JP2009221578A - Method of continuously annealing steel strip having curie point and continuous annealing apparatus therefor - Google Patents

Method of continuously annealing steel strip having curie point and continuous annealing apparatus therefor Download PDF

Info

Publication number
JP2009221578A
JP2009221578A JP2008070260A JP2008070260A JP2009221578A JP 2009221578 A JP2009221578 A JP 2009221578A JP 2008070260 A JP2008070260 A JP 2008070260A JP 2008070260 A JP2008070260 A JP 2008070260A JP 2009221578 A JP2009221578 A JP 2009221578A
Authority
JP
Japan
Prior art keywords
heating
steel strip
curie point
zone
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070260A
Other languages
Japanese (ja)
Other versions
JP5217543B2 (en
Inventor
Shigenobu Koga
重信 古賀
Takeshi Hamaya
剛 浜谷
Hiroteru Mochinaga
大照 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008070260A priority Critical patent/JP5217543B2/en
Publication of JP2009221578A publication Critical patent/JP2009221578A/en
Application granted granted Critical
Publication of JP5217543B2 publication Critical patent/JP5217543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of continuously annealing a steel strip with which the steel strip having Curie point can be annealed at temperature rising speed uniform in the longitudinal direction. <P>SOLUTION: The continuous annealing apparatus is provided with: a first heating device with which the steel strip is heated to ≥500°C and <the Curie point Tc(°C)-50°C, in a first heating area; a solenoid-coil type high frequency induction-heating device with which the steel strip heated in the first heating area, is heated to the temperature range of the Curie point Tc-30°C to the Curie point Tc-5°C, in a second heating area; a third heating device with which the steel strip heated in the second heating area, is heated to a treating target temperature exceeding the Curie point, in a third heating area; and a temperature rising speed controlling device with which the heating action of the first heating device and the induction-heating device are controlled. An electric current output value is set to the induction-heating device in the second heating area and also, on the basis of this actual result output electricity value, a fuel gas output value for outputting to the first heating device and/or electric power output value of an electric heater, are controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、キュリー点(Curie Temperature:Tcとも表記する。)を有する鋼帯の連続焼鈍方法及び連続焼鈍設備に関し、特に、キュリー点近傍で昇温速度を一定に制御するために用いて好適な技術に関するものである。なお、本発明の連続焼鈍方法及び連続焼鈍設備が処理対象とするキュリー点を有する鋼帯としては、Si≦4.5質量%を含有する方向性電磁鋼板等が例示できる。   The present invention relates to a continuous annealing method and a continuous annealing facility for a steel strip having a Curie temperature (also referred to as Curie Temperature: Tc), and is particularly suitable for use in controlling the temperature rising rate in the vicinity of the Curie temperature. It is about technology. In addition, as the steel strip having the Curie point to be processed by the continuous annealing method and the continuous annealing equipment of the present invention, a grain-oriented electrical steel sheet containing Si ≦ 4.5 mass% can be exemplified.

鋼帯などの金属帯の連続焼鈍では、一般に、加熱温度、加熱時間、加熱速度等が厳密に管理されている。その中でも、例えば、変圧器その他の電気機器の鉄心としての用途に好適な低鉄損方向性電磁鋼板の製造過程における脱炭焼鈍工程のように、厳格な昇温速度管理が求められる場合がある。   In continuous annealing of a metal strip such as a steel strip, the heating temperature, the heating time, the heating rate, etc. are generally strictly controlled. Among them, for example, strict heating rate control may be required as in the decarburization annealing process in the manufacturing process of the low iron loss directional electrical steel sheet suitable for use as an iron core of a transformer or other electrical equipment. .

方向性電磁鋼板の製造では、(a)脱炭焼鈍する際の昇温過程において、鋼板が歪回復・再結晶を迎える鋼板温度が550℃からキュリー点近傍に存在する間、とりわけ、キュリー点近傍に存在する間、に一定の昇温速度で加熱することが重要である。この領域を外れると、脱炭焼鈍後の粒組織は{111}面の比率が大きくなり、結果として、磁性の低下を招くという問題が発生する。また、(b)加熱速度のばらつきによる皮膜の劣化を招くという問題等が発生する。   In the manufacture of grain-oriented electrical steel sheets, (a) in the temperature rising process during decarburization annealing, the steel sheet temperature at which the steel sheet undergoes strain recovery and recrystallization is present in the vicinity of the Curie point from 550 ° C. It is important to heat at a constant rate of heating while it is present. Outside this region, the grain structure after decarburization annealing has a large ratio of {111} planes, and as a result, there arises a problem of causing a decrease in magnetism. In addition, (b) a problem that the film is deteriorated due to variations in the heating rate occurs.

このような焼鈍昇温速度の管理の範囲に関する発明として、特許文献1には、方向性電磁鋼板の脱炭焼鈍に際し、冷間圧延された鋼帯を230℃/秒以上の加熱速度で705℃以上の温度へ急速加熱することにより鉄損を改善できる発明が開示されており、その実施例2、3では、キュリー点746℃へ1100ないし1200℃/秒の加熱速度で加熱する特別の電磁誘導加熱コイル(基本周波数:450kHz)の使用が開示されている。   As an invention relating to the management range of such annealing temperature increase rate, Patent Document 1 discloses that a steel strip that has been cold-rolled is 705 ° C. at a heating rate of 230 ° C./second or more during decarburization annealing of a grain-oriented electrical steel sheet. Inventions that can improve iron loss by rapid heating to the above temperature are disclosed. In Examples 2 and 3, a special electromagnetic induction for heating to a Curie point of 746 ° C. at a heating rate of 1100 to 1200 ° C./sec. The use of a heating coil (fundamental frequency: 450 kHz) is disclosed.

また、鋼板の連続焼鈍方法に関し、先行材から焼鈍条件の異なる後行材への焼鈍条件の変更を円滑に行えるようにするために、条件変更部の板温を変更するために誘導加熱装置を活用する発明が特許文献2で開示されている。   In addition, regarding the continuous annealing method for steel sheets, an induction heating device is used to change the plate temperature of the condition change part in order to smoothly change the annealing conditions from the preceding material to the subsequent material having different annealing conditions. The invention to be utilized is disclosed in Patent Document 2.

また、特許文献3には、鋼板の複数の誘導加熱装置を用いた焼戻しに関し、装置の入側の鋼材の先頭部分の温度を実測し、加熱に必要な電力を決定して電力設定する発明、あるいは、誘導加熱装置の間に温度計を設置し、鋼材温度を実測し、電力設定値を補正し、鋼板の長手方向の材質均一性を図るようにする発明が開示されている。   In addition, Patent Document 3 relates to tempering using a plurality of induction heating devices for a steel sheet, actually measuring the temperature of the leading portion of the steel material on the entry side of the device, determining the power required for heating, and setting the power, Alternatively, an invention is disclosed in which a thermometer is installed between the induction heating devices, the steel material temperature is measured, the power setting value is corrected, and the material uniformity in the longitudinal direction of the steel sheet is achieved.

また、特許文献4には、厚鋼板製造プロセスにおいて加速冷却を採用する場合に、その高冷却性のために発生し易い温度むらが引き起こす鋼板の機械的特性のばらつきや形状不良、さらには残留応力による条切りキャンバー等の問題を、加速冷却後の鋼板の加熱目標温度を鋼材の磁気変態温度(キュリー点)、または700℃〜760℃とする誘導加熱装置を用いた熱処理を施し、鋼板内の温度均一性を高めてから熱間矯正することにより、解決する発明が開示されている。   Further, in Patent Document 4, when accelerated cooling is employed in a thick steel plate manufacturing process, variations in the mechanical properties and shape defects of the steel plate caused by temperature irregularities that are likely to occur due to its high cooling property, and further residual stress. In the steel plate, the heat treatment using an induction heating device in which the target heating temperature of the steel plate after accelerated cooling is set to the magnetic transformation temperature (Curie point) of the steel material or 700 ° C. to 760 ° C. An invention to be solved by hot correction after increasing temperature uniformity is disclosed.

特公平06−051887号公報Japanese Patent Publication No. 06-051887 特開2003−328039号公報JP 2003-328039 A 特開2005−120409号公報JP 2005-120409 A 特開2006−206927号公報JP 2006-206927 A

しかしながら、上記特許文献1に記載の発明では、電磁誘導加熱による急速加熱を電磁鋼板の脱炭焼鈍のキュリー点までの加熱に適用することで、電磁鋼板の鉄損を改善できることが開示されているが、誘導加熱装置による鋼材の温度制御方案、あるいは、鋼材の昇温速度の制御方案については何ら開示されていない。   However, the invention described in Patent Document 1 discloses that the iron loss of the electrical steel sheet can be improved by applying rapid heating by electromagnetic induction heating to heating up to the Curie point of decarburization annealing of the electrical steel sheet. However, there is no disclosure of a steel material temperature control method using an induction heating device or a steel material temperature increase rate control method.

また、上記特許文献2に記載の発明は、先行材から焼鈍条件の異なる後行材への焼鈍条件の変更を円滑に行うことを目的とするものであって、鋼材の温度制御方案については何ら具体的に記載されていない、あるいは、鋼材の昇温速度の制御方案については何ら開示されていない。   In addition, the invention described in Patent Document 2 is intended to smoothly change the annealing condition from the preceding material to the succeeding material having different annealing conditions, and there is nothing about the temperature control method of the steel material. It is not specifically described, or nothing is disclosed about a method for controlling the rate of temperature rise of the steel material.

また、上記特許文献3に記載の発明では、誘導加熱装置の入口、及び、誘導加熱装置の間に設置された温度計により鋼材の温度を測定し、必要な昇熱温度を得るための電力設定を行うものであって、キュリー点近傍の昇温速度を制御することに関しては、なんら開示されていない。   Further, in the invention described in Patent Document 3, the power setting for obtaining the necessary heat-up temperature by measuring the temperature of the steel material with the thermometer installed between the inlet of the induction heating device and the induction heating device. Nothing is disclosed regarding controlling the temperature rise rate near the Curie point.

また、上記特許文献4に記載の発明では、誘導加熱装置の加熱目標温度を、鋼材の磁気変態温度(キュリー点)または700℃〜760℃とする熱処理を施せば、鋼板内の温度均一性を高めることができることが開示されているが、鋼材の温度制御方案については何ら開示されていない。   Further, in the invention described in Patent Document 4, if the heat target temperature of the induction heating device is set to a magnetic transformation temperature (Curie point) of steel material or 700 ° C. to 760 ° C., the temperature uniformity in the steel plate is increased. Although it is disclosed that the temperature can be increased, there is no disclosure about a temperature control method of the steel material.

本発明は前述の問題点に鑑み、キュリー点を有する鋼帯を、キュリー点近傍の昇温速度を長手方向に極めて均一に加熱できるようにすることを目的としている。   The present invention has been made in view of the above-described problems, and an object of the present invention is to make it possible to heat a steel strip having a Curie point extremely uniformly in the longitudinal direction at a temperature rising rate in the vicinity of the Curie point.

本発明のキュリー点を有する鋼帯の連続焼鈍方法は、加熱帯、均熱帯及び冷却帯、または加熱帯、均熱帯、窒化帯及び冷却帯からなり、前記加熱帯が第1加熱帯、第2加熱帯及び第3加熱帯に区分されている連続焼鈍設備での、キュリー点を有する鋼帯の連続焼鈍方法であって、前記第1加熱帯において、前記鋼帯を500℃以上、キュリー点Tc(℃)−50℃未満まで、燃料ガス、及び/または電気ヒータにより第1加熱装置で加熱する第1加熱工程と、前記第2加熱帯において、前記第1加熱帯で加熱された鋼帯をキュリー点Tc−30℃ないしキュリー点Tc−5℃の温度領域まで、ソレノイドコイル式高周波誘導加熱装置により加熱する第2加熱工程と、前記第3加熱帯において、前記第2加熱帯で加熱された鋼帯をキュリー点を超える処理目標温度まで、第3加熱装置により加熱する第3加熱工程と、前記第1加熱工程及び第2加熱工程における加熱動作を制御する昇温速度制御工程とを有し、前記昇温速度制御工程は、前記燃料ガス出力値、及び/または電気ヒータの電力出力値を前記第1加熱装置に出力する第1の出力部と、前記ソレノイドコイル式高周波誘導加熱装置に電流を出力する第2の出力部とを制御し、前記第2加熱帯のソレノイドコイル式高周波誘導加熱装置での実績出力電力値に基いて、前記第1加熱装置に出力する燃料ガス出力値、及び/または電気ヒータの電力出力値を制御することを特徴とする。   The method for continuously annealing a steel strip having a Curie point according to the present invention comprises a heating zone, a soaking zone and a cooling zone, or a heating zone, a soaking zone, a nitriding zone and a cooling zone, wherein the heating zone is a first heating zone, a second soaking zone. A continuous annealing method for a steel strip having a Curie point in a continuous annealing facility divided into a heating zone and a third heating zone, wherein the steel strip is at a temperature of 500 ° C. or higher and a Curie point Tc in the first heating zone. (° C.) In a first heating step of heating with a first heating device with a fuel gas and / or an electric heater up to below −50 ° C., and in the second heating zone, a steel strip heated in the first heating zone In the second heating step of heating by a solenoid coil type high frequency induction heating device up to a temperature range of Curie point Tc-30 ° C. to Curie point Tc-5 ° C., the third heating zone was heated in the second heating zone. Steel band with Curie point A third heating step for heating to a target processing temperature by a third heating device, and a temperature rise rate control step for controlling a heating operation in the first heating step and the second heating step, and the temperature rise rate control The step includes: a first output unit that outputs the fuel gas output value and / or the electric power output value of the electric heater to the first heating device; and a second output that outputs a current to the solenoid coil type high frequency induction heating device. A fuel gas output value output to the first heating device and / or electric power of the electric heater based on the actual output power value in the solenoid coil type high frequency induction heating device of the second heating zone. The output value is controlled.

本発明のキュリー点を有する鋼帯の連続焼鈍設備は、加熱帯、均熱帯及び冷却帯、または加熱帯、均熱帯、窒化帯及び冷却帯からなり、前記加熱帯が第1加熱帯、第2加熱帯及び第3加熱帯に区分されているキュリー点を有する鋼帯の連続焼鈍設備であって、前記第1加熱帯において、前記鋼帯を500℃以上、キュリー点Tc(℃)−50℃未満まで加熱する第1加熱装置と、前記第2加熱帯において、前記第1加熱帯で加熱された鋼帯をキュリー点Tc−30℃ないしキュリー点Tc−5℃の温度領域まで加熱するソレノイドコイル式高周波誘導加熱装置と、前記第3加熱帯において、前記第2加熱帯で加熱された鋼帯をキュリー点を超える処理目標温度まで加熱する第3加熱装置と、前記第1加熱装置及び前記ソレノイドコイル式高周波誘導加熱装置の加熱動作を制御する昇温速度制御装置とを有し、前記昇温速度制御装置は、前記燃料ガス出力値、及び/または電気ヒータの電力出力値を前記第1加熱装置に出力する第1の出力部と、前記ソレノイドコイル式高周波誘導加熱装置に電流を出力する第2の出力部とを有し、前記第2加熱帯のソレノイドコイル式高周波誘導加熱装置での実績出力電力値に基いて、前記第1加熱装置に出力する燃料ガス出力値、及び/または電気ヒータの電力出力値を制御することを特徴とする。   The continuous annealing equipment for a steel strip having a Curie point according to the present invention comprises a heating zone, a soaking zone and a cooling zone, or a heating zone, a soaking zone, a nitriding zone and a cooling zone, wherein the heating zone is a first heating zone, a second soaking zone. A steel strip continuous annealing facility having a Curie point divided into a heating zone and a third heating zone, wherein in the first heating zone, the steel strip is at least 500 ° C. and a Curie point Tc (° C.)-50 ° C. And a solenoid coil for heating the steel strip heated in the first heating zone to a temperature range of Curie point Tc-30 ° C to Curie point Tc-5 ° C in the second heating zone. Type high frequency induction heating device, in the third heating zone, a third heating device for heating the steel strip heated in the second heating zone to a processing target temperature exceeding the Curie point, the first heating device and the solenoid Coil type high frequency A heating rate control device that controls the heating operation of the induction heating device, and the heating rate control device outputs the fuel gas output value and / or the electric power output value of the electric heater to the first heating device. A first output unit that performs output and a second output unit that outputs a current to the solenoid coil type high frequency induction heating device, the actual output power value in the solenoid coil type high frequency induction heating device of the second heating zone And controlling the fuel gas output value output to the first heating device and / or the electric power output value of the electric heater.

本発明によれば、キュリー点を有する鋼帯のキュリー点近傍での鋼帯の昇温速度を長手方向に極めて均一に行うことができるようにすることができる。これにより、特に、鋼板の昇温速度に厳格な制御及び均一性が求められる方向性珪素鋼板の冷間圧延された鋼帯の連続脱炭焼焼鈍では、その昇温速度の厳格な範囲での達成や均一化による品質改善効果が大きく、安定した製品を製造できるようにすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature increase rate of the steel strip in the vicinity of the Curie point of the steel strip which has a Curie point can be performed very uniformly in a longitudinal direction. As a result, particularly in continuous decarburization annealing of cold-rolled steel strips of directional silicon steel sheets that require strict control and uniformity in the temperature increase rate of the steel sheet, the temperature increase rate is achieved in a strict range. It is possible to produce a stable product with a large quality improvement effect due to uniformization.

以下、本発明を実施するための最良の形態を、本発明の効果が特に大きい方向性珪素鋼板の製造を例にして説明する。なお、本発明が方向性珪素鋼板に限定されないことは言うまでもない。   Hereinafter, the best mode for carrying out the present invention will be described by taking as an example the production of a grain-oriented silicon steel sheet in which the effects of the present invention are particularly significant. In addition, it cannot be overemphasized that this invention is not limited to a grain-oriented silicon steel plate.

図1は、方向性珪素鋼の仕上冷延板を脱炭焼鈍(焼鈍分離剤の塗布を含む)するための代表的な連続熱処理設備の概略的な構成例を説明する等角投影図である。
連続熱処理設備ラインの主な要素は、仕上冷間圧延加工された方向性珪素鋼のコイル状の鋼帯60を装荷して、そこから巻出していくためのペイオフリール1を有する。
FIG. 1 is an isometric view illustrating a schematic configuration example of a typical continuous heat treatment facility for decarburizing annealing (including application of an annealing separator) on a finish cold-rolled sheet of directional silicon steel. .
The main elements of the continuous heat treatment equipment line have a payoff reel 1 for loading and unwinding a coiled steel strip 60 of directional silicon steel that has been finish cold rolled.

また、鋼帯60の先尾端部を切断して溶接のための準備をするための入側剪断機2、鋼帯60の端部を連続的に結合するための溶接機3、鋼帯60を溶接する準備、及び溶接中に入側洗浄装置11、炉部12を減速・停止することなく通板可能とするために鋼帯60を貯留する入側ストレージルーパー4を有する。   Moreover, the entrance side shearing machine 2 for cutting the tail end part of the steel strip 60 and preparing for welding, the welding machine 3 for continuously joining the end parts of the steel strip 60, and the steel strip 60 , And the inlet side storage looper 4 for storing the steel strip 60 so that the inlet side cleaning device 11 and the furnace part 12 can be passed without decelerating and stopping during welding.

さらに、鋼帯60の表面を洗浄し、圧延油や鉄分等の汚れを除去するための入側洗浄装置11、鋼帯60を脱炭焼鈍するために用いられる加熱・均熱・冷却領域からなる炉部12、コイルの再巻きつけが完了して出側剪断機6が作動している時に、鋼帯60が入側洗浄装置11、炉部12を減速停止することなく通板可能とするために、鋼帯60を貯留する出側ストレージルーパー5を有する。   Furthermore, it comprises an inlet side cleaning device 11 for cleaning the surface of the steel strip 60 and removing dirt such as rolling oil and iron, and a heating / soaking / cooling region used for decarburizing and annealing the steel strip 60. To allow the steel strip 60 to pass through the entrance side cleaning device 11 and the furnace section 12 without decelerating and stopping when the furnace section 12 and the coil rewinding are completed and the exit side shearing machine 6 is operating. The outlet storage looper 5 that stores the steel strip 60 is provided.

また、焼鈍された鋼帯60の表面を洗浄し、炉内汚れを除去するための出側洗浄装置13、焼鈍分離剤塗布装置14、焼鈍分離剤乾燥装置15、出側剪断機6、及び鋼帯60をコイル状に再巻き付けするためのテンションリール7等を有している。また、炉部12の動作を制御する昇温速度制御装置100を有している。   Moreover, the exit side washing | cleaning apparatus 13, the annealing separator application | coating apparatus 14, the annealing separator drying apparatus 15, the exit side shearing machine 6, and steel for washing | cleaning the surface of the annealed steel strip 60 and removing a dirt in a furnace are performed. A tension reel 7 or the like for re-wrapping the belt 60 in a coil shape is provided. Moreover, it has the temperature increase rate control apparatus 100 which controls operation | movement of the furnace part 12. As shown in FIG.

このような装置によって構成された連続熱処理設備ラインにおいて、焼鈍分離剤乾燥装置15は、熱慣性の低い炉材と直火バーナーから構成される高応答性の炉構成となっており、出側剪断機6が作動中におけるやむを得ない場合に発生する鋼帯60の停止・減速に迅速に対応できる構造となっている。   In the continuous heat treatment equipment line constituted by such an apparatus, the annealing separator drying apparatus 15 has a highly responsive furnace structure composed of a furnace material with low thermal inertia and an open flame burner, The structure is such that the steel strip 60 can be stopped and decelerated quickly when the machine 6 is inevitable during operation.

また、炉部12の前後での鋼帯60の張力は、テンションメータ41、42で測定される。また、焼鈍分離剤乾燥装置15での鋼帯60の張力は、テンションメータ43で測定される。各テンションメータ41、42及び43の測定結果は、通過するブライドルロール23〜26にフィードバックされ、ブライドルロール前後の鋼帯60の張力が確保されている。なお、出側洗浄装置13は、炉部12における鋼帯60の汚れが僅少であるときは、必ずしも設置する必要はない。方向性珪素鋼の仕上冷延板は、上記のラインで脱炭焼鈍(焼鈍分離剤の塗布を含む)された後、高温焼鈍され、さらに、平滑化焼鈍が施され、最終製品となる。   Further, the tension of the steel strip 60 before and after the furnace section 12 is measured by tension meters 41 and 42. Further, the tension of the steel strip 60 in the annealing separator drying device 15 is measured by a tension meter 43. The measurement results of the tension meters 41, 42 and 43 are fed back to the passing bridle rolls 23 to 26, and the tension of the steel strip 60 before and after the bridle roll is ensured. The outlet side cleaning device 13 is not necessarily installed when the steel strip 60 in the furnace section 12 is very dirty. The finished cold-rolled sheet of directional silicon steel is decarburized and annealed (including application of an annealing separator) in the above-mentioned line, then is subjected to high-temperature annealing, and is further subjected to smooth annealing and becomes a final product.

図2は、炉部12の基本的な構成例を模式的に示す図である。
基本的な構成の炉部12Aは、一般的に、ラジアントチューブ加熱方式による加熱領域31(31A、31B、31C)、電気ヒータ加熱による均熱領域32、電気ヒータ加熱による窒化領域33及び冷却領域34から構成され、加熱領域31には、加熱途中の板温を監視するための板温計36、37、38が設置されている。
FIG. 2 is a diagram schematically illustrating a basic configuration example of the furnace unit 12.
The furnace section 12A having a basic configuration generally includes a heating area 31 (31A, 31B, 31C) by a radiant tube heating method, a soaking area 32 by electric heater heating, a nitriding area 33 and a cooling area 34 by electric heater heating. In the heating area 31, plate thermometers 36, 37, and 38 are installed for monitoring the plate temperature during heating.

入側洗浄装置11で表面洗浄された鋼帯60は、ラジアントチューブ方式による加熱領域31で加熱され、脱炭温度約820℃まで加熱され、電気ヒータ加熱による均熱領域32で脱炭焼鈍される。   The steel strip 60 whose surface is cleaned by the inlet side cleaning device 11 is heated in the heating region 31 by the radiant tube method, heated to a decarburization temperature of about 820 ° C., and decarburized and annealed in the soaking region 32 by the electric heater heating. .

ラジアントチューブ方式による加熱領域31では、鋼帯60は脱炭障害とならないように加熱されており、加熱領域途中に設置された板温計36(前半の加熱領域31Aの出側)、37(中央の加熱領域31Bの出側)、及び加熱領域の出側(後半の加熱領域31Cの出側)の板温計38を監視しながら炉の温度が制御されるのが一般的である。また、最近、この板温計36、37、38の測定値を自動監視しながら、加熱領域の炉を自動制御する方式もとられている。   In the heating area 31 by the radiant tube system, the steel strip 60 is heated so as not to obstruct decarburization, and a plate thermometer 36 (exit side of the heating area 31A in the first half) and 37 (center) installed in the middle of the heating area. In general, the temperature of the furnace is controlled while monitoring the plate thermometer 38 on the exit side of the heating region 31B) and on the exit side of the heating region (exit side of the latter heating region 31C). Recently, a method of automatically controlling the furnace in the heating region while automatically monitoring the measured values of the plate thermometers 36, 37, and 38 has been adopted.

図3(a)及び(b)に、図1、図2の設備による方向性電磁鋼板の脱炭焼鈍における、板温計36、37の位置での鋼帯コイル1本分の長手方向の温度分布の一例を示す。図3に示したように、この板温計36、37の測定値を自動監視しながら、加熱領域の炉を自動制御する方式が採られているにもかかわらず、加熱領域途中に設置された板温計36、37での鋼帯60の長手方向の板温は変動し、特に、コイルの両端は大きく長期にわたり変動している。それに伴い、鋼帯60の昇温速度も大きく変動している。   3 (a) and 3 (b), the temperature in the longitudinal direction of one steel strip coil at the position of the plate thermometers 36 and 37 in the decarburization annealing of the grain-oriented electrical steel sheet by the equipment of FIGS. An example of distribution is shown. As shown in FIG. 3, it was installed in the middle of the heating area even though a method of automatically controlling the furnace in the heating area was adopted while automatically monitoring the measured values of the plate thermometers 36 and 37. The plate temperature in the longitudinal direction of the steel strip 60 at the plate thermometers 36 and 37 varies. In particular, both ends of the coil vary greatly over a long period of time. Along with this, the rate of temperature increase of the steel strip 60 also varies greatly.

コイルの両端の変動は、結果として、この後の一次再結晶組織に影響し、結果として2次再結晶組織での組織の配向性が低下するとともに、鋼帯60の脱炭反応を含む表面の反応に大きく影響し、鋼帯60の長手方向の品質変動、例えば、磁性不良や皮膜欠陥等の品質障害を招いていた。   As a result, fluctuations at both ends of the coil affect the subsequent primary recrystallization structure, and as a result, the orientation of the structure in the secondary recrystallization structure is reduced and the surface of the steel strip 60 including the decarburization reaction is reduced. This greatly affected the reaction and caused quality fluctuations in the longitudinal direction of the steel strip 60, such as magnetic defects and film defects.

本願発明の本発明者らは、この鋼帯60の長手方向の昇温過程での板温の変動の原因をさらに解析し以下を解明した。
すなわち、(1)鋼帯60の連続加熱設備に用いられているラジアントチューブ炉においては、ラジアントチューブと鋼帯60の間の輻射伝熱により鋼板が加熱されており、鋼板の昇温量を決める伝熱量はラジアントチューブ、鋼板の放射率と幾何学的位置関係によって決まるが、ラジアントチューブの放射率及び幾何学的位置関係は短期的には不変である。このことから、鋼帯60の温度は、鋼帯60の放射率の変動で変化することを解明した。ところで、鋼板の放射率が長手方向に変化する要因としては、不明な点も多いが、冷延鋼板の製造の前工程である熱間圧延が連続でなく、スラブ単位(鋼帯コイルに相当)に行われ、熱間圧延中の板温度の長手方向変動及び冷却過程の不均一により表面性状が変化すること等によると推察される。
The inventors of the present invention further analyzed the cause of the fluctuation of the plate temperature during the temperature increasing process in the longitudinal direction of the steel strip 60 and elucidated the following.
That is, (1) In the radiant tube furnace used for the continuous heating equipment of the steel strip 60, the steel plate is heated by radiant heat transfer between the radiant tube and the steel strip 60, and the amount of temperature rise of the steel plate is determined. The amount of heat transfer is determined by the emissivity and geometrical positional relationship of the radiant tube and the steel plate, but the emissivity and geometrical positional relationship of the radiant tube are unchanged in the short term. From this, it was clarified that the temperature of the steel strip 60 changes due to the change in the emissivity of the steel strip 60. By the way, there are many unclear points as factors that cause the emissivity of the steel sheet to change in the longitudinal direction. It is presumed that the surface properties change due to the longitudinal fluctuation of the plate temperature during hot rolling and the unevenness of the cooling process.

また、(2)鋼板の温度測定には鋼板の放射率が利用されていることから、放射率が変われば、板温度の測定値の精度が悪くなることになる。複数の波長を用いた板温計も精度は若干改善されるもののこの問題から逃れることはできない。   Moreover, (2) Since the emissivity of a steel plate is used for the temperature measurement of a steel plate, if the emissivity changes, the accuracy of the measured value of the plate temperature will deteriorate. A plate thermometer using a plurality of wavelengths cannot be avoided from this problem, although the accuracy is slightly improved.

本願発明の本発明者らは、鋭意、研究を重ねた結果、ソレノイドコイル式高周波誘導加熱では、キュリー点近傍で、鋼帯60の透磁率が急速に低下し、それに伴い、浸透深さも大きくなるとともに、鋼帯60の加熱能力が急速に減少することに着目した。このことから、キュリー点近傍を含む鋼帯60の加熱領域では、一定のコイル電流を通電中のソレノイドコイル式高周波誘導加熱装置の出力電力は、鋼帯60のコイル部入口の温度で変動することを見出すとともに、ソレノイド型誘導加熱装置の制御応答性は極めて速いことにも着目した。   As a result of intensive research, the inventors of the present invention have made a rapid decrease in the permeability of the steel strip 60 in the vicinity of the Curie point in the solenoid coil type high frequency induction heating, and the penetration depth increases accordingly. At the same time, attention was paid to the rapid decrease in the heating capacity of the steel strip 60. From this, in the heating region of the steel strip 60 including the vicinity of the Curie point, the output power of the solenoid coil type high frequency induction heating device that is energized with a constant coil current varies depending on the temperature of the coil portion inlet of the steel strip 60. Attention was also paid to the fact that the control response of the solenoid induction heating device is extremely fast.

図6に、高周波誘導装置を用いた基本的な構成例を示す。
図6は、冷間圧延された方向性珪素鋼を焼鈍するための連続熱処理設備ライン(図1)の炉部12の構成を模式的に示す図である。図2で説明した基本的な構成の熱処理ラインに比べ、本実施形態の炉部12Bにおいては加熱帯31の中央にソレノイドコイル式高周波誘導加熱装置35が配設されている。また、ソレノイドコイル式高周波誘導装置35の前部に板温計36が配置され、後部に板温計37が設置されている。
FIG. 6 shows a basic configuration example using a high-frequency induction device.
FIG. 6 is a diagram schematically showing the configuration of the furnace section 12 of the continuous heat treatment equipment line (FIG. 1) for annealing cold-rolled directional silicon steel. Compared to the heat treatment line having the basic configuration described with reference to FIG. 2, a solenoid coil type high frequency induction heating device 35 is disposed at the center of the heating zone 31 in the furnace section 12 </ b> B of the present embodiment. Further, a plate thermometer 36 is disposed in the front part of the solenoid coil type high frequency induction device 35, and a plate thermometer 37 is disposed in the rear part.

図4に、高周波誘導装置を用いた基本的な構成例の制御方案を示す。
ソレノイドコイル式高周波誘導加熱装置35の入側の板温計36の温度TAを監視し、
ラジアントチューブ方式による加熱領域31Aの状態監視を行う。
FIG. 4 shows a control method of a basic configuration example using a high-frequency induction device.
Monitors the temperature T A of the entry side of the sheet temperature gauge 36 of the solenoid coil type high frequency induction heating device 35,
The state of the heating area 31A by the radiant tube method is monitored.

また、ソレノイドコイル式高周波誘導加熱装置35には目標値の電流値になるようにコイルに通電する電流値Iを制御して鋼帯60を通板する。なお、ソレノイドコイル式高周波誘導加熱装置35の出側の板温計37を監視し、ソレノイドコイル式高周波誘導加熱装置35の出側の鋼帯60の板温が一定であることを確認し、鋼帯60を通板する。   Further, the steel coil 60 is passed through the solenoid coil type high frequency induction heating device 35 by controlling the current value I applied to the coil so that the current value becomes a target value. The temperature gauge 37 on the outlet side of the solenoid coil type high frequency induction heating device 35 is monitored, and it is confirmed that the plate temperature of the steel strip 60 on the outlet side of the solenoid coil type high frequency induction heating device 35 is constant. The belt 60 is passed through.

図5(a)〜(c)に、このときの炉部12における、ソレノイドコイル式高周波誘導加熱装置35の入出側の板温計36、37の位置で測定された鋼帯コイル1本分の長手方向の温度分布、及びソレノイドコイル式高周波誘導加熱装置35の実績出力電力値の一例を示す。   5 (a) to 5 (c), one steel strip coil measured at the position of the plate thermometers 36 and 37 on the input / output side of the solenoid coil type high frequency induction heating device 35 in the furnace section 12 at this time. An example of the temperature distribution in the longitudinal direction and the actual output power value of the solenoid coil type high frequency induction heating device 35 is shown.

この方法では、ソレノイドコイル式高周波誘導加熱装置35の入側では、図5(a)に示すように、板温計36の測定データのように鋼帯60の温度むらが存在するにもかかわらず、ソレノイドコイル式高周波誘導加熱装置35での出側では、図5(b)に示すように、板温計37の測定データのように温度はほぼ均一となる。   In this method, on the entrance side of the solenoid coil type high frequency induction heating device 35, although the temperature unevenness of the steel strip 60 exists as shown in the measurement data of the plate thermometer 36, as shown in FIG. On the exit side of the solenoid coil type high frequency induction heating device 35, as shown in FIG. 5B, the temperature becomes substantially uniform as measured by the plate thermometer 37.

しかしながら、図5(c)に示すように、ソレノイドコイル式高周波誘導加熱装置35の実績出力電力値は大きく変動しており、より昇温速度の管理が必要な領域において、鋼帯60の昇温速度は大きく変動していることが分かった。   However, as shown in FIG. 5 (c), the actual output power value of the solenoid coil type high frequency induction heating device 35 fluctuates greatly, and the temperature of the steel strip 60 is increased in a region where the temperature increase rate needs to be managed. It was found that the speed fluctuated greatly.

これは、ソレノイドコイル式高周波誘導加熱装置35の入側の板温計36が板温500〜600℃領域では、鋼板の放射率の変動が大きく、例え、測定精度の比較的良い2波長計測方式の板温計を使用しても、測定精度があまりよくないことと、これが原因で、加熱炉(前半の加熱領域31A)の燃料の出力値の制御応答性を上げられないことに起因すると推察される。   This is because, when the plate temperature meter 36 on the inlet side of the solenoid coil type high frequency induction heating device 35 has a plate temperature range of 500 to 600 ° C., the fluctuation of the emissivity of the steel plate is large, and for example, a two-wavelength measurement method with relatively good measurement accuracy. It is assumed that the measurement accuracy is not so good even if the plate thermometer is used, and that the control response of the fuel output value of the heating furnace (first heating region 31A) cannot be raised due to this. Is done.

図7に、本実施形態による高周波誘導装置の制御方案を示す。
鋼帯60は、ラジアントチューブ方式による加熱領域(前半の加熱領域31A)で加熱され、板温が500℃以上で、キュリー点Tc(℃)から50℃を超えて低い所定の温度(Tc−50℃未満の温度)に到達する。
FIG. 7 shows a control method for the high-frequency induction device according to the present embodiment.
The steel strip 60 is heated in a heating area (first heating area 31A) by a radiant tube system, the plate temperature is 500 ° C. or higher, and a predetermined temperature (Tc-50) lower than the Curie point Tc (° C.) by more than 50 ° C. Temperature).

その後、ソレノイドコイル式高周波誘導加熱装置35で、Tc−30℃ないしTc−5℃の温度領域まで加熱される。次いで、ラジアントチューブ方式による加熱領域(後半)31Cでおよそ825℃まで加熱され、電気ヒータ加熱による均熱領域32で脱炭焼鈍される。   Then, the solenoid coil type high frequency induction heating device 35 is heated to a temperature range of Tc-30 ° C to Tc-5 ° C. Subsequently, it is heated to approximately 825 ° C. in the heating region (second half) 31C by the radiant tube method, and decarburized and annealed in the soaking region 32 by the electric heater heating.

ソレノイドコイル式高周波誘導加熱装置35の入側の鋼帯60の板温は、500℃未満では、当該誘導加熱装置35による所要昇温代が大きくなる。したがって、そのための誘導加熱装置の設備能力を過大にしなければならず現実的でないばかりでなく、熱処理炉雰囲気に水素を含有する場合には、水素爆発の危険を回避できる雰囲気温度750℃以上を確保できなくなるため、板温500℃以上とする必要がある。一方、当該板温がTc−50℃以上では、ラジアント方式の加熱での加熱ばらつきを誘導加熱装置35での到達板温で吸収できないから、Tc−50℃未満とする必要がある。   If the plate temperature of the steel strip 60 on the entry side of the solenoid coil type high frequency induction heating device 35 is less than 500 ° C., the required temperature increase by the induction heating device 35 becomes large. Therefore, the facility capacity of the induction heating apparatus for that purpose must be excessive, which is not practical, and when hydrogen is contained in the heat treatment furnace atmosphere, an atmosphere temperature of 750 ° C. or higher that can avoid the danger of hydrogen explosion is secured. Since it becomes impossible, it is necessary to make it plate temperature 500 degreeC or more. On the other hand, when the plate temperature is equal to or higher than Tc-50 ° C., it is necessary to make the temperature less than Tc-50 ° C. because the heating variation due to radiant heating cannot be absorbed by the ultimate plate temperature in the induction heating device 35.

また、ソレノイドコイル式高周波誘導加熱装置35の出側の鋼帯60の板温は、Tc−5℃超では、出側での鋼帯60の透磁率が小さすぎる。そのために、高周波誘導加熱装置35に必要な磁界が大きくなって所要設備が巨大となり現実的でなく、また、Tc−30℃未満では、出側での鋼帯60の透磁率が小さくなく、ラジアント方式の加熱での加熱ばらつきを高周波誘導加熱で抑制できない。したがって、ソレノイドコイル式高周波誘導加熱装置35の出側の鋼帯60の板温は、Tc−30℃ないしTc−5℃の温度領域とする必要がある。   Moreover, if the plate | board temperature of the steel strip 60 of the exit side of the solenoid coil type high frequency induction heating apparatus 35 exceeds Tc-5 degreeC, the magnetic permeability of the steel strip 60 on the exit side will be too small. Therefore, the magnetic field required for the high-frequency induction heating device 35 becomes large and the required equipment becomes huge, which is not realistic. If the temperature is lower than Tc-30 ° C., the permeability of the steel strip 60 on the outgoing side is not small, and the radiant Heating variation due to heating in the system cannot be suppressed by high frequency induction heating. Therefore, the plate temperature of the steel strip 60 on the outlet side of the solenoid coil type high frequency induction heating device 35 needs to be in the temperature range of Tc-30 ° C to Tc-5 ° C.

本実施形態においては、厳格な昇温速度管理を必要とする鋼帯60の温度領域が、ソレノイドコイル式高周波誘導加熱装置35の制御領域となるように、ソレノイドコイル式高周波誘導加熱装置の配置を行うようにしている。   In the present embodiment, the solenoid coil type high frequency induction heating device is arranged so that the temperature region of the steel strip 60 requiring strict temperature rise rate control becomes the control region of the solenoid coil type high frequency induction heating device 35. Like to do.

本実施形態の制御方式では、ソレノイドコイル式高周波誘導加熱装置35には、目標のコイル電流値になるように、通電する電流値Iを制御して鋼帯60を通板する。そして、そのソレノイドコイル式高周波誘導加熱装置35の実績出力電力値Wを検出し、前記実績出力電力値と目標出力電力値との差を演算する。   In the control system of the present embodiment, the steel strip 60 is passed through the solenoid coil type high frequency induction heating device 35 by controlling the current value I to be energized so that the target coil current value is obtained. And the actual output power value W of the solenoid coil type high frequency induction heating device 35 is detected, and the difference between the actual output power value and the target output power value is calculated.

そして、演算結果に基いて、実績出力電力値が目標値になるように、加熱領域(前段)の燃料ガスの設定出力値Hを補正して「H+ΔH」とし、加熱領域(前段)の燃料ガスの実績出力値が設定値になるよう制御する。なお、ソレノイドコイル式高周波誘導加熱装置35の出側の板温計37で監視し、ソレノイドコイル式高周波誘導加熱装置35の出側の鋼帯60の板温TBが一定であることを確認し、鋼帯60を通板する。なお、前半の加熱領域31Aの燃料の出力値の制御応答性は、その制御データのもとであるソレノイドコイル式高周波誘導加熱装置35の実績出力電力値の測定誤差が極めて小さいことから、格段に高められている。 Then, based on the calculation result, the set output value H of the fuel gas in the heating region (previous stage) is corrected to “H + ΔH” so that the actual output power value becomes the target value, and the fuel gas in the heating region (previous stage) The actual output value is controlled to be the set value. Incidentally, monitored at the outlet side of the sheet temperature meter 37 of the solenoid coil type high frequency induction heating apparatus 35, sheet temperature T B of the exit side of the steel strip 60 of a solenoid coil type high frequency induction heating device 35 is confirmed to be constant The steel strip 60 is passed through. The control response of the output value of the fuel in the heating area 31A in the first half is remarkably small because the measurement error of the actual output power value of the solenoid coil type high frequency induction heating device 35 that is the basis of the control data is extremely small. Has been enhanced.

図8(a)〜(c)に、そのときの炉部12における、ソレノイド型高周波誘導加熱炉35の入出側の板温計36、37の位置で測定された鋼帯コイル1本分の長手方向の温度分布、及びソレノイドコイル式高周波誘導加熱装置35の実績出力電力値の一例を示す。なお、ソレノイドコイル式高周波誘導加熱装置35の出側の鋼帯60の板温は、Tc−30℃未満では、ソレノイドコイル式高周波誘導加熱装置35での出力電力値の変動からその内部の鋼帯60の温度バラツキを推定し、ソレノイドコイル式高周波誘導加熱装置35の出力電力値を一定にする制御も有効に行うことができない。   8 (a) to 8 (c), the length of one steel strip coil measured at the position of the thermometers 36 and 37 on the entry / exit side of the solenoid type high frequency induction heating furnace 35 in the furnace section 12 at that time. An example of the temperature distribution in the direction and the actual output power value of the solenoid coil type high frequency induction heating device 35 is shown. In addition, if the plate | board temperature of the steel strip 60 of the outgoing side of the solenoid coil type high frequency induction heating apparatus 35 is less than Tc-30 degreeC, the steel strip of the inside from the fluctuation | variation of the output electric power value in the solenoid coil type high frequency induction heating apparatus 35 will be shown. Control that estimates the temperature variation of 60 and makes the output power value of the solenoid coil type high frequency induction heating device 35 constant cannot be performed effectively.

このように、本実施形態によれば、図8(a)に示すように、ラジアントチューブ方式による前半の加熱領域31Aの出側の板温計36の測定データのように温度計に示された鋼帯60の温度のバラツキは残存するものの軽減され、ソレノイドコイル式高周波誘導加熱装置35での出側では、図8(b)に示すように、温度はほぼ均一になる。   As described above, according to the present embodiment, as shown in FIG. 8A, the measurement data of the plate thermometer 36 on the outlet side of the heating area 31A in the first half by the radiant tube method is shown in the thermometer. Although the variation in temperature of the steel strip 60 remains, it is reduced, and on the exit side of the solenoid coil type high frequency induction heating device 35, the temperature becomes substantially uniform as shown in FIG.

さらに、図8(c)に示すように、ソレノイドコイル式高周波誘導加熱装置35の実績出力電力値の変動も軽減され、安定している。したがって、ソレノイドコイル式高周波誘導加熱装置35における鋼帯60の昇温速度は、一定で変動なく安定していることが分かる。   Further, as shown in FIG. 8 (c), fluctuations in the actual output power value of the solenoid coil type high frequency induction heating device 35 are reduced and stable. Therefore, it can be seen that the heating rate of the steel strip 60 in the solenoid coil type high frequency induction heating device 35 is constant and stable without fluctuation.

本実施形態による鋼帯60の連続焼鈍設備により、方向性珪素鋼板の鋼帯60を長手方向に、昇温速度を含めて、均一に焼鈍処理できるようになったことから、得られた方向性珪素鋼板の品質も、再結晶組織や脱炭が均一となり、磁性が高位に安定し、皮膜欠陥もほとんど解消した。また、誘導加熱装置は1個に限定されるものでなく、複数でもよい。   The directionality obtained from the fact that the steel strip 60 of the directional silicon steel sheet can be uniformly annealed in the longitudinal direction, including the rate of temperature rise, by the continuous annealing equipment of the steel strip 60 according to the present embodiment. As for the quality of silicon steel, the recrystallized structure and decarburization became uniform, the magnetism was stabilized at a high level, and the film defects were almost eliminated. Further, the number of induction heating devices is not limited to one, and a plurality of induction heating devices may be used.

また、加熱領域(前段)は、ラジアントチューブ方式による輻射加熱に限定されることはなく、直接ガス加熱による輻射加熱、電気ヒータによる輻射加熱でも有効である。なお、図6では、窒化領域33を有する例を示したが、本実施形態は、窒化領域を有する冷間圧延された方向性電磁鋼板の脱炭焼鈍設備に限定されるものではなく、窒化領域を有しない脱炭焼鈍設備にも有効である。   Further, the heating region (previous stage) is not limited to the radiant heating by the radiant tube method, and is effective also by the radiant heating by the direct gas heating and the radiant heating by the electric heater. In addition, although the example which has the nitriding area | region 33 was shown in FIG. 6, this embodiment is not limited to the decarburization annealing equipment of the cold-rolled grain-oriented electrical steel sheet which has a nitriding area | region, A nitriding area | region It is also effective for decarburization annealing equipment that does not have any.

なお、本実施形態が処理対象とするキュリー点を有する鋼帯としては、ここで例示した方向性電磁鋼板の冷間圧延鋼帯に限定されることなく、無方向性電磁鋼板やフェライト系ステンレス鋼板の冷間圧延鋼帯等キュリー点を有する鋼帯について全て有効である。   The steel strip having a Curie point to be treated by the present embodiment is not limited to the cold-rolled steel strip of the directional electromagnetic steel plate exemplified here, but a non-oriented electrical steel plate or a ferritic stainless steel plate. All steel strips having a Curie point such as cold rolled steel strip are effective.

また、本実施形態が処理対象とするSi≦4.5質量%を含有する方向性電磁鋼板としては、例えば、特開2002−060842号公報や特開2002−173715号公報等で開示されている方向性電磁鋼板のような成分系のものであればよく、本実施形態でその成分系を特に限定するものではない。   Moreover, as the grain-oriented electrical steel sheet containing Si ≦ 4.5 mass% to be processed in the present embodiment, for example, disclosed in JP 2002-060842 A and JP 2002-173715 A. Any component system such as a grain-oriented electrical steel sheet may be used, and the component system is not particularly limited in the present embodiment.

なお、鋼帯60をTc−50℃未満に加熱する装置としては、ラジアントチューブ方式に限定されることなく、全ての間接ガス加熱もしくは直接ガス加熱による輻射加熱装置及び/または電気ヒータによる輻射加熱装置及び/または誘導加熱装置による加熱装置において有効である。   In addition, as an apparatus which heats steel strip 60 to less than Tc-50 degreeC, it is not limited to a radiant tube system, The radiation heating apparatus by all the indirect gas heating or direct gas heating and / or the radiation heating apparatus by an electric heater And / or it is effective in a heating device using an induction heating device.

また、キュリー点近傍のTc−30℃ないしTc−5℃の温度領域から処理目標温度まで加熱する方式も、電気ヒータ加熱方式に限定されることなく、全ての間接ガス加熱もしくは直接ガス加熱による輻射加熱装置及び/または電気ヒータによる輻射加熱装置で有効である。また、一般的に、Tc−30℃は、700℃を超えており、この領域では鋼板の放射率は、絶対値が大きくなるとともに、比較的板表面の状況に左右されにくくなることから、鋼板の温度は制御しやすくなるので、Tc−30℃以上では加熱方式をあまり問わない。   Further, the method of heating from the temperature range of Tc-30 ° C. to Tc-5 ° C. near the Curie point to the processing target temperature is not limited to the electric heater heating method, and radiation by all indirect gas heating or direct gas heating is used. It is effective in a radiant heating device using a heating device and / or an electric heater. In general, Tc-30 ° C exceeds 700 ° C, and in this region, the emissivity of the steel plate increases in absolute value and is relatively less affected by the state of the plate surface. Since it becomes easy to control the temperature, the heating method is not particularly limited at Tc-30 ° C. or higher.

次に、本発明の実施例を説明する。
質量%で、C:0.05%、Si:3.2%、Mn:0.1%、P:0.03%、S:0.006%、酸可溶性Al:0.027%、N:0.008%、Cr:0.1%を含有する鋼スラブを1150℃の温度で加熱した後、板厚2.8mmに熱間圧延して鋼帯コイルとし、その後、焼鈍温度1120℃及び920℃の二段焼鈍を施した。さらに、板厚0.285mmまでリバース圧延機で冷間圧延した後、従来技術の脱炭焼鈍設備(図1、図2)、及び本実施形態の脱炭焼鈍設備(図1、図6)にて脱炭焼鈍した。また、本実施形態の脱炭焼鈍設備では、本実施形態の誘導加熱装置制御方案(図7で説明したα案)、及び基本的な制御方案(図4で説明したβ案)の両方で運転した。
Next, examples of the present invention will be described.
In mass%, C: 0.05%, Si: 3.2%, Mn: 0.1%, P: 0.03%, S: 0.006%, acid-soluble Al: 0.027%, N: A steel slab containing 0.008% and Cr: 0.1% was heated at a temperature of 1150 ° C., and then hot-rolled to a plate thickness of 2.8 mm to form a steel strip coil, and thereafter annealing temperatures 1120 ° C. and 920 ° C. C. Two-stage annealing was performed. Further, after cold rolling with a reverse rolling mill to a sheet thickness of 0.285 mm, the conventional decarburization annealing equipment (FIGS. 1 and 2) and the decarburization annealing equipment of this embodiment (FIGS. 1 and 6) are used. And decarburized and annealed. Moreover, in the decarburization annealing equipment of this embodiment, it operates by both the induction heating apparatus control plan (alpha plan demonstrated in FIG. 7) and the basic control plan (beta plan demonstrated in FIG. 4) of this embodiment. did.

この後、高温焼鈍を行った後、最後に平滑化焼鈍を行った。その際、加熱途中の鋼板温度を板温計36、37で測定することにより、板温、及び高周波誘導加熱装置35の電力出力値のバラツキを測定するとともに、平滑化焼鈍後の方向性電磁鋼板の磁性ならびに皮膜欠陥率を測定した。   Then, after performing high temperature annealing, finally smoothing annealing was performed. At that time, by measuring the temperature of the steel plate in the middle of heating with the plate thermometers 36 and 37, the variation in the plate temperature and the power output value of the high frequency induction heating device 35 is measured, and the grain-oriented electrical steel plate after the smoothing annealing. The magnetism and film defect rate were measured.

図9に、試験条件と試験結果を示す。なお、誘導加熱の開始温度をTc−A(℃)、終了温度をTc−B(℃)とし、表では、AとBの値で示した。また、コイル長手方向の品質の安定性の評価項目としては、連続測定が可能なものとして、磁性(鉄損値)と皮膜欠陥率(欠陥部の面積比率)を測定した(注:脱炭性は連続測定が困難)。   FIG. 9 shows test conditions and test results. The start temperature of induction heating is Tc-A (° C.), the end temperature is Tc-B (° C.), and values A and B are shown in the table. In addition, as an evaluation item of the stability of the quality in the longitudinal direction of the coil, magnetism (iron loss value) and film defect rate (defect area ratio) were measured as being capable of continuous measurement (Note: Decarburization) Is difficult to measure continuously).

本実施形態の例1、及び例2では、誘導加熱装置出側の鋼帯60の板温のバラツキは殆どなく、且つ、高周波誘導加熱装置の出力電力値のバラツキも殆どなく、高周波誘導加熱装置内の鋼板の昇温速度のバラツキが殆どないことが分かる。また、結果として鋼板の磁気特性の絶対値が良好であるとともに、バラツキも小さく、皮膜欠陥率も小さいことが分かる。   In Example 1 and Example 2 of the present embodiment, there is almost no variation in the plate temperature of the steel strip 60 on the outlet side of the induction heating device, and there is almost no variation in the output power value of the high frequency induction heating device. It can be seen that there is almost no variation in the heating rate of the inner steel plate. As a result, it can be seen that the absolute value of the magnetic properties of the steel sheet is good, the variation is small, and the film defect rate is also small.

一方、誘導加熱終了温度の高すぎる比較例11では、鋼板は目標温度に達せず、試験条件を満たすことができなかった。   On the other hand, in Comparative Example 11 where the induction heating end temperature was too high, the steel sheet did not reach the target temperature, and the test conditions could not be satisfied.

また、誘導加熱終了温度の低すぎる比較例12、誘導加熱開始温度の高い比較例13、14では、誘導加熱装置出側の鋼帯60の板温のバラツキは小さくなく、且つ、下流の高周波誘導加熱装置の出力電力値のバラツキも小さくなく、高周波誘導加熱装置内の鋼板の昇温速度のバラツキも小さくないことが分かる。結果として鋼板の磁気特性の絶対値が低位であるとともに、バラツキも大きく、皮膜欠陥率も高かった。   Further, in Comparative Example 12 where the induction heating end temperature is too low and Comparative Examples 13 and 14 where the induction heating start temperature is high, the variation in the plate temperature of the steel strip 60 on the induction heating device exit side is not small, and the high-frequency induction downstream. It can be seen that the variation in the output power value of the heating device is not small, and the variation in the heating rate of the steel plates in the high-frequency induction heating device is not small. As a result, the absolute value of the magnetic properties of the steel sheet was low, the variation was large, and the film defect rate was high.

また、従来の高周波誘導加熱装置の制御方案と類似の制御方案の比較例21、22でも、いずれも、誘導加熱装置出側の鋼帯60の板温のバラツキは小さくなく、且つ、下流の高周波誘導加熱装置の出力電力値のばらつきバラツキは大きく、高周波誘導加熱装置内の鋼板の昇温速度のバラツキが大きいことが分かる。結果として鋼板の磁気特性の絶対値がやや低位であるとともに、ばらつきバラツキも大きく、皮膜欠陥率も高かった。   Further, in Comparative Examples 21 and 22 of the control method similar to the control method of the conventional high-frequency induction heating device, the variation in the plate temperature of the steel strip 60 on the induction heating device exit side is not small, and the high-frequency wave downstream It can be seen that the variation in the output power value of the induction heating device is large and the temperature increase rate of the steel plates in the high frequency induction heating device is large. As a result, the absolute value of the magnetic properties of the steel sheet was slightly low, the variation was large, and the film defect rate was high.

なお、誘導加熱を使用していない比較例31は、加熱帯途中の鋼帯60の板温のバラツキは非常に大きく、昇温速度のバラツキは非常にも大きいことが分かる。当然の結果として鋼板の磁気特性の絶対値が非常に低位であるとともに、バラツキも大きく、鋼板の皮膜欠陥率は非常に大きかった。   In addition, it can be seen that in Comparative Example 31 that does not use induction heating, the variation in the plate temperature of the steel strip 60 in the middle of the heating zone is very large, and the variation in the heating rate is very large. Naturally, the absolute value of the magnetic properties of the steel sheet was very low, the variation was large, and the film defect rate of the steel sheet was very large.

次に、図10のブロック図を参照しながら、炉部12の動作を制御する昇温速度制御装置100の構成例を説明する。
本実施形態の昇温速度制御装置100は、加熱ガス出力部(第1の出力部)101a、電流出力部(第2の出力部)102、電力検出部103、演算部104、補正部105、第1の制御部106a、第2の制御部106b、出力加熱ガス値設定部(第1の設定部)107、出力電流値設定部(第2の設定部)108等を有している。
Next, a configuration example of the temperature increase rate control apparatus 100 that controls the operation of the furnace unit 12 will be described with reference to the block diagram of FIG.
The heating rate control device 100 of the present embodiment includes a heating gas output unit (first output unit) 101a, a current output unit (second output unit) 102, a power detection unit 103, a calculation unit 104, a correction unit 105, It has a first control unit 106a, a second control unit 106b, an output heating gas value setting unit (first setting unit) 107, an output current value setting unit (second setting unit) 108, and the like.

昇温速度制御装置100は、炉部12の加熱動作を制御するものであり、第1加熱装置311A、ソレノイドコイル式高周波誘導加熱装置35、第3加熱装置313Aの加熱動作を制御するための装置である。   The temperature increase rate control device 100 controls the heating operation of the furnace section 12, and is a device for controlling the heating operation of the first heating device 311A, the solenoid coil type high frequency induction heating device 35, and the third heating device 313A. It is.

加熱ガス出力部101aは、第1加熱装置311Aに加熱ガスを出力する。電流出力部102は、ソレノイドコイル式高周波誘導加熱装置35の実績出力電流値を目標出力電流値として設定する。電力検出部103は、ソレノイドコイル式高周波誘導加熱装置35の実績出力電力値を検出する。   The heating gas output unit 101a outputs the heating gas to the first heating device 311A. The current output unit 102 sets the actual output current value of the solenoid coil type high frequency induction heating device 35 as a target output current value. The power detection unit 103 detects the actual output power value of the solenoid coil type high frequency induction heating device 35.

演算部104は、電力検出部103により検出したソレノイドコイル式高周波誘導加熱装置35の実績出力電力値を基に、目標加熱ガス出力値と出力加熱ガス値設定部107に設定されている設定加熱ガス出力値と差を演算する。補正部105は、演算部104により求めた加熱ガス出力値の差を基に、出力加熱ガス値設定部107に設定する加熱ガス出力値を補正する。第1の制御部106aは、出力加熱ガス値設定部107に設定された加熱ガス出力値が第1加熱装置311Aに出力されるように加熱ガス出力部101aの動作を制御する。   The calculation unit 104 sets the target heating gas output value and the set heating gas set in the output heating gas value setting unit 107 based on the actual output power value of the solenoid coil type high frequency induction heating device 35 detected by the power detection unit 103. Calculate the difference between the output value. The correction unit 105 corrects the heating gas output value set in the output heating gas value setting unit 107 based on the difference between the heating gas output values obtained by the calculation unit 104. The first control unit 106a controls the operation of the heating gas output unit 101a so that the heating gas output value set in the output heating gas value setting unit 107 is output to the first heating device 311A.

第2の制御部106bは、出力電流値設定部108に設定された出力電流値が第3加熱装置313Aに出力されるように電流出力部102の動作を制御する。 The second control unit 106b controls the operation of the current output unit 102 so that the output current value set in the output current value setting unit 108 is output to the third heating device 313A.

次に、前述のように構成された昇温速度制御装置100の動作を、図11のフローチャートを参照しながら説明する。
まず、ステップS1101において、鋼帯60を500℃以上、キュリー点Tc(℃)−50℃未満の温度領域まで加熱する、第1加熱工程を行う。本実施形態においては、前述したように、加熱ガスを用いて間接ガス加熱もしくは直接ガス加熱による輻射加熱を行う加熱装置311Aにより第1加熱工程の加熱を行う。なお、第1加熱工程で行う加熱は、間接ガス加熱もしくは直接ガス加熱による輻射加熱のみでもよいが、電気ヒータによる輻射加熱を併用してもよい。また、電気ヒータによる輻射加熱のみでもよい。
Next, the operation of the temperature increase rate control apparatus 100 configured as described above will be described with reference to the flowchart of FIG.
First, in step S1101, a first heating step is performed in which the steel strip 60 is heated to a temperature range of 500 ° C. or higher and a Curie point Tc (° C.) − 50 ° C. or lower. In the present embodiment, as described above, the heating in the first heating step is performed by the heating device 311A that performs radiant heating by indirect gas heating or direct gas heating using a heating gas. The heating performed in the first heating step may be only indirect gas heating or radiant heating by direct gas heating, or radiant heating by an electric heater may be used in combination. Further, only radiant heating by an electric heater may be used.

次に、ステップS1102において、鋼帯60を目標温度まで加熱したか否かを判断する。この判断の結果、目標温度まで加熱していない場合にはステップS1101に戻って第1加熱工程における加熱を続行する。また、ステップS1102の判断の結果、目標温度まで加熱した場合にはステップS1103に進む。   Next, in step S1102, it is determined whether or not the steel strip 60 has been heated to the target temperature. If the result of this determination is that the target temperature has not been reached, the process returns to step S1101 to continue heating in the first heating step. If the result of determination in step S1102 is that the target temperature has been reached, processing proceeds to step S1103.

ステップS1103においては、第1加熱工程で加熱された鋼帯60をキュリー点Tc−30℃ないしキュリー点Tc−5℃の温度領域まで、ソレノイドコイル式高周波誘導加熱装置35により加熱する第2加熱工程を行う。その後、ステップS1104に進み、鋼帯60を目標温度まで加熱したか否かを判断する。この判断の結果、目標温度まで加熱していない場合にはステップS1103に戻って第2加熱工程における加熱を続行する。また、ステップS1104の判断の結果、目標温度まで加熱した場合にはステップS1105に進む。   In step S1103, the second heating step of heating the steel strip 60 heated in the first heating step to the temperature range from the Curie point Tc-30 ° C to the Curie point Tc-5 ° C by the solenoid coil type high frequency induction heating device 35. I do. Then, it progresses to step S1104 and it is judged whether the steel strip 60 was heated to target temperature. If the result of this determination is that the target temperature has not been reached, the process returns to step S1103 to continue heating in the second heating step. If the result of determination in step S1104 is that the target temperature has been reached, processing proceeds to step S1105.

ステップS1105においては、第2加熱工程で加熱された鋼帯60を、前記キュリー点Tcを超える処理目標温度領域まで加熱する第3加熱工程を行う。次に、ステップS1106において、鋼帯60を目標温度まで加熱したか否かを判断する。この判断の結果、目標温度まで加熱していない場合にはステップS1105に戻って第3加熱工程における加熱を続行する。また、ステップS1106の判断の結果、目標温度まで加熱した場合には処理を終了する。   In step S1105, a third heating step is performed in which the steel strip 60 heated in the second heating step is heated to a processing target temperature region that exceeds the Curie point Tc. Next, in step S1106, it is determined whether or not the steel strip 60 has been heated to the target temperature. If the result of this determination is that the target temperature has not been reached, processing returns to step S1105 and heating in the third heating step is continued. If the result of determination in step S1106 is that the target temperature has been reached, processing is terminated.

次に、図12のフローチャートを参照しながら、ステップS1101で行う第1加熱工程及びステップS1103で行う第2加熱工程の詳細を説明する。
まず、ステップS1201において、ソレノイドコイル式高周波誘導加熱装置35に出力する出力電流値を目標出力電流値として設定する出力電流値設定処理を行う。
Next, the details of the first heating process performed in step S1101 and the second heating process performed in step S1103 will be described with reference to the flowchart of FIG.
First, in step S1201, an output current value setting process for setting an output current value output to the solenoid coil type high frequency induction heating device 35 as a target output current value is performed.

次に、ステップS1202において、前述したソレノイドコイル式高周波誘導加熱装置35の実績出力電力値を、電力検出部103により検出する検出処理を行う。
次に、ステップS1203において、前述した検出処理により検出した実績出力電力値を基に演算処理を行う。この演算処理は、前述したように、演算部104により目標加熱ガス出力値と出力加熱ガス値設定部107に設定されている設定加熱ガス出力値と差を演算する。
Next, in step S <b> 1202, detection processing is performed in which the power detection unit 103 detects the actual output power value of the solenoid coil type high frequency induction heating device 35 described above.
Next, in step S1203, calculation processing is performed based on the actual output power value detected by the detection processing described above. In this calculation process, as described above, the calculation unit 104 calculates a difference between the target heating gas output value and the set heating gas output value set in the output heating gas value setting unit 107.

次に、ステップS1204において、前述した演算処理により求めた加熱ガス出力値の差を基にして、前述した出力加熱ガス値設定部107に設定されている加熱ガス出力値を補正する補正処理を行う。   Next, in step S1204, a correction process for correcting the heating gas output value set in the output heating gas value setting unit 107 is performed based on the difference in the heating gas output value obtained by the calculation process described above. .

次に、ステップS1205において、第1加熱装置311Aに出力する実績加熱ガス出力値が出力加熱ガス値設定部107に設定されている加熱ガス出力値となるように、第1の制御部106aが加熱ガス出力部101aを制御する。また、ソレノイドコイル式高周波誘導加熱装置35に出力する実績出力電流値が設定出力電流値となるように、第2の制御部106bが電流出力部102を制御する。
前述したステップS1201〜ステップS1205の処理が行われることにより、キュリー点近傍の鋼帯の昇温速度を一定にする昇温速度制御が実現される。
Next, in step S1205, the first control unit 106a performs heating so that the actual heating gas output value output to the first heating device 311A becomes the heating gas output value set in the output heating gas value setting unit 107. The gas output unit 101a is controlled. In addition, the second control unit 106b controls the current output unit 102 so that the actual output current value output to the solenoid coil type high frequency induction heating device 35 becomes the set output current value.
By performing the above-described processing in steps S1201 to S1205, temperature increase rate control for making the temperature increase rate of the steel strip near the Curie point constant is realized.

方向性珪素鋼の冷延板を脱炭焼鈍(焼鈍分離剤の塗布を含む)するための代表的な連続熱処理設備の一例を示すブロック図である。It is a block diagram which shows an example of the typical continuous heat processing equipment for carrying out the decarburization annealing (including application | coating of an annealing separator) of the cold-rolled sheet | seat of directionality silicon steel. 図1における炉部の基本的な構成例を模式的に示す図である。It is a figure which shows typically the example of a fundamental structure of the furnace part in FIG. 基本的な構成の炉部の加熱領域内の代表的な2箇所で測定された鋼帯の板温の長手方向推移の例を示す特性図である。It is a characteristic view which shows the example of the longitudinal direction transition of the plate | board temperature of the steel strip measured in two typical places in the heating area | region of the furnace part of a basic composition. 本実施形態の基本的な制御方案を模式的に示す図である。It is a figure which shows typically the basic control plan of this embodiment. 本実施形態の基本的な制御方案による運転時に各領域出側で測定された鋼帯の板温、及び誘導加熱装置の実績出力電力値の長手方向推移の例を示す特性図である。It is a characteristic view which shows the example of the transition of the longitudinal direction of the sheet | seat temperature of the steel strip measured on each area | region exit side at the time of the driving | operation by the basic control method of this embodiment, and the actual output power value of an induction heating apparatus. 本実施形態の実施形態を示し、冷間圧延された方向性珪素鋼を焼鈍するための連続熱処理設備ラインの炉部の構成を模式的に示す図である。It is a figure which shows embodiment of this embodiment and shows typically the structure of the furnace part of the continuous heat processing equipment line for annealing the cold-rolled directional silicon steel. 本実施形態による高周波誘導装置の制御方案を模式的に示す図である。It is a figure which shows typically the control method of the high frequency induction device by this embodiment. 本実施形態の制御方案による運転時に各領域出側で測定された鋼帯の板温、及び誘導加熱装置の実績出力電力値の長手方向推移の例を示す特性図である。It is a characteristic view which shows the example of the longitudinal direction transition of the sheet | seat temperature of the steel strip measured by each area | region exit side at the time of the driving | operation by the control method of this embodiment, and the actual output power value of an induction heating apparatus. 本発明の実施形態を示し、試験条件と試験結果を示す図である。It is a figure which shows embodiment of this invention and shows a test condition and a test result. 本発明の実施形態を示し、炉部の動作を制御する制御装置の構成例を説明する図である。It is a figure which shows embodiment of this invention and demonstrates the structural example of the control apparatus which controls operation | movement of a furnace part. 本発明の実施形態を示し、昇温速度制御装置の動作を説明するフローチャートである。It is a flowchart which shows embodiment of this invention and demonstrates operation | movement of a temperature increase rate control apparatus. 本発明の実施形態を示し、第1加熱工程及び第2加熱工程の詳細を説明するフローチャートである。It is a flowchart which shows embodiment of this invention and demonstrates the detail of a 1st heating process and a 2nd heating process.

符号の説明Explanation of symbols

1 ペイオフリール
2 入側剪断機
3 溶接機
4 入側ストレージルーパー
5 出側ストレージルーパー
6 出側剪断機
7 テンションリール
11 入側洗浄装置
12 炉部
13 出側洗浄装置
14 焼鈍分離剤塗布装置
15 焼鈍分離剤乾燥装置
21〜26 ブライドルロール
31 ラジアントチューブ方式による加熱領域
31A ラジアントチューブ方式による加熱領域(前半の加熱領域)
31B ラジアントチューブ方式による加熱領域(中央の加熱領域)
31C ラジアントチューブ方式による加熱領域(後半の加熱領域)
32 均熱領域
33 窒化領域
34 冷却領域
35 ソレノイドコイル式高周波誘導加熱装置
36、37、38 板温計
41、42、43 テンションメータ
60 鋼帯
100 昇温速度制御装置
101a 加熱ガス出力部(第1の出力部)
102 電流出力部(第2の出力部)
103 電力検出部
104 演算部
105 補正部
106a 第1の制御部
106b 第2の制御部
107 出力加熱ガス値設定部(第1の設定部)
108 出力電流値設定部(第2の設定部)
311A 第1加熱装置
313A 第3加熱装置
A ソレノイドコイル式高周波誘導加熱装置入側の鋼帯の板温
B ソレノイドコイル式高周波誘導加熱装置出側の鋼帯の板温
DESCRIPTION OF SYMBOLS 1 Payoff reel 2 Entry side shear machine 3 Welding machine 4 Entry side storage looper 5 Entry side storage looper 6 Entry side shear machine 7 Tension reel 11 Entry side cleaning device 12 Furnace part 13 Entry side cleaning device 14 Annealing separator coating device 15 Annealing Separating agent drying devices 21 to 26 Bridle roll 31 Heating area 31A by the radiant tube system Heating area by the radiant tube system (heating area in the first half)
31B Radiant tube heating area (central heating area)
31C Radiant tube heating area (second half heating area)
32 Soaking area 33 Nitriding area 34 Cooling area 35 Solenoid coil type high frequency induction heating device 36, 37, 38 Plate thermometer 41, 42, 43 Tension meter 60 Steel strip 100 Temperature rising rate control device 101a Heating gas output section (first Output part)
102 Current output unit (second output unit)
103 power detection unit 104 calculation unit 105 correction unit 106a first control unit 106b second control unit 107 output heating gas value setting unit (first setting unit)
108 Output current value setting unit (second setting unit)
311A first heating device 313A third heating device T A solenoid coil type high frequency induction heating plate of the device entry side of the steel strip temperature T B solenoid coil type high frequency induction heating device outlet side of the steel strip sheet temperature

Claims (8)

加熱帯、均熱帯及び冷却帯、または加熱帯、均熱帯、窒化帯及び冷却帯からなり、前記加熱帯が第1加熱帯、第2加熱帯及び第3加熱帯に区分されている連続焼鈍設備での、キュリー点を有する鋼帯の連続焼鈍方法であって、
前記第1加熱帯において、前記鋼帯を500℃以上、キュリー点Tc(℃)−50℃未満まで、燃料ガス、及び/または電気ヒータにより第1加熱装置で加熱する第1加熱工程と、
前記第2加熱帯において、前記第1加熱帯で加熱された鋼帯をキュリー点Tc−30℃ないしキュリー点Tc−5℃の温度領域まで、ソレノイドコイル式高周波誘導加熱装置により加熱する第2加熱工程と、
前記第3加熱帯において、前記第2加熱帯で加熱された鋼帯をキュリー点を超える処理目標温度まで、第3加熱装置により加熱する第3加熱工程と、
前記第1加熱工程及び第2加熱工程における加熱動作を制御する昇温速度制御工程とを有し、
前記昇温速度制御工程は、前記燃料ガス出力値、及び/または電気ヒータの電力出力値を前記第1加熱装置に出力する第1の出力部と、前記ソレノイドコイル式高周波誘導加熱装置に電流を出力する第2の出力部とを制御し、
前記第2加熱帯のソレノイドコイル式高周波誘導加熱装置での実績出力電力値に基いて、前記第1加熱装置に出力する燃料ガス出力値、及び/または電気ヒータの電力出力値を制御することを特徴とするキュリー点を有する鋼帯の連続焼鈍方法。
Continuous annealing equipment comprising a heating zone, a soaking zone and a cooling zone, or a heating zone, a soaking zone, a nitriding zone and a cooling zone, wherein the heating zone is divided into a first heating zone, a second heating zone and a third heating zone A continuous annealing method of a steel strip having a Curie point,
In the first heating zone, a first heating step of heating the steel strip to 500 ° C. or more and to a Curie point Tc (° C.) − Less than 50 ° C. with a fuel gas and / or an electric heater with a first heating device;
In the second heating zone, the second heating for heating the steel strip heated in the first heating zone to a temperature range of Curie point Tc-30 ° C to Curie point Tc-5 ° C by a solenoid coil type high frequency induction heating device. Process,
In the third heating zone, a third heating step of heating the steel strip heated in the second heating zone to a processing target temperature exceeding the Curie point by a third heating device;
A heating rate control step for controlling a heating operation in the first heating step and the second heating step,
In the heating rate control step, a current is supplied to the first output unit that outputs the fuel gas output value and / or the electric power output value of the electric heater to the first heating device, and the solenoid coil type high frequency induction heating device. Controlling the second output unit to output,
Controlling the fuel gas output value output to the first heating device and / or the power output value of the electric heater based on the actual output power value in the solenoid coil type high frequency induction heating device of the second heating zone. A method for continuously annealing a steel strip having a characteristic Curie point.
前記昇温速度制御工程においては、前記第2の出力部から前記ソレノイドコイル式高周波誘導加熱装置に出力する目標出力電流値を第2の設定部に設定する第2の設定処理と、前記第1加熱装置に出力する目標燃料ガス出力値、及び/または電気ヒータの電力出力値を設定する第1の設定処理と、前記ソレノイドコイル式高周波誘導加熱装置での実績出力電力値を検出する電力検出処理と、前記電力検出処理により検出した実績出力電力値を基に、前記第1の設定部に設定されている目標燃料ガス出力値、及び/または電気ヒータの電力出力値を補正する第1の補正処理とを行い、
前記キュリー点近傍の鋼帯の昇温速度を一定にすることを特徴とする請求項1に記載のキュリー点を有する鋼帯の連続焼鈍方法。
In the heating rate control step, a second setting process for setting a target output current value to be output from the second output unit to the solenoid coil type high frequency induction heating device in a second setting unit; A first setting process for setting a target fuel gas output value to be output to the heating device and / or a power output value for the electric heater, and a power detection process for detecting an actual output power value in the solenoid coil type high frequency induction heating device And a first correction for correcting a target fuel gas output value set in the first setting unit and / or a power output value of the electric heater based on the actual output power value detected by the power detection process. Processing and
The method for continuously annealing a steel strip having a Curie point according to claim 1, wherein a temperature rising rate of the steel strip near the Curie point is made constant.
前記第1加熱工程及び第3加熱工程においては、間接ガス加熱もしくは直接ガス加熱による輻射加熱及び/または電気ヒータによる輻射加熱により前記鋼帯を加熱することを特徴とする請求項1または2に記載のキュリー点を有する鋼帯の連続焼鈍方法。   The steel strip is heated by radiation heating by indirect gas heating or direct gas heating and / or radiation heating by an electric heater in the first heating step and the third heating step. A method for continuous annealing of steel strips having a Curie point. 前記キュリー点を有する鋼帯が、Si≦4.5質量%を含有する冷間圧延された方向性電磁鋼板であることを特徴とする請求項1または2に記載のキュリー点を有する鋼帯の連続焼鈍方法。   The steel strip having a Curie point according to claim 1 or 2, wherein the steel strip having a Curie point is a cold-rolled grain-oriented electrical steel sheet containing Si ≤ 4.5 mass%. Continuous annealing method. 加熱帯、均熱帯及び冷却帯、または加熱帯、均熱帯、窒化帯及び冷却帯からなり、前記加熱帯が第1加熱帯、第2加熱帯及び第3加熱帯に区分されているキュリー点を有する鋼帯の連続焼鈍設備であって、
前記第1加熱帯において、前記鋼帯を500℃以上、キュリー点Tc(℃)−50℃未満まで、燃料ガス、及び/または電気ヒータにより加熱する第1加熱装置と、
前記第2加熱帯において、前記第1加熱帯で加熱された鋼帯をキュリー点Tc−30℃ないしキュリー点Tc−5℃の温度領域まで加熱するソレノイドコイル式高周波誘導加熱装置と、
前記第3加熱帯において、前記第2加熱帯で加熱された鋼帯をキュリー点を超える処理目標温度まで加熱する第3加熱装置と、
前記第1加熱装置及び前記ソレノイドコイル式高周波誘導加熱装置の加熱動作を制御する昇温速度制御装置とを有し、
前記昇温速度制御装置は、前記燃料ガス出力値、及び/または電気ヒータの電力出力値を前記第1加熱装置に出力する第1の出力部と、前記ソレノイドコイル式高周波誘導加熱装置に電流を出力する第2の出力部とを有し、
前記第2加熱帯のソレノイドコイル式高周波誘導加熱装置での実績出力電力値に基いて、前記第1加熱装置に出力する燃料ガス出力値、及び/または電気ヒータの電力出力値を制御することを特徴とするキュリー点を有する鋼帯の連続焼鈍設備。
A Curie point consisting of a heating zone, a soaking zone and a cooling zone, or a heating zone, a soaking zone, a nitriding zone and a cooling zone, wherein the heating zone is divided into a first heating zone, a second heating zone and a third heating zone. A continuous annealing facility for steel strips,
In the first heating zone, a first heating device that heats the steel strip to 500 ° C. or higher and a Curie point Tc (° C.) to less than −50 ° C. with a fuel gas and / or an electric heater;
In the second heating zone, a solenoid coil type high frequency induction heating device for heating the steel strip heated in the first heating zone to a temperature range of Curie point Tc-30 ° C to Curie point Tc-5 ° C;
In the third heating zone, a third heating device that heats the steel strip heated in the second heating zone to a processing target temperature exceeding the Curie point;
A heating rate control device for controlling a heating operation of the first heating device and the solenoid coil type high frequency induction heating device;
The temperature elevation rate control device is configured to supply a current to the first output unit that outputs the fuel gas output value and / or the electric power output value of the electric heater to the first heating device, and to the solenoid coil type high frequency induction heating device. A second output unit for outputting,
Controlling the fuel gas output value output to the first heating device and / or the power output value of the electric heater based on the actual output power value in the solenoid coil type high frequency induction heating device of the second heating zone. A continuous annealing facility for steel strips with a characteristic Curie point.
前記昇温速度制御装置は、前記第2の出力部から前記ソレノイドコイル式高周波誘導加熱装置に出力する目標出力電流値を第2の設定部に設定する第2の設定手段と、前記第1加熱装置に出力する目標燃料ガス出力値、及び/または電気ヒータの電力出力値を設定する第1の設定手段と、前記ソレノイドコイル式高周波誘導加熱装置での実績出力電力値を検出する電力検出手段と、前記電力検出手段により検出した実績出力電力値を基に、前記第1の設定部に設定されている目標燃料ガス出力値、及び/または電気ヒータの電力出力値を補正する第1の補正手段とを有し、
前記キュリー点近傍の鋼帯の昇温速度を一定にすることを特徴とする請求項5に記載のキュリー点を有する鋼帯の連続焼鈍設備。
The temperature increase rate control device includes: a second setting unit configured to set a target output current value output from the second output unit to the solenoid coil type high frequency induction heating device in a second setting unit; and the first heating unit. A first setting means for setting a target fuel gas output value to be output to the apparatus and / or a power output value of the electric heater; and a power detection means for detecting an actual output power value in the solenoid coil type high frequency induction heating apparatus. First correction means for correcting the target fuel gas output value set in the first setting unit and / or the power output value of the electric heater based on the actual output power value detected by the power detection means And
6. The continuous annealing equipment for steel strips having a Curie point according to claim 5, wherein a temperature rising rate of the steel strip near the Curie point is made constant.
前記第1加熱装置及び第3加熱装置は、間接ガス加熱もしくは直接ガス加熱による輻射加熱及び/または電気ヒータによる輻射加熱により前記鋼帯を加熱することを特徴とする請求項5または6に記載のキュリー点を有する鋼帯の連続焼鈍設備。   The said 1st heating apparatus and 3rd heating apparatus heat the said steel strip by the radiation heating by indirect gas heating or direct gas heating, and / or the radiation heating by an electric heater, It is characterized by the above-mentioned. Continuous annealing equipment for steel strip with Curie point. 前記キュリー点を有する鋼帯が、Si≦4.5質量%を含有する冷間圧延された方向性電磁鋼板であることを特徴とする請求項5または6に記載のキュリー点を有する鋼帯の連続焼鈍設備。   The steel strip having a Curie point according to claim 5 or 6, wherein the steel strip having a Curie point is a cold-rolled grain-oriented electrical steel sheet containing Si ≦ 4.5% by mass. Continuous annealing equipment.
JP2008070260A 2008-03-18 2008-03-18 Continuous annealing method and continuous annealing equipment for steel strip with Curie point Expired - Fee Related JP5217543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070260A JP5217543B2 (en) 2008-03-18 2008-03-18 Continuous annealing method and continuous annealing equipment for steel strip with Curie point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070260A JP5217543B2 (en) 2008-03-18 2008-03-18 Continuous annealing method and continuous annealing equipment for steel strip with Curie point

Publications (2)

Publication Number Publication Date
JP2009221578A true JP2009221578A (en) 2009-10-01
JP5217543B2 JP5217543B2 (en) 2013-06-19

Family

ID=41238650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070260A Expired - Fee Related JP5217543B2 (en) 2008-03-18 2008-03-18 Continuous annealing method and continuous annealing equipment for steel strip with Curie point

Country Status (1)

Country Link
JP (1) JP5217543B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816903A (en) * 2012-08-17 2012-12-12 河北省首钢迁安钢铁有限责任公司 Sensing and heating method of high-magnetic induction oriented silicon steel
JP2016098420A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Method for heating thin steel sheet and continuous annealing equipment
CN108672504A (en) * 2018-05-25 2018-10-19 中冶南方工程技术有限公司 A kind of cold-strip steel sensing heating coil of strip transition temperature control method
WO2019080482A1 (en) * 2017-10-24 2019-05-02 宝山钢铁股份有限公司 Apparatus and method for rapidly heating cold-rolled strip steel
WO2021239394A1 (en) * 2020-05-29 2021-12-02 Sms Group Gmbh Method for recrystallisation annealing of a non-grain-oriented electric strip
CN115354141A (en) * 2022-08-09 2022-11-18 首钢智新迁安电磁材料有限公司 Heating furnace power control method and device, electronic equipment and medium
RU2804215C1 (en) * 2020-05-29 2023-09-26 Смс Груп Гмбх Method of recrystallization annealing of isotropic electrical strip steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503462A (en) * 1996-09-11 2000-03-21 ドレヴァー・カンパニー Induction heater and method for improving transition in a continuous heating device
JP2002060842A (en) * 2000-08-08 2002-02-28 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503462A (en) * 1996-09-11 2000-03-21 ドレヴァー・カンパニー Induction heater and method for improving transition in a continuous heating device
JP2002060842A (en) * 2000-08-08 2002-02-28 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816903A (en) * 2012-08-17 2012-12-12 河北省首钢迁安钢铁有限责任公司 Sensing and heating method of high-magnetic induction oriented silicon steel
JP2016098420A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Method for heating thin steel sheet and continuous annealing equipment
AU2018357807B2 (en) * 2017-10-24 2021-11-18 Baoshan Iron & Steel Co., Ltd. Apparatus and method for rapidly heating cold-rolled strip steel
WO2019080482A1 (en) * 2017-10-24 2019-05-02 宝山钢铁股份有限公司 Apparatus and method for rapidly heating cold-rolled strip steel
JP2020534435A (en) * 2017-10-24 2020-11-26 バオシャン アイアン アンド スティール カンパニー リミテッド Rapid heating device and method for cold-rolled steel strips
US11352680B2 (en) 2017-10-24 2022-06-07 Baoshan Iron & Steel Co., Ltd. Apparatus and method for rapidly heating cold-rolled strip steel
JP7117372B2 (en) 2017-10-24 2022-08-12 バオシャン アイアン アンド スティール カンパニー リミテッド Rapid heating device and method for cold rolled steel strip
CN108672504B (en) * 2018-05-25 2019-08-06 中冶南方工程技术有限公司 A kind of cold-strip steel induction heating coil of strip transition temperature control method
CN108672504A (en) * 2018-05-25 2018-10-19 中冶南方工程技术有限公司 A kind of cold-strip steel sensing heating coil of strip transition temperature control method
WO2021239394A1 (en) * 2020-05-29 2021-12-02 Sms Group Gmbh Method for recrystallisation annealing of a non-grain-oriented electric strip
RU2804215C1 (en) * 2020-05-29 2023-09-26 Смс Груп Гмбх Method of recrystallization annealing of isotropic electrical strip steel
CN115354141A (en) * 2022-08-09 2022-11-18 首钢智新迁安电磁材料有限公司 Heating furnace power control method and device, electronic equipment and medium
CN115354141B (en) * 2022-08-09 2023-10-20 首钢智新迁安电磁材料有限公司 Heating furnace power control method and device, electronic equipment and medium

Also Published As

Publication number Publication date
JP5217543B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP5217543B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP7117372B2 (en) Rapid heating device and method for cold rolled steel strip
WO2001036122A1 (en) Metal plate flatness controlling method and device
JP5135534B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JP5217542B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JPH11153581A (en) Method and apparatus for measuring on line progress of recovery-recrystallization of steel plate being annealed and method for continuous annealing of steel plate
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP6402696B2 (en) High-strength steel plate manufacturing equipment and manufacturing method
JP2016107280A (en) Shape control method and shape control device for metal strip
JP6137490B2 (en) Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet
JP2018047483A (en) Shape control method of metal strip and shape control device
JP2001137943A (en) Method and device for controlling flatness of metallic sheet
JP3371686B2 (en) Hot rolled steel strip rolling method
JP2019163519A (en) Processing method of grain-oriented electromagnetic steel sheet
JP5896097B2 (en) Finishing annealing method and finishing annealing equipment for grain-oriented electrical steel sheet
JPH10130742A (en) Heat treatment of metastable austenitic stainless steel strip
KR100306142B1 (en) Method for setting inductive heating patterns in mini-mill process
JP3582517B2 (en) Manufacturing method of hot-rolled steel strip
CN115943221A (en) Method for producing electrical steel strip
JP2020022977A (en) Non-directional electromagnetic steel coil and manufacturing method thereof
JP2000280018A (en) Continuous strip processing equipment
JP2006095544A (en) Steel strip cold-rolling equipment and steel strip cold-rolling method
JP2005232482A (en) Method for continuously heat-treating hot-rolled steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees