KR100967154B1 - Ice storage tank having partitioned structure for ice thermal storage system - Google Patents

Ice storage tank having partitioned structure for ice thermal storage system Download PDF

Info

Publication number
KR100967154B1
KR100967154B1 KR1020080072410A KR20080072410A KR100967154B1 KR 100967154 B1 KR100967154 B1 KR 100967154B1 KR 1020080072410 A KR1020080072410 A KR 1020080072410A KR 20080072410 A KR20080072410 A KR 20080072410A KR 100967154 B1 KR100967154 B1 KR 100967154B1
Authority
KR
South Korea
Prior art keywords
storage tank
ice storage
ice
auxiliary
heat storage
Prior art date
Application number
KR1020080072410A
Other languages
Korean (ko)
Other versions
KR20100011267A (en
Inventor
이경호
배경호
이한별
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020080072410A priority Critical patent/KR100967154B1/en
Publication of KR20100011267A publication Critical patent/KR20100011267A/en
Application granted granted Critical
Publication of KR100967154B1 publication Critical patent/KR100967154B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0069Distributing arrangements; Fluid deflecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

본 발명은 빙축열 시스템의 빙축열조에 관한 것으로, 특히 특정 시간대에 피크 전력수요를 최소화할 수 있도록 분할된 빙축열조로 이루어진 빙축열 시스템의 분할형 빙축열조에 관한 것이다.The present invention relates to an ice storage tank of an ice heat storage system, and more particularly, to a split ice storage tank of an ice heat storage system including a split ice storage tank so as to minimize peak power demand at a specific time.

이를 위해 본 발명은 냉동기(100)와 열교환기(101)에 연결되어 브라인 배관(1)에서 분기된 유입 분배관(2)과 유출 분배관(3)들이 3방 자동제어 밸브(4)에 연결되어 이루어진 빙축열 시스템의 빙축열조에 있어서, 상기 빙축열조(5)는 주 빙축열조(5a)와 보조 빙축열조(5b)로 분할 설치되고, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에는 브라인 배관(1)에서 분기된 유입 분배관(2)이 병렬 연결되어 각각 자동연동 밸브(6,7)를 갖추고 있으며, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에 병렬 연결된 브라인 유출 분배관(3)에도 각각의 자동연동 밸브(8,9)가 설치되어 이루어진 구조로 되어 있다.To this end, the present invention is connected to the refrigerator 100 and the heat exchanger 101 is connected to the inlet distribution pipe 2 and the outlet distribution pipe (3) branched from the brine pipe (1) to the three-way automatic control valve (4) In the ice storage tank of the ice storage system, the ice storage tank 5 is divided into a main ice storage tank 5a and an auxiliary ice storage tank 5b, and is brine in the main ice storage tank 5a and the auxiliary ice storage tank 5b. The inflow distribution pipe (2) branched from the pipe (1) is connected in parallel to each other and has automatic linkage valves (6, 7), respectively, the brine outflow portion connected in parallel to the primary ice storage tank (5a) and the auxiliary ice storage tank (5b) The piping 3 also has a structure in which respective automatic interlocking valves 8 and 9 are provided.

Description

빙축열 시스템의 분할형 빙축열조{Ice storage tank having partitioned structure for ice thermal storage system}Ice storage tank having partitioned structure for ice thermal storage system

본 발명은 빙축열 시스템의 빙축열조에 관한 것으로, 특히 특정 시간대에 피크 전력수요를 최소화할 수 있도록 분할된 빙축열조로 이루어진 빙축열 시스템의 분할형 빙축열조에 관한 것이다.The present invention relates to an ice storage tank of an ice heat storage system, and more particularly, to a split ice storage tank of an ice heat storage system including a split ice storage tank so as to minimize peak power demand at a specific time.

이미 잘 알려진 바와 같이 공조용 빙축열 시스템은 에너지 형태를 열에너지로 저장하였다가 필요시 공조에 사용하는 시스템으로, 예를 들어 전력수요가 상대적으로 적은 심야 시간대의 심야전기를 이용하여 냉동기를 가동하여 얼음을 생산하고 이 얼음을 빙축열조에 저장한 후, 낮 시간대에 저장된 빙축열조의 얼음을 녹이고, 또한 냉동기로부터 생산한 냉수를 동시에 이용하여 냉각부하를 담당하는 시스템이다.As is well known, the ice storage heat storage system is a system that stores energy form as thermal energy and uses it for air conditioning when needed. For example, the ice machine is operated by using a late night electricity in a late-night time zone where power demand is relatively low. After producing and storing the ice in the ice storage tank, the ice in the ice storage tank is stored during the day time, and also using the cold water produced from the freezer at the same time to charge the cooling load.

이러한 종래 빙축열 시스템은 도 1에 도시된 바와 같이 냉방부하의 일부 또는 전부를 얼음으로 축냉하는 빙축열조(105)와, 얼음을 생성하기 위하여 영하의 온도에서 운전이 가능한 냉동기(100), 냉방부하 측에 냉방열량을 공급하기 위하여 1차 측의 브라인(부동액)과 2차 측의 냉수로 분리되는 열교환기(101), 자동제어 장 비로서 축열조 온도 및 냉수측 온도를 제어하는 3방 자동 제어밸브(104) 및, 도면에는 미도시 되어 있지만 상기 냉동기(100)와 연동하여 운전되며, 이 냉동기 가동에 의해 발생되는 열량을 처리하는 냉각탑 등으로 이루어져 있다.This conventional ice heat storage system is an ice heat storage tank 105 that cools part or all of the cooling load with ice as shown in Figure 1, the freezer 100 that can be operated at sub-zero temperatures to produce ice, the cooling load side A heat exchanger 101 which is separated into a brine (antifreeze) on the primary side and cold water on the secondary side to supply cooling heat to the air, and a three-way automatic control valve that controls the heat storage tank temperature and the cold water side temperature as an automatic control device ( 104 and, although not shown in the drawing, the cooling tower 100 is operated in conjunction with the refrigerator 100 to process the amount of heat generated by the operation of the refrigerator.

여기서, 도 1에 도시된 종래 빙축열 시스템을 냉동기(100)가 열교환기(101)를 기준으로 빙축열조(105) 보다 상류에 위치한 냉동기 상류(chiller upstream) 방식이며, 상기 냉동기(100)가 빙축열조(105) 뒤에 위치하게 되면 냉동기 하류(chiller downstream)방식이 된다.Here, in the conventional ice storage system shown in FIG. 1, the refrigerator 100 has a chiller upstream method located upstream than the ice storage tank 105 based on the heat exchanger 101, and the refrigerator 100 is an ice storage tank. (105) Behind it is the chiller downstream.

한편, 빙축열 시스템의 제빙방식에 따라 정적 제빙형 시스템과 동적 제빙형 시스템 있으며, 통상적으로는 전자인 정적 제빙형 시스템이 널리 사용되는 방식으로, 관외착빙형(Ice-on-coil ice storage system) 및 캡슐형(Encapsulated ice storge system) 등이 있고, 후자인 동적 제빙형에는 아이스 슬러리(Ice slurry system) 방식이 사용되고 있다.On the other hand, there is a static ice-making system and a dynamic ice-making system according to the ice storage system of the ice heat storage system, the static ice-making system, which is usually electronic, is widely used, Ice-on-coil ice storage system and An encapsulated ice storge system is used, and the latter dynamic ice making type uses an ice slurry system.

그리고 빙축열 시스템의 운전방식은 빙축열 우선(storage - priority)방식과 냉동기 우선(chiller - priority)방식이 있는바, 도 3 (A)와 (B)의 그래프들은 냉각부하[kcal/hr]를 냉동기(100)와 빙축열조(105)가 분담하는 방식을 운전방식별로 각각 개략적으로 나타낸 그래프들로서, 심야에 냉동기(100)를 제빙모드로 가동하여 빙축열조(105)에 얼음을 저장해두고 낮시간인 부하발생 시간대에 이 냉동기(100)와 빙축열조(105)를 시간적으로 병렬방식으로 동시 운전함으로써 냉각부하를 담당하게 되는데, 도 3 (A)는 빙축열 우선 운전방식으로서, 냉각부하 발생 시간대에 빙축열조(105)부터의 방냉률[kcal/hr]을 균등하게 하는 방식을 통하여 빙축열조(105)에 저장된 축냉열량[kcal]을 모두 사용하는 것이다. 냉각부하의 나머지 부분은 냉동기(100)가 담당하며, 이 냉동기(100)는 매시간 부분 부하상태로 운전하게 된다.In addition, the operation method of the ice storage system includes a storage storage-priority method and a refrigerator-priority method, and the graphs of FIGS. 3A and 3B show the cooling load [kcal / hr] as a freezer ( 100) and graphs schematically showing the manner in which the ice storage tank 105 is divided by driving method, respectively, by operating the refrigerator 100 in the ice making mode in the middle of the night to store ice in the ice storage tank 105 and generating a load during the day By operating the refrigerator 100 and the ice storage tank 105 at the same time in a parallel manner in time, it is responsible for the cooling load, Figure 3 (A) is the ice storage heat prioritized operation, ice storage tank 105 during the cooling load generation time By using the method to equalize the cooling rate (kcal / hr) from the ()) is to use all the heat storage cooling amount [kcal] stored in the ice storage tank 105. The remaining part of the cooling load is in charge of the refrigerator 100, and the refrigerator 100 is operated at a partial load state every hour.

그리고 도 3 (B)는 냉동기 우선 운전방식으로 냉동기(100)는 우선 최대 냉각용량[kcal/hr]으로 운전하도록 되어 있고, 냉각부하의 나머지 부분을 빙축열조(105)가 담당함에 따라 냉동기(100)의 부분부하 운전을 피하여 이 냉동기 운전효율을 향상시킬 수 있는 장점이 있으나, 빙축열조(105)에 저장된 축냉열량[kcal]을 최대한으로 이용하지 못하는 단점이 있다.3 (B) is a refrigerator-first operation method, the refrigerator 100 is first operated at a maximum cooling capacity [kcal / hr], and the freezer 100 is operated by the ice storage tank 105 for the remaining portion of the cooling load. There is an advantage to improve the operation efficiency of the refrigerator by avoiding the partial load operation of the), but there is a disadvantage that can not maximize the use of the storage heat storage [kcal] stored in the ice storage tank 105.

빙축열 시스템의 이러한 2가지 운전방식 모두는 피크(peak) 부하시간 대에도 냉동기(100)는 여전히 운전하게 되고, 냉동기(100)의 운전에 필요한 전력부하가 발생하게 된다.In both of these operating methods of the ice storage system, the refrigerator 100 still operates even during peak load time, and the power load required for the operation of the refrigerator 100 is generated.

한편, 도 2는 종래 빙축열 시스템의 빙축열조(105)를 보여주고 있는데, 이 빙축열조(105)에 부동액인 브라인 배관(11)을 통해 브라인 유입 분배관(12)이 연결되고, 이 브라인 유입 분배관(12)으로 유입되지 않은 브라인은 상기 빙축열조(105)를 우회통과 하며 이 빙축열조(105)로부터 나온 브라인과 빙축열조(105)를 우회한 브라인이 합쳐지는 지점에서 3방 자동제어 밸브(104)가 설치되어 있다.On the other hand, Figure 2 shows the ice storage tank 105 of the conventional ice storage system, the brine inflow distribution pipe 12 is connected to the ice storage tank 105 through a brine pipe 11, which is an antifreeze, this brine inflow portion The brine not introduced into the pipe 12 passes through the ice storage tank 105, and the brine from the ice storage tank 105 is combined with the brine bypassing the ice storage tank 105. 104 is installed.

상기와 같은 종래 빙축열조(105)는 부하발생 시간대에 걸쳐서 이 빙축열조(105) 내에 저장된 축열량이 시간에 따라 감소함으로써 순간 최대 방냉률도 감소하게 되는바, 즉 빙축열조(105)로부터 냉열을 추출하여 사용함에 따라 잔존 빙축열량이 감소하게 되고, 이와 비례하여 순간적으로 빙축열조(105)가 방냉할 수 있는 최대 가능한 방냉률도 따라서 감소하게 된다.The conventional ice storage tank 105 as described above reduces the instantaneous maximum cooling rate by reducing the amount of heat storage stored in the ice storage tank 105 over time, that is, cooling heat from the ice storage tank 105. As extracted and used, the amount of remaining ice heat storage decreases, and in proportion thereto, the maximum possible cooling rate that the ice heat storage tank 105 can cool instantly decreases accordingly.

결국 냉각부하가 발생하는 중후반 시간대인 피크 시간대에는 빙축열조(105) 단독으로 냉각부하를 만족하기 어렵게 되며, 냉동기가 필히 시간적으로 병렬형태인 동시운전모드로 가동하게 되어야 하고, 이로 인하여 피크 시간대에 냉동기 전력수요 발생을 피할 수 없게 되었다.As a result, the ice storage tank 105 alone cannot satisfy the cooling load during peak periods during the mid to late periods when cooling loads occur, and the freezer must be operated in a parallel operation mode in a time parallel manner. The occurrence of power demand is inevitable.

이에 본 발명은 상기와 같은 종래 문제점을 감안하여 발명된 것으로, 빙축열 시스템이 부하 시간대 전체에 걸쳐서 냉각부하를 만족하면서 특정 시간대의 피크 전력수요를 최소화하는 빙축열 시스템의 분할형 빙축열조를 제공함에 그 목적이 있다.Accordingly, the present invention has been made in view of the above-described conventional problems, and the object thereof is to provide a split ice storage tank of an ice storage system that minimizes peak power demand at a specific time while satisfying the cooling load throughout the load time zone. There is this.

상기와 같은 목적을 달성하기 위한 본 발명은 얼음을 생성하기 위해 영하의 온도에서 운전이 가능한 냉동기와, 냉방부하 측에 냉방용량을 공급하기 위해 1차측 브라인과 2차측 냉수로 분리되는 열교환기에 연결되어 냉방부하의 일부 또는 전부를 얼음으로 축냉하는 빙축열 시스템의 빙축열조에 있어서, 상기 빙축열조는 주 빙축열조와 보조 빙축열조로 분할 설치되고, 상기 주 빙축열조와 보조 빙축열조에는 브라인 배관에서 분기된 브라인 유입 분배관이 병렬연결되어 각각 자동연동 밸브를 갖추고 있으며, 상기 주 빙축열조와 보조 빙축열조에 병렬연결된 브라인 유출 분배관에도 각각의 자동연장 밸브가 설치되어 이루어진 구조로 되어 있다.The present invention for achieving the above object is connected to a freezer capable of operating at subzero temperatures to produce ice, and a heat exchanger is separated into the primary side brine and the secondary side cold water to supply the cooling capacity to the cooling load side In an ice storage tank of an ice storage system that cools part or all of a cooling load with ice, the ice storage tank is divided into a main ice storage tank and an auxiliary ice storage tank, and the main ice storage tank and the auxiliary ice storage tank are parallel with a brine inflow distribution pipe branched from a brine pipe. It is connected to each has an automatic linking valve, and each of the automatic expansion valve is installed in the brine outflow distribution pipe connected in parallel to the primary ice storage tank and the secondary ice storage tank.

상기와 같은 본 발명에 따른 빙축열 시스템의 분할형 빙축열조는 특정시간 대인 피크 시간대에 전력수요를 최소화할 수 있도록 되어 있다.The partitioned ice storage tank of the ice storage system according to the present invention as described above is capable of minimizing the power demand in a peak time zone for a specific time.

이하, 본 발명을 첨부된 예시도면에 의거 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 빙축열 시스템의 빙축열조를 개략적으로 보여주는 개략 구성도이다.4 is a schematic configuration diagram schematically showing the ice storage tank of the ice storage system according to the present invention.

본 발명에 적용되는 빙축열 시스템은 냉동기(100)와 열교환기(101)들이 기존 설비와 동일하고 빙축열조(5)의 구조는 도 4에 도시된 바와 같은 구조를 갖는다.Ice storage system is applied to the present invention, the refrigerator 100 and the heat exchanger 101 is the same as the existing equipment and the structure of the ice storage tank 5 has a structure as shown in FIG.

즉, 본 발명은 냉동기(100)와 열교환기(101)에 연결되어 브라인 배관(1)에서 분기된 유입 분배관(2)과 유출 분배관(3)들이 3방 자동제어 밸브(4)에 연결되어 이루어진 빙축열 시스템의 빙축열조에 있어서, 상기 빙축열조(5)는 주 빙축열조(5a)와 보조 빙축열조(5b)로 분할 설치되고, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에는 브라인 배관(1)에서 분기된 유입 분배관(2)이 병렬 연결되어 각각 자동연동 밸브(6,7)를 갖추고 있으며, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에 병렬 연결된 브라인 유출 분배관(3)에도 각각의 자동연동 밸브(8,9)가 설치되어 이루어진 구조로 되어 있다.That is, the present invention is connected to the refrigerator 100 and the heat exchanger 101 and the inlet distribution pipe 2 and the outlet distribution pipe 3 branched from the brine pipe 1 are connected to the three-way automatic control valve 4. In the ice storage tank of the ice storage system, the ice storage tank 5 is divided into a main ice storage tank 5a and an auxiliary ice storage tank 5b, and is brine in the main ice storage tank 5a and the auxiliary ice storage tank 5b. The inflow distribution pipe (2) branched from the pipe (1) is connected in parallel to each other and has automatic linkage valves (6, 7), respectively, the brine outflow portion connected in parallel to the primary ice storage tank (5a) and the auxiliary ice storage tank (5b) The piping 3 also has a structure in which respective automatic interlocking valves 8 and 9 are provided.

이와 같은 빙축열조(5)는 주 빙축열조(5a)와 보조 빙축열조(5b)로 분할된 구조를 갖는데, 필요에 따라 분할된 빙축열조(5)는 2개 이상 N개로 분할된 다수 분할된 빙축열조의 구조로 될 수도 있다.The ice storage tank 5 has a structure divided into a primary ice storage tank 5a and an auxiliary ice storage tank 5b. The ice storage tank 5 divided as necessary is divided into two or more N ice storage columns. It may be in the form of a group.

그리고 상기 빙축열조(5)의 주 빙축열조(5a)와 보조 빙축열조(5b)의 용량설계는 다음과 같은 최소한의 제한조건으로 결정할 수 있다.The capacity design of the primary ice storage tank 5a and the auxiliary ice storage tank 5b of the ice storage tank 5 can be determined with the following minimum constraints.

Figure 112008053420185-pat00001
----------- 식①
Figure 112008053420185-pat00001
----------- Expression

Figure 112008053420185-pat00002
----------- 식②
Figure 112008053420185-pat00002
----------- Expression

상기 식①과 ②에서 Qpeak는 피크 시간대에 걸친 냉각 부하량[kcal]이며, Q1 -a 는 보조 빙축열조(5b)의 설계 축열용량을 나타내고, Qtank는 전체 빙축열조(5)의 설계 축열용량, Q1는 전체 빙축열조 설계측면 용량에서 보조 빙축열조(5b)의 설계 축열용량을 뺀 것으로서 주 빙축열조(5a)의 설계 축열용량이다.In the above equations (1) and (2), Q peak is the cooling load [kcal] over the peak period, Q 1 -a represents the design heat storage capacity of the auxiliary ice heat storage tank 5b, and Q tank is the design heat storage of the entire ice heat storage tank 5. The capacity, Q 1 is the total heat storage tank design side capacity minus the design heat storage capacity of the auxiliary ice heat storage tank 5b, and is the design heat storage capacity of the main ice heat storage tank 5a.

본 발명에 따른 분할형 빙축열조(5)는, 피크 시간대 이외의 시간대에는 주 빙축열조(5a)로부터의 방냉과 냉동기(100)의 동시운전으로 냉동기 우선 운전방식으로써 냉각부하를 담당하여 시스템을 운전하고, 피크 시간대에는 보조 빙축열조(5b) 단독으로 부하를 담당하여 피크 시간대 냉각부하를 최소화시킬 수 있다.The divided ice storage tank 5 according to the present invention operates the system in charge of the cooling load by the refrigerator-first operation method by simultaneous cooling of the main ice storage tank 5a and the operation of the refrigerator 100 at a time other than the peak time zone. And, during the peak time period, the auxiliary ice storage tank 5b alone serves as a load, thereby minimizing the peak time cooling load.

즉, 피크 시간대에 보조 빙축열조(5b)로 브라인 배관(1)의 유입 분배관(2)을 통하여 브라인의 총유량이 흘러 들어가도록 함으로써 열전달율이 향상되어 순간 방냉율이 증가하게 되므로, 피크 냉방부하를 빙축열조(5) 단독으로도 담당할 수 있게 된다.That is, the peak heat transfer rate is improved and the instantaneous cooling rate is increased by allowing the total flow rate of brine to flow through the inflow distribution pipe 2 of the brine pipe 1 into the auxiliary ice heat storage tank 5b at the peak time. The ice storage tank 5 can be in charge alone.

그리고 본 발명에서는 빙축열조(5)가 분할되어 있으므로 전체 축열용량의 유량은 변화가 없더라도 유동 단면적이 크게 감소되어 유속은 이에 따라 크게 증가할 수 있다.In the present invention, since the ice storage tank 5 is divided, even if the flow rate of the total heat storage capacity does not change, the flow cross-sectional area is greatly reduced, and thus the flow rate can be greatly increased accordingly.

이어 본 발명에 따른 빙축열 시스템의 빙축열조의 운전 제어방법에 대하여 설명한다.Next, the operation control method of the ice storage tank of the ice storage system according to the present invention will be described.

분할형의 빙축열조(5)의 방냉률[kcal/hr] 제어는 기존 빙축열조에서와 마찬가지로 3방 자동제어 밸브(4)를 통하여 조절되는데, 본 발명이 운전제어상 기존 빙 축열조의 운전방식과 다른점은 브라인 유입 분배관(2)의 자동연동 밸브(6,7)와 브라인 유출 분배관(3)의 자동연동 밸브(8,9)들의 개폐제어에 있다.Cooling rate [kcal / hr] control of the split ice storage tank (5) is controlled through a three-way automatic control valve (4) as in the existing ice storage tank, the present invention is in accordance with the operation method of the existing ice storage tank The difference lies in the opening and closing control of the automatic interlocking valves 6, 7 of the brine inlet distribution pipe 2 and the automatic interlocking valves 8, 9 of the brine outflow distribution pipe 3.

즉, 피크시간 이외의 시간대에는 상기 보조 빙축열조(5b)의 유입 분배관(2)에 설치된 자동연동 밸브(7)와 유출 분배관(3)에 설치된 자동연동 밸브(9)를 폐쇄하여 브라인이 이 보조 빙축열조(5b)로 흐르지 않게 한다.That is, during the period other than the peak time, the brine is closed by closing the automatic interlocking valve 7 provided in the inlet distribution pipe 2 of the auxiliary ice storage tank 5b and the automatic interlocking valve 9 provided in the outflow distribution pipe 3. It does not flow to this auxiliary ice storage tank 5b.

이 상태에서 3방 자동제어 밸브(4)를 통하여 주 빙축열조(5a)로 유입 및 우회하는 유량을 제거하여 빙축열조(5)로부터의 방냉을 제어하면서, 냉동기(100)와 함께 냉각부하를 담당하도록 운전한다.In this state, the flow rate flowing into and bypassing the main ice storage tank 5a through the three-way automatic control valve 4 is removed to control cooling of the ice storage tank 5, while in charge of the cooling load together with the refrigerator 100. Drive to

한편, 피크 시간대에는 주 빙축열조(5a)의 유입 분배관(2)과 유출 분배관(3)에 설치된 자동연동 밸브(6,8)들을 폐쇄하여 브라인이 상기 주 빙축열조(5a)로 흐르지 않게 하고, 보조 빙축열조(5b)로만 흐르게 한다.On the other hand, during the peak time period, the automatic interlocking valves 6 and 8 provided in the inlet distribution pipe 2 and the outlet distribution pipe 3 of the main ice storage tank 5a are closed so that the brine does not flow into the main ice storage tank 5a. And flow only into the auxiliary ice heat storage tank 5b.

이 상태에서 보조 빙축열조(5b)로 유입 및 우회하는 유량을 3방 자동제어 밸브(4)를 통하여 제어하여 이 보조 빙축열조(5b)로부터의 방냉률[kcal/hr]을 조절한다.In this state, the flow rate flowing into and bypassing the auxiliary ice storage tank 5b is controlled through the three-way automatic control valve 4 to adjust the cooling rate [kcal / hr] from the auxiliary ice storage tank 5b.

그리고 전력계통상 피크 부하관리가 필요하지 않은 경우의 운전은 다음과 같다.And when peak load management is not needed in power system, operation is as follows.

주 빙축열조(5a)의 유입 분배관(2)과 유출 분배관(3)에 각각 설치된 자동연동 밸브(6,8)과, 보조 빙축열조(5b)의 유입 분배관(2)과 유출 분배관(3)에 각각 설치된 자동연동 밸브(7,9)의 개도는 주 빙축열조(5a)와 보조 빙축열조(5b)의 축열용량의 비율 또는 체적비율과 동일하게 유량을 흐르도록 설정하는바, 예를 들어 주 빙축열조(5a)와 보조 빙축열조(5b)의 축열량 비율 또는 체적비율이 2:1인 경우, 밸브 개도 또는 유량이 2:1로 흐를 수 있도록 개폐를 유지한 후 3방 자동제어 밸브(4)를 통하여 방냉율을 제어하면서 냉각부하에 대응하는 운전을 한다. 즉 유입 분배관(2)에 설치된 자동연동 밸브(6,7)들은 60% 열린상태, 유출 분배관(3)에 설치된 자동연동 밸브(8,9)들은 40% 열린상태가 유지되도록 한다.Automatic interlocking valves 6 and 8 provided in the inflow distribution pipe 2 and the outflow distribution pipe 3 of the main ice storage tank 5a, and the inflow distribution pipe 2 and the outflow distribution pipe of the auxiliary ice storage tank 5b, respectively. The opening degree of the automatic interlocking valves 7 and 9 respectively provided in (3) is set so that a flow volume may flow in the same manner as the ratio or volume ratio of the heat storage capacity of the main ice storage tank 5a and the auxiliary ice storage tank 5b. For example, if the heat storage amount ratio or volume ratio of the primary ice storage tank 5a and the auxiliary ice storage tank 5b is 2: 1, the three-way automatic control is maintained after opening and closing to allow the valve opening or flow rate to flow at 2: 1. Operation corresponding to the cooling load is performed while controlling the cooling rate through the valve 4. That is, the automatic interlocking valves 6 and 7 installed in the inlet distribution pipe 2 are 60% open, and the automatic interlocking valves 8 and 9 installed in the outlet distribution pipe 3 are maintained at 40% open.

한편, 도 5에 도시된 그래프는 본 발명에 따른 분할형 빙축열조를 가동하지 않고 냉각부하 담당운전을 가능토록 하여 냉동기(100)에 의한 전력소모를 최소화시키기 위한 운전제어를 보여주고 있는데, 도 3 (A)와 (B)에 도시된 빙축열 우선 운전방식과 냉동기 우선 운전방식에서 피크 시간대에도 냉동기(100)를 가동하였던 것에 비하여 냉동기 운전을 회피할 수 있기 때문에 전력수요를 피크 이전과 이후의 시간대로 분산시켜 이전할 수 있는 효과를 지닌다.On the other hand, the graph shown in Figure 5 shows the operation control for minimizing the power consumption by the refrigerator 100 by enabling the charge of the cooling load operation without operating the split ice storage tank according to the present invention, Figure 3 In the ice heat storage priority operation method and the freezer priority operation method shown in (A) and (B), the refrigerator operation can be avoided compared to the operation of the refrigerator 100 even during the peak time period, so that the electric power demand is moved to the time before and after the peak time. It has the effect of distributing and transferring.

도 1은 일반적인 종래 빙축열 시스템의 구성 개요도,1 is a schematic configuration diagram of a typical conventional ice heat storage system,

도 2는 종래 빙축열 시스템의 빙축열조의 구성도,2 is a configuration diagram of an ice storage tank of a conventional ice storage system,

도 3 (A)는 종래 빙축열 우선 운전방식의 그래프이고, (B)는 종래 냉동기 우선방식의 그래프,Figure 3 (A) is a graph of the conventional ice heat storage priority operation method, (B) is a graph of the conventional refrigerator priority method,

도 4는 본 발명에 따른 빙축열 시스템의 분할형 빙축열조를 보여주는 개략 구성도,4 is a schematic configuration diagram showing a split ice storage tank of an ice storage system according to the present invention;

도 5는 본 발명에 따른 분할형 빙축열조를 갖는 빙축열 시스템의 피크 시간대 냉동기 부하 최소화 운전방식을 나타낸 그래프이다.5 is a graph showing a peak time freezer load minimizing operation method of the ice storage system having a split ice storage tank according to the present invention.

- 도면의 주요부분에 대한 부호의 설명 --Explanation of symbols for the main parts of the drawings-

1 : 브라인 배관, 2 : 유입 분배관,1: brine piping, 2: inflow distribution pipe,

3 : 유출 분배관, 4 : 3방 자동제어 밸브,3: outlet distribution pipe, 4: 3-way automatic control valve,

5 : 빙축열조, 5a : 주 빙축열조,5: ice storage tank, 5a: main ice storage tank,

5b : 보조 빙축열조, 6,7,8,9 : 자동연동 밸브.5b: auxiliary ice heat storage tank, 6,7,8,9: automatic interlock valve.

Claims (3)

냉동기(100)와 열교환기(101)에 연결되어 브라인 배관(1)에서 분기된 유입 분배관(2)과 유출 분배관(3)들이 3방 자동제어 밸브(4)에 연결되어 이루어진 빙축열 시스템의 빙축열조에 있어서,An inlet distribution pipe 2 and an outlet distribution pipe 3 which are connected to the refrigerator 100 and the heat exchanger 101 and branched from the brine pipe 1 are connected to the three-way automatic control valve 4 of the ice storage system. In the ice heat storage tank, 상기 빙축열조(5)는 주 빙축열조(5a)와 보조 빙축열조(5b)로 분할 설치되고, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에는 브라인 배관(1)에서 분기된 유입 분배관(2)이 병렬 연결되어 각각 자동연동 밸브(6,7)를 갖추고 있으며, 상기 주 빙축열조(5a)와 보조 빙축열조(5b)에 병렬 연결된 브라인 유출 분배관(3)에도 각각의 자동연동 밸브(8,9)가 설치되어 이루어질 경우,The ice storage tank (5) is divided into a primary ice storage tank (5a) and an auxiliary ice storage tank (5b), the inflow portion branched from the brine pipe (1) to the primary ice storage tank (5a) and the auxiliary ice storage tank (5b) Pipes 2 are connected in parallel to each other and have automatic interlocking valves 6 and 7, respectively, and each of the brine outflow distribution pipes 3 connected in parallel to the primary ice storage tank 5a and the auxiliary ice storage tank 5b is automatically connected to each other. When the valves 8 and 9 are installed and 상기 빙축열조(5)의 주 빙축열조(5a)와 보조 빙축열조(5b)의 용량설계는 다음과 같은 제한조건으로 결정되는 것을 특징으로 하는 빙축열 시스템의 분할형 빙축열조.The capacity design of the primary ice storage tank (5a) and the auxiliary ice storage tank (5b) of the ice storage tank (5) is determined by the following constraint conditions, partition type ice storage tank of the ice storage system.
Figure 112010002249327-pat00010
----------- 식①
Figure 112010002249327-pat00010
----------- Expression ①
Figure 112010002249327-pat00011
----------- 식②
Figure 112010002249327-pat00011
----------- Expression ②
상기 식①과 ②에서 Qpeak는 피크 시간대에 걸친 냉각 부하량[kcal]이며, Q1-a 는 보조 빙축열조(5b)의 설계 축열용량을 나타내고, Qtank는 전체 빙축열조(5)의 설계 축열용량, Q1는 전체 빙축열조 설계측면 용량에서 보조 빙축열조(5b)의 설계 축열용량을 뺀 것으로서 주 빙축열조(5a)의 설계 축열용량이다.In the above equations (1) and (2), Q peak is the cooling load [kcal] over the peak period, Q 1-a represents the design heat storage capacity of the auxiliary ice heat storage tank 5b, and Q tank is the design heat storage of the entire ice heat storage tank 5. The capacity, Q 1 is the total heat storage tank design side capacity minus the design heat storage capacity of the auxiliary ice heat storage tank 5b, and is the design heat storage capacity of the main ice heat storage tank 5a. 진 것을 특징으로 하는 빙축열 시스템의 분할형 빙축열조.Split ice storage tank of the ice storage system, characterized in that
제 1항에 있어서,The method of claim 1, 상기 빙축열조(5)는 2개 이상 N개로 분할된 빙축열조의 구조로 이루어진 것을 특징으로 하는 빙축열 시스템의 분할형 빙축열조.The ice storage tank (5) is a split ice storage tank of the ice storage system, characterized in that the structure of the ice storage tank divided into two or more N. 삭제delete
KR1020080072410A 2008-07-24 2008-07-24 Ice storage tank having partitioned structure for ice thermal storage system KR100967154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080072410A KR100967154B1 (en) 2008-07-24 2008-07-24 Ice storage tank having partitioned structure for ice thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080072410A KR100967154B1 (en) 2008-07-24 2008-07-24 Ice storage tank having partitioned structure for ice thermal storage system

Publications (2)

Publication Number Publication Date
KR20100011267A KR20100011267A (en) 2010-02-03
KR100967154B1 true KR100967154B1 (en) 2010-07-05

Family

ID=42085762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080072410A KR100967154B1 (en) 2008-07-24 2008-07-24 Ice storage tank having partitioned structure for ice thermal storage system

Country Status (1)

Country Link
KR (1) KR100967154B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017716B (en) * 2019-03-20 2023-11-28 华电电力科学研究院有限公司 Heat storage tank water distribution disc suitable for peak regulation and heat storage method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146330B1 (en) * 1993-06-07 1998-08-17 김광호 Compound numbers of regenerative system
JP2002039694A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Heat storage/cold storage reservoir
KR20050074108A (en) * 2004-01-13 2005-07-18 엘지전자 주식회사 Cooling system and the control method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146330B1 (en) * 1993-06-07 1998-08-17 김광호 Compound numbers of regenerative system
JP2002039694A (en) * 2000-07-27 2002-02-06 Hitachi Ltd Heat storage/cold storage reservoir
KR20050074108A (en) * 2004-01-13 2005-07-18 엘지전자 주식회사 Cooling system and the control method of the same

Also Published As

Publication number Publication date
KR20100011267A (en) 2010-02-03

Similar Documents

Publication Publication Date Title
CN101334203B (en) Method for enhancing cold-storage density of cold storage air conditioner system and cold storage air conditioner system
CN201104041Y (en) Large temperature difference low-temperature water supply units
US20120031140A1 (en) Electric vehicle and thermal management system thereof
CN103115388B (en) Thermal power plant circulating water heat supply system
CN201491450U (en) Cooling constant temperature machine of electron accelerator
JP2012042098A (en) Operation method of air conditioner and refrigerating machine
CN113923937A (en) Energy-saving cooling control method and system for data center
US20190017712A1 (en) High-efficiency extra-large cooling capacity series chiller in energy station
KR100967154B1 (en) Ice storage tank having partitioned structure for ice thermal storage system
KR20170131889A (en) Geothermal heating and cooling devices using a single thermal storage tank to perform heating and cooling at the same time and its control method
JP2013217342A (en) Steam turbine plant and operation method thereof
KR101322894B1 (en) An Non-freezing Hot-water Generating Device preventing a low temperature evaporation
CN107023949A (en) The progress control method of air-conditioning refrigerator all-in-one
JP5677099B2 (en) A method for controlling a heat source system including a plurality of types of heat source devices.
JP5195696B2 (en) Cold water circulation system
JP2009063190A (en) Heat medium supply system and modification method of heat medium supply system
EA027263B1 (en) Heat supply method and heat supply system
JP5976447B2 (en) Solar heat generation cold generation system
CN1587841A (en) Ice smelting and cold storage device in parallel mono heat exchanger
CN204787477U (en) Can adjust high -efficient ice -reserving groove of ice content
WO2015001976A1 (en) Heat source system
CN201259287Y (en) Cold storage air conditioner system for enhancing cold-storage density
JP4464114B2 (en) Thermal storage device and thermal storage control method
KR101092230B1 (en) the dualistic regenerative system air-conditioning apparatus
KR20150137687A (en) Air Conditioner using the Geothermal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130617

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140616

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150615

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190529

Year of fee payment: 10