KR100966982B1 - Method for Cooling a Hot-Rolled Steel Sheet Coil - Google Patents

Method for Cooling a Hot-Rolled Steel Sheet Coil Download PDF

Info

Publication number
KR100966982B1
KR100966982B1 KR1020080021318A KR20080021318A KR100966982B1 KR 100966982 B1 KR100966982 B1 KR 100966982B1 KR 1020080021318 A KR1020080021318 A KR 1020080021318A KR 20080021318 A KR20080021318 A KR 20080021318A KR 100966982 B1 KR100966982 B1 KR 100966982B1
Authority
KR
South Korea
Prior art keywords
hot rolled
rolled coil
thermal conductivity
cooling
coil
Prior art date
Application number
KR1020080021318A
Other languages
Korean (ko)
Other versions
KR20090096004A (en
Inventor
이성진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080021318A priority Critical patent/KR100966982B1/en
Publication of KR20090096004A publication Critical patent/KR20090096004A/en
Application granted granted Critical
Publication of KR100966982B1 publication Critical patent/KR100966982B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 제철소의 열연공정에서 제조되는 열연코일을 냉각하는 방법에 관한 것으로서, 열연코일의 축 방향과 반지름 방향의 열전도도 차이를 제어하여 자연냉각과정에서 온도 편차를 감소시킴으로써 열연코일의 재질편차를 최소화할 수 있는 열연코일의 냉각방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for cooling a hot rolled coil manufactured in a hot rolling process of a steel mill, and to control the difference in thermal conductivity in the axial direction and the radial direction of the hot rolled coil to reduce the temperature deviation in the natural cooling process, thereby reducing the material deviation of the hot rolled coil. It is an object of the present invention to provide a method of cooling a hot rolled coil that can be minimized.

본 발명은 강을 열간압연하여 제조된 열연강판을 열연코일로 권취한 다음, 이 열연코일을 자연냉각하는 방법에 있어서, In the present invention, in a method of winding a hot rolled steel sheet manufactured by hot rolling steel with a hot rolled coil, and then naturally cooling the hot rolled coil,

상기 열연코일의 축 방향의 열전도도(Ks)는 열연코일의 강판의 열전도도(Km)와 동일한 것으로 가정하고, 상기 열연코일의 반지름 방향의 유효열전도도(Keff)를 구한 후, 열연코일의 반지름 방향의 유효열전도도(Keff)와 축 방향의 열전도도(Ks)의 비(Keff/Ks)가 0.3∼0.95가 되도록 상기 열연코일의 양 에지의 각각에 에지보열장치를 구비시키는 단계를 포함하는 열연코일의 냉각방법을 그 요지로 한다.It is assumed that the thermal conductivity (K s ) in the axial direction of the hot rolled coil is the same as the thermal conductivity (K m ) of the steel sheet of the hot rolled coil, and after obtaining the effective thermal conductivity (K eff ) in the radial direction of the hot rolled coil, An edge holding device is provided at each of both edges of the hot rolled coil so that the ratio (K eff / K s ) of the effective thermal conductivity K eff in the radial direction of the coil and the thermal conductivity K s in the axial direction is 0.3 to 0.95. The cooling method of the hot rolled coil including the step of providing it is a summary.

본 발명에 의하면, 열연코일의 자연 냉각 시 열연코일의 재질편차를 최소화할 수 있다.According to the present invention, the material deviation of the hot rolled coil during natural cooling of the hot rolled coil can be minimized.

열연코일 냉각, 재질, 편차, 에지, 열전도도, 보열 Hot rolled coil cooling, material, deviation, edge, thermal conductivity, insulation

Description

열연코일의 냉각방법{Method for Cooling a Hot-Rolled Steel Sheet Coil}Method for Cooling a Hot-Rolled Steel Sheet Coil

본 발명은 제철소의 열연공정에서 제조되는 열연코일을 냉각하는 방법에 관한 것으로서, 보다 상세하게는 열연코일의 축 방향과 반지름 방향의 열전도도 차이를 제어하여 열연코일을 균일하게 냉각하는 방법에 관한 것이다.The present invention relates to a method for cooling a hot rolled coil produced in a hot rolling process of a steel mill, and more particularly, to a method for uniformly cooling a hot rolled coil by controlling a difference in thermal conductivity in the axial direction and the radial direction of the hot rolled coil. .

일반적으로, 열연공정에서 열간압연된 열연강판은 권취기에서 코일 형태로 권취된 후, 자연냉각된다.In general, the hot rolled steel sheet hot rolled in the hot rolling process is wound in a coil form in the winder, and then naturally cooled.

상기 열연코일의 자연냉각시 열연코일의 외권부위(Tail 부위)는 내권부위(Top 부위)보다 상대적으로 빠른 속도로 냉각되게 되며, 이로 인하여 코일의 외권 부위에서 길이방향으로 재질편차, 예를 들면 항복강도, 인장강도의 편차가 심하게 발생되거나 또는 후공정인 냉간압연시 작업성이 나빠지게 된다.When the hot rolled coil is naturally cooled, the outer wound portion (Tail portion) of the hot rolled coil is cooled at a relatively higher speed than the inner winding portion (Top portion), and thus a material deviation, for example, yielding in the length direction in the outer winding portion of the coil. Variations in strength and tensile strength occur severely, or workability worsens during cold rolling, which is a post-process.

이러한 문제를 일으키는 원인의 하나로는 권취 후의 열연코일의 자연 냉각과정에서의 온도 불균일을 들 수 있는데, 이에 대하여 설명하면 다음과 같다.One of the causes of such a problem is temperature unevenness in the natural cooling process of the hot rolled coil after winding, which will be described below.

열연코일의 축방향으로는 한 끝에서 다른 끝까지의 열전달이 이루어질 때 산화층을 통과하지 않으므로 축방향 겉보기 열전도도는 열연코일의 강판의 열전도도와 같다고 할 수 있다. Since the axial direction of the hot rolled coil does not pass through the oxide layer when heat is transferred from one end to the other, the axial apparent thermal conductivity is the same as that of the steel sheet of the hot rolled coil.

반면에, 코일 반지름 방향의 열전달은 열의 흐름이 강판과 산화층 및 공기층을 교대로 통과하게 됨으로써 반지름 방향의 겉보기 열전도도는 공기층 및 산화층을 고려한 값이어야 한다. On the other hand, in the heat transfer in the radial direction of the coil, the heat flow alternately passes through the steel sheet, the oxide layer, and the air layer, so that the apparent thermal conductivity in the radial direction should be a value considering the air layer and the oxide layer.

따라서, 열연코일의 축 방향과 반지름 방향의 열전도도 차이에 의해 축 방향으로 큰 온도 구배가 발생하므로 냉각과정 중의 열이력이 위치별로 달라짐으로 냉각 후에는 재질편차를 일으키게 된다. Therefore, since a large temperature gradient occurs in the axial direction due to the difference in thermal conductivity in the axial direction and the radial direction of the hot rolled coil, the thermal history during the cooling process varies by position, causing a material deviation after cooling.

이러한 문제를 해결하기 위하여 열연 권취 후 열연코일의 자연냉각과정에서 온도 편차를 줄이기 위한 방안이 요구되어 왔다.In order to solve this problem, a method for reducing the temperature variation in the natural cooling process of the hot rolled coil after the hot rolled coil has been required.

본 발명은 열연코일의 축 방향과 반지름 방향의 열전도도 차이를 제어하여 자연냉각과정에서 온도 편차를 감소시킴으로써 열연코일의 재질편차를 최소화할 수 있는 열연코일의 냉각방법을 제공하고자 하는데, 그 목적이 있다.The present invention is to provide a cooling method of a hot rolled coil that can minimize the material deviation of the hot rolled coil by controlling the difference in thermal conductivity in the axial direction and the radial direction of the hot rolled coil by reducing the temperature deviation in the natural cooling process, the object of have.

본 발명은 강을 열간압연하여 제조된 열연강판을 열연코일로 권취한 다음, 이 열연코일을 자연냉각하는 방법에 있어서, In the present invention, in a method of winding a hot rolled steel sheet manufactured by hot rolling steel with a hot rolled coil, and then naturally cooling the hot rolled coil,

상기 열연코일의 축 방향의 열전도도(Ks)는 열연코일의 강판의 열전도도(Km)와 동일한 것으로 가정하고, 상기 열연코일의 반지름 방향의 유효열전도도(Keff)를 하기 식(1)에 의해서 구하는 단계;It is assumed that the thermal conductivity (K s ) in the axial direction of the hot rolled coil is the same as the thermal conductivity (K m ) of the steel sheet of the hot rolled coil, and the effective thermal conductivity (K eff ) in the radial direction of the hot rolled coil is represented by the following equation (1): Obtaining by;

[관계식 1][Relationship 1]

Figure 112010011320271-pat00013
Figure 112010011320271-pat00013

[상기 식(1)에서, a는 접촉 퍼센트(%),

Figure 112010011320271-pat00002
는 강판에 대한 코일의 상대밀도, S는 강판의 두께, α는 강판 사이의 공기층 복사열 열전달계수, Ka 는 강판 사이의 공기층의 열전도도, Km 은 열연코일의 강판의 열전도도][In formula (1), a is the contact percentage (%),
Figure 112010011320271-pat00002
Is the relative density of the coil with respect to the steel sheet, S is the thickness of the steel sheet, α is the air layer radiant heat transfer coefficient between the steel sheets, K a is the thermal conductivity of the air layer between the steel sheets, K m is the thermal conductivity of the steel sheet of the hot rolled coil]

상기와 같이 구한 열연코일의 반지름 방향의 유효열전도도(Keff)와 축 방향의 열전 도도(Ks)의 비(Keff/Ks)가 0.3∼0.95가 되도록 상기 열연코일의 양 에지의 각각에 에지보열장치를 구비시키는 단계를 포함하는 열연코일의 냉각방법에 관한 것이다.Each of the two edges of the hot rolled coil so that the ratio (K eff / K s ) of the effective thermal conductivity K eff in the radial direction and the thermal conductivity K s in the axial direction of the hot rolled coil obtained as described above is 0.3 to 0.95. It relates to a method for cooling a hot rolled coil comprising the step of providing an edge heat retaining device.

본 발명에 의하면, 열연코일의 자연 냉각 시 열연코일의 재질편차를 최소화할 수 있다.According to the present invention, the material deviation of the hot rolled coil during natural cooling of the hot rolled coil can be minimized.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 강을 열간압연하여 제조된 열연강판을 열연코일로 권취한 다음, 이 열연코일을 자연냉각하는 방법에 바람직하게 적용된다.The present invention is preferably applied to a method of winding a hot rolled steel sheet manufactured by hot rolling steel with a hot rolled coil, and then naturally cooling the hot rolled coil.

상기한 바와 같이, 열연코일의 냉각에 의한 재질편차는 열연코일의 축 방향과 반지름 방향의 열전도도 차이에 기인한 것이다.As described above, the material deviation due to the cooling of the hot rolled coil is due to the difference in thermal conductivity in the axial direction and the radial direction of the hot rolled coil.

이에, 본 발명은 열연코일의 축 방향과 반지름 방향의 열전도도 차이를 감소시킬 수 있는 방안에 대하여 연구 및 실험을 행하고, 그 결과에 근거하여 이루어진 것이다.Accordingly, the present invention has been conducted based on the results of the research and experiments to reduce the difference in the thermal conductivity of the hot rolled coil in the axial direction and the radial direction.

열연코일의 축방향으로는 한 끝에서 다른 끝까지의 열전달이 이루어질 때 산화층을 통과하지 않으므로 축방향 겉보기 열전도도는 열연코일의 강판의 열전도도와 같다고 할 수 있는 반면에, 반지름 방향의 열전달은 열의 흐름이 강판과 산화층 및 공기층을 교대로 통과하게 됨으로써 반지름 방향의 겉보기 열전도도는 공기층 및 산화층을 고려한 값이어야 한다. In the axial direction of the hot rolled coil, since it does not pass through the oxide layer when heat is transferred from one end to the other end, the axial apparent thermal conductivity is the same as that of the steel sheet of the hot rolled coil, whereas the radial heat transfer is performed in the radial direction. By passing through the steel sheet, the oxide layer and the air layer alternately, the apparent thermal conductivity in the radial direction should be a value considering the air layer and the oxide layer.

따라서, 본 발명에서는 열연코일의 축 방향의 열전도도(Ks)는 열연코일의 강판의 열전도도(Km)와 동일한 것으로 가정하고, 상기 열연코일의 반지름 방향의 유효열전도도(Keff)는 하기 식(1)에 의해서 구한다.Accordingly, in the present invention, it is assumed that the thermal conductivity (K s ) in the axial direction of the hot rolled coil is the same as the thermal conductivity (K m ) of the steel sheet of the hot rolled coil, and the effective thermal conductivity (K eff ) in the radial direction of the hot rolled coil is It calculates by following formula (1).

[관계식 1][Relationship 1]

Figure 112010011320271-pat00014
Figure 112010011320271-pat00014

[상기 식(1)에서, a는 접촉 퍼센트(%),

Figure 112010011320271-pat00004
는 강판에 대한 코일의 상대밀도, S는 강판의 두께, α는 강판 사이의 공기층 복사열 열전달계수, Ks 는 강판 사이의 공기층의 열전도도, Km 은 열연코일의 강판의 열전도도][In formula (1), a is the contact percentage (%),
Figure 112010011320271-pat00004
Is the relative density of the coil to the steel plate, S is the thickness of the steel plate, α is the air layer radiant heat transfer coefficient between the steel sheets, K s is the thermal conductivity of the air layer between the steel sheets, K m is the thermal conductivity of the steel sheet of the hot rolled coil]

상기와 같이 구한 열연코일의 반지름 방향의 유효열전도도(Keff)와 축 방향의 열전도도(Ks)의 비(Keff/Ks)가 0.3∼0.95가 되도록 상기 열연코일의 양 에지의 각각에 에지보열장치를 구비시킴으로써 자연냉각과정에서 열연코일의 균일한 냉각이 달성되며, 이로 인하여 열연코일의 재질편차가 최소화된다.Each of the two edges of the hot rolled coil so that the ratio (K eff / K s ) of the effective thermal conductivity K eff in the radial direction and the thermal conductivity K s in the axial direction of the hot rolled coil obtained as described above is 0.3 to 0.95. Equipped with an edge heat retaining device to achieve uniform cooling of the hot rolled coil in the natural cooling process, thereby minimizing the material deviation of the hot rolled coil.

상기 열연코일의 반지름 방향의 유효열전도도(Keff)와 축 방향의 열전도도(Ks)의 비(Keff/Ks)가 0.3 미만인 경우에는 자연냉각과정에서 열연코일의 균일한 냉각이 달성되기 어렵다.Thermal conductivity of the hot-rolled coil radial effective thermal conductivity (K eff) of the direction and the axial direction also (K s) ratio when (K eff / K s) is less than 0.3, the uniform cooling of the hot-rolled coil achieved in a natural cooling process of It's hard to be.

물론, 가장 이상적인 열전도도의 비(Keff/Ks)는 1.0이지만, 0.95를 초과하는 경우에는 에지보열장치의 설치에 비용이 많이 소요되고, 관리도 엄격해야 할 뿐만 아니라 설치도 복잡화되는 등의 문제가 발생될 우려가 있다.Of course, the ratio of the most ideal thermal conductivity (K eff / K s ) is 1.0, but if it exceeds 0.95, it is expensive to install the edge thermal insulation device, and the management is complicated and the installation is complicated. There may be a problem.

따라서, 열전도도의 비(Keff/Ks)는 0.3∼0.95가 되도록 하는 것이 바람직하다.Therefore, it is preferable that the ratio (K eff / K s ) of the thermal conductivity is 0.3 to 0.95.

보다 바람직한 열전도도의 비(Keff/Ks)는 0.8∼0.95이다.More preferable ratio (K eff / K s ) of thermal conductivity is 0.8-0.95.

한편, 통상적인 열연코일의 자연냉각시 열전도도의 비(Keff/Ks)는 0.2 이하가 일반적이다.On the other hand, the ratio (K eff / K s ) of the thermal conductivity during natural cooling of a conventional hot rolled coil is generally 0.2 or less.

상기 식(1)에 의하면, 코일강판 두께에 따라 반지름 방향의 유효열전도도(Keff)가 변화되는데, 그 일례가 하기 표 1에 나타나 있다.According to Equation (1), the effective thermal conductivity Keff in the radial direction changes according to the thickness of the coil steel sheet, an example of which is shown in Table 1 below.

이 때, 상기 식(1)의 인자들은 실험를 통해 얻어지는 것으로 사용하였으며, a=3%,

Figure 112008016774827-pat00005
=0.97, a=96W/m2K, K a =4.8x10-3 W/m2K, K s =46.6 W/m2K 이었다.At this time, the factors of the formula (1) was used as obtained through an experiment, a = 3%,
Figure 112008016774827-pat00005
It was = 0.97, a = 96W / m 2 K, K a = 4.8x10 -3 W / m 2 K, K s = 46.6 W / m 2 K.

[표 1]TABLE 1

두께(mm)Thickness (mm) 1One 33 55 77 KK effeff 18.618.6 31.231.2 35.935.9 38.738.7

상기 표 1에 나타난 바와 같이, 동일한 열연코일 두께라면 강판의 두께가 두꺼울수록 반지름방향의 유효열전도도(Keff)는 크다는 것을 알 수 있는데, 이는 강판의 두께가 두꺼울수록 강판의 감긴 수가 적기 때문이다.  As shown in Table 1, if the thickness of the same hot-rolled coil, it can be seen that the larger the thickness of the steel sheet, the larger the effective thermal conductivity Keff in the radial direction, because the thicker the steel sheet, the smaller the number of wounds of the steel sheet.

또한, 열연코일 권취 시에 작용하는 장력의 크기에 따라 반지름 방향의 유효열전도도가 변화되는데, 이는 권취 장력이 증가하면 강판 간의 접촉 퍼센트가 증가하므로 열전도 효과가 커지기 때문이다.In addition, the effective thermal conductivity in the radial direction changes according to the magnitude of the tension acting upon the coiling of the hot rolled coil because the percentage of contact between the steel sheets increases as the winding tension increases, thereby increasing the thermal conductivity effect.

열연코일 권취 시에 작용하는 장력의 크기 및 강판 두께에 따른 열전도도의 비(Keff/Ks)의 변화를 나타내는 일례가 도 1에 나타나 있다.An example showing the change in the ratio (K eff / K s ) of the thermal conductivity according to the magnitude of tension and the steel sheet thickness acting upon the coiling of the hot rolled coil is shown in FIG. 1.

도 1에 나타난 바와 같이, 강판의 두께가 두꺼울수록 그리고 권취장력이 클수록 열전도도의 비(Keff/Ks)는 커짐을 알 수 있다. As shown in FIG. 1, the thicker the steel sheet and the larger the winding tension, the greater the thermal conductivity ratio (K eff / K s ).

본 발명에 부합되는 에지보열장치의 바람직한 일례가 도 2에 나타나 있다.A preferred example of an edge heat retaining device according to the present invention is shown in FIG.

도 2에 나타난 바와 같이, 본 발명의 에지보열장치(10)는 열연코일(1)의 측면을 에워싸는 보열부(11)를 포함하고, 이 보열부(11)는 열연코일(1)의 측면을 에워싸도록 구성되는 내판(111) 및 외판(112)과 이 내판(111)과 외판(112)사이에 위치하는 단열재(113)를 포함한다.As shown in FIG. 2, the edge thermal insulation apparatus 10 of the present invention includes a heat insulation portion 11 surrounding the side surface of the hot rolled coil 1, and the heat insulation portion 11 has a side surface of the hot rolled coil 1. An inner plate 111 and an outer plate 112 configured to enclose and an insulating material 113 positioned between the inner plate 111 and the outer plate 112 are included.

상기 단열재(113)로는 단열효과를 갖는 것이라면, 어느 것이라도 사용가능하며, 그 예로는 단열 세라믹을 들수 있다.As the heat insulator 113, any one can be used as long as it has a heat insulation effect. An example is an insulating ceramic.

상기 보열부(11)의 내판(111)에는 열연코일(1)의 중공부를 일정 길이 만큼 삽입되도록 구성되는 삽입부(12)가 고정되어 있다.An insertion part 12 configured to insert the hollow part of the hot rolled coil 1 by a predetermined length is fixed to the inner plate 111 of the heat retaining part 11.

상기 보열부(11)는 상기 보열부(11)의 외판(112)에 고정되는 보강재(14) 및 마주보는 보강재(14)를 열연코일(1)의 중공부를 가로질러 고정하는 고정구(13)에 의해 고정된다.The heat retaining portion 11 is a reinforcing member 14 fixed to the outer plate 112 of the heat retaining portion 11 and the fastener 13 for fixing the opposite reinforcing material 14 across the hollow portion of the hot rolled coil (1) Is fixed by.

즉, 상기 각각의 보열부(11)의 외판(112)에 고정되는 보강재(14)끼리를 열연코일(1)의 중공부를 가로지는 고정구(13)에 의해 고정함으로써 상기 보열부(11)는 열 연코일(1)의 측면을 에워싼 형태로 유지된다.That is, the heat retaining portion 11 is heated by fixing the reinforcing members 14 fixed to the outer plate 112 of the heat retaining portion 11 by the fasteners 13 that cross the hollow portion of the hot rolled coil 1. It is held in a form surrounding the side of the soft coil (1).

본 발명에 적용될 수 있는 에지보열장치는 상기한 에지보열장치에 한정되는 것은 아니며, 열전도도의 비(Keff/Ks)는 0.3∼0.95가 되도록 할 수 있는 것이라면 어떠한 것이라도 본 발명에 적용될 수 있음은 물론이다.The edge holding device which can be applied to the present invention is not limited to the above-mentioned edge holding device, and any one can be applied to the present invention as long as the ratio (K eff / K s ) of the thermal conductivity can be 0.3 to 0.95. Of course.

한편, 본 발명에서는 에지보열장치를 코일마다 설치할 때 생기는 시간과 경비를 줄이기 위하여 연속적으로 생산된 열연코일을 에지부가 서로 마주보도록 예를 들면, 컨베어 등에 일정간격, 예를 20cm 이하의 간격으로 적치하고 가장 외각에 있는 열연 코일에 에지보열장치를 설치하여 동시에 여러 코일의 온도 균일화를 이룰 수도 있다.On the other hand, in the present invention, in order to reduce the time and cost incurred when installing the edge heat preservation device for each coil, continuously produced hot rolled coils, for example, so that the edge portions face each other, such as a conveyor at a certain interval, such as 20cm or less intervals An edge heatsink can be installed on the outermost hot rolled coil to achieve temperature uniformity of several coils simultaneously.

본 발명은 모든 강종에 적용될 수 있지만, 특히, 인장강도 980kgf/mm2급 TRIP 강과 같은 변태 조직 강에 바람직하게 적용된다.The present invention can be applied to all steel grades, but is particularly preferably applied to metamorphic tissue steels such as tensile strength 980 kgf / mm 2 grade TRIP steel.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

자연냉각시 열전도도의 비(Keff/Ks)가 0.2[ 반지름방향의 유효열전도도: 축 방향의 열전도도(Ks)=1 : 5]인 통상적인 열연코일을 자연 냉각시킨(통상적인 냉각방법) 열연코일과 통상적인 열연코일의 양 에지 각각에 도 2의 에지보열장치를 설치하여 열전도도의 비(Keff/Ks)가 0.67[반지름방향의 유효열전도도: 축 방향의 열전도도(Ks)=1 : 1.5]이 되도록 한 상태에서 자연 냉각시킨( 본 발명의 냉각방법) 열연코일 에 대하여 권취 후 1시간 냉각시 내부온도분포를 측정하고, 그 결과를 도 3에 나타내고, 또한 냉각시간에 따른 열연코일의 온도차를 조사하고, 그 결과를 도 4에 나타내고, 그리고 열연코일의 위치별 인장강도(TS)를 측정하고, 그 결과를 도 5에 나타내었다.Natural cooling of conventional hot rolled coils in which the ratio of thermal conductivity (K eff / K s ) during natural cooling is 0.2 [radial effective thermal conductivity: thermal conductivity in the axial direction (K s ) = 1: 5] Cooling method) The edge thermal insulation device of FIG. 2 is installed at each of the edges of the hot rolled coil and the conventional hot rolled coil so that the ratio of thermal conductivity (K eff / K s ) is 0.67 [effective thermal conductivity in radial direction: thermal conductivity in axial direction. (K s ) = 1: 1.5] The internal temperature distribution was measured for 1 hour after winding for a hot rolled coil naturally cooled in the state of (K s ) = 1: 1.5, and the result is shown in FIG. The temperature difference of the hot rolled coil according to the cooling time was investigated, and the result is shown in FIG. 4, and the tensile strength (TS) for each position of the hot rolled coil was measured, and the result is shown in FIG. 5.

도 3, 도 4 및 도 5에서 (a)는 통상적인 냉각방법의 의하여 냉각된 열연코일에 관한 것이고, (b)는 본 발명의 냉각방법의 의하여 냉각된 열연코일에 관한 것이다.3, 4 and 5 (a) relates to the hot rolled coil cooled by the conventional cooling method, (b) relates to the hot rolled coil cooled by the cooling method of the present invention.

도 3에 나타난 바와 같이, 본 발명의 냉각방법의 의하여 냉각된 열연코일의 경우가 As shown in Figure 3, the case of hot-rolled coil cooled by the cooling method of the present invention

통상적인 냉각방법의 의하여 냉각된 열연코일에 비하여 균일한 코일 내부 온도 분포를 나타냄을 알 수 있다.It can be seen that the coil has a uniform temperature distribution inside the coil as compared to the hot rolled coil cooled by the conventional cooling method.

도 4에 나타난 바와 같이, 통상적인 냉각방법의 경우에는 10시간 공냉 후 코일의 온도차 (최대값-최소값)가 107℃인 반면에, 본 발명의 냉각방법의 경우에는 10시간 공냉 후 코일의 온도차는 45℃로, 본 발명의 냉각방법에 의하면, 열연코일의 자연냉각시 온도 편차를 줄일 수 있음을 알 수 있다.As shown in FIG. 4, in the conventional cooling method, the temperature difference (maximum value-minimum value) of the coil after air cooling for 10 hours is 107 ° C., while in the cooling method of the present invention, the temperature difference of the coil after air cooling for 10 hours is At 45 ° C., according to the cooling method of the present invention, it can be seen that the temperature variation during natural cooling of the hot rolled coil can be reduced.

도 5에 나타난 바와 같이, 본 발명의 냉각방법에 의하여 냉각하는 경우에는 As shown in Figure 5, in the case of cooling by the cooling method of the present invention

통상적인 냉각방법의 경우에 비하여 열연코일의 내경부와 외경부의 인장강도의 편차가 작을 뿐만 아니라 열연코일의 에지부에서의 인장강도의 편차도 작음을 알 수 있다.Compared with the conventional cooling method, it can be seen that not only the variation in the tensile strength of the inner and outer diameter portions of the hot rolled coil is small, but also the variation in the tensile strength at the edge portions of the hot rolled coil is small.

이와 같이, 본 발명에 의하면, 열연코일의 내경부와 외경부의 재질편차 및 열연코일의 에지부에서의 재질편차를 최소화할 수 있다.As described above, according to the present invention, material deviations between the inner and outer diameter portions of the hot rolled coil and the edge of the hot rolled coil can be minimized.

도 1은 코일권취 시에 작용하는 장력의 크기 및 강판 두께에 따른 열전도도의 비(Keff/Ks)의 변화를 나타내는 그래프1 is a graph showing the change in the ratio (K eff / K s ) of the thermal conductivity according to the magnitude of tension and the thickness of the steel sheet acting upon coil winding

도 2는 본 발명에 부합되는 에지보열장치의 바람직한 일례를 나타내는 구성도Figure 2 is a block diagram showing a preferred example of the edge retaining apparatus according to the present invention

도 3은 통상적인 냉각방법 및 본 발명의 냉각방법에 의하여 냉각시 권취 후 1시간 냉각시의 열연코일 내부온도분포를 나타내는 그래프로서, (a)는 통상적인 냉각방법을 나타내고, (b)는 본 발명의 냉각방법을 나타냄.3 is a graph showing a temperature distribution inside a hot rolled coil during one hour of cooling after winding up during cooling by a conventional cooling method and a cooling method of the present invention, (a) shows a conventional cooling method, and (b) shows Indicates a cooling method of the invention.

도 4는 통상적인 냉각방법 및 본 발명의 냉각방법에 의하여 냉각시 냉각시간에 따른 열연코일의 온도차를 나타내는 그래프로서, (a)는 통상적인 냉각방법을 나타내고, (b)는 본 발명의 냉각방법을 나타냄.4 is a graph showing a temperature difference of a hot rolled coil according to a cooling time during cooling by a conventional cooling method and a cooling method of the present invention, (a) shows a conventional cooling method, (b) shows a cooling method of the present invention. Indicates.

도 5는 통상적인 냉각방법 및 본 발명의 냉각방법에 의하여 냉각된 열연코일의 위치별 인장강도 분포를 나타내는 그래프로서, (a)는 통상적인 냉각방법을 나타내고, (b)는 본 발명의 냉각방법을 나타냄.FIG. 5 is a graph showing a conventional cooling method and a distribution of tensile strength by position of hot rolled coils cooled by the cooling method of the present invention, (a) shows a conventional cooling method, and (b) shows a cooling method of the present invention. Indicates.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 . . 열연코일 10 . . 에지보열장치 11 . . 보열부 12 . . 삽입부One . . Hot rolled coil 10. . Edge heat storage device 11. . Thermal insulation part 12. . Insert

13 . . 고정구 14 . . 보강재 111 . . 내판 112 . . 외판 13. . Fixture 14. . Reinforcement 111. . First Edition 112. . skin

113 . . 단열재113. . insulator

Claims (5)

강을 열간압연하여 제조된 열연강판을 열연코일로 권취한 다음, 이 열연코일을 자연냉각하는 방법에 있어서, In a method of winding a hot rolled steel sheet manufactured by hot rolling a steel with a hot rolled coil and then naturally cooling the hot rolled coil, 상기 열연코일의 축 방향의 열전도도(Ks)는 열연코일의 열연강판의 열전도도(Km)와 동일한 것으로 가정하고, 상기 열연코일의 반지름 방향의 유효열전도도(Keff)를 하기 식(1)에 의해서 구하는 단계;It is assumed that the thermal conductivity (K s ) in the axial direction of the hot rolled coil is the same as the thermal conductivity (K m ) of the hot rolled steel sheet of the hot rolled coil, and the effective thermal conductivity (K eff ) in the radial direction of the hot rolled coil is represented by the following equation ( Obtaining by 1); [관계식 1][Relationship 1]
Figure 112010011320271-pat00015
Figure 112010011320271-pat00015
[상기 식(1)에서, a는 접촉 퍼센트(%),
Figure 112010011320271-pat00007
는 강판에 대한 코일의 상대밀도, S는 강판의 두께, α는 강판 사이의 공기층 복사열 열전달계수, Ka 는 강판 사이의 공기층의 열전도도, Km 은 열연코일의 강판의 열전도도]
[In formula (1), a is the contact percentage (%),
Figure 112010011320271-pat00007
Is the relative density of the coil with respect to the steel sheet, S is the thickness of the steel sheet, α is the air layer radiant heat transfer coefficient between the steel sheets, K a is the thermal conductivity of the air layer between the steel sheets, K m is the thermal conductivity of the steel sheet of the hot rolled coil]
상기와 같이 구한 열연코일의 반지름 방향의 유효열전도도(Keff)와 축 방향의 The effective thermal conductivity (K eff ) in the radial direction of the hot rolled coil obtained as described above and in the axial direction 열전도도(Ks)의 비(Keff/Ks)가 0.3∼0.95가 되도록 상기 열연코일의 양 에지의 각각에 에지보열장치를 구비시키는 단계를 포함하는 열연코일의 냉각방법Thermal conductivity (K s) ratio (K eff / K s) is from 0.3 to 0.95 in the hot rolled coil cooling comprising the step of having the edge boyeol device to each of the two edges of the hot rolled coil to the method of
제1항에 있어서, 에지보열장치가 열연코일(1)의 측면을 에워싸는 보열부(11)를 포함하고, 이 보열부(11)는 열연코일(1)의 측면을 에워싸도록 구성되는 내판(111) 및 외판(112)과 이 내판(111)과 외판(112)사이에 위치하는 단열재(113)을 포함하고, 상기 보열부(11)의 내판(111)에는 열연코일(1)의 중공부를 일정 길이 만큼 삽입되도록 구성되는 삽입부(12)가 고정되어 있고, 그리고 상기 보열부(11)는 보열부(11)의 외판(112)에 고정되는 보강재(14) 및 마주보는 보강재(14)를 열연코일(1)의 중공부를 가로질러 고정하는 고정구(13)에 의해 고정되어 있는 것을 특징으로 하는 열연코일의 냉각방법An inner plate (1) according to claim 1, wherein the edge retaining device comprises a heat retaining portion (11) surrounding a side of the hot rolled coil (1), the heat retaining portion (11) being configured to surround a side of the hot rolled coil (1). 111 and an outer plate 112 and a heat insulating material 113 positioned between the inner plate 111 and the outer plate 112, the hollow portion of the hot rolled coil (1) on the inner plate 111 of the heat insulating portion (11) The insertion part 12 configured to be inserted by a predetermined length is fixed, and the heat retaining part 11 includes a reinforcing material 14 and an opposite reinforcing material 14 fixed to the outer plate 112 of the heat retaining part 11. Cooling method of a hot rolled coil characterized in that the fixing is fixed by a fastener 13 for fixing across the hollow portion of the hot rolled coil (1) 제1항 또는 제2항에 있어서, 열연코일이 인장강도 980kgf/mm2급 TRIP강의 열연코일인 것을 특징으로 하는 열연코일의 냉각방법The method for cooling a hot rolled coil according to claim 1 or 2, wherein the hot rolled coil is a hot rolled coil of tensile strength of 980 kgf / mm 2 grade TRIP steel. 제1항 또는 제2항에 있어서, 에지보열장치가 그 에지부가 서로 마주보도록 컨베어에 일정간격으로 적치되어 있는 다수 개의 열연코일 중 가장 외각에 있는 열연 코일에 설치되어 있는 것을 특징으로 하는 열연코일의 냉각방법The hot rolled coil according to claim 1 or 2, wherein the edge heat retaining device is provided on a hot rolled coil at the outermost side of the plurality of hot rolled coils arranged at regular intervals on the conveyor so that the edge portions thereof face each other. Cooling method 제3항에 있어서, 에지보열장치가 그 에지부가 서로 마주보도록 적치되어 있는 다수 개의 열연코일 중 가장 외각에 있는 열연 코일에 설치되어 있는 것을 특징으로 하는 열연코일의 냉각방법4. The method of cooling a hot rolled coil according to claim 3, wherein the edge holding device is provided on a hot rolled coil located at the outermost side of the plurality of hot rolled coils whose edge portions are disposed so as to face each other.
KR1020080021318A 2008-03-07 2008-03-07 Method for Cooling a Hot-Rolled Steel Sheet Coil KR100966982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080021318A KR100966982B1 (en) 2008-03-07 2008-03-07 Method for Cooling a Hot-Rolled Steel Sheet Coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080021318A KR100966982B1 (en) 2008-03-07 2008-03-07 Method for Cooling a Hot-Rolled Steel Sheet Coil

Publications (2)

Publication Number Publication Date
KR20090096004A KR20090096004A (en) 2009-09-10
KR100966982B1 true KR100966982B1 (en) 2010-06-30

Family

ID=41296261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080021318A KR100966982B1 (en) 2008-03-07 2008-03-07 Method for Cooling a Hot-Rolled Steel Sheet Coil

Country Status (1)

Country Link
KR (1) KR100966982B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322057B1 (en) * 2011-08-19 2013-10-25 주식회사 포스코 Manufacturing method for steel sheet having uniform property in width-direction
KR101417314B1 (en) * 2012-08-08 2014-07-08 주식회사 포스코 Piling structure of winding coil for improving mechanical property deviation
CN105934288B (en) * 2014-12-09 2019-12-24 Posco公司 Heat treatment method of AHSS hot-rolled coil, cold rolling method using same and heat treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137941A (en) * 1999-11-09 2001-05-22 Mitsubishi Heavy Ind Ltd Apparatus and method for controlling oxide film growth of coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137941A (en) * 1999-11-09 2001-05-22 Mitsubishi Heavy Ind Ltd Apparatus and method for controlling oxide film growth of coil

Also Published As

Publication number Publication date
KR20090096004A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
EP3378959B1 (en) Method for producing non-oriented electrical steel sheet
RU2617085C2 (en) Device for quick heating of continuous oxyging line
EP2602346B1 (en) Directional magnetic steel plate and production method therefor
US9523135B2 (en) Method of cold-rolling steel sheet and cold-rolling facility
EP3492613B1 (en) Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet
US9640320B2 (en) Method of producing grain-oriented electrical steel sheet
KR100966982B1 (en) Method for Cooling a Hot-Rolled Steel Sheet Coil
EP2716772A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
US20180327883A1 (en) Method for producing non-oriented electrical steel sheet
EP2937156B1 (en) Shape-correcting device for high-strength steel
US11286538B2 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2009221578A (en) Method of continuously annealing steel strip having curie point and continuous annealing apparatus therefor
JP6083156B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
EP3725905B1 (en) Multilayer electrical steel sheet
CN110616303A (en) Manufacturing method of 980MPa grade or above cold-rolled or galvanized dual-phase steel plate
EP3725907B1 (en) Multilayer electrical steel sheet
JP5896097B2 (en) Finishing annealing method and finishing annealing equipment for grain-oriented electrical steel sheet
US20200308676A1 (en) Multilayer electrical steel sheet
JP6083157B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
JP2005074465A (en) Continuous hot rolling equipment line
JPS61135420A (en) Treatment of hot rolled strip
JPH1017941A (en) Cooling method for preventing flaw in aluminum coil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140619

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160621

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 9