehyde and cut for staining. The tissue was also treated with eosin for counter-staining of the cytoplasm.

실시 결과 도 8에 나타낸 바와 같이, PVA-SPIONs와 비교하여 볼 때(도 8a) 주로 만난-SPIONs (도 8b)의 유입이 간의 맥관구조(심혈관, vasculature) 근처에서 일어나고 선택적으로 쿱퍼(Kupffer) 세포에 분포되어 있음을 확인 할 수 있었다(도 8b). As shown in FIG. 8, as compared with PVA-SPIONs (FIG. 8A), mainly the influx of met-SPIONs (FIG. 8B) occurs near the hepatic vasculature (cardiovascular and vasculature) and optionally Kupffer cells. It was confirmed that it is distributed in (Fig. 8b).

따라서, 본 발명에 따라 제조된 만난이 코팅된 초상자성 나노입자는 간세포 특이적 조영제로 유용하게 이용될 수 있을 것이다.Therefore, the mannan-coated superparamagnetic nanoparticles prepared according to the present invention may be usefully used as a hepatocyte-specific contrast agent.

도 1은 (a)만난 코팅 전 산화철 나노입자(SPIONs), (b)만난, (c)만난-SPIONs의 FT-IR 그래프를 나타낸 것이다.FIG. 1 shows FT-IR graphs of (a) iron oxide nanoparticles before coating (SPIONs), (b) met, and (c) met-SPIONs.

도 2a는 만난-SPIONs의 TEM 사진이다.2A is a TEM picture of met-SPIONs.

도 2b는 SPIONs의 TEM 사진이다.2B is a TEM picture of SPIONs.

도 3a는 만난-SPIONs의 ELS 그래프를 나타낸 것이다.3A shows an ELS graph of met-SPIONs.

도 3b는 SPIONs의 ELS 그래프를 나타낸 것이다.3B shows an ELS graph of SPIONs.

도 4a는 만난/철의 중량 비율에 따른 만난-SPIONs의 전기이동 이동도를 나타낸 것이다.Figure 4a shows the electrophoretic mobility of the met-SPIONs according to the weight ratio of met / iron.

도 4b는 만난/철의 중량 비율에 따른 만난-SPIONs의 유체역학적 크기를 나타낸 것이다.4B shows the hydrodynamic size of mannan-SPIONs according to the weight ratio of met / iron.

도 5는 MTT 분석에 의한 PVA-SPIONs와 만난-SPIONs의 Raw 264.7 대식세포에 대한 세포독성을 나타낸 그래프이다.FIG. 5 is a graph showing cytotoxicity of Raw 264.7 macrophages of PVA-SPIONs and met-SPIONs by MTT assay.

도 6는 만난-SPIONs의 세포내 유입 효율을 나타낸 그래프이다.6 is a graph showing the cellular influx of met-SPIONs.

도 7은 PVA-SPIONs의 투입전(a), 투입후(b), 만난-SPIONs의 투입전(a), 투입후(b)의 공명사진이다.7 is a resonance photograph before (a), after (b) and before (a) and after (b) of injection of PVA-SPIONs.

도 8은 PVA-SPIONs (a) 및 만난-SPIONs (b)의 투입 후 프루시안 블루 염색에 의하여 래트 간의 쿠퍼세포에서의 SPIONs의 유입을 나타낸 사진이다.Figure 8 is a photograph showing the influx of SPIONs in Cooper cells between rats by Prussian blue staining after the addition of PVA-SPIONs (a) and Mannan-SPIONs (b).

Claims (4)

만난(mannan)이 수소결합으로 코팅된 초상자성 산화철 나노입자를 포함하는 간질환 진단용 조영제.Contrast agent for diagnosing liver disease, wherein mannan contains superparamagnetic iron oxide nanoparticles coated with hydrogen bonds. 삭제delete 삭제delete 염화철 수용액에 염기성 용액을 첨가하여 산화철 나노입자를 침전시키는 단계;Precipitating iron oxide nanoparticles by adding a basic solution to an aqueous solution of iron chloride; 상기 침전된 산화철 나노입자를 산화 및 투석시켜 저장 용액을 제조하는 단계; 및 Oxidizing and dialysis the precipitated iron oxide nanoparticles to prepare a stock solution; And 상기 저장 용액에 만난 용액을 혼합하고 교반시켜 수소결합을 통해 산화철 나노입자의 표면을 만난으로 코팅하는 단계Coating the surface of the iron oxide nanoparticles with met by mixing and stirring the met solution into the stock solution through hydrogen bonding; 를 포함하여 이루어지는 것을 특징으로 하는 만난이 코팅된 초상자성 산화철 나노입자의 제조방법. Method of producing a superparamagnetic iron oxide nanoparticles coated with metnan, characterized in that comprises a.
KR1020080015374A 2008-02-20 2008-02-20 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases KR100949465B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080015374A KR100949465B1 (en) 2008-02-20 2008-02-20 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080015374A KR100949465B1 (en) 2008-02-20 2008-02-20 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases

Publications (2)

Publication Number Publication Date
KR20090090104A KR20090090104A (en) 2009-08-25
KR100949465B1 true KR100949465B1 (en) 2010-03-29

Family

ID=41208053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080015374A KR100949465B1 (en) 2008-02-20 2008-02-20 Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases

Country Status (1)

Country Link
KR (1) KR100949465B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121430A1 (en) 2011-03-08 2012-09-13 주식회사 인트론바이오테크놀로지 Carboxylic mannan-coated contrast agent for magnetic resonance imaging
US8961935B2 (en) 2011-03-08 2015-02-24 Intron Biotechnology, Inc. MRI contrast agent coated with carboxylated mannan and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031220A1 (en) 1994-05-12 1995-11-23 Otsuka Pharmaceutical Co., Ltd. Contrast medium for magnetic resonance imaging
US20050262176A1 (en) * 2004-05-24 2005-11-24 Wenkwei Lou Polyphase filter with optimized silicon area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031220A1 (en) 1994-05-12 1995-11-23 Otsuka Pharmaceutical Co., Ltd. Contrast medium for magnetic resonance imaging
US20050262176A1 (en) * 2004-05-24 2005-11-24 Wenkwei Lou Polyphase filter with optimized silicon area

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1: Bioconjugate chem*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121430A1 (en) 2011-03-08 2012-09-13 주식회사 인트론바이오테크놀로지 Carboxylic mannan-coated contrast agent for magnetic resonance imaging
US8961935B2 (en) 2011-03-08 2015-02-24 Intron Biotechnology, Inc. MRI contrast agent coated with carboxylated mannan and method for producing the same

Also Published As

Publication number Publication date
KR20090090104A (en) 2009-08-25

Similar Documents

Publication Publication Date Title
Peng et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications
Arami et al. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles
Xiong et al. A functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent
Fu et al. Facile preparation of uniform FeSe 2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy
Hu et al. High-performance nanostructured MR contrast probes
Hao et al. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging
Ferretti et al. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance
CN109045310A (en) A kind of dendrimer composite material of amphoteric ion modification and its preparation and application
CN110013559B (en) HA-targeted bimetallic hydroxide-ultra-small iron nano material and preparation and application thereof
US20150165070A1 (en) Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use
Fu et al. Surface functionalization of superparamagnetic nanoparticles by an acid-liable polysaccharide-based prodrug for combinatorial monitoring and chemotherapy of hepatocellular carcinoma
Wei et al. Biocompatible low-retention superparamagnetic iron oxide nanoclusters as contrast agents for magnetic resonance imaging of liver tumor
Zhang et al. Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging
Vu-Quang et al. Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging
US20230087639A1 (en) Biogenic hemin-based mri contrast agents, and compositions and methods thereof
US20140228552A1 (en) Mri contrast enhancing agent
Yin et al. Magnetic PEGylated Pt 3 Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study
Jiang et al. Novel gadopentetic acid-doped silica nanoparticles conjugated with YPSMA-1 targeting prostate cancer for MR imaging: an in vitro study
Song et al. A multifunctional nanoprobe based on europium (iii) complex–Fe 3 O 4 nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo
Gong et al. A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer
KR100949465B1 (en) Superparamagnetic iron oxide nanoparticles coated with mannan, preparation method thereof and contrast agent for diagnosing liver diseases
Bomati-Miguel et al. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects
Yan et al. A tumor-targeting and ROS-responsive iron-based T 1 magnetic resonance imaging contrast agent for highly specific tumor imaging
CN109620972B (en) T1-T2 bimodal targeted imaging contrast agent for lung cancer diagnosis and preparation method thereof
Kaufner et al. Poly (ethylene oxide)-block-poly (glutamic acid) coated maghemite nanoparticles: in vitro characterization and in vivo behaviour

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170309

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190221

Year of fee payment: 10