KR100968259B1 - Slab bridge and this construction technique - Google Patents

Slab bridge and this construction technique Download PDF

Info

Publication number
KR100968259B1
KR100968259B1 KR1020090093084A KR20090093084A KR100968259B1 KR 100968259 B1 KR100968259 B1 KR 100968259B1 KR 1020090093084 A KR1020090093084 A KR 1020090093084A KR 20090093084 A KR20090093084 A KR 20090093084A KR 100968259 B1 KR100968259 B1 KR 100968259B1
Authority
KR
South Korea
Prior art keywords
slab
bridge
steel wire
concrete block
concrete
Prior art date
Application number
KR1020090093084A
Other languages
Korean (ko)
Inventor
노윤근
노옥근
노실근
Original Assignee
노윤근
노옥근
노실근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노윤근, 노옥근, 노실근 filed Critical 노윤근
Priority to KR1020090093084A priority Critical patent/KR100968259B1/en
Application granted granted Critical
Publication of KR100968259B1 publication Critical patent/KR100968259B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PURPOSE: A slab bridge in which a prestressed concrete wire is placed in a uniform or nonuniform concrete block and a construction method thereof are provided to reduce the thickness of a slab by enhancing the eccentricity efficiency of the prestressed concrete wire. CONSTITUTION: A slab bridge in which a prestressed concrete wire is placed in a uniform or nonuniform concrete block is configured as follows. A concrete block(18) of uniform or nonuniform cross section is formed by placing and curing concrete in points inside or outside a slab(12) in the longitudinal direction of an RC slab bridge or PSC slab bridge(10). A prestressed concrete wire(20) is placed within the concrete block and stressed.

Description

등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법{Slab bridge and this construction technique}Slab bridge and PC construction method where PC steel wire is located in iso- or side-section concrete block

본 발명은 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법에 관한 것으로, 특히 슬래브교의 교축방향으로 슬래브 상면에 콘크리트블록을 1열, 2열 또는 3열로 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 형성하고, 상기 콘크리트블록 내에 PC강선을 위치하고 긴장하는 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법에 관한 것이다.The present invention relates to a slab bridge in which the PC steel wire is located in the iso-section or side cross-section concrete block, and a construction method thereof, in particular the concrete block on the upper surface of the slab in the axial direction of the slab bridge in one row, two rows or three rows and It relates to a slab bridge formed on the upper surface of the outer branch portion or the inner branch portion or the outer branch portion, the PC steel wire is located in the concrete section or the sectional cross-section of the concrete block is placed and tensioned in the concrete block and its construction method.

종래의 철근콘크리트 슬래브교(Reinforced Concrete Slab Bridge)는 도 1 및 도 3에 도시된 바와 같이, 거푸집이 간단하고, 콘크리트 타설시 수평이음을 두지 않고 마무리할 수 있으므로 시공이 비교적 용이하고 확실하며, 공사비가 가장 저렴하나, 장경간에는 사하중의 증가로 불리하며 단순 경간의 경우에는 기술적인 한계로 경간장 15m이하에서 널리 사용되고 있다.The conventional reinforced concrete slab bridge (Reinforced Concrete Slab Bridge), as shown in Figures 1 and 3, the formwork is simple, can be finished without placing horizontal joints when placing concrete, the construction is relatively easy and reliable, construction cost Is the cheapest, but is called the increase of dead weight in long span, and in the case of simple span, it is widely used in the span of 15m or less due to technical limitations.

또한, 종래의 프리스트레스트 콘크리트 슬래브교(Prestressed Concrete Slab Bridge)는 도 2 및 도 4에 도시된 바와 같이, RC 슬래브교(10)에 PC강선(13)을 배 치하여 긴장하므로 RC 슬래브교(10)에 비해 형고를 줄이고, 경간장을 더 길게 할 수가 있어 지형여건상 형고나 경간장의 제약이 있는 경우에 중소규모 교량 공법 중에서 거더교나 RC 슬래브교(10)를 대체하여 종래의 RC 슬래브교(10)에 비해서는 다소 공사비가 증가되나, 가장 경제적으로 형고나 경간장을 극복할 수 있는 교량공법으로 널리 쓰여온 교량이다.In addition, the conventional prestressed concrete slab bridge (Prestressed Concrete Slab Bridge), as shown in Figures 2 and 4, the RC slab bridge 10 by placing the PC steel wire 13 in the RC slab bridge (10) Compared to the existing girder bridge or RC slab bridge (10) among the small and medium-sized bridge construction methods in case of limited height or span length due to the terrain conditions, the conventional RC slab bridge (10) can be reduced. Compared to this, the cost of construction increases somewhat, but it is the most widely used bridge construction method to overcome the sentence of death and span.

그러나 상기한 바와 같은 종래의 PSC 슬래브교(10)는 콘크리트 슬래브(12) 단면 형고 내에서 PC강선(13)을 배치하여 긴장하므로 PC강선(13)의 편심효율이 적어, 최대경간장 25m 전후로 제한되고, PC강선(13)의 소요수량이 많아 공사비가 다소 증가되는 비경제적인 요인이 있어 더 경제적이면서 장경간을 구현할 수 있는 기술의 개발이 요구되고 있는 실정이다.However, the conventional PSC slab bridge 10 as described above is tensioned by arranging the PC steel wire 13 in the concrete slab 12 cross-sectional height, so the eccentric efficiency of the PC steel wire 13 is less, limited to around 25m maximum span length As a result, there is an uneconomical factor that increases the cost of construction because of the large amount of PC steel wire 13 required, and therefore, the development of a technology that can realize more economical and long span is required.

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위해 안출된 것으로서, 슬래브교의 교축방향으로 슬래브 상면에 콘크리트블록을 1열, 2열 또는 3열로 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 형성하고, 상기 콘크리트블록 내에 PC강선을 위치하고, 긴장하여 PC강선의 편심효율을 증대시켜 슬래브의 두께를 감소시킬 뿐만 아니라 경간장을 더 연장하여 장경간화가 가능하도록 한 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, the inner block portion and the outer branch portion or the inner branch portion in the first row, two rows or three rows of concrete blocks on the upper surface of the slab in the axial direction of the slab bridge or Is formed on the upper surface of the outer branch portion, the PC steel wire is placed in the concrete block, and tensioned to increase the eccentric efficiency of the PC steel wire to reduce the thickness of the slab, as well as to extend the span length to make the longer cross section is possible The purpose of the present invention is to provide a slab bridge in which the PC steel wire is located in the cross-section concrete block and its construction method.

상기한 목적을 달성하기 위한 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교는 RC 슬래브교 또는 PSC 슬래브교에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교의 교축방향으로 슬래브의 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록이 형성되고, 상기 콘크리트블록 내에 PC강선이 위치되고, 상기 PC강선이 긴장됨을 특징으로 한다.In order to achieve the above object, the slab bridge in which the PC steel wire is located in the iso- or cross-section concrete block according to the present invention is a RC slab bridge or a PSC slab bridge, the slab in the axial direction of the RC slab bridge or PSC slab bridge By placing and curing concrete on the upper surface of the inner branch portion and the outer branch portion or the inner branch portion or the outer branch portion, a concrete block having an equilateral cross-section or side cross-sectional shape is formed, and the PC steel wire is located in the concrete block, and the PC steel wire is Characterized by tension.

또한, 상기한 목적을 달성하기 위한 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 시공방법은 RC 슬래브교 또는 PSC 슬래브교 시공방법에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교의 교축방향으로 슬래브의 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록을 형성하고, 상기 콘크리트블록 내에 PC강선을 위치하고, 상기 PC강선을 긴장함을 특징으로 한다.In addition, in order to achieve the above object, the construction method of the slab bridge in which the PC steel wire is located in the iso- or cross-section concrete block according to the present invention is RC slab bridge or PSC slab bridge construction method, the RC slab bridge or PSC slab Placing and curing concrete on the inner and outer points of the slab or on the inner or outer points of the slab in the axial direction of the bridge to form concrete blocks of the same cross-section or side cross-section, and place the PC steel wire in the concrete block. , Characterized in that the tension of the PC steel wire.

이상에서 설명한 바와 같이, 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법은 다음과 같은 효과가 있다.As described above, the slab bridge and the construction method of the PC steel wire is placed in the concrete block in the equilateral or side-section according to the present invention has the following effects.

첫째, 본 발명은 종래의 RC 슬래브교나 PSC 슬래브교에 비해 슬래브 두께를 더 줄이고 경간장을 더 늘릴 수 있어서 형고 제약이나 경간장 제약으로 인해 슬래브교를 적용할 수 없는 지형에 매우 경제적인 비용으로 타공법에 대체 적용할 수 있는 이점이 있다.First, the present invention can reduce the slab thickness and increase the span length more than conventional RC slab bridges or PSC slab bridges, so that it is possible to reduce the thickness of the slab bridges. There is an advantage that can be applied.

둘째, 본 발명은 종래의 프리플렉스 거더 합성 라멘교를 대체할 수 있어 국가예산절감에 기여할 수 있는 이점이 있다.Second, the present invention can replace the conventional preflex girder composite ramen bridge has the advantage that can contribute to the national budget savings.

셋째, 본 발명은 경간장이 15-25m 수준인 중소형 교량에 탁월한 경제성을 발휘할 수 있고, 추후 유지관리용 PC강선에 의해 재긴장이 가능할 뿐만 아니라 일상의 유지관리가 용이한 장점이 있다.Third, the present invention can exert an excellent economic efficiency in the small and medium bridges with a span length of 15-25m, and can be re-tensioned by the PC steel wire for future maintenance, as well as the daily maintenance is easy.

넷째, 본 발명은 교량의 설치 지형여건과 예산을 고려하여 종래의 RC슬래브교 또는 PSC슬래브교에 콘크리트블록만 추가하면 되므로, 신축적인 접목이 가능한 장점이 있다.Fourth, the present invention has only the concrete block to the conventional RC slab bridge or PSC slab bridge in consideration of the installation terrain conditions and budget of the bridge, there is an advantage that can be grafted flexibly.

이하, 본 발명을 첨부한 예시도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

도 5 및 도 6은 종래의 RC 및 PSC 슬래브 단순교에 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도이고, 도 7 및 도 8은 종래의 RC 및 종래의 PSC슬래브 연속교의 내측지점부와 외측지점부에 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도이며, 도 9 및 도 10은 종래의 RC 및 PSC 슬래브 연속교의 내측지점부와 외측지점부에 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도이며, 도 11 및 도 12는 종래의 RC 및 PSC 슬래브 연속교의 내측지점부에 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도이며, 도 13 및 도 14는 종래의 RC 및 PSC 슬래브 연속교의 내측지점부에 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도이며, 도 15 및 도 16은 종래의 RC 및 PSC 슬래브 연속교의 내측지점부와 외측지점부에 등단면 콘크리트블록이 적용되고, 상기 콘크리트블록 내에 유지관리용 쉬스가 매입된 상태를 도시한 종단면도이며, 도 17 및 도 18은 종래의 RC 및 PSC 슬래브교에 콘크리트블록 1열이 적용된 상태를 도시한 예시도이며, 도 19 및 도 20은 종래의 RC 및 PSC 슬래브교에 콘크리트블록 2열이 적용된 상태를 도시한 예시도이며, 도 21 및 도 22는 종래의 RC 및 PSC 슬래브교에 콘크리트블록 3열이 적용된 상태를 도시한 예시도이며, 도 23 및 도 24는 도 21 및 도 22의 슬래브에 횡방향 PC강선이 설치된 상태를 도시한 예시도이며, 도 25 및 도 26은 도 21 및 도 22의 슬래브에 중공관이 설치된 상태를 도시한 예시도이며, 도 27 및 도 28은 종래의 RC 및 PSC 슬래브 무교대교에 콘크리트블록이 적용된 상태를 도시한 예시도이다. 5 and 6 are longitudinal cross-sectional views showing a state in which isotropic concrete blocks are applied to conventional RC and PSC slab simple bridges, Figures 7 and 8 are the inner and outer points of the conventional RC and conventional PSC slab continuous bridge FIG. 9 and FIG. 10 are longitudinal cross-sectional views illustrating a state where a cross-sectional concrete block is applied to an inner branch portion and an outer branch portion of a conventional RC and PSC slab continuous bridge. FIG. 11 and 12 are longitudinal cross-sectional views illustrating a state where an equi-sectional concrete block is applied to an inner point portion of a conventional RC and PSC slab continuous bridge, and FIGS. 13 and 14 are inside of a conventional RC and PSC slab continuous bridge. Figure 15 is a longitudinal cross-sectional view showing a state in which the cross-sectional concrete block is applied to the point, Figures 15 and 16 is a uniform cross-sectional concrete block is applied to the inner and outer branches of the conventional RC and PSC slab continuous bridge FIG. 17 and FIG. 18 are exemplary views illustrating a state in which one row of concrete blocks is applied to conventional RC and PSC slab bridges, and FIG. 19. And FIG. 20 is an exemplary view showing a state in which two rows of concrete blocks are applied to conventional RC and PSC slab bridges, and FIGS. 21 and 22 illustrate a state in which three rows of concrete blocks are applied to conventional RC and PSC slab bridges. 23 and 24 are exemplary views showing a state in which the transverse PC steel wire is installed in the slabs of FIGS. 21 and 22, and FIGS. 25 and 26 are hollow tubes installed in the slabs of FIGS. 21 and 22. 27 and 28 are exemplary views illustrating a state in which a concrete block is applied to conventional RC and PSC slab bridges.

이들 도면에 도시된 바와 같이, 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교는 RC 슬래브교 또는 PSC 슬래브교(10)에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교(10)의 교축방향으로 슬래브(12)의 내측지점부(14)와 외측지점부(16) 또는 내측지점부(14) 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록(18)이 형성되고, 상기 콘크리트블록(18) 내에 PC강선(20)이 위치되고, 상기 PC강선(20)이 긴장되도록 구성된다.
여기서, 상기 RC 슬래브교 또는 PSC 슬래브교의 중간지점부 부모멘트 크기를 감소시키기 위해서, RC 슬래브교 또는 PSC 슬래브교의 교량길이방향인 교축방향으로 슬래브 상면의 양측에 PC강선을 위치하되, 중립축과 PC강선 설치 사이의 거리를 멀리하여 편심이 크게 되도록 설치된 PC강선을 긴장 정착하여 발생되는 모멘트의 크기를 증가시키도록 한 것이다.
즉, 중립축으로부터 PC강선의 위치를 가능한 멀게 하여 PC강선을 위치하되, 시방서 상에서 정한 최소 콘크리트피복 두께까지 PC강선을 위치하여 편심이 크게 되도록 한 것이다.
또한, 도 5 내지 도 16에 도시된 바와 같이, PC강선의 편심이 크게 되도록 PC강선의 설치거리를 가능한 멀게 하여 모멘트를 발생시키도록 한 것이다.
As shown in these figures, the slab bridge in which the PC steel wire is located in the iso- or cross-section concrete block according to the present invention is RC slab bridge or PSC slab bridge 10, the RC slab bridge or PSC slab bridge ( 10) in the axial direction of the slab 12, the inner point portion 14 and the outer point portion 16, or the inner point portion 14 or the outer point portion of the upper surface portion is cast and cured concrete, Concrete block 18 is formed, the PC steel wire 20 is located in the concrete block 18, the PC steel wire 20 is configured to tension.
Here, in order to reduce the size of the middle point portion of the RC slab bridge or the PSC slab bridge, PC steel wires on both sides of the upper surface of the slab in the direction of the bridge length direction of the RC slab bridge or PSC slab bridge, the neutral axis and PC steel wire To increase the amount of moment generated by tensioning the PC steel wire installed so that the eccentricity is increased by the distance between installations.
In other words, the PC steel wire is positioned by placing the PC steel wire as far as possible from the neutral axis, but the PC steel wire is placed up to the minimum concrete coating thickness specified in the specification so that the eccentricity is increased.
In addition, as shown in Figures 5 to 16, the installation distance of the PC steel wire as far as possible so as to increase the eccentricity of the PC steel wire to generate a moment.

즉, 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교(10)는 RC 슬래브교 또는 PSC 슬래브교(10)에 콘크리트블록(18)을 형성하고, 상기 콘크리트블록(18) 내에 PC강선(20)을 위치하여, 상기 PC강선(20)의 편심효율을 증대시켜 슬래브(12)의 두께를 감소시킬 뿐만 아니라 경간장을 더 연장하여 장경간화가 가능하도록 한 것을 특징으로 한다.That is, the slab bridge 10 in which the PC steel wire is located in the iso- or cross-sectional concrete block according to the present invention forms a concrete block 18 in the RC slab bridge or PSC slab bridge 10, the concrete block 18 By placing the PC steel wire 20 in), to increase the eccentric efficiency of the PC steel wire 20 to reduce the thickness of the slab 12, it is characterized in that it is possible to further extend the long span to make the long span.

여기서, 상기 콘크리트블록(18)은 슬래브교(10)의 횡단면을 기준으로 슬래브(12) 폭원의 중앙부(22)와 슬래브(12) 폭원의 양측면(24)에 각각 3열로 설치되거나, 슬래브(12) 폭원의 양측면(24)에 2열로 설치되거나, 슬래브(12) 폭원의 중앙부(22)에 1열로 설치된다.Here, the concrete blocks 18 are installed in three rows on the central portion 22 of the slab 12 width source and the side surfaces 24 of the slab 12 width source based on the cross section of the slab bridge 10, or the slab 12. 2) are provided in two rows on both side surfaces 24 of the width source, or in one row in the central portion 22 of the slab 12 width source.

특히, 상기 콘크리트블록(18)의 설치수량은 슬래브교(10)의 폭원에 따라 폭이 크면 슬래브(12) 폭원의 중앙부(22)와 슬래브(12) 폭원의 양측면(24)에 각각 3열로 설치하고, 중간이면 슬래브(12) 폭원의 양측면(24)에 2열로 설치하며, 적으면 슬래브(12) 폭원의 중앙부(22)에만 1열로 배치하여, 콘크리트블록(18)의 경제성과 구조효율성을 함께 고려할 수도 있음을 밝혀둔다.In particular, the installation quantity of the concrete block 18 is installed in three rows on both sides of the center portion 22 of the slab 12 width source and the side surface 24 of the slab 12 width source if the width is large according to the width source of the slab bridge (10) In the middle, it is installed in two rows on both sides 24 of the slab 12 width source, and if it is small, it is arranged in one row only in the center portion 22 of the slab 12 width source, and the economic efficiency and structural efficiency of the concrete block 18 are combined. Note that you may consider.

또한, 상기 콘크리트블록(18)의 크기는 모두 등단면 형상으로 형성하거나 미관과 경간장을 고려하여 변단면 형상으로 형성할 수도 있다.In addition, all of the size of the concrete block 18 may be formed in the shape of a cross-section or in the shape of a cross-sectional surface in consideration of aesthetics and span.

그리고, 상기 슬래브(12)에는 슬래브(12)의 경간 중앙부(22) 부분에서 횡방향 PS강선(26)에 의해 프리스트레스가 도입된다.Then, prestress is introduced into the slab 12 by the transverse PS steel wire 26 at the center portion 22 of the span 12 of the slab 12.

또한, 상기 슬래브(12)의 교축방향으로 슬래브(12)내에 중공관(28)이 설치된다.In addition, a hollow tube 28 is provided in the slab 12 in the axial direction of the slab 12.

이와 같이 중공관(28)을 설치하는 이유는 RC 슬래브교 또는 PSC 슬래브교(10)에서 슬래브(12) 콘크리트의 중량을 감소시키기 위함이다.The reason for installing the hollow tube 28 is to reduce the weight of the slab 12 concrete in the RC slab bridge or PSC slab bridge (10).

또한, 상기 콘크리트블록(18)에는 PC강선(20)이 1열 이상 위치되고, 추후 유지관리를 위한 쉬스(30)가 함께 매입된다.In addition, the concrete block 18 is located in one or more rows of PC steel wire 20, the sheath 30 for later maintenance is embedded together.

즉, 추후공용 중 유지관리를 위해 콘크리트블록(18)내에는 보수, 보강용 PC강선을 삽입 및 긴장을 위해 미리 쉬스(30)만을 매입할 수도 있다. That is, in the concrete block 18 for maintenance during the later work, only the sheath 30 may be purchased in advance for insertion and tension of the steel wire for repair and reinforcement.

그리고, 상기 슬래브(12)는 교대파일(32)의 상면 부분과 일체로 합성되어 교대가 생략된 무교대로 형성된다.In addition, the slab 12 is integrally formed with the upper surface portion of the alternating pile 32 to be formed in an alternating manner in which the alternation is omitted.

특히, 상기 콘크리트블록(18)이 설치되는 부분은 환경적인 요인을 고려하여 교대파일기초(32)와 슬래브(12)를 직접 접합하여 합성시켜 무교대 교량으로도 건설이 가능함을 밝혀둔다.
여기서, 상기 무교대는 교량의 양측면에 설치되는 교대파일(32)과 슬래브(12)를 강결 연결하여 외력에 일체로 거동되도록 한 것으로, 도 26 및 도 27에 도시된 바와 같이, 통상적인 교량의 양측에 설치되는 교대의 설치를 생략한 것이다.
In particular, the portion where the concrete block 18 is installed is found to be possible to construct a non-switched bridge by directly combining the alternating pile foundation 32 and the slab 12 in consideration of environmental factors.
Here, the shift is to connect the alternating pile 32 and the slab 12 installed on both sides of the bridge to be integral to the external force, as shown in Figure 26 and 27, both sides of a conventional bridge The installation of the shift is omitted.

또한, 상기 슬래브(12)는 접속슬래브(34)와 강재힌지(36)에 의해 일체로 연결된다.
여기서, 상기 접속슬래브(34)는 교대와 지상에 설치되는 도로와 연결되는 부분에 콘크리트를 타설하여 설치된 슬래브를 의미한다.
상기 교대와 지상의 도로가 접하는 부분에는 토사가 성토되고, 그 위에 상기 접속슬래브(34)가 도 27에 도시된 바와 같이, 강재힌지(36)로 슬래브(12)와 서로 접속(연결)하여 설치된다.
상기와 같이 교대와 도로와의 사이에 설치되는 접속슬래브(34)의 하부에 성토되는 토사에 부등침하가 발생되면, 접속슬래브(34)에 불균형 모멘트가 발생되어 접속슬래브(34)가 변형되는 것을 방지하기 위하여 강재힌지(36)를 매개로 슬래브(12)와 상호 연결한다.
또한, 상술한 바와 같이 상기 슬래브(12)가 접속슬래브(34)와 강재힌지(36)에 의해 일체로 연결되는 것은 접속슬래브(34)를 강재힌지(36)를 매개로 슬래브(12)와 상호 접속할 때, 상기 강재힌지(36)의 일단은 슬래브(12)내에 매입하고, 타단은 접속슬래브(34)내에 매입한 후에, 콘크리트를 타설 경화하여 일체 연결한 것이다.
상기와 같이 강재힌지(36)의 양단이 접속슬래브(34)와 슬래브(12)에 일체로 매입된 상태에서 접속슬래브(34)의 하부에 성토된 토사에 부등침하가 발생되면 상기 강재힌지(36)의 철근이 상호 교차된 부분이 회전되도록 하여 상기 부등침하에 의하여 발생된 불균형 모멘트를 상쇄, 흡수하여 접속슬래브(34)의 변형을 방지하는 것이다.
In addition, the slab 12 is integrally connected by the connecting slab 34 and the steel hinge 36.
Here, the connection slab 34 means a slab installed by placing concrete on the part connected to the road is installed on the shift and the ground.
The earth and sand are piled up at the part where the shift and the ground road contact, and the connecting slab 34 is connected to (connected) with the slab 12 with the steel hinge 36 as shown in FIG. 27. do.
As described above, when an uneven settlement occurs in the earth and sand deposited in the lower portion of the connecting slab 34 provided between the shift and the road, an unbalanced moment is generated in the connecting slab 34 so that the connecting slab 34 is deformed. In order to prevent the interconnection with the slab 12 via the steel hinge (36).
In addition, as described above, the slab 12 is integrally connected by the connecting slab 34 and the steel hinge 36 to the slab 12 through the steel hinge 36 through the connecting slab 34. At the time of connection, one end of the steel hinge 36 is embedded in the slab 12, and the other end is embedded in the connecting slab 34, after which the concrete is poured and hardened together.
When the both ends of the steel hinge 36 is integrally embedded in the connecting slab 34 and the slab 12 as described above, if an uneven settlement occurs in the soil deposited in the lower portion of the connecting slab 34, the steel hinge 36 This is to prevent the deformation of the connecting slab 34 by canceling and absorbing the unbalanced moment generated by the uneven settlement by rotating the cross where the rebars cross each other.

따라서, 상기 PSC 슬래브교(10)의 슬래브(12)와 접속슬래브(34)를 강재힌지(36)에 의해 연결접합이 가능함으로써, 종래의 신축이음에 의한 접합이 아닌 무신축이음 교대로 시공도 가능함을 밝혀두는 바이다.Accordingly, the slab 12 and the connecting slab 34 of the PSC slab bridge 10 can be connected and joined by the steel hinge 36, so that the construction is performed alternately without expansion joints, instead of the conventional expansion joints. It is possible to find out.

이하, 상기한 바와 같은 구성으로 이루어진 본 발명에 따른 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 시공에 대해 설명한다.Hereinafter, the construction of the slab bridge in which the PC steel wire is located in the isoteric or lateral concrete block according to the present invention having the configuration as described above.

도 5 내지 도 28에 도시된 바와 같이, 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 시공방법은 RC 슬래브교 또는 PSC 슬래브교(10) 시공방법에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교(10)의 교축방향으로 슬래브(12)의 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록(18)을 형성하고, 상기 콘크리트블록(18) 내에 PC강선(20)을 위치하고, 상기 PC강선(20)을 긴장한다.5 to 28, according to the present invention, the construction method of the slab bridge in which the PC steel wire is located in the iso- or cross-section concrete block is RC slab bridge or PSC slab bridge 10 construction method, the RC Concrete blocks of equilateral or side cross-sectional shape by placing and curing concrete on the inner and outer points or the inner or outer points of the slab 12 in the axial direction of the slab bridge or PSC slab bridge 10 (18) is formed, the PC steel wire 20 is located in the concrete block 18, the PC steel wire 20 is tensioned.

상기 콘크리트블록(18)을 슬래브교(10)의 횡단면을 기준으로 슬래브(12) 폭원의 중앙부(22)와 슬래브(12) 폭원의 양측면(24)에 각각 3열로 설치하거나, 슬래브(12) 폭원의 양측면(24)에 2열로 설치하거나, 슬래브(12) 폭원의 중앙부(22)에 1열로 설치한다.The concrete blocks 18 are installed in three rows on the central portion 22 of the slab 12 width source and the side surfaces 24 of the slab 12 width source, respectively, based on the cross section of the slab bridge 10, or the slab 12 width source. It is provided in two rows on both side surfaces 24 of, or in one row in the center part 22 of the slab 12 width source.

상기 슬래브(12)의 경간 중앙부(22) 부분에서 횡방향 PS강선(26)에 의해 프리스트레스를 도입한다.Prestress is introduced by the transverse PS steel wire 26 in the span center portion 22 of the slab 12.

상기 슬래브(12)의 교축방향으로 슬래브(12)의 가운데에 중공관(28)을 설치한다.The hollow tube 28 is installed in the center of the slab 12 in the axial direction of the slab 12.

상기 콘크리트블록(18)에는 PC강선(20)을 1열 이상 위치하고, 상기 콘크리트블록(18)의 상단부에는 추후 유지관리를 위한 쉬스(30)를 함께 매입한다.PC steel wire 20 is positioned in one or more rows of the concrete block 18, the upper end of the concrete block 18 is embedded with a sheath 30 for later maintenance.

상기 슬래브(12)는 교대파일(32)의 상면부분과 일체로 합성하여 거동되는 무교대 교량형식으로 구성한다.The slab 12 is composed of an alternating bridge type that is integrated with the upper surface portion of the alternating pile 32 and behaves.

상기 슬래브(12)는 접속슬래브(34)와 강재힌지(36)에 의해 일체로 연결한다.The slab 12 is integrally connected by the connecting slab 34 and the steel hinge 36.

상기한 바와 같은 구성 및 시공으로 이루어진 본 발명에 따른 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 및 이의 시공방법은 슬래브교(10)의 교축방향으로 슬래브(12) 상면에 콘크리트블록(18)을 1열 또는 2열 또는 3열을 내측지점부(14)와 외측지점부(16) 또는 내측지점부(14) 또는 외측지점부(16) 상면에 형성하여 콘크리트블록(18)내에 PC강선(20)을 위치하고, 상기 PC강선(20)을 긴장하여 PC강선(20)의 효율을 증대시키므로 슬래브(12)의 두께를 줄이거나, 경간장을 더 늘릴 수 있는 작용효과가 있다.The slab bridge and the construction method of the PC steel wire is placed in the concrete block or iso-section cross-sectional concrete block according to the present invention made of the above-described configuration and construction of the concrete block on the upper surface of the slab 12 in the axial direction of the slab bridge 10 (18) in one or two or three rows on the inner branch portion 14 and the outer branch portion 16 or the inner branch portion 14 or the outer branch portion 16 on the upper surface of the concrete block 18 Positioning the PC steel wire 20, the PC steel wire 20 is tensioned to increase the efficiency of the PC steel wire 20, thereby reducing the thickness of the slab 12, there is an effect that can increase the span length.

도 1은 종래의 RC 슬래브교 연속교를 도시한 종단면도,1 is a longitudinal sectional view showing a conventional RC slab bridge continuous bridge;

도 2는 종래의 RC 슬래브교 연속교를 도시한 횡단면도,2 is a cross-sectional view showing a conventional RC slab bridge continuous bridge,

도 3은 종래의 PSC 슬래브 연속교를 도시한 종단면도,3 is a longitudinal sectional view showing a conventional PSC slab continuous bridge;

도 4는 종래의 PSC 슬래브 연속교를 도시한 횡단면도,4 is a cross-sectional view showing a conventional PSC slab continuous bridge,

도 5는 종래의 RC 슬래브 단순교에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,Figure 5 is a longitudinal cross-sectional view showing a state in which the uniform section concrete block according to the invention applied to the conventional RC slab simple bridge,

도 6은 종래의 PSC 슬래브 단순교에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,Figure 6 is a longitudinal cross-sectional view showing a state in which the uniform section concrete block according to the present invention is applied to a conventional PSC slab simple bridge,

도 7은 종래의 RC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,Figure 7 is a longitudinal cross-sectional view showing a state in which the uniform section concrete block according to the present invention the inner branch portion and the outer branch portion of the conventional RC slab continuous bridge,

도 8은 종래의 PSC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,8 is a longitudinal sectional view showing a state in which an isotropic concrete block according to the present invention is applied to the inner branch portion and the outer branch portion of the conventional PSC slab continuous bridge,

도 9는 종래의 RC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도,9 is a longitudinal cross-sectional view showing a state in which the cross-sectional concrete block according to the present invention is applied to the inner branch portion and the outer branch portion of the conventional RC slab continuous bridge,

도 10은 종래의 PSC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도,10 is a longitudinal cross-sectional view showing a state in which the side cross-sectional concrete block according to the present invention is applied to the inner branch portion and the outer branch portion of the conventional PSC slab continuous bridge,

도 11은 종래의 RC 슬래브 연속교의 내측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,Figure 11 is a longitudinal cross-sectional view showing a state in which the uniform section concrete block according to the present invention is applied to the inner branch portion of the conventional RC slab continuous bridge,

도 12는 종래의 PSC 슬래브 연속교의 내측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용된 상태를 도시한 종단면도,12 is a longitudinal sectional view showing a state where an iso-sectional concrete block according to the present invention is applied to the inner branch portion of a conventional PSC slab continuous bridge;

도 13은 종래의 RC 슬래브 연속교의 내측지점부에 본 발명에 따른 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도,13 is a longitudinal sectional view showing a state in which the cross-sectional concrete block according to the present invention is applied to the inner point of the conventional RC slab continuous bridge;

도 14는 종래의 PSC 슬래브 연속교의 내측지점부에 본 발명에 따른 변단면 콘크리트블록이 적용된 상태를 도시한 종단면도,14 is a longitudinal sectional view showing a state where a cross-sectional concrete block according to the present invention is applied to the inner branch portion of a conventional PSC slab continuous bridge;

도 15는 종래의 RC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용되고, 상기 콘크리트블록내에 유지관리용 쉬스가 매입된 상태를 도시한 종단면도,15 is a longitudinal cross-sectional view showing a state in which the same section concrete block according to the present invention is applied to the inner branch portion and the outer branch portion of the conventional RC slab continuous bridge, the maintenance sheath is embedded in the concrete block,

도 16은 종래의 PSC 슬래브 연속교의 내측지점부와 외측지점부에 본 발명에 따른 등단면 콘크리트블록이 적용되고, 상기 콘크리트블록내에 유지관리용 쉬스가 매입된 상태를 도시한 종단면도,FIG. 16 is a longitudinal sectional view showing a state in which an isotropic concrete block according to the present invention is applied to an inner branch portion and an outer branch portion of a conventional PSC slab continuous bridge, and a sheath for maintenance is embedded in the concrete block;

도 17은 종래의 RC 슬래브교에 본 발명에 따른 콘크리트블록 1열이 적용된 상태를 도시한 예시도,17 is an exemplary view showing a state in which one row of concrete blocks according to the present invention is applied to a conventional RC slab bridge,

도 18은 종래의 PSC 슬래브교에 본 발명에 따른 콘크리트블록 1열이 적용된 상태를 도시한 예시도,18 is an exemplary view showing a state in which one row of concrete blocks according to the present invention is applied to a conventional PSC slab bridge,

도 19는 종래의 RC 슬래브교에 본 발명에 따른 콘크리트블록 2열이 적용된 상태를 도시한 예시도,19 is an exemplary view showing a state in which two rows of concrete blocks according to the present invention is applied to a conventional RC slab bridge,

도 20은 종래의 PSC 슬래브교에 본 발명에 따른 콘크리트블록 2열이 적용된 상태를 도시한 예시도,20 is an exemplary view showing a state in which two rows of concrete blocks according to the present invention is applied to a conventional PSC slab bridge,

도 21은 종래의 RC 슬래브교에 본 발명에 따른 콘크리트블록 3열이 적용된 상태를 도시한 예시도,21 is an exemplary view showing a state in which three rows of concrete blocks according to the present invention is applied to a conventional RC slab bridge,

도 22는 종래의 PSC 슬래브교에 본 발명에 따른 콘크리트블록 3열이 적용된 상태를 도시한 예시도,22 is an exemplary view showing a state in which three rows of concrete blocks according to the present invention is applied to a conventional PSC slab bridge,

도 23은 도 21의 슬래브에 횡방향 PC강선이 설치된 상태를 도시한 예시도,23 is an exemplary view showing a state in which the transverse PC steel wire is installed on the slab of FIG. 21;

도 24는 도 22의 슬래브에 횡방향 PC강선이 설치된 상태를 도시한 예시도,24 is an exemplary view showing a state in which the transverse PC steel wire is installed on the slab of FIG. 22;

도 25는 도 21의 슬래브에 중공관이 설치된 상태를 도시한 예시도,25 is an exemplary view showing a state in which a hollow tube is installed in the slab of FIG.

도 26은 도 22의 슬래브에 중공관이 설치된 상태를 도시한 예시도,Figure 26 is an exemplary view showing a state in which a hollow tube is installed in the slab of Figure 22,

도 27은 종래의 RC 슬래브 무교대교에 본 발명에 따른 콘크리트블록이 적용된 상태를 도시한 예시도,27 is an exemplary view showing a state in which a concrete block according to the present invention is applied to a conventional RC slab bridge bridge,

도 28은 종래의 PSC 슬래브 무교대교에 본 발명에 따른 콘크리트블록 3열이 적용된 상태를 도시한 예시도.28 is an exemplary view showing a state in which three rows of concrete blocks according to the present invention is applied to a conventional PSC slab bridge bridge.

-도면의 주요부분에 대한 부호의 설명-Explanation of symbols on the main parts of the drawing

10: RC 슬래브교 또는 PSC 슬래브교 12: 슬래브10: RC slab bridge or PSC slab bridge 12: Slab

13: PC강선 14: 내측지점부13: PC steel wire 14: inner branch

16: 외측지점부 18: 콘크리트블록16: outside point 18: concrete block

20: PC강선 22: 중앙부20: PC steel wire 22: center part

24: 양측면 26: 횡방향 PS강선24: Both sides 26: Transverse PS steel wire

28: 중공관 30: 쉬스28: hollow tube 30: sheath

32: 교대파일 34: 접속슬래브32: Shift file 34: Connection slab

36: 강재힌지36: steel hinge

Claims (14)

RC 슬래브교 또는 PSC 슬래브교(10)에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교(10)의 교축방향으로 슬래브(12)의 내측지점부(14)와 외측지점부(16) 또는 내측지점부(14) 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록(18)이 형성되고, 상기 콘크리트블록(18) 내에 PC강선(20)이 위치되고, 상기 PC강선(20)이 긴장되며, 상기 콘크리트블록(18)은 횡단면을 기준으로 슬래브(12) 폭원의 중앙부(22)와 슬래브(12) 폭원의 양측면(24)에 각각 3열로 설치되거나, 슬래브(12) 폭원의 양측면(24)에 2열로 설치되거나, 슬래브(12) 폭원의 중앙부(22)에 1열로 설치되며, 상기 슬래브(12)의 경간 중앙부(22) 부분에서 횡방향으로 PS강선(26)에 의해 프리스트레스가 도입되며, 상기 콘크리트블록(18)에는 PC강선(20)이 1열 이상 위치되고, 추후 유지관리를 위한 쉬스(30)가 함께 매입되며, 상기 슬래브(12)는 교대파일(32)의 상면부분과 일체로 합성되거나, 접속슬래브(34)와 강재힌지(36)에 의해 일체로 연결됨을 특징으로 하는 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교.In the RC slab bridge or PSC slab bridge 10, the inner branch portion 14 and the outer branch portion 16 or the inner branch portion of the slab 12 in the axial direction of the RC slab bridge or PSC slab bridge 10. (14) Or by placing and curing the concrete on the upper surface of the outer branch portion is formed concrete block 18 of the same cross-sectional or side cross-sectional shape, the PC steel wire 20 is located in the concrete block 18, the PC steel wire 20 is tensioned, the concrete block 18 is installed in three rows on each side of the center portion 22 and the side surface 24 of the slab 12 width source on the basis of the cross section, the slab 12 It is installed in two rows on both side surfaces 24 of the width source, or in one row in the central portion 22 of the slab 12 width source, and in the PS steel wire 26 in the transverse direction at the center portion 22 of the slab 12. Pre-stress is introduced by the, the concrete block 18, the PC steel wire 20 is located in one or more rows, to be maintained later Sheath 30 for the Lee is embedded together, the slab 12 is integrally combined with the upper surface portion of the alternate pile 32, or is integrally connected by the connecting slab 34 and the steel hinge 36 Slab bridges in which PC steel wires are located in concrete blocks of equal or lateral sections. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete RC 슬래브교 또는 PSC 슬래브교(10) 시공방법에 있어서, 상기 RC 슬래브교 또는 PSC 슬래브교(10)의 교축방향으로 슬래브(12)의 내측지점부와 외측지점부 또는 내측지점부 또는 외측지점부 상면에 콘크리트를 타설 및 양생시켜 등단면 또는 변단면 형상의 콘크리트블록(18)을 형성하고, 상기 콘크리트블록(18) 내에 PC강선(20)을 위치하고, 상기 PC강선(20)을 긴장하며, 상기 콘크리트블록(18)을 슬래브교(10)의 횡단면을 기준으로 슬래브(12) 폭원의 중앙부와 슬래브(12) 폭원의 양측면에 각각 3열로 설치하거나, 슬래브(12) 폭원의 양측면에 2열로 설치하거나, 슬래브(12) 폭원의 중앙부에 1열로 설치하며, 상기 슬래브(12)의 경간 중앙부 부분에서 횡방향 PS강선(26)에 의해 프리스트레스를 도입하며, 상기 콘크리트블록(18)에는 PC강선(20)을 1열 이상 위치하고, 상기 콘크리트블록(18)의 상단부에는 추후 유지관리를 위한 쉬스(30)를 함께 매입하며, 상기 슬래브(12)는 교대파일(32)의 상면부분과 일체로 합성하거나, 접속슬래브(34)와 강재힌지(36)에 의해 일체로 연결함을 특징으로 하는 등단면 또는 변단면 콘크리트블록내에 PC강선이 위치된 슬래브교 시공방법.In the construction method of RC slab bridge or PSC slab bridge (10), the inner branch portion and the outer branch portion or the inner branch portion or the outer branch portion of the slab 12 in the axial direction of the RC slab bridge or PSC slab bridge (10). Placing and curing concrete on the upper surface to form a concrete block 18 of the same cross-section or side cross-sectional shape, the PC steel wire 20 is located in the concrete block 18, the PC steel wire 20 is tensioned, Concrete blocks 18 are installed in three rows on both sides of the center portion of the slab 12 width source and the slab 12 width source based on the cross section of the slab bridge 10, or in two rows on both sides of the slab 12 width source. In the center of the slab 12 width source is installed in one row, the prestress is introduced by the transverse PS steel wire 26 in the center portion of the span 12 of the slab 12, the PC steel wire 20 to the concrete block 18 Located in more than one row, the concrete The upper end of the lock 18 is embedded with a sheath 30 for later maintenance, the slab 12 is integrated with the upper surface portion of the alternate pile 32, or the connecting slab 34 and the steel hinge ( 36) Slab bridge construction method in which the PC steel wire is located in the concrete block of the same section or the side cross section characterized in that connected integrally by. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090093084A 2009-09-30 2009-09-30 Slab bridge and this construction technique KR100968259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090093084A KR100968259B1 (en) 2009-09-30 2009-09-30 Slab bridge and this construction technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090093084A KR100968259B1 (en) 2009-09-30 2009-09-30 Slab bridge and this construction technique

Publications (1)

Publication Number Publication Date
KR100968259B1 true KR100968259B1 (en) 2010-07-06

Family

ID=42645235

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090093084A KR100968259B1 (en) 2009-09-30 2009-09-30 Slab bridge and this construction technique

Country Status (1)

Country Link
KR (1) KR100968259B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019412B1 (en) 2010-12-15 2011-03-07 노윤근 Psc rahmen bridge where the pc strand tension anchorage was improved
KR101058086B1 (en) * 2011-01-19 2011-08-19 우경기술주식회사 The bridge where edge block was improved
KR101107724B1 (en) 2010-08-17 2012-01-25 우경기술주식회사 Prestressed concrete rahmen bridge
KR101628259B1 (en) * 2015-11-06 2016-06-08 석정건설(주) Lower route bridge and construction method thereof
CN106049284A (en) * 2016-06-06 2016-10-26 浙江交工路桥建设有限公司 Hogging moment steel strand bundle penetrating tool and use method thereof
CN112227175A (en) * 2020-09-30 2021-01-15 山东交通学院 Assembly type bridge structure for improving fulcrum shear-resisting bearing capacity and construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030029077A (en) * 2002-06-27 2003-04-11 주식회사 영창기공 The arch bridge with leaned support
KR100572931B1 (en) 2005-10-27 2006-04-24 우경건설 주식회사 Prestressed concrete hollow slab bridge and it's manufacture method
KR20060073210A (en) * 2004-12-24 2006-06-28 재단법인 포항산업과학연구원 Extradosed preflex bridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030029077A (en) * 2002-06-27 2003-04-11 주식회사 영창기공 The arch bridge with leaned support
KR20060073210A (en) * 2004-12-24 2006-06-28 재단법인 포항산업과학연구원 Extradosed preflex bridge
KR100572931B1 (en) 2005-10-27 2006-04-24 우경건설 주식회사 Prestressed concrete hollow slab bridge and it's manufacture method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107724B1 (en) 2010-08-17 2012-01-25 우경기술주식회사 Prestressed concrete rahmen bridge
KR101019412B1 (en) 2010-12-15 2011-03-07 노윤근 Psc rahmen bridge where the pc strand tension anchorage was improved
KR101058086B1 (en) * 2011-01-19 2011-08-19 우경기술주식회사 The bridge where edge block was improved
KR101628259B1 (en) * 2015-11-06 2016-06-08 석정건설(주) Lower route bridge and construction method thereof
CN106049284A (en) * 2016-06-06 2016-10-26 浙江交工路桥建设有限公司 Hogging moment steel strand bundle penetrating tool and use method thereof
CN106049284B (en) * 2016-06-06 2017-10-17 浙江交工路桥建设有限公司 Hogging moment steel stranded wire penetrating adapter instrument and its application method
CN112227175A (en) * 2020-09-30 2021-01-15 山东交通学院 Assembly type bridge structure for improving fulcrum shear-resisting bearing capacity and construction method

Similar Documents

Publication Publication Date Title
US8474080B2 (en) Construction method of steel composition girder bridge
KR100968259B1 (en) Slab bridge and this construction technique
KR100991262B1 (en) Method for bridge reinforcement and landscape architecture
KR101102450B1 (en) Composit truss beam consisting of a concrete and a pipe with a prestress tendon and method constructing the bridge thereof
KR100924746B1 (en) Method for constructing precast coping by using multi-step tensioning
KR101973240B1 (en) Construction methods inducing compressive stress in slab of negative moment area for type of rahmen bridge using precast girder
KR101283535B1 (en) Fully-precast prestressed concrete girder bridges and construction method of such bridges
KR100349864B1 (en) The Structural Continuity Method for Prestreseed Concrete Bridge of Composite I-Beam
KR100988074B1 (en) Girder bridge connected to abutment and the construction method thereof
KR101043239B1 (en) Prestressed segment concrete girder for bridge and manufacturing method thereof
KR200407182Y1 (en) Precasted concrete plate
KR100951670B1 (en) Segmental precast prestressed concrete girder and method for constructing the same
KR101034973B1 (en) Bridge and its construction method using tide arch hybrid girders by connecting precast blocks
KR101096176B1 (en) Method for constructing continuous filled steel tube girder bridge
KR100554408B1 (en) Composite Girder for Bridge and Construction Method
KR101023172B1 (en) Segmental precast prestressed concrete girder and method for constructing the same
CN110747735A (en) Anchoring connection device for precast concrete bridge deck of steel-concrete composite beam
KR100785634B1 (en) Continuation structure of prestressed concrete composite beam bridge and method thereof
KR100712622B1 (en) Continuous Preflex Girder Structure Using Prestress in Parent Section Using Expanded Concrete and Its Construction Method
CN216338993U (en) Longitudinal joint for steel-UHPC (ultra high performance concrete) assembled pi-shaped combination beam
KR101169003B1 (en) Prestressed concrete girder rigid frame bridge and it's construction method
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
KR100656947B1 (en) Edge girder prestressed concrete girder bridge and it's construction method
CN106436734A (en) Power transmission line assembly-type arch base and construction method
KR20110135046A (en) Prestressed assembly block structure applying external ps force to strongly connected assembly block and construction method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130604

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170517

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190524

Year of fee payment: 10