KR100963896B1 - A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell - Google Patents

A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell Download PDF

Info

Publication number
KR100963896B1
KR100963896B1 KR1020070108075A KR20070108075A KR100963896B1 KR 100963896 B1 KR100963896 B1 KR 100963896B1 KR 1020070108075 A KR1020070108075 A KR 1020070108075A KR 20070108075 A KR20070108075 A KR 20070108075A KR 100963896 B1 KR100963896 B1 KR 100963896B1
Authority
KR
South Korea
Prior art keywords
gene
vector
knockout
fluorescent protein
sequence
Prior art date
Application number
KR1020070108075A
Other languages
Korean (ko)
Other versions
KR20090042363A (en
Inventor
이운규
차석호
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020070108075A priority Critical patent/KR100963896B1/en
Priority to PCT/KR2007/006787 priority patent/WO2008082125A1/en
Publication of KR20090042363A publication Critical patent/KR20090042363A/en
Application granted granted Critical
Publication of KR100963896B1 publication Critical patent/KR100963896B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/495Transforming growth factor [TGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0393Animal model comprising a reporter system for screening tests

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 녹색형광단백질 레포터 넉인벡터를 이용하여 제조된 넉아웃 벡터, 이의 제조방법 및 이를 이용하여 동물세포에서 유전자를 넉아웃 시키는 방법에 관한 것으로, 보다 상세하게는 넉아웃 벡터의 레포터로 녹색형광단백질을 사용하되, 넉아웃 시키고자 하는 유전자의 개시코돈을 녹색형광단백질 유전자의 개시코돈을 포함하는 ORF(Open Reading Frame) 서열로 대체하고, 넉아웃 유전자의 프로모터 서열과 융합시켜 넉아웃 벡터를 제조하고, 상기 넉아웃 벡터를 동물세포에 도입하여 특정 유전자의 기능을 넉아웃 시키는 방법에 관한 것이다.The present invention relates to a knockout vector prepared using a green fluorescent protein reporter knock-in vector, a method for preparing the same, and a method for knocking out genes in animal cells using the same, more specifically, as a reporter of a knockout vector. Using a green fluorescent protein, the start codon of the gene to be knocked out is replaced with an Open Reading Frame (ORF) sequence containing the start codon of the green fluorescent protein gene, and fused with the promoter sequence of the knockout gene to knock out the vector. To prepare, and to introduce the knockout vector to the animal cells to knock out the function of a specific gene.

본 발명에 따르면, 녹색형광단백질을 레포터로 이용하는 넉아웃 벡터에 있어서, 넉아웃 유전자의 개시코돈인 ATG를 녹색형광단백질의 개시코돈을 포함한 ORF로 대체하고, 상기 ORF를 넉아웃 유전자의 프로모터 서열에 연결함으로써 기존의 IRES 시스템 보다 안정적이고 효과적으로 레포터가 발현되는 뛰어난 효과가 있다.According to the present invention, in a knockout vector using a green fluorescent protein as a reporter, ATG, which is a start codon of a knockout gene, is replaced with an ORF including an initiation codon of a green fluorescent protein, and the ORF is a promoter sequence of a knockout gene. By linking to the reporter, the reporter can be expressed more stably and effectively than the existing IRES system.

녹색형광단백질(GFP) 레포터(reporter) 넉인벡터(knock-in vector), 넉아웃 벡터(knock-out vector), 넉아웃 유전자 Green fluorescent protein (GFP) reporter knock-in vector, knock-out vector, knockout gene

Description

녹색형광단백질 레포터 넉인벡터를 이용하여 제조된 넉아웃 벡터, 이의 제조방법 및 이를 이용하여 동물세포에서 유전자를 넉아웃 시키는 방법{A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell}Knockout vector constructed by using green fluorescent protein reporter knock-in vector, a method for preparing the same, and a method for knocking out genes in animal cells using the same preparing definitely and knocking out gene in animal cell}

본 발명은 녹색형광단백질 레포터 넉인벡터를 이용하여 제조된 넉아웃 벡터, 이의 제조방법 및 이를 이용하여 동물세포에서 유전자를 넉아웃 시키는 방법에 관한 것으로, 보다 상세하게는 넉아웃 벡터의 레포터로 녹색형광단백질을 사용하되, 넉아웃 시키고자 하는 유전자의 개시코돈을 녹색형광단백질 유전자의 개시코돈을 포함하는 ORF(Open Reading Frame) 서열로 대체하고, 넉아웃 유전자의 프로모터 서열과 융합시켜 넉아웃 벡터를 제조하고, 상기 넉아웃 벡터를 동물세포에 도입하여 특정 유전자의 기능을 넉아웃 시키는 방법에 관한 것이다.The present invention relates to a knockout vector prepared using a green fluorescent protein reporter knock-in vector, a method for preparing the same, and a method for knocking out genes in animal cells using the same, more specifically, as a reporter of a knockout vector. Using a green fluorescent protein, the start codon of the gene to be knocked out is replaced with an Open Reading Frame (ORF) sequence containing the start codon of the green fluorescent protein gene, and fused with the promoter sequence of the knockout gene to knock out the vector. To prepare, and to introduce the knockout vector to the animal cells to knock out the function of a specific gene.

유전자의 기능을 연구하기 위한 가장 직접적이고도 효율적인 방법은 그 유전자를 제거(knock-out)한 형질전환체를 통해 그 표현형을 조사하는 것이다. 특정유전자의 발현을 제거한 동물을 만들기 위해서는 통상 양성 선택 마커(positive selection marker)와 음성 선택 마커(negative selection marker)가 들어가 있는 넉아웃(knock-out) 벡터를 이용하여 그 전략을 디자인 한다. 양성 선택 마커는 동종 재조합(homologus recombination)에 이용될 2군데의 유전자군 사이에 위치하며 음성 선택 마커는 2개 유전자군의 좌측 혹은 우측에 놓인다. 이를 통해 동종 재조합이 일어난 줄기세포(embryonic stem cells)는 양성 선택 마커에 의해 살아갈 수 있으며, 동종 재조합에 의하지 않고 무작위적으로 삽입된 벡터는 음성 선택 마커에 의해 살지 못하게 하는 2중의 선택을 통해 원하는 줄기세포를 얻을 수 있도록 고안되어 있다. The most direct and efficient way to study the function of a gene is to examine the phenotype through a knock-out transformant. In order to make an animal free of expression of a specific gene, the strategy is usually designed using a knock-out vector containing a positive selection marker and a negative selection marker. Positive selection markers are located between two gene groups to be used for homologous recombination and negative selection markers are to the left or right of the two gene groups. This allows embryonic stem cells that have undergone homologous recombination to survive by positive selection markers, and randomly inserted vectors that do not rely on homologous recombination to prevent them from living by negative selection markers. It is designed to get cells.

그러나, 이러한 줄기세포를 이용하여 유전자 넉아웃 형질전환동물을 제작하는 데는 시간과 인적자원 그리고 매우 많은 비용이 든다는 문제점이 있다. 이 기술이 개발된 지 근 30여 년이 되고 있지만 아직 그 효용면에서는 크게 개선되고 있지 못한 실정이며 따라서 세계적으로도 그렇게 널리 이용되고 있지 못한 것이 현실이다. 그 중에서도 가장 중요한 문제점 중의 하나는 많은 수의 유전자 넉아웃 형질전환동물들이 뚜렷한 표현형을 보이지 못함으로써 보고조차 되지 못하고 있다는 것이다. 이를 통계적으로 나타낼 수 있는 자료는 보고된 바 없지만, 10마리 중 7∼8마리는 표현형을 뚜렷하게 찾을 수 없는 관계로 학계에 보고조차 되고 있지 못하는 것으로 추정되고 있다. However, there is a problem that it takes time, human resources, and very expensive to produce a gene knockout transgenic animal using such stem cells. It has been around 30 years since the technology was developed, but it has not been greatly improved in terms of its utility. Therefore, it is not widely used in the world. One of the most important problems is that a large number of gene knockout transgenic animals are not even reported because they do not show a clear phenotype. Although no statistical data have been reported, it is estimated that 7-8 out of 10 are not even reported to academia because the phenotype cannot be found clearly.

한편, 형질전환된 생명체에서 그들의 표현형이 분석되는 유전자를 "레포터(reporter) 유전자" 라 하는데, 조절지역의 유전자 삭제여부, 즉 유전자 넉아웃 분석에 이용된다. 삭제여부 분석을 수행하기 전에 클로닝된 유전자의 발현에 대한 결손의 효과를 분석하는 방법이 결정되어야 하는데, 그 효과는 그 유전자를 그 유 전자의 기원이 되는 종에 클로닝 하여야만 관찰될 수 있다. 만약 어떤 식물 유전자가 박테리아에 클로닝되면, 식물에서의 빛에 대한 조절연구에는 적당치 않다. 최근 모든 개체의 유전자에 적용될 수 있는 클로닝 벡터가 개발되어 본래의 숙주로의 유전자 클로닝이 용이하게 되었다. 그러나, 대부분의 경우 숙주는 이미 클로닝된 유전자와 동일한 복사체를 지니고 있다는 문제점이 있어 클로닝된 유전자의 발현양상에서의 변화를 숙주 내의 유전자의 복사체에 대한 정상적인 발현양상과 구별하기 위하여 레포터 유전자를 사용하는 것이다. 이는 연구하고자 하는 유전자의 앞부분에 위치하는 테스트 유전자로서, 바람직하게는 원래의 클로닝된 유전자를 대체한다. 숙주에 클로닝되었을 레포터 유전자의 발현양상은 원래의 유전자와 동일한 조절에 의해 조절되므로 원래의 유전자의 것과 거의 유사하게 된다. Meanwhile, genes whose phenotypes are analyzed in transformed organisms are referred to as "reporter genes", which are used for gene deletion of regulatory regions, that is, gene knockout analysis. Prior to performing the deletion assay, a method of analyzing the effect of the deletion on the expression of the cloned gene must be determined, and the effect can only be observed by cloning the gene into the species of origin of the gene. If a plant gene is cloned into bacteria, it is not suitable for the regulation of light in plants. Recently, cloning vectors that can be applied to genes of all individuals have been developed to facilitate gene cloning into the original host. However, in most cases, the host has the same copy as the cloned gene, so the reporter gene is used to distinguish the change in expression of the cloned gene from the normal expression of the copy of the gene in the host. will be. It is a test gene located earlier in the gene to be studied, preferably replacing the original cloned gene. The expression pattern of the reporter gene that has been cloned into the host is controlled by the same regulation as the original gene, so that it is almost similar to that of the original gene.

레포터 유전자를 선택하는 첫 번째 조건으로는 레포터 유전자가 숙주에서 발현되지 않는 표현형을 나타낼 수 있어야 하며, 숙주로 클로닝 되었을 때 검정하기 용이하고 그 표현형을 정량적으로 분석 가능해야 한다. 이러한 조건을 충족시키는 다양한 레포터 유전자가 유전자 조절에 관한 연구를 위해 이용되고 있는데, 그 중 LacZ(β-Galactosidase)와 형광단백질(fluorescence protein)들이 많이 이용된다. 특히, 형광단백질은 레포터로서 숙주세포에 발현되지 않으며, 누구나 쉽게 검정이 용이하여 가장 널리 사용되는 레포터 중 하나이다. The first condition for selecting a reporter gene should be a phenotype that the reporter gene does not express in the host, and should be easy to assay when cloned into the host and capable of quantitative analysis of the phenotype. Various reporter genes satisfying these conditions are used for gene regulation studies, among which LacZ (β-Galactosidase) and fluorescence proteins are widely used. In particular, the fluorescent protein is not expressed in the host cell as a reporter, and it is one of the most widely used reporters because it is easy to assay by anyone.

이러한 레포터의 안정적 발현을 위해 기존에는 IRES (Internal Ribosome Entry Segment)를 이용하여 레포터 유전자를 발현시키는 시스템이 널리 이용되어 왔으나, 넉아웃 시키고자 하는 유전자의 개시코돈인 ATG로부터 레포터 유전자를 발 현시킬 수 있는 시스템이 없다. IRES는 전사체의 번역(translation) 시 라이보좀 복합체가 번역진행의 시작으로 인식하는 염기서열을 일컫는 것으로, 주로 넉아웃 유전자의 엑손(exon) 사이에 레포터와 함께 클로닝되어 사용된다. 따라서, 사용하는 IRES의 종류 및 넉아웃되는 유전자에 따라서 레포터의 발현이 영향을 받는 경우가 많은 단점이 있다. In order to stably express the reporter, a system for expressing a reporter gene using IRES (Internal Ribosome Entry Segment) has been widely used, but a reporter gene is generated from ATG, the start codon of the gene to be knocked out. There is no system to implement. IRES refers to the nucleotide sequence recognized by the ribosome complex as the beginning of the translation process during translation of the transcript, and is mainly used by cloning with a reporter between exons of the knockout gene. Therefore, there are many disadvantages in that reporter expression is affected by the kind of IRES used and the gene knocked out.

따라서, 본 발명은 종래기술의 단점을 개선하고자 안출한 것으로, 녹색형광단백질을 레포터로 사용하여 동물에서 특정 유전자를 넉아웃 시키고자 할 때 IRES가 없이도 레포터 유전자가 안정하게 효율적으로 발현할 수 있는 녹색형광단백질 레포터 넉인벡터 및 이를 이용하여 제작한 넉아웃 벡터를 제공하는 것을 목적으로 한다.Therefore, the present invention has been made to improve the disadvantages of the prior art, it is possible to stably and efficiently express reporter genes without IRES when knocking out a specific gene in the animal using the green fluorescent protein as a reporter. An object of the present invention is to provide a green fluorescent protein reporter knock-in vector and a knock-out vector prepared using the same.

본 발명의 다른 목적은 상기 넉아웃 벡터를 이용하여 동물세포에서 유전자를 넉아웃 시키는 방법을 제공하고자 한다.Another object of the present invention to provide a method for knocking out genes in animal cells using the knockout vector.

상기 목적을 달성하기 위해, 본 발명은 서열목록 서열번호 1에 기재된 염기서열을 가지는 GFPKI-PS라고 명명된 녹색형광단백질(GFP, Green Fluorescent protein) 레포터 넉인벡터(knock-in vector)를 제공한다.In order to achieve the above object, the present invention provides a Green Fluorescent protein (GFP) reporter knock-in vector named GFPKI-PS having the nucleotide sequence shown in SEQ ID NO: 1. .

또한, 본 발명은 넉아웃 시키고자 하는 유전자의 개시코돈 ATG를 녹색형광단백질 유전자의 개시코돈을 포함하는 ORF(Open Reading Frame) 서열로 대체한 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터(knock-out vector)를 제공한다.In addition, the present invention is a gene containing a green fluorescent protein reporter gene characterized in that by replacing the start codon ATG of the gene to be knocked out with an ORF (Open Reading Frame) sequence containing the start codon of the green fluorescent protein gene Provide a knock-out vector.

또한, 본 발명은 In addition, the present invention

i) 개시코돈인 ATG를 포함하는 녹색형광단백질(GFP) 유전자 서열을 변이시켜 서열번호 2에 기재된 GFP 유전자의 ORF 서열을 제조하는 단계;i) mutating the green fluorescent protein (GFP) gene sequence comprising ATG, the start codon, to prepare the ORF sequence of the GFP gene set forth in SEQ ID NO: 2;

ii) 넉아웃 시키고자 하는 유전자의 프로모터 서열 및 이에 연결되는, 상기 i) 단계에서 GFP ORF 서열 제조 시 결실된 GFP의 5' 말단부의 결실된 염기로 이루어진 폴리뉴클레오티드를 제조하는 단계; 및ii) preparing a polynucleotide consisting of a promoter base of a gene to be knocked out and a base linked to it, a deleted base at the 5 'end of GFP deleted in preparation of the GFP ORF sequence in step i); And

iii) 상기 i) 단계에서 제조된 GFP의 ORF 서열의 5' 말단 쪽에 ii) 단계에서 제조한 프로모터 서열 및 폴리뉴클레오티드를 연결하는 단계를 포함하는, iii) linking the promoter sequence and the polynucleotide prepared in step ii) to the 5 'end of the ORF sequence of GFP prepared in step i);

녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법을 제공한다.Provided is a method of preparing a knockout vector comprising a green fluorescent protein reporter gene.

또한, 본 발명은 상기 넉아웃 벡터로 형질전환, 형질감염 또는 감염된 분리된 숙주세포를 제공한다.The present invention also provides isolated host cells transformed, transfected or infected with the knockout vector.

또한, 본 발명은 상기 넉아웃 벡터를 이용하여 동종 재조합 방법에 의해 인간을 제외한 포유동물 게놈 상의 유전자를 넉아웃 시키는 방법을 제공한다.In addition, the present invention provides a method for knocking out genes on mammalian genomes except humans by homologous recombination using the knockout vectors.

또한, 본 발명은 상기 유전자의 넉아웃 방법에 따라 수득될 수 있는 TIEG1(Transforming Growth Factor β-inducible early gene 1)의 기능이 넉아웃된, 인간을 제외한 형질전환 동물을 제공한다.The present invention also provides a transgenic animal other than humans, in which the function of transforming growth factor β-inducible early gene 1 (TIEG1) obtained by the knockout method of the gene is knocked out.

본 발명은 넉아웃 동물을 제작함에 있어 특정 유전자를 넉아웃 시키고자 할 때 녹색형광단백질을 레포터로 이용하되, 넉아웃 유전자의 개시코돈인 ATG를 녹색형광단백질의 개시코돈을 포함한 ORF로 대체하고, 상기 ORF를 넉아웃 유전자의 프로모터 서열과 연결함으로써 기존의 IRES 시스템 보다 안정적이고 효과적으로 레포터가 발현되는 뛰어난 효과가 있다.The present invention uses a green fluorescent protein as a reporter when knocking out a specific gene in the manufacture of a knockout animal, but replaces ATG, the start codon of the knockout gene, with an ORF including the start codon of the green fluorescent protein. By linking the ORF with the promoter sequence of the knockout gene, there is an excellent effect that the reporter is expressed more stably and effectively than the existing IRES system.

또한, 본 발명의 녹색형광단백질 레포터 넉인벡터를 넉아웃 동물개발에 이용할 경우 넉아웃 유전자의 발현 패턴에 대해 정확한 고찰이 가능해지며, 이를 통해 유전자의 기능연구에 매우 유용한 정보를 제공할 수 있다.In addition, when the green fluorescent protein reporter knock-in vector of the present invention is used for knockout animal development, accurate expression of the knockout gene expression pattern is possible, and thus, very useful information can be provided for the functional study of the gene.

이하, 본 발명의 구성을 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated concretely.

본 발명자는 녹색형광단백질 ORF(Open Reading Frame)에 EcoRV 절단 부위를 첨가시킨 녹색형광단백질 발현벡터를 제작하고, 유전자 특이적인 프라이머 디자인과 PCR(Polymerase chain reaction)을 이용하여 최종적으로 녹색형광단백질 레포터 넉인벡터를 제작하였다. 이러한 녹색형광단백질 레포터 넉인벡터를 넉아웃 동물개발 등에 이용할 시 넉아웃 유전자의 발현패턴에 대한 정확한 고찰이 가능해지며, 이를 통해 유전자의 기능연구에 매우 유용한 정보를 제공할 수 있다.The present inventors produced a green fluorescent protein expression vector obtained by adding an Eco RV cleavage site to the green fluorescent protein ORF (Open Reading Frame), and finally, a green fluorescent protein level by using gene-specific primer design and PCR (Polymerase chain reaction). A porter knock-in vector was produced. When the green fluorescent protein reporter knock-in vector is used for the development of a knockout animal, it is possible to accurately investigate the expression pattern of the knockout gene, thereby providing very useful information for the study of gene function.

따라서, 본 발명은 서열목록 서열번호 1에 기재된 염기서열을 가지는, 녹색형광단백질 레포터 넉인벡터(knock-in vector, 이하 "GFP 레포터 넉인벡터"라고도 함), GFPKI-PS vector를 제공한다.Accordingly, the present invention provides a green fluorescent protein reporter knock-in vector (hereinafter also referred to as a "GFP reporter knock-in vector"), a GFPKI-PS vector, having the nucleotide sequence set forth in SEQ ID NO: 1.

본 발명의 일 실시예에 따르면, phrGFPⅡ-C 벡터(Stratagene, Cat. number: 240144)를 주형으로 하고 서열번호 3 및 4의 프라이머 쌍을 이용하여 PCR을 이용한 돌연변이 스트랜드 합성반응을 실시하여 얻은 PCR 산물을 Top10 컴피턴트 세포에 형질전환시켜 GFP의 ORF 내에 EcoRV 절단부위를 포함하는 클론을 확보하고 이를 "GFPKI-RV 벡터" 로 명명한다. 다음으로, GFPKI-RV 벡터를 주형으로 하고, 서열번 호 5 및 6의 프라이머 쌍을 이용하여 PCR을 이용한 돌연변이 스트랜드 합성반응을 실시하여 얻은 PCR 산물을 Top10 컴피턴트 세포에 형질전환시켜 SalI 절단부위를 포함하는 클론을 확보하고 이를 "GFPKI-S 벡터" 라 명명한다. 끝으로, GFPKI-S 벡터를 주형으로 하고, 서열번호 7 및 8의 프라이머 쌍을 이용하여 PCR을 이용한 돌연변이 스트랜드 합성반응을 실시하여 얻은 PCR 산물을 Top10 컴피턴트 세포에 형질전환시켜 PacI 절단부위를 포함하는 클론을 확보하여 최종적으로 GFP 레포터 넉인벡터인, "GFPKI-PS 벡터"를 제작한다(도 1).According to an embodiment of the present invention, a PCR product obtained by performing a mutant strand synthesis reaction using PCR using a phrGFPII-C vector (Stratagene, Cat. Number: 240144) as a template and primer pairs of SEQ ID NOs: 3 and 4 Is transformed into Top10 competent cells to obtain a clone containing the Eco RV cleavage site in the ORF of GFP and named it "GFPKI-RV vector". Next, a GFPKI-RV vector was used as a template, and a PCR product obtained by performing mutant strand synthesis reaction using PCR using primer pairs of SEQ ID NOs: 5 and 6 was transformed into Top 10 competent cells, thereby cutting Sal I cleavage site. Obtain a clone containing and name it "GFPKI-S vector". Finally, the GFPKI-S vector was used as a template, and a PCR product obtained by performing mutant strand synthesis using PCR using primer pairs of SEQ ID NOs: 7 and 8 was transformed into Top10 competent cells to prepare a Pac I cleavage site. The clones were obtained and finally produced a "GFPKI-PS vector", which is a GFP reporter knock-in vector (FIG. 1).

본 발명에서 유전자 "넉아웃(knock-out)" 이라 함은 염기서열 중 특정 유전자가 발현될 수 없도록 이를 변형 또는 제거하는 것을 의미하며, 유전자 "넉인(knock-in)"이란 특정 외래 유전자가 발현될 수 있도록 숙주의 게놈상에 도입되는 것을 의미한다.In the present invention, the gene "knock-out" means modifying or removing a specific gene from the base sequence so that it cannot be expressed, and the gene "knock-in" expresses a specific foreign gene. It is meant to be introduced into the genome of the host so that it can be.

본 발명에서 "ORF(Open Reading Frame)" 이라 함은 코딩서열(coding sequence, CDS)을 나타내는 것으로 단백질 합성에서 주형(template)이 되는 부분을 말한다. In the present invention, "ORF (Open Reading Frame)" refers to a coding sequence (CDS) and refers to a portion that is a template (template) in protein synthesis.

본 발명에서 "레포터(reporter) 유전자" 라 함은 형질전환된 생명체에서 그들의 표현형이 분석되는 유전자로서, 조절지역의 유전자 삭제여부, 즉 유전자 넉아웃 분석에 이용된다. 본 발명은 동물세포인 숙주세포에서 원래 발현되지 않고 검정이 용이하여 유전자의 넉아웃 양상을 확인하기 위한 레포터로서 적절한 GFP 유전자를 레포터 유전자로 사용하되, GFP 의 ORF의 개시코돈인 ATG 다음에 EcoRV 절단부위를 첨가시킨 서열번호 2로 표시되는 염기서열을 가진다. In the present invention, the "reporter gene" is a gene whose phenotype is analyzed in a transformed organism, and is used for gene deletion of a regulatory region, that is, gene knockout analysis. The present invention uses an appropriate GFP gene as a reporter gene as a reporter for confirming the knockout pattern of the gene because it is not originally expressed in a host cell, which is an animal cell, and is easy to assay, followed by ATG, which is an initiation codon of ORF of GFP. It has a nucleotide sequence represented by SEQ ID NO: 2 to which an EcoR V cleavage site was added.

본 발명에서 "EcoRV 절단부위" 라 함은 EcoRV 제한효소에 의해 자를 수 있는 DNA 부위를 말하며, GAT/ATC 부위를 말한다.In the present invention, " EcoR V cleavage site" refers to a DNA site that can be cut by Eco RV restriction enzyme, and refers to a GAT / ATC site.

본 발명의 GFP 레포터 넉인벡터는 넉아웃 유전자의 개시코돈인 ATG로부터 GFP의 개시코돈을 포함한 ORF가 쉽게 대체될 수 있도록 고안된 것으로, 이를 이용하여 넉아웃 벡터를 제조하는 경우 넉아웃 시키고자 하는 유전자의 발현을 효과적으로 제거함과 동시에 넉아웃 유전자의 발현이 GFP 유전자의 발현으로 대체될 수 있도록 함으로써, GFP 유전자가 보다 안정적으로 클로닝되고, 레포터의 발현이 보다 안정적이고 효율적으로 이루어질 수 있게 된다. The GFP reporter knock-in vector of the present invention is designed so that an ORF including an initiation codon of GFP can be easily replaced from ATG, a start-out codon of a knock-out gene. By effectively eliminating the expression of and allowing the expression of the knockout gene to be replaced by the expression of the GFP gene, the GFP gene can be cloned more stably, and the expression of the reporter can be more stably and efficiently performed.

또한, 본 발명은 넉아웃 시키고자 하는 유전자의 개시코돈인 ATG를 녹색형광단백질 유전자의 개시코돈을 포함하는 ORF(Open Reading Frame) 서열로 대체한 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터(knock-out vector)를 제공한다.In addition, the present invention comprises a green fluorescent protein reporter gene characterized in that ATG, which is the start codon of the gene to be knocked out, is replaced with an ORF (Open Reading Frame) sequence including the start codon of the green fluorescent protein gene. Provide a knock-out vector.

본 발명의 일 실시예에 따르면, 넉아웃 벡터는 넉아웃 시키고자 하는 유전자의 개시코돈인 ATG가 GFP 유전자의 개시코돈인 ATG를 포함하는 ORF로 대체되도록 디자인한 것으로, GFP의 개시코돈인 ATG 다음에 EcoRV 절단부위를 첨가한 GFP 레포터 넉인벡터를 제작함으로써, 넉아웃 시키고자 하는 유전자의 염기서열에 관계없이 모든 유전자에 대해 그 유전자의 개시코돈인 ATG로부터 GFP의 ORF를 용이하게 대체시킬 수 있는 방법이 가능해 지도록 한 것이다.According to one embodiment of the present invention, the knockout vector is designed such that ATG, the start codon of the gene to be knocked out, is replaced with an ORF including ATG, the start codon of the GFP gene, followed by ATG, the start codon of the GFP. By constructing a GFP reporter knock-in vector added with an EcoR V cleavage site, it is possible to easily replace the ORF of GFP from ATG, the start codon of the gene, for all genes regardless of the nucleotide sequence of the gene to be knocked out. The way is to make it possible.

또한, 본 발명의 넉아웃 벡터는 GFP의 ORF가 넉아웃 시키고자 하는 유전자의 프로모터 서열에 연결되도록 제작한 것으로, 상기 프로모터는 5' 말단 쪽에 제한효소 자리를 갖도록 고안된 5'-프라이머(서열번호 12)와 GFP 레포터 넉인벡터 제조 시 결실된 GFP의 5' 말단 쪽 폴리뉴클레오티드(서열번호 10)를 포함하도록 고안된 3'-프라이머(서열번호 13)를 이용하여 PCR 증폭시켜 얻으며, 서열번호 11에 기재된 것을 사용한다. 또한, 기존의 IRES 대신에 넉아웃 시키고자 하는 유전자의 프로모터 서열과 녹색형광단백질 레포터 유전자의 ORF서열이 직접 연결되어 있으므로, IRES의 종류 및 넉아웃 유전자에 따른 레포터 유전자의 발현에 대한 영향을 제거하여 레포터 유전자가 보다 안정적으로 클로닝되고, 레포터 유전자의 발현이 안정적이고 효율적으로 이루어질 수 있도록 하였다. In addition, the knockout vector of the present invention is designed to be linked to the promoter sequence of the gene to be knocked out by the ORF of GFP, and the promoter is a 5'-primer designed to have restriction enzyme sites at the 5 'end (SEQ ID NO: 12 ) And PCR amplification using a 3'-primer (SEQ ID NO: 13) designed to include the 5 'terminal polynucleotide (SEQ ID NO: 10) of the GFP deleted in preparation of the GFP reporter knock-in vector, as described in SEQ ID NO: Use it. In addition, since the promoter sequence of the gene to be knocked out and the ORF sequence of the green fluorescent protein reporter gene are directly connected instead of the existing IRES, the effect on the expression of the reporter gene according to the type of IRES and the knockout gene is influenced. By removing it, the reporter gene was cloned more stably, and the expression of the reporter gene was made to be stable and efficient.

본 발명의 넉아웃 시키고자 하는 유전자는 TIEG1(Transforming Growth Factor β-inducible early gene 1)이나, 이에 제한되지는 않는다.Gene to be knocked out of the present invention is transforming growth factor β-inducible early gene 1 (TIEG1), but is not limited thereto.

상기 넉아웃 벡터는 GFP의 ORF의 3' 말단 쪽에 넉아웃 유전자의 3' 말단부의 염기서열을 추가로 연결할 수 있다. 다시 말해, GFP의 ORF가 넉아웃 유전자의 프로모터 서열에 융합됨으로써 결실되는 넉아웃 유전자의 엑손(엑손 1)을 제외한 나머지 엑손 부위를 말하는 것이다.The knockout vector may further connect the nucleotide sequence of the 3 'end of the knockout gene to the 3' end of the ORF of GFP. In other words, the ORF of the GFP refers to the exon region other than the exon (exon 1) of the knockout gene deleted by fusion to the promoter sequence of the knockout gene.

본 발명의 일 실시예에 따르면, 상기 3' 말단부 염기서열은 TIEG1의 엑손 3의 일부와 엑손 4를 포함한다.According to one embodiment of the present invention, the 3 'terminal sequence includes a portion of exon 3 and exon 4 of TIEG1.

본 발명에서 "벡터"라 함은 적당한 숙주세포에서 목적 단백질 또는 목적 RNA를 발현할 수 있고, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절요소를 포함하는 유전자 작제물을 말한다. 상기 "작동가능하게 연결된(operably linked)" 이란, 일반적인 기능을 수행하도록 핵산 발현조절 서열과 목적 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 예를 들어, 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.As used herein, the term "vector" refers to a gene construct capable of expressing a target protein or target RNA in a suitable host cell and comprising essential regulatory elements operably linked to express the gene insert. The term "operably linked" means that the nucleic acid expression control sequence and the nucleic acid sequence encoding the target protein or RNA are functionally linked to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the nucleic acid sequence encoding. Operative linkage with recombinant vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation uses enzymes commonly known in the art and the like.

본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주세포를 선택하기 위한 선택마커를 포함하고, 복제가능한 발현벡터인 경우 복제 기원을 포함한다. 본 발명에 따르면, 넉아웃 벡터는 선택마커로 MCI neo(MCI promoter; neo: poly A-less neomycin resistant gene) 및 PGK-DTA(PGK: phosphoglycerate kinase promoter; DTA: diphtheria toxin-A chain gene) 서열을 포함한다.Vectors of the invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like. Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose. The promoter of the vector may be constitutive or inducible. In addition, the expression vector includes a selection marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, includes a replication origin. According to the present invention, the knockout vector may include MCI neo (MCI promoter; neo: poly A-less neomycin resistant gene) and PGK-DTA (PGK: phosphoglycerate kinase promoter; DTA: diphtheria toxin-A chain gene) sequences as selection markers. Include.

본 발명의 목적에 따라 숙주가 동물세포인 경우 적합한 시그널 서열로는 인슐린 시그널서열, α-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다.According to the object of the present invention, if the host is an animal cell, a suitable signal sequence may include, but is not limited to, an insulin signal sequence, an α-interferon signal sequence, an antibody molecule signal sequence, and the like.

본 발명의 넉아웃 벡터는 숙주세포 내로 형질전환, 형질감염 또는 감염되어 레포터 유전자를 발현할 수 있다. 본 발명에 따르면, 상기 숙주세포는 R1 생쥐 배아줄기세포이나, 넉아웃 벡터를 도입하여 레포터 유전자를 발현할 수 있는 세포라면 이에 제한되지 않는다.Knockout vectors of the invention can be transformed, transfected or infected into host cells to express reporter genes. According to the present invention, the host cell is an R1 mouse embryonic stem cell, or any cell capable of expressing a reporter gene by introducing a knockout vector is not limited thereto.

또한, 본 발명은 In addition, the present invention

i) 개시코돈인 ATG를 포함하는 녹색형광단백질(GFP) 유전자 서열을 변이시켜 서열번호 2에 기재된 GFP 유전자의 ORF 서열을 제조하는 단계;i) mutating the green fluorescent protein (GFP) gene sequence comprising ATG, the start codon, to prepare the ORF sequence of the GFP gene set forth in SEQ ID NO: 2;

ii) 넉아웃 시키고자 하는 유전자의 프로모터 서열 및 이에 연결되는, 상기 i) 단계에서 GFP ORF 서열 제조 시 결실된 GFP의 5' 말단부의 결실된 염기로 이루어진 폴리뉴클레오티드를 제조하는 단계; 및ii) preparing a polynucleotide consisting of a promoter base of a gene to be knocked out and a base linked to it, a deleted base at the 5 'end of GFP deleted in preparation of the GFP ORF sequence in step i); And

iii) 상기 i) 단계에서 제조된 GFP의 ORF 서열의 5' 말단 쪽에 ii) 단계에서 제조한 프로모터 서열 및 폴리뉴클레오티드를 연결하는 단계를 포함하는, iii) linking the promoter sequence and the polynucleotide prepared in step ii) to the 5 'end of the ORF sequence of GFP prepared in step i);

녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법을 제공한다. Provided is a method of preparing a knockout vector comprising a green fluorescent protein reporter gene.

본 발명의 일 실시예에 따르면, TIEG1 유전자의 개시코돈 ATG로부터 5'-업스트림으로 약 4kb 되는 부분(프모모터 서열, 서열번호 11)을 증폭하기 위해 프라이머를 고안하고(서열번호 12 및 13), 이를 이용하여 PCR 증폭시켜 약 3.9kb의 프로모터 서열(서열번호 14)을 준비하고, GFP 넉인 벡터에 포함된 GFP 유전자의 5' 말단 쪽에 클로닝한다. According to one embodiment of the invention, a primer is designed to amplify a portion (promoter sequence, SEQ ID NO: 11) that is about 4 kb upstream 5'-from the start codon ATG of the TIEG1 gene (SEQ ID NOs: 12 and 13), PCR amplification was used to prepare a promoter sequence (SEQ ID NO: 14) of about 3.9 kb and cloned into the 5 'end of the GFP gene included in the GFP knockin vector.

상기 프로모터 서열을 증폭하기 위한 5'-프라이머(서열번호 12)는 GFP 레포터 넉인벡터와의 재조합이 가능하도록 고안된 제한효소 자리, 예를 들어 HindIII에 해당하는 염기서열(AAG CTT)을 포함하나 이에 제한되지는 않는다. 또한, 3'-프라이머(서열번호 13)는 GFP의 5' 말단 쪽 결실된 폴리뉴클레오티드를 포함하도록 고안된 것으로, 본 발명에 따르면, CTG CTT GCT CAC CAT(서열번호 10)의 염기서열을 포함하는 것을 특징으로 한다.The 5'-primer (SEQ ID NO: 12) for amplifying the promoter sequence includes a restriction enzyme site designed for recombination with a GFP reporter knockin vector, for example, a nucleotide sequence corresponding to Hind III (AAG CTT) but It is not limited to this. In addition, the 3'-primer (SEQ ID NO: 13) is designed to include a polynucleotide deleted at the 5 'end of the GFP, according to the present invention, comprising the base sequence of CTG CTT GCT CAC CAT (SEQ ID NO: 10) It features.

클로닝된 재조합 넉인벡터의 5'-아암(arm)은 넉아웃에 사용된 기본벡터인 Osdupde1 벡터에 클로닝되고, TIEG1 유전자의 엑손 3의 일부와 엑손 4가 포함된 약 3.4kb의 재조합 넉인벡터의 3'-아암은 상기 5'-아암이 클로닝된 Osdupde1 벡터의 GFP 유전자 뒷부분에 바로 클로닝하여 넉아웃 벡터를 제조한다. The 5'-arm of the cloned recombinant knock-in vector was cloned into the Osdupde1 vector, the base vector used for knockout, and part of the exon 3 and approximately 3.4 kb of recombinant knock-in vector containing exon 4 of the TIEG1 gene. The '-arm is cloned directly behind the GFP gene of the Osdupde1 vector cloned with the 5'-arm to produce a knockout vector.

또한, 본 발명은 상기 넉아웃 벡터를 이용하여 동종 재조합 방법에 의해 인간을 제외한 포유동물 게놈상의 유전자를 넉아웃 시키는 방법을 제공한다.The present invention also provides a method for knocking out genes on mammalian genomes except humans by homologous recombination using the knockout vectors.

본 발명의 일 실시예에 따르면, 본 발명의 TIEG1 넉아웃 벡터를 R1 생쥐 배아줄기세포에 도입하여 동종 재조합을 유도한다. 이러한 동종 재조합에 의해 TIEG1 유전자 개시코돈 ATG로부터 GFP 개시코돈인 ATG를 시작으로 녹색형광단백질 전체 ORF로 대체된다. According to one embodiment of the present invention, the TIEG1 knockout vector of the present invention is introduced into R1 mouse embryonic stem cells to induce homologous recombination. This homologous recombination replaces the green fluorescent protein whole ORF, starting with TITG1 gene start codon ATG, starting with GTG start codon ATG.

넉아웃 벡터 제작의 정확성 여부는 녹색형광단백질의 발현 여부에 따라 나타나는 형광도를 측정하여 확인하는 것이 바람직하며, 배아줄기세포를 이용한 넉아웃 클론도 넉아웃 유전자가 배아줄기세포에 발현한다면 녹색형광단백질의 발현 여부로 쉽고 정확하게 확인이 가능하다.It is desirable to confirm the accuracy of the knockout vector by measuring the fluorescence level according to the expression of the green fluorescent protein. If the knockout clone using the embryonic stem cells is expressed in the embryonic stem cells, the green fluorescent protein It is possible to check easily and accurately by the expression of.

또한, 본 발명은 상기 유전자의 넉아웃 방법에 따라 수득될 수 있는 TIEG1(Transforming Growth Factor β-inducible early gene 1)의 기능이 넉아웃된, 인간을 제외한 형질전환 동물을 제공한다.The present invention also provides a transgenic animal other than humans, in which the function of transforming growth factor β-inducible early gene 1 (TIEG1) obtained by the knockout method of the gene is knocked out.

바람직하게는, 넉아웃 형질전환 동물 제작 시, 넉아웃 유전자와 동종 동물을 넉아웃 대상동물로 선택하는 것이 좋다. 예를 들어, TIEG1 유전자가 마우스인 경우, 넉아웃 대상 동물로 마우스를 선택한다.Preferably, when constructing a knockout transgenic animal, it is preferable to select a knockout gene and allogeneic animals as knockout target animals. For example, if the TIEG1 gene is a mouse, the mouse is selected as the knockout animal.

하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.The following examples are only for illustrating the present invention, and it is apparent to those skilled in the art that these specific techniques are only preferred embodiments, and thus the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

<실시예 1> GFP 레포터 넉인벡터의 제작Example 1 Preparation of GFP Reporter Knock-in Vector

phrGFPⅡ-C 벡터(Stratagene, Cat. number: 240144)로부터 돌연변이(mutagenesis)를 통해 EcoRV, SalI, PacI 절단부위를 phrGFPⅡ-C 벡터에 삽입하여 GFPKI-PS 벡터(GFP 레포터 넉인벡터)를 제작하였다. The GFPKI-PS vector (GFP reporter knock-in vector) was inserted by inserting the Eco RV, Sal I, Pac I cleavage site into the phrGFPII-C vector through a mutation from the phrGFPII-C vector (Stratagene, Cat. number: 240144). Produced.

구체적으로, phrGFPⅡ-C 벡터에 EcoRV 절단부위를 첨가하기 위해 프라이머 (서열번호 3 및 4)를 제작하고, 돌연변이(mutagenesis)는 QuikChange® Site-Directed Mutagenesis Kit(Stratagene, Cat. Number: 200518)를 사용하였으며 사용 설명서에 따라 실시하였다(표 1 참조). PCR 산물을 Top10 컴피턴트 세포(competent cell)에 형질전환하여 EcoRV 절단부위가 성공적으로 만들어진 클론을 확보하였고, 염기서열분석을 통해 최종적으로 확인하고, "GFPKI-RV 벡터" 라고 명명하였다. A: (200518 Stratagene, Cat Number. ) More specifically, the QuikChange ® Site-Directed Mutagenesis Kit to phrGFPⅡ-C vectors to addition of Eco RV cleavage site produced with primers (SEQ ID NOS: 3 and 4), and mutations (mutagenesis) It was used and carried out according to the instruction manual (see Table 1). The PCR product was transformed into Top10 competent cells to obtain clones in which the Eco RV cleavage site was successfully obtained, and finally confirmed by sequencing, named "GFPKI-RV vector".

다음으로, GFPKI-RV 벡터에 SalI 절단부위를 첨가하기 위해 프라이머(서열번호 5 및 6)를 이용하여 상기와 같이 돌연변이를 실시하였다(표 1). PCR 산물을 Top10 컴피턴트 세포에 형질전환하여 SalI 절단부위가 성공적으로 만들어진 클론을 확보하였고, 염기서열분석을 통해 최종적으로 확인하고, "GFPKI-S 벡터" 라 명명하였다. Next, mutations were performed as described above using primers (SEQ ID NOs: 5 and 6) to add Sal I cleavage sites to the GFPKI-RV vector (Table 1). The PCR product was transformed into Top10 competent cells to obtain a clone in which the Sal I cleavage site was successfully formed, and finally confirmed by sequencing, named "GFPKI-S vector".

마지막으로. GFPKI-S 벡터에 PacI 절단부위를 첨가하기 위해 프라이머(서열번호 7 및 8)를 이용하여 상기와 같이 돌연변이를 실시하였다(표 1). PCR 산물을 Top10 컴피턴트 세포에 형질전환하여 PacI 절단부위가 성공적으로 만들어진 클론을 확보하였고, 염기서열분석을 통해 최종적으로 확인함으로써, EcoRV, SalI 및 PacI 절단부위를 포함하는 4.8kb의 GFP 레포터 넉인벡터인 GFPKI-PS 벡터를 완성하였다(도 1). 상기 벡터의 염기서열은 서열번호 1로 나타내었으며, 변이된 GFP의 ORF는 서열번호 2에 나타내었다.Finally. In GFPKI-S vector Mutations were performed as above using primers (SEQ ID NOS: 7 and 8) to add Pac I cleavage sites (Table 1). The PCR product was transformed into Top10 competent cells to obtain a clone that successfully produced the Pac I cleavage site, and finally confirmed by sequencing, 4.8kb containing Eco RV, Sal I and Pac I cleavage site. The GFP reporter knock-in vector, GFPKI-PS vector, was completed (FIG. 1). The base sequence of the vector is shown in SEQ ID NO: 1, the ORF of the mutated GFP is shown in SEQ ID NO: 2.

도 1과 같이, GFP의 ORF에 EcoRV 절단부위가 첨가된 새로운 GFP 레포터 넉인벡터를 제조함으로써, 넉아웃 유전자의 염기서열에 관계없이 모든 넉아웃 유전자에 대해 개시코돈인 ATG로부터 GFP의 ORF로 대체시킬 수 있는 방법이 가능토록 하였다. 이하 실시예를 통해 그 방법을 설명한다.As shown in Figure 1, by preparing a new GFP reporter knock-in vector with the addition of the Eco RV cleavage site to the ORF of GFP, from the start codon ATG to the ORF of the GFP for all knockout genes regardless of the nucleotide sequence of the knockout gene An alternative method is possible. The method is described through the following examples.

GFP의 ORF 내에 EcoRV 절단부위 첨가Addition of Eco RV cleavage site in ORF of GFP 프라이머primer 서열번호 3(GFPKI-RV-5'):
5'-GCCGCACCATGGTGAGCAAGgAtATCCTGAAGAAC ACCGG-3'
SEQ ID NO: 3 (GFPKI-RV-5 '):
5'-GCCGCACCATGGTGAGCAAG gAtATC CTGAAGAAC ACCGG-3 '
서열번호 4(GFPKI-RV-3'):
5'-CCGGTGTTCTTCAGGATaTcCTTGCTCACCATGGT GCGGC-3'
SEQ ID NO: 4 (GFPKI-RV-3 '):
5'-CCGGTGTTCTTCAG GATaTc CTTGCTCACCATGGT GCGGC-3 '
밑줄 부분이 EcoRV 제한효소가 인식하는 염기서열이며 이중 소문자가 변형시킨 염기서열임Underlined sequences are recognized by Eco RV restriction enzyme, and the sequences are modified by lowercase letters. PCR 을 위한 돌연변이 가닥 합성 반응액Mutant Strand Synthesis Reaction for PCR 5㎕ 10×reaction buffer5 μl 10 × reaction buffer PCR 조건PCR conditions 사이클 1: 95℃, 30초
사이클 17: 95℃, 30초/ 55℃, 1분/ 68℃, 5분
사이클 1: 4℃, 2분
(이때, 1㎕ Dpn I 제한효소를 첨가함)
사이클 1: 37℃, 1시간
Cycle 1: 95 ° C., 30 seconds
Cycle 17: 95 ° C., 30 seconds / 55 ° C., 1 minute / 68 ° C., 5 minutes
Cycle 1: 4 ° C., 2 minutes
(1 μl Dpn I restriction enzyme is added)
Cycle 1: 37 ° C., 1 hour
1㎕ phrGFPII-C 벡터 (50ng) 1 μl phrGFPII-C vector (50 ng) 1㎕ GFPKI-RV-5' primer(10pmole)1 μl GFPKI-RV-5 'primer (10pmole) 1㎕ GFPKI-RV-3' primer(10pmole)1 μl GFPKI-RV-3 'primer (10pmole) 1㎕ dNTP mix1 μl dNTP mix 41㎕ ddH2O41 μl ddH 2 O 1㎕ PfuTurbo DNA polymerase(2.5 U/㎕)1 μl PfuTurbo DNA polymerase (2.5 U / μl) SalI 절단부위 첨가 Sal I cutting site added 프라이머primer (서열번호 5) GFPKI-SI-5'): 5'-GCATGCTGGGGCGtCGaCGCGCGTAAATTGTAAGC-3'(SEQ ID NO: 5) GFPKI-SI-5 '): 5'-GCATGCTGGGGC GtCGaC GCGCGTAAATTGTAAGC-3' (서열번호 6) GFPKI-SI-3'): 5'-GCTTACAATTTACGCGCGtCGaCGCCCCAGCATGC-3'(SEQ ID NO: 6) GFPKI-SI-3 '): 5'-GCTTACAATTTACGCGC GtCGaC GCCCCAGCATGC-3' 밑줄 부분이 SalI 제한효소가 인식하는 염기서열이며 이중 소문자가 변형시킨 염기서열임Underlined sequences recognized by Sal I restriction enzymes, of which the lowercase sequences are modified PCR 을 위한 돌연변이 가닥 합성 반응액Mutant Strand Synthesis Reaction for PCR 5㎕ 10×reaction buffer5 μl 10 × reaction buffer PCR
조건
PCR
Condition
사이클 1: 95℃, 30초
사이클 17: 95℃, 30초/ 55℃, 1분/ 68℃, 5분
사이클 1: 4℃, 2분
(이때, 1㎕ Dpn I 제한효소를 첨가함)
사이클 1: 37℃, 1시간
Cycle 1: 95 ° C., 30 seconds
Cycle 17: 95 ° C., 30 seconds / 55 ° C., 1 minute / 68 ° C., 5 minutes
Cycle 1: 4 ° C., 2 minutes
(1 μl Dpn I restriction enzyme is added)
Cycle 1: 37 ° C., 1 hour
1㎕ GFPKI-RV 벡터 (50ng) 1 μl GFPKI-RV vector (50 ng) 1㎕ GFPKI-SI-5' primer(10pmole)1 μl GFPKI-SI-5 'primer (10pmole) 1㎕ GFPKI-SI-3' primer(10pmole)1 μl GFPKI-SI-3 'primer (10pmole) 1㎕ dNTP mix1 μl dNTP mix 41㎕ ddH2O41 μl ddH 2 O 1㎕ PfuTurbo DNA polymerase(2.5 U/㎕)1 μl PfuTurbo DNA polymerase (2.5 U / μl) PacI 절단부위 첨가 Pac I cutting site added 프라이머primer (서열번호 7) GFPKI-PacI-5'):
5'-CGCGCGTAAATTGTAAGCGTTAATtaaTTGTTAAAATTCGC-3'
(SEQ ID NO 7) GFPKI-PacI-5 '):
5'-CGCGCGTAAATTGTAAGCG TTAATtaa TTGTTAAAATTCGC-3 '
(서열번호 8) GFPKI-PacI-3'):
5'-GCGAATTTTAACAAttaATTAACGCTTACAATTTACGCGCG-3'
(SEQ ID NO: 8) GFPKI-PacI-3 '):
5'-GCGAATTTTAACAA ttaATTAA CGCTTACAATTTACGCGCG-3 '
밑줄 부분이 PacI 제한효소가 인식하는 염기서열이며 이중 소문자가 변형시킨 염기서열임Underlined sequences are recognized by Pac I restriction enzymes, and the sequences are modified by lowercase letters. PCR 을 위한 돌연변이 가닥 합성 반응액Mutant Strand Synthesis Reaction for PCR 5㎕ 10×reaction buffer5 μl 10 × reaction buffer PCR
조건
PCR
Condition
사이클 1: 95℃, 30초
사이클 17: 95℃, 30초/ 55℃, 1분/ 68℃, 5분
사이클 1: 4℃, 2분
(이때, 1㎕ Dpn I 제한효소를 첨가함)
사이클 1: 37℃, 1시간
Cycle 1: 95 ° C., 30 seconds
Cycle 17: 95 ° C., 30 seconds / 55 ° C., 1 minute / 68 ° C., 5 minutes
Cycle 1: 4 ° C., 2 minutes
(1 μl Dpn I restriction enzyme is added)
Cycle 1: 37 ° C., 1 hour
1㎕ GFPKI-S 벡터 (50ng) 1 μl GFPKI-S vector (50 ng) 1㎕ GFPKI-PacI-5' primer(10pmole)1 μl GFPKI-PacI-5 'primer (10pmole) 1㎕ GFPKI-PacI-3' primer(10pmole)1 μl GFPKI-PacI-3 'primer (10pmole) 1㎕ dNTP mix1 μl dNTP mix 41㎕ ddH2O41 μl ddH 2 O 1㎕ PfuTurbo DNA polymerase(2.5 U/㎕)1 μl PfuTurbo DNA polymerase (2.5 U / μl)

<실시예 2> GFP 레포터 넉인벡터를 이용한 넉아웃 벡터의 제작Example 2 Fabrication of Knockout Vector Using GFP Reporter Knock-in Vector

실시예 1에서 제작한 GFP 레포터 넉인벡터를 넉아웃 유전자의 프로모터 서열과 이에 연결되는 GFP 유전자의 ATG로부터 실시예 1의 GFP 레포터 넉인벡터 제작 시 결실되었던 GFP ORF의 5' 말단 염기서열을 포함하는 유전자 조각과 연결하여 넉아웃 벡터를 클로닝 하였다.The GFP reporter knock-in vector prepared in Example 1 includes the 5 'terminal sequence of the GFP ORF, which was deleted during preparation of the GFP reporter knock-in vector of Example 1 from the promoter sequence of the knockout gene and the ATG of the GFP gene linked thereto. The knockout vector was cloned in association with the gene fragment.

우선, GFP 레포터 넉인벡터에 포함된 GFP 유전자의 5' 말단과 연결하여 넉아웃 유전자의 개시코돈을 GFP의 개시코돈을 포함한 ORF로 전환할 수 있도록 프라이머를 고안하였다(도 2). First, primers were designed to be connected to the 5 'end of the GFP gene included in the GFP reporter knock-in vector to convert the start codon of the knockout gene into an ORF including the start codon of GFP (FIG. 2).

5' 프라이머 내에 박스로 표시된 염기서열(AAG CTT) 부분은 GFP 레포터 넉인벡터의 클로닝 부분에 사용될 수 있는 제한효소 중 유용한 제한효소를 선택하여 사용하도록 고안한 것으로, HindIII, Kpn I, BamHI, SmaI 등을 사용할 수 있으며, 이들 특정 제한효소로 제한되지 아니한다. 제한효소가 적절하게 작동될 수 있도록 5' 말단에 3개의 염기서열(CCG)을 첨가하여 디자인하였다(서열번호 9). 3' 쪽 넉아웃 유전자의 5' 단편의 5' 쪽의 염기서열(프로모터 서열)에 해당한다. The boxed nucleotide sequence (AAG CTT) portion of the 5 'primer is designed to select and use a useful restriction enzyme among the restriction enzymes that can be used for the cloning portion of the GFP reporter knock-in vector. Hind III, Kpn I, Bam HI, Sma I and the like can be used and are not limited to these specific restriction enzymes. Three restriction sequences (CCG) were added at the 5 'end to designate restriction enzymes (SEQ ID NO: 9). Corresponds to the nucleotide sequence on the 5 'side of the 5' fragment of the 3 'knockout gene (promoter sequence).

3'-프라이머에서 노란색 염기서열(CTG CTT GCT CAC CAT, 서열번호 10) 부분은 GFP 레포터 넉인벡터 제조 시 삭제되었던 GFP ORF의 5' 말단 쪽 ATG로부터 15bp의 염기서열을 나타내는 것이다. 이의 보완을 통해 완전한 GFP ORF를 만들고 레포터로서의 발현을 확인하였다. 상기 15bp 염기서열의 3' 말단이 ATG이고, 이로부터 넉아웃 유전자의 개시코돈인 ATG의 5' 방향 염기서열을 이용하여 프라이머를 디자인하였다.The yellow nucleotide sequence (CTG CTT GCT CAC CAT, SEQ ID NO: 10) portion of the 3'-primer represents the base sequence of 15bp from the ATG of the 5 'end of the GFP ORF, which was deleted when preparing the GFP reporter knock-in vector. Complement of this made a complete GFP ORF and confirmed its expression as a reporter. The 3 'end of the 15bp sequence is ATG, from which a primer was designed using the 5' direction sequence of ATG, the start codon of the knockout gene.

이로써, 넉아웃 유전자의 염기서열에 관계없이 넉아웃 유전자의 ATG로부터 GFP의 ORF가 치환되어 레포터로 발현될 수 있게 하였다.As a result, the ORF of GFP was substituted from the ATG of the knockout gene and expressed as a reporter regardless of the nucleotide sequence of the knockout gene.

마우스의 TIEG1(Transforming Growth Factor β-inducible early gene 1) 유전자를 넉아웃시키고 이의 발현양상을 GFP 레포터 넉인을 이용하여 알아보고자 넉아웃 벡터를 고안하였다.A knockout vector was designed to knock out the transforming growth factor β-inducible early gene 1 (TIEG1) gene of the mouse and to determine its expression pattern by using the GFP reporter knock-in.

TIEG1 유전자의 개시코돈 ATG로부터 5'-업스트림으로 약 4kb 되는 부분(3963bp 단편, 서열번호 11)을 상기 고안된 프라이머 중 BamHI 제한효소 자리를 갖도록 고안된 5'-프라이머(서열번호 12: TIEG1/KO/5'-1: 5'-CCCGGATCCTTCTCCCACTATCCTAGAAGTTCC-3'와 GFP의 5' 말단 쪽의 결실된 폴리뉴클레오티드를 포함하도록 고안된 3'-프라이머(서열번호 13: TIEG1/KO/3'-1: 5'-CTGCTTGCTCACCATGGTTGGCTGCCTGGCCG-3'를 이용하여 주형 0.5㎕(10ng of plasmid DNA), 프라이머 쌍(10pmole) 1㎕/1㎕, 10×buffer 2.5㎕, dNTP(10mM) 1㎕, Taq Polymerase 0.5㎕(2.5U) 및 dH2O 18.5㎕로 총 25㎕의 반응액을 제조하여, 94℃, 2분; 94℃, 60초/ 60℃, 60초/ 72℃, 2분으로 30 사이클; 72℃, 10분의 조건으로 PCR 증폭시켰다.TIEG1 start codon from ATG to the 5'-portion of about 4kb upstream of the gene (3963bp fragment, SEQ ID NO: 11) the designed primer of Bam HI restriction enzyme place a primer designed to have 5 ' (SEQ ID NO: 12: TIEG1 / KO / 5'-1: 3'-primer designed to contain 5'-CCCGGATCCTTCTCCCACTATCCTAGAAGTTCC-3 'and the deleted polynucleotide on the 5' end of GFP (SEQ ID NO: 13: TIEG1 / KO / 3'-1: 5'-CTGCTTGCTCACCATGGTTGGCTGCCTGGCCG 0.5 μl of template (10 ng of plasmid DNA), primer pair (10 pmole) using -3 ' A total of 25 μl of a reaction solution was prepared from 1 μl / 1 μl, 10 × buffer 2.5 μl, dNTP (10 mM) 1 μl, Taq Polymerase 0.5 μl (2.5U) and dH 2 O 18.5 μl, 94 ° C., 2 minutes; 30 cycles of 94 ° C, 60 seconds / 60 ° C, 60 seconds / 72 ° C, 2 minutes; PCR amplification was carried out at 72 ° C. for 10 minutes.

PCR 산물(서열번호 14)을 BamHI 제한효소로 처리하고, 실시예 1에서 제조한 GFP 레포터 넉인벡터의 GFP 유전자의 5' 말단 쪽을 BamHI/EcoRV로 절단한 후 클로닝 하였다.The PCR product (SEQ ID NO: 14) was treated with BamH I restriction enzyme, and the 5 'end of the GFP gene of the GFP reporter knock-in vector prepared in Example 1 was cut with BamHI / EcoR V and cloned.

이렇게 클로닝된 재조합벡터의 5'-아암은 넉아웃에 사용된 기본벡터인 OsdupdeI(미국 National Institutes of Health의 Heiner Westphal 박사로부터 기증 받음)의 MCS1의 HindIII와 PacI 사이트 사이에 클로닝되었다. 또한, TIEG1 유전자의 엑손 3의 일부와 엑손 4가 포함된 약 3.4kb(3425bp 단편, 서열번호 15)의 재조합벡터의 3'-아암은 KpnI/EcoRI으로 절단하여 상기 5'-아암이 클로닝된 OsdupdeI 벡터의 MCS2의 PmlI 사이트에 클로닝되어 GFP 유전자 뒷부분에 위치하게 하였다(도 3). The 5'-arm of the cloned recombinant vector was cloned between the Hind III and Pac I sites of MCS1 of Osdupde I (donated by Dr. Heiner Westphal of the National Institutes of Health, USA), the base vector used for knockout. In addition, the 3'-arm of the recombinant vector of about 3.4 kb (3425 bp fragment, SEQ ID NO: 15) containing a part of exon 3 and exon 4 of the TIEG1 gene was cut with Kpn I / EcoR I to clone the 5'-arm. It was cloned into the Pml I site of MCS2 of the OsdupdeI vector, which was located behind the GFP gene (FIG. 3).

이렇게 제작된 TIEG1 넉아웃 벡터를 R1 생쥐 배아줄기세포(Heiner Westphal 박사로부터 기증받음)에 도입하여 동종 재조합을 유도하였고, 5'-프로브 및 3'-프로브를 이용하여 써던 블롯을 수행하였다.The TIEG1 knockout vector thus prepared was introduced into R1 mouse embryonic stem cells (donated by Heiner Westphal) to induce homologous recombination, and Southern blots were performed using 5'- and 3'-probes.

도 4에 나타난 바와 같이, R1 생쥐 배아줄기세포의 클론번호(87, 88, 90)은 넉아웃 벡터와 동종 재조합이 일어난 것으로 확인되었고, 클론번호(89, 91)은 음성이었다. 총 182개의 클론 중 25개의 클론에서 동종재조합에 의해 TIEG1의 개시코돈인 ATG 부터 녹색형광단백질의 ORF로 대체된 것을 확인하였다. As shown in FIG. 4, clone numbers (87, 88, 90) of R1 mouse embryonic stem cells were confirmed to have homologous recombination with knockout vectors, and clone numbers (89, 91) were negative. It was confirmed that 25 clones out of 182 clones were replaced by ORTG of green fluorescent protein by ATG, which is the start codon of TIEG1.

상기 넉아웃된 게놈 DNA 벡터를 신경아세포종 세포인 NS20Y 세포(미국 National Institutes of Health의 Maral Mouradian 박사로부터 기증받음)에 통상의 방법에 따라 트랜스펙션하여 형광도를 측정하였다.The knocked out genomic DNA vector was transfected into NS20Y cells, which are neuroblastoma cells (donated by Dr. Maral Mouradian of the National Institutes of Health, USA) according to a conventional method to measure fluorescence.

도 5에 나타난 바와 같이, GFP 레포터 넉인벡터가 들어있지 않은 벡터가 트랜스펙션된 경우, 형광도가 전혀 나타나지 않는 반면, GFP 레포터 넉인벡터가 트랜스펙션된 경우에는 TIEG1 프로모터에 의해 GFP의 형광이 나타남을 확인할 수 있었다.As shown in FIG. 5, when the vector containing the GFP reporter knock-in vector is transfected, fluorescence does not appear at all, whereas when the GFP reporter knock-in vector is transfected, the GFP reporter knock-in vector is transfected by the TIEG1 promoter. It was confirmed that fluorescence appeared.

<실시예 3> PCR에 의한 TIEG1의 유전자형 확정(Genotyping)Example 3 Genotyping of TIEG1 by PCR

PCR을 수행하여 TIEG1의 유전자형을 확정하였다. 프라이머(서열번호 16, 17 및 18)를 사용하였고, 서열번호 16과 17의 프라이머로 TIEG1 wild type을 서열번호 16과 18의 프라이머로 TIEG1 mutant 클론을 확인할 수 있다.PCR was performed to confirm the genotype of TIEG1. Primers (SEQ ID NOs: 16, 17, and 18) were used, and the primers of SEQ ID NOs: 16 and 17 can identify TIEG1 mutant clones using the primers of SEQ ID NOs: 16 and 18.

TIEG1 5'-1(서열번호 16): 5'-TGTACACGCTCCACTGACAG -3'TIEG1 5'-1 (SEQ ID NO: 16): 5'-TGTACACGCTCCACTGACAG -3 '

TIEG1 3'-1(서열번호 17): 5'-CCTTGTCTCCTGGATACC -3'TIEG1 3'-1 (SEQ ID NO: 17): 5'-CCTTGTCTCCTGGATACC -3 '

GFPKI-PS 3'-1(서열번호 18): 5'-CGAACAGGATGTTGCCCT TGC-3'GFPKI-PS 3'-1 (SEQ ID NO: 18): 5'-CGAACAGGATGTTGCCCT TGC-3 '

1. TIEG1 5'-1 및 TIEG1 3'-1(591 bp for wild-type)1.TIEG1 5'-1 and TIEG1 3'-1 (591 bp for wild-type)

주형 0.5㎕(genomic DNA prep), 프라이머 쌍(10 pmole) 1㎕/1㎕, 10×buffer (w/o MgCl2) 2.5㎕, MgCl2(50mM) 1.5㎕, dNTP(10mM) 1㎕, Taq Polymerase 0.5㎕(2.5U), dH2O 17㎕로 총 25㎕의 반응 혼합액을 제조하고, 94℃, 2분; 94℃, 30초/ 58℃, 30초/ 72℃, 30초로 30 사이클; 72℃, 3분 동안 PCR을 실시하였다. Template 0.5 μl (genomic DNA prep), 1 μl / 1 μl primer pair (10 pmole), 2.5 μl 10 × buffer (w / o MgCl 2 ), 1.5 μl MgCl 2 (50 mM), 1 μl dNTP (10 mM), Taq A total of 25 µl of the reaction mixture was prepared from 0.5 µl of Polymerase (2.5 U) and 17 µl of dH 2 O, 94 ° C., 2 minutes; 30 cycles of 94 ° C, 30 seconds / 58 ° C, 30 seconds / 72 ° C, 30 seconds; PCR was performed at 72 ° C. for 3 minutes.

2. TIEG1 5'-1 및 GFPKI-PS 3'-1 (424 bp for mutant)2.TIEG1 5'-1 and GFPKI-PS 3'-1 (424 bp for mutant)

주형 0.5㎕(genomic DNA prep), 프라이머 쌍(10 pmole) 1㎕/1㎕, 10×buffer (w/o MgCl2) 2.5㎕, MgCl2(50mM) 1㎕, dNTP(10mM) 1㎕, Taq Polymerase 0.5㎕(2.5U), dH2O 17.5㎕로 총 25㎕의 반응 혼합액을 제조하고, 94℃, 2분; 94℃, 30초/ 62℃, 30초/ 72℃, 30초로 30 사이클; 72℃, 3분 동안 PCR을 실시하였다.Template 0.5 μl (genomic DNA prep), 1 μl / 1 μl primer pair (10 pmole), 2.5 μl 10 × buffer (w / o MgCl 2 ), 1 μl MgCl 2 (50 mM), 1 μl dNTP (10 mM), Taq A total of 25 µl of the reaction mixture was prepared from 0.5 µl of Polymerase ( 2.5 U) and 17.5 µl of dH 2 O, and 94 ° C. for 2 minutes; 30 cycles of 94 ° C, 30 seconds / 62 ° C, 30 seconds / 72 ° C, 30 seconds; PCR was performed at 72 ° C. for 3 minutes.

PCR 결과, TIEG1의 wild type은 591bp이며 mutant는 424bp 였다.As a result of PCR, wild type of TIEG1 was 591bp and mutant was 424bp.

도 1은 EcoRV 절단부위를 포함하는 녹색형광단백질(GFP) 레포터가 삽입되어 있는 GFP 레포터 넉인벡터의 개열지도를 도시한 것이다.1 shows a cleavage map of a GFP reporter knock-in vector into which a green fluorescent protein (GFP) reporter including an Eco RV cleavage site is inserted.

도 2는 GFP 레포터 넉인벡터를 이용하여 넉아웃 벡터를 제조하기 위해 넉아웃 유전자의 개시코돈인 ATG로부터 GFP의 개시코돈과 GFP 레포터 넉인벡터 제조 시 결실된 15개 염기서열을 포함하는 재조합벡터의 5' 말단 유전자 조각을 만들기 위한 프라이머 디자인 구조를 나타낸 것이다.Figure 2 is a recombinant vector comprising 15 base sequences deleted in the preparation of the GFP start codon and GFP reporter knock-in vector from ATG, the start codon of the knockout gene to prepare a knockout vector using the GFP reporter knock-in vector The primer design structure for making the 5 'terminal gene fragment is shown.

도 3은 GFP 레포터 넉인벡터를 이용하여 TIEG1 유전자를 넉아웃 시키기 위한 넉아웃 벡터를 클로닝하는 전 과정을 나타내는 벡터제작 모식도를 나타낸 것이다.Figure 3 shows a vector production schematic showing the whole process of cloning the knockout vector for knocking out the TIEG1 gene using the GFP reporter knock-in vector.

도 4는 배아줄기세포에서 본 발명의 넉아웃 벡터와 동종 재조합이 일어난 것을 보이는 써던 블롯 결과를 나타낸 것이다.Figure 4 shows the Southern blot results showing that homologous recombination of the knockout vector of the present invention in embryonic stem cells.

도 5는 본 발명의 넉아웃 벡터를 NS20Y 세포에 트랜스펙션하여 형광도를 측정한 결과를 나타낸 것이다. Figure 5 shows the results of measuring the fluorescence by transfecting the knockout vector of the present invention to NS20Y cells.

도 6은 PCR에 의한 TIEG1의 유전자형확정(Genotyping)을 나타낸 것이다.Figure 6 shows the genotyping (Genotyping) of TIEG1 by PCR.

<110> Industry-Academic Cooperation Foundation, Yonsei University <120> A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal <160> 18 <170> KopatentIn 1.71 <210> 1 <211> 4849 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PS vector <220> <221> variation <222> (790)..(795) <223> EcoRV site <220> <221> variation <222> (1780)..(1785) <223> Sal I site <220> <221> variation <222> (1808)..(1813) <223> PacI site <220> <221> gene <222> (778)..(1494) <223> Open Reading Frame of Green Fluorescent Protein <400> 1 aggcgcgccg cgatgtacgg gccagattta cgcgttgaca ttgattattg actagttatt 60 aatagtaatc aattacgggg tcattagttc atagcccata tatggagttc cgcgttacat 120 aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca ttgacgtcaa 180 taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt caatgggtgg 240 agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc 300 cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag tacatgacct 360 tatgggactt tcctacttgg cagtacatct acgtattagt catcgctatt accatggtga 420 tgcggttttg gcagtacatc aatgggcgtg gatagcggtt tgactcacgg ggatttccaa 480 gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa cgggactttc 540 caaaatgtcg taacaactcc gccccattga agcaaatggg cggtaggcgt gtacggtggg 600 aggtctatat aagcagagct ctctggctaa ctagagaacc cactgcttac tggcttatcg 660 aaattaatac gactcactat agggagaccc aagcttctgg aggcccgggc tttcagggta 720 ccgaagaagg atccaaggag gaattctgca gatatccatc acactggcgg ccgcaccatg 780 gtgagcaagg atatcctgaa gaacaccggc ctgcaggaga tcatgagctt caaggtgaac 840 ctggagggcg tggtgaacaa ccacgtgttc accatggagg gctgcggcaa gggcaacatc 900 ctgttcggca accagctggt gcagatccgc gtgaccaagg gcgcccccct gcccttcgcc 960 ttcgacatcc tgagccccgc cttccagtac ggcaaccgca ccttcaccaa gtaccccgag 1020 gacatcagcg acttcttcat ccagagcttc cccgccggct tcgtgtacga gcgcaccctg 1080 cgctacgagg acggcggcct ggtggagatc cgcagcgaca tcaacctgat cgaggggatg 1140 ttcgtgtacc gcgtggagta caagggccgc aacttcccca acgacggccc cgtgatgaag 1200 aagaccatca ccggcctgca gcccagcttc gaggtggtgt acatgaacga cggcgtgctg 1260 gtgggccagg tgatcctggt gtaccgcctg aacagcggca agttctacag ctgccacatg 1320 cgcaccctga tgaagagcaa gggcgtggtg aaggacttcc ccgagtacca cttcatccag 1380 caccgcctgg agaagaccta cgtggaggac ggcggcttcg tagagcagca cgagaccgcc 1440 atcgcccagc tgaccagcct gggcaagccc ctgggcagcc tgcacgagtg ggtgtaagct 1500 cgagcatgca tctagagggc cctattccct ttagtgaggg ttaattgcta gagctcgctg 1560 atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc 1620 ttccttgacc ctggaaggtg ccactctcac tgtcctttcc taataaaatg aggaaattgc 1680 atcgcattgt ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa 1740 gggggaggat tgggaagaca atagcaggca tgctggggcg tcgacgcgcg taaattgtaa 1800 gcgttaatta attgttaaaa ttcgcgttaa atttttgtta aatcagctca ttttttaacc 1860 aataggccga aatcggcaaa atcccttata aatcaaaaga atagaccgag atagggttga 1920 gtgttgttcc agtttggaac aagagtccac tattaaagaa cgtggactcc aacgtcaaag 1980 ggcgaaaaac cgtctatcag ggcgatggcc cactacgtga accatcaccc taatcaagtt 2040 ttttggggtc gaggtgccgt aaagcactaa atcggaaccc taaagggagc ccccgattta 2100 gagcttgacg gggaaagccg gcgaacgtgg cgagaaagga agggaagaaa gcgaaaggag 2160 cgggcgctag ggcgctggca agtgtagcgg tcacgctgcg cgtaaccacc acacccgccg 2220 cgcttaatgc gccgctacag ggcgcgtcag gtggcacttt tcggggaaat gtgcgcggaa 2280 cccctatttg tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac 2340 cctgataaat gcttcaataa tattgaaaaa ggaagaatcc tgaggcggaa agaaccagct 2400 gtggaatgtg tgtcagttag ggtgtggaaa gtccccaggc tccccagcag gcagaagtat 2460 gcaaagcatg catctcaatt agtcagcaac caggtgtgga aagtccccag gctccccagc 2520 aggcagaagt atgcaaagca tgcatctcaa ttagtcagca accatagtcc cgcccctaac 2580 tccgcccagt tccgcccatt ctccgcccca tggctgacta atttttttta tttatgcaga 2640 ggccgaggcc gcctcggcct ctgagctatt ccagaagtag tgaggaggct tttttggagg 2700 cctaggcttt tgcaaagatc gatcaagaga caggatgagg atcgtttcgc atgattgaac 2760 aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc ggctatgact 2820 gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca gcgcaggggc 2880 gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg caagacgagg 2940 cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg 3000 tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag gatctcctgt 3060 catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg cggcggctgc 3120 atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc atcgagcgag 3180 cacgtactcg gatggaagcc ggtcttctcg atcaggatga tctggacgaa gaacatcagg 3240 ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgag catgcccgac ggcgaggatc 3300 tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt 3360 ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac atagcgttgg 3420 ctacccgtga tattgctgaa gaacttggcg gcgaatgggc tgaccgcttc ctcgtgcttt 3480 acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt gacgagttct 3540 tctgagcggg actctggggt tcgaaatgac cgaccaagcg acgcccaacc tgccatcacg 3600 agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg ttttccggga 3660 cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg cccaccctag 3720 ggggaggcta actgaaacac ggaaggagac aataccggaa ggaacccgcg ctatgacggc 3780 aataaaaaga cagaataaaa cgcacggtgt tgggtcgttt gttcataaac gcggggttcg 3840 gtcccagggc tggcactctg tcgatacccc accgagaccc cattggggcc aatacgcccg 3900 cgtttcttcc ttttccccac cccacccccc aagttcgggt gaaggcccag ggctcgcagc 3960 caacgtcggg gcggcaggcc ctgccatagc ctcaggttac tcatatatac tttagattga 4020 tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat 4080 gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 4140 caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 4200 accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 4260 ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt 4320 aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 4380 accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 4440 gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 4500 ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 4560 gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 4620 gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 4680 ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 4740 aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 4800 gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcc 4849 <210> 2 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> Open Reading Frame of Green Fluorescent protein <400> 2 atggtgagca aggatatcct gaagaacacc ggcctgcagg agatcatgag cttcaaggtg 60 aacctggagg gcgtggtgaa caaccacgtg ttcaccatgg agggctgcgg caagggcaac 120 atcctgttcg gcaaccagct ggtgcagatc cgcgtgacca agggcgcccc cctgcccttc 180 gccttcgaca tcctgagccc cgccttccag tacggcaacc gcaccttcac caagtacccc 240 gaggacatca gcgacttctt catccagagc ttccccgccg gcttcgtgta cgagcgcacc 300 ctgcgctacg aggacggcgg cctggtggag atccgcagcg acatcaacct gatcgagggg 360 atgttcgtgt accgcgtgga gtacaagggc cgcaacttcc ccaacgacgg ccccgtgatg 420 aagaagacca tcaccggcct gcagcccagc ttcgaggtgg tgtacatgaa cgacggcgtg 480 ctggtgggcc aggtgatcct ggtgtaccgc ctgaacagcg gcaagttcta cagctgccac 540 atgcgcaccc tgatgaagag caagggcgtg gtgaaggact tccccgagta ccacttcatc 600 cagcaccgcc tggagaagac ctacgtggag gacggcggct tcgtagagca gcacgagacc 660 gccatcgccc agctgaccag cctgggcaag cccctgggca gcctgcacga gtgggtg 717 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-RV-5' <400> 3 gccgcaccat ggtgagcaag gatatcctga agaacaccgg 40 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-RV-3' <400> 4 ccggtgttct tcaggatatc cttgctcacc atggtgcggc 40 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-SI-5' <400> 5 gcatgctggg gcgtcgacgc gcgtaaattg taagc 35 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-SI-3' <400> 6 gcttacaatt tacgcgcgtc gacgccccag catgc 35 <210> 7 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PacI-5' <400> 7 cgcgcgtaaa ttgtaagcgt taattaattg ttaaaattcg c 41 <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PacI-3' <400> 8 gcgaatttta acaattaatt aacgcttaca atttacgcgc g 41 <210> 9 <211> 9 <212> DNA <213> Artificial Sequence <220> <223> 5'primer: designed by containing restriction site <400> 9 ccgaagctt 9 <210> 10 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> 3'primer: designed by containing polynucleotides deleted from ORF of GFP <400> 10 ctgcttgctc accat 15 <210> 11 <211> 3963 <212> DNA <213> Mus sp. <220> <221> promoter <222> (1)..(3963) <223> promoter of TIEG1(Transforming Growth Factor beta-inducible early gene 1) <400> 11 cttctcccac tatcctagaa gttccttcaa cacagggaat gtttttatga tggttctcca 60 gtgttcacta atgcctgaca tgtggtacag ccaaaaaggg atgaacaagg atgagacttg 120 gtgactgtac agagcaaaga gaagctcgct ggtaggtaca atgtgttcta agatcagtat 180 ctgaactggg gagtctctat cttcaatatt ctgactgaag ggaaaccaac accattagca 240 ataagggtca gcatctgagg tatcacttcc tacagccaaa ttaagtctcc tctcttattc 300 atgcccaaga tgactacatc tatgaagggc cttgtaacag cacaatctaa gagaagggtt 360 tggaaggact cgtacttcca ctcacatatt ggcccacatt gtctgcaatc ccatggggtc 420 ttcagaaaca atctagtatt ttatttaatt cattgggaaa aatgtatcaa gtacctatta 480 aaagaacaaa ttgttaataa gaaagatact atggaactgg gcacaacagc tcatgtcggg 540 tgatcacagc acttcaggag ctgaggcagg aggcttgctg agagttccag gccagcttga 600 gtgtatatat gaagggacat tatgaaatga ccactgtctt ataggagttt agatctgagt 660 ggggtgtggg caggattcaa tactataaaa ggttttgcaa taacatatat atatatatat 720 atatatatat atatatatat atatatctcc ttacttataa cattgctttg gaggagaggc 780 aggcaaataa ttcagcctgg agctatcaag gaaggcttca ccaacatggc aaggaaacac 840 tgaaaccaga gagaaaaggg gccttcagaa aaaaaaaaaa aagcatctct tccaagagag 900 tctagcctct ctttgcacca agtcttgtgt cattccatag cctgtaaatt cttcagtagt 960 cagtctccac ctgaaactat gtagcccagg ctggtctcat ttatgacaat cttgtcttag 1020 cctcccatgt ggcacaccct tgtgatccca gtagttggca gataaaggca gaagattcaa 1080 gagctcgaga ccagtctact ggccggccta gaatacgcag atgctcaata acattggttg 1140 aatgcatcag tgaacagagg cctgaaggac agtgcttatt gaatgggggt gtggcatgga 1200 gatgtatgca ctgtatgatg gctctgggca agggaagaac ttactaaaag gctgaaaagt 1260 tgaatgagta gctggagacc cctagctcat aaaggggtag ccttttatct cccgataaca 1320 atagacaaag gtaatttatt taagtaggga ttgttgtgat cttaagttta agcatggcat 1380 ctgggctctg gaaaacaagt tgtgatgtgg gtggatgtcc tgggattaca gacagaaata 1440 gcttcgtgca agctagaggt gaaacactga gccaagtgcc tgcctggtgc ccattagccc 1500 agtacttggg aggctgtggc aggagggttg tctaggtagc cagggctaca cagaatttgt 1560 cagccagcca gggctgcata gtgagaccct gttactgaag aacaatgggg ggaggggggt 1620 gaagacaggc agacagagta ccttgtaaaa caaacagtaa gtaggtgttt ctgaggcaaa 1680 gctgtctaga gctggggact aactagatct cacttaagtt tttgagggag ggaggcaact 1740 gtggctagac tggcaatgat caccccttaa gaccacaaag aaagaggagt tttagatttg 1800 gcgatattag gtctgaagtg cctggggaag gctttctctg aatctccagg tcaccactac 1860 ccagtttctc ctaccccttt ctctcctctt tcctgctgtg atcactccaa gtcccaaacg 1920 ctccttacaa ctcagcctgc agagtgggtg tgggggcacc acgccagaca cagggttcag 1980 gcttggtggg tctggctgtg acctctcccg gaggcggctc cctgacagga aggcaggcag 2040 gcaggcctgc cactgggcac acacaagagc ttcctgcgct gcagcaggtg cccaggccag 2100 ctgctccagc ccttcagact cagatcaaca ggatgggcca gcccaagcgg aaggaagcct 2160 gcagggaagg acactcctgc agacagaagc agggcaccgg gtggagagag gcaggaagag 2220 ctgcctgggt tgctgagttg gcgctcctcc agcggattca gagcaggcag tgacaggagg 2280 ccattcagtt atctttcccc cactttccac ccccacccca gggcttctct ggcccacgtt 2340 attatcatta catttgttgc tggctggctt taggtatacc agaaggaacc atcagataga 2400 tgttggtaga gctggaggcc tctaaaacaa attccctcct ttacctagtc tgtggtgact 2460 gagaaagggc acctgcttta gcccttttag cccagcaggc tgaaaaagcc cacaggaggg 2520 cagtgacttt tgtctcatga tctgcctgtc ccagggagaa aataaaaatc tctagtttgc 2580 tttaagcccc gttatcactc cctccggctc caacagctgc cgtgaacccg cacaaacggg 2640 cgagggggcg gggcaatagg gcgccaacga ggagccaaga gctctcagac taggaggcta 2700 cagcctcagc cgggctgctg cacccacaag ctggcttccc taagaagctc agcttgccct 2760 caatccctgg agcggtggag ggggcaggga caggaactcg atgtttgacc gggtcaggaa 2820 tcccacctgc aagcatgctt tcctcacccc atcccctcaa gcggtttctt ggtagggcgt 2880 cggcgaagac tgtggtcccg cgggtggggg aagtggagtc caccttggaa atagctcgaa 2940 cattgtattt taaacttcaa ctacatcaaa ctcaaactcg attctgccac cgagcgtcgg 3000 gtctggggct ccctgccacg ccactagctc tttggtaccg gcttccctta gtccccactc 3060 caaccgccca gaaggacggg agggacgcgc agaggcgggc cctgctgcta gtgcctgtgc 3120 tgcagatggg aggacgagcc agcgcctgcc gccttgggcg tgggcggtga gtgcgagcag 3180 gtgtctgttc cgtgacaggg ctcccgccgc caccatctcg ccctggttct ccccagtcct 3240 ccggcttaga gtgacaaaac ccggcaaatg ctcagaaatg ccgctcagtg gttcatccat 3300 cccttgcttc cacgcaagac ccacgagaac cacgctgcca aagaacgtct ggtggctcgg 3360 agccgcgctc gcagcctccg cctccgcctc ctgctcgggg tcccgcccac tccctggcgg 3420 gcccagacgc tgtgggcgcg aaggggactg ggcggagcgg gcttccctcc ccacccccca 3480 cgtggggccg gctctccgca aagcctagtc gccgccaccg cgcctcccag ctatgccccg 3540 ccgccggcgc cgcccccggg catgggcgga ggactgaagg ctagggttgg gcgaggggcg 3600 tcacggagtc aggtggtccc cggagttccc cggggctgga ccgagggaac acggtgcctc 3660 gggttgtgta cacgctccac tgacagagcc tcttgcagcc gggcagccgc tgatcacgcg 3720 tggctctgcc agctcattgg ctgaggcctc acacaccttt gccgctgatt ggtcgacact 3780 aggccccgcc ctctaccccg cccgcggcgc ggggcaggca gagcggctac ctgcacgggg 3840 aggggggcag acagcgcgga gcgcggtggc gtcgacgtct agtgtctcag tgctcccgtc 3900 tgtggctaac taagcagcca gcagccaggc agctcgcgac ctgcggccag gcagccaacc 3960 atg 3963 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TIEG1/KO/5'-1 <400> 12 cccggatcct tctcccacta tcctagaagt tcc 33 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TIEG1/KO/3'-1 <400> 13 ctgcttgctc accatggttg gctgcctggc cg 32 <210> 14 <211> 3983 <212> DNA <213> Mus sp. <220> <221> promoter <222> (1)..(3983) <223> promoter region of TIEG1 containing PCR primer sequence <400> 14 cccggatcct tctcccacta tcctagaagt tccttcaaca cagggaatgt ttttatgatg 60 gttctccagt gttcactaat gcctgacatg tggtacagcc aaaaagggat gaacaaggat 120 gagacttggt gactgtacag agcaaagaga agctcgctgg taggtacaat gtgttctaag 180 atcagtatct gaactgggga gtctctatct tcaatattct gactgaaggg aaaccaacac 240 cattagcaat aagggtcagc atctgaggta tcacttccta cagccaaatt aagtctcctc 300 tcttattcat gcccaagatg actacatcta tgaagggcct tgtaacagca caatctaaga 360 gaagggtttg gaaggactcg tacttccact cacatattgg cccacattgt ctgcaatccc 420 atggggtctt cagaaacaat ctagtatttt atttaattca ttgggaaaaa tgtatcaagt 480 acctattaaa agaacaaatt gttaataaga aagatactat ggaactgggc acaacagctc 540 atgtcgggtg atcacagcac ttcaggagct gaggcaggag gcttgctgag agttccaggc 600 cagcttgagt gtatatatga agggacatta tgaaatgacc actgtcttat aggagtttag 660 atctgagtgg ggtgtgggca ggattcaata ctataaaagg ttttgcaata acatatatat 720 atatatatat atatatatat atatatatat atatctcctt acttataaca ttgctttgga 780 ggagaggcag gcaaataatt cagcctggag ctatcaagga aggcttcacc aacatggcaa 840 ggaaacactg aaaccagaga gaaaaggggc cttcagaaaa aaaaaaaaaa gcatctcttc 900 caagagagtc tagcctctct ttgcaccaag tcttgtgtca ttccatagcc tgtaaattct 960 tcagtagtca gtctccacct gaaactatgt agcccaggct ggtctcattt atgacaatct 1020 tgtcttagcc tcccatgtgg cacacccttg tgatcccagt agttggcaga taaaggcaga 1080 agattcaaga gctcgagacc agtctactgg ccggcctaga atacgcagat gctcaataac 1140 attggttgaa tgcatcagtg aacagaggcc tgaaggacag tgcttattga atgggggtgt 1200 ggcatggaga tgtatgcact gtatgatggc tctgggcaag ggaagaactt actaaaaggc 1260 tgaaaagttg aatgagtagc tggagacccc tagctcataa aggggtagcc ttttatctcc 1320 cgataacaat agacaaaggt aatttattta agtagggatt gttgtgatct taagtttaag 1380 catggcatct gggctctgga aaacaagttg tgatgtgggt ggatgtcctg ggattacaga 1440 cagaaatagc ttcgtgcaag ctagaggtga aacactgagc caagtgcctg cctggtgccc 1500 attagcccag tacttgggag gctgtggcag gagggttgtc taggtagcca gggctacaca 1560 gaatttgtca gccagccagg gctgcatagt gagaccctgt tactgaagaa caatgggggg 1620 aggggggtga agacaggcag acagagtacc ttgtaaaaca aacagtaagt aggtgtttct 1680 gaggcaaagc tgtctagagc tggggactaa ctagatctca cttaagtttt tgagggaggg 1740 aggcaactgt ggctagactg gcaatgatca ccccttaaga ccacaaagaa agaggagttt 1800 tagatttggc gatattaggt ctgaagtgcc tggggaaggc tttctctgaa tctccaggtc 1860 accactaccc agtttctcct acccctttct ctcctctttc ctgctgtgat cactccaagt 1920 cccaaacgct ccttacaact cagcctgcag agtgggtgtg ggggcaccac gccagacaca 1980 gggttcaggc ttggtgggtc tggctgtgac ctctcccgga ggcggctccc tgacaggaag 2040 gcaggcaggc aggcctgcca ctgggcacac acaagagctt cctgcgctgc agcaggtgcc 2100 caggccagct gctccagccc ttcagactca gatcaacagg atgggccagc ccaagcggaa 2160 ggaagcctgc agggaaggac actcctgcag acagaagcag ggcaccgggt ggagagaggc 2220 aggaagagct gcctgggttg ctgagttggc gctcctccag cggattcaga gcaggcagtg 2280 acaggaggcc attcagttat ctttccccca ctttccaccc ccaccccagg gcttctctgg 2340 cccacgttat tatcattaca tttgttgctg gctggcttta ggtataccag aaggaaccat 2400 cagatagatg ttggtagagc tggaggcctc taaaacaaat tccctccttt acctagtctg 2460 tggtgactga gaaagggcac ctgctttagc ccttttagcc cagcaggctg aaaaagccca 2520 caggagggca gtgacttttg tctcatgatc tgcctgtccc agggagaaaa taaaaatctc 2580 tagtttgctt taagccccgt tatcactccc tccggctcca acagctgccg tgaacccgca 2640 caaacgggcg agggggcggg gcaatagggc gccaacgagg agccaagagc tctcagacta 2700 ggaggctaca gcctcagccg ggctgctgca cccacaagct ggcttcccta agaagctcag 2760 cttgccctca atccctggag cggtggaggg ggcagggaca ggaactcgat gtttgaccgg 2820 gtcaggaatc ccacctgcaa gcatgctttc ctcaccccat cccctcaagc ggtttcttgg 2880 tagggcgtcg gcgaagactg tggtcccgcg ggtgggggaa gtggagtcca ccttggaaat 2940 agctcgaaca ttgtatttta aacttcaact acatcaaact caaactcgat tctgccaccg 3000 agcgtcgggt ctggggctcc ctgccacgcc actagctctt tggtaccggc ttcccttagt 3060 ccccactcca accgcccaga aggacgggag ggacgcgcag aggcgggccc tgctgctagt 3120 gcctgtgctg cagatgggag gacgagccag cgcctgccgc cttgggcgtg ggcggtgagt 3180 gcgagcaggt gtctgttccg tgacagggct cccgccgcca ccatctcgcc ctggttctcc 3240 ccagtcctcc ggcttagagt gacaaaaccc ggcaaatgct cagaaatgcc gctcagtggt 3300 tcatccatcc cttgcttcca cgcaagaccc acgagaacca cgctgccaaa gaacgtctgg 3360 tggctcggag ccgcgctcgc agcctccgcc tccgcctcct gctcggggtc ccgcccactc 3420 cctggcgggc ccagacgctg tgggcgcgaa ggggactggg cggagcgggc ttccctcccc 3480 accccccacg tggggccggc tctccgcaaa gcctagtcgc cgccaccgcg cctcccagct 3540 atgccccgcc gccggcgccg cccccgggca tgggcggagg actgaaggct agggttgggc 3600 gaggggcgtc acggagtcag gtggtccccg gagttccccg gggctggacc gagggaacac 3660 ggtgcctcgg gttgtgtaca cgctccactg acagagcctc ttgcagccgg gcagccgctg 3720 atcacgcgtg gctctgccag ctcattggct gaggcctcac acacctttgc cgctgattgg 3780 tcgacactag gccccgccct ctaccccgcc cgcggcgcgg ggcaggcaga gcggctacct 3840 gcacggggag gggggcagac agcgcggagc gcggtggcgt cgacgtctag tgtctcagtg 3900 ctcccgtctg tggctaacta agcagccagc agccaggcag ctcgcgacct gcggccaggc 3960 agccaaccat ggtgagcaag cag 3983 <210> 15 <211> 3425 <212> DNA <213> Mus sp. <220> <221> exon <222> (1)..(3425) <223> Exon 3~4 of TIEG1 <400> 15 ggtaccccag cccgttgtgc agagcccaag gcctccagtg gtgagcccca gtggcaccag 60 actgtctccc attgcccctg ctcctggatt ctctccttca gcagcaaggg tcactcctca 120 gattgactcg tccagagtaa gaagtcacat ctgtagccac ccagggtgtg gcaagactta 180 ctttaaaagt tcccatctga aggcccacgt gaggacacac acaggtactg accgagtggg 240 ctctgtcttt gaagtgggtg tgtatgtgga gttagactgt ggacacaaat gcaagggagg 300 gtgaggtaga tgactcattg tctttaaaat tagtcagttt gtccctaggc ctggtgccac 360 acccttgtaa tcccagcact tgggaattgg aggcagagga agcagcacat ctggtaatat 420 atacatgata tatatgtatt tattacatta tttattcagg cggggtttct ttgtgcagcc 480 ctggctaccc tggaactcag tctgtagacc aggctgatct tgaactcaga tttctttctg 540 cctctatctc cagagtgctg ggattaaagg tgtgaaccat ggcgccaagc tttgataatt 600 tatgaactga ccagctttca attttaaact ctgtgcgtca atgtatagta accatctggc 660 tttctttgct tcaggggaaa aacctttcag ctgcagctgg aaaggctgtg aaaggaggtt 720 tgctcgctcc gatgaactgt ccagacaccg gcggacacac acaggtgaga agaagtttgc 780 ctgtcccatg tgtgaccgtc ggtttatgag gagcgaccat ttaaccaagc atgcccgacg 840 ccacctatca gccaagaagc tgccaaactg gcaaatggaa gttagcaagt taaatgacat 900 tgctctgcct ccgacccctg cttccgcaca gtgacggcca gaagatggag acgcagaata 960 aactttggtc agagtcagga gccagtgatg gtgtcaagtg cttctgcaag gctgtggccc 1020 tccaaaaggg cctaaagtag aagccctggc ctgggggagg ccccgcctgg gtgaaatgac 1080 aagaagtgct tcagccacag gcaggtcaca gaggacaggg ctcagttctt accacagaga 1140 gagaggagaa cccttttatt cctcccttat tttagtctgg aaagtttcgg ctgaggtgag 1200 cgcagcacag gttttgaatc acatacacat tggggacttt gtttttgcca tttatacttg 1260 agaccagctt tgcagtgtga ttctttcaaa ggattggttt caagaatata gaggctggaa 1320 attacggtac agaaatggag ctagaaaatg agtttgtgtt acacagagat gtcatcttct 1380 cctagagtta tcttgtttct tattcctagt ctttccagtc aaatccgtgg atgtagctaa 1440 gtatatctaa aactcatttt tccactattg ttggtatttg aagttgaaca gctgtacatt 1500 gctgtggggg agccaaagga ttggaaccct cattaattta attgcttgga aatgcagcta 1560 aaattcttct ttggcatttt gttttgaaag tttaggcatt ttactctact ttagatttta 1620 gtttgcttgc agttttttgt gtagatttga aaattgtata ccaatgtgtt ttctgtaggc 1680 ttaaaataca ctgcactttg tttagaaaaa aatctggaga tgaaaatatg tattataaag 1740 aagagatgtc aagaatttga gataactcct tgagaaagtt ggctttatgt catcagcaaa 1800 ggacacttaa cgtcaagcat acactgtggt ttttttgttt ttttgttttt ttttttcaaa 1860 ttagaaagtt taatgaccgt tacagatgga cagtgtcttt ttatttatag gagtttttca 1920 ggatgtcaga gtagataggt aggaaaattg ttattagaac attcgcttct accttgaaaa 1980 ggatgttaat gtggtcatgt tcttagcacc acagtgtctg ggcatctggg aaactccgag 2040 acttttttaa agtgtcatga tgtgatcaca cctgcagttt ggggcatcga atccagggcc 2100 ttgcatgtct tctgtaagag ctctcatcgc tgacctgtat cccccgcaag agcaatgact 2160 tttgctaaca gtatttcttt tctgttgtaa agtggacaga tgatacactt ggtcgcaaag 2220 gtaaattatt caaaatccac agtgaaaacc tcaccacact ttcccattta aactatttcc 2280 atatctcaga ggtttctgac atgcaaactt gaacccttga aagaagagtt ttcttaaaaa 2340 ttataaaaaa tcacgagtta caatttgcac aatatttttt gttgaacttt ataccttgtt 2400 tacaataaag acttttcttt ggtatacaca gtgagtctgt tgtatgtgtt aaaacccatt 2460 ctccatctca ccttcatact gacctcattc agatcagaac ctgaggccag attgctttaa 2520 gatgatgtaa ctgctatgac caacaagaga aggctgacct gtcatctgga gggacttgtt 2580 caagttgtac tcactcagac caggaagaga tactctagat ataacagata aactggtcct 2640 taagcagtgt gagaggccag gccacctctg cagagacact tgctagtcac ttaggagcgt 2700 tgtaagtagg gtatgacttt tttcttttaa taaggtcact attttagttg gcccaaaagt 2760 ctcactgctc ttgagaaaat ctgcaaaggc ccctgcttga acacctggct cactttttga 2820 gacaaagtct tattgtagcc caggctagcc tggaactcaa atagcccagg gggtcgcaat 2880 tcttctgtgc ctctggaatg ctaggattca ccacgattcc ttaccccaac ctcttgattt 2940 gttattttta ccatccttgt atgaatcttg tttgaggcaa attattgtgg tattctaatt 3000 cttttgttgt atatttttgg ggattctata ggaaagacta gtttagtctc cttagttatt 3060 cctgtcgata tggatttgtg gagacatata tcattctctt aagttataag ggttttgtta 3120 ctcagctgtc ccagtgtgat ccttggtttc ttgttttgtt ttgttttgtt ttgttggttt 3180 ttcaggacag ggtttctctc ttttttgttt gtttgtttgt ttgtttgtga gacagggttt 3240 ctctgtgtag ccctggctgt cctggaactc actctgtaga ccaggctggc ctcgaactca 3300 gaaatctgct tgcctctgcc tcccaagtgc tgggattaaa ggcgtgcgcc accaccaccc 3360 agctcagtgt ggtccttgtg aactcctgac tggttaacca ttttgattga caaagatggg 3420 aattc 3425 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 5'-1 <400> 16 tgtacacgct ccactgacag 20 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 3'-1( <400> 17 ccttgtctcc tggatacc 18 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PS 3'-1 <400> 18 cgaacaggat gttgcccttg c 21 <110> Industry-Academic Cooperation Foundation, Yonsei University <120> A knock-out vector constructed by using GFP reporter knock-in          vector and methods for preparing pretty and knocking out gene in          animal <160> 18 <170> KopatentIn 1.71 <210> 1 <211> 4849 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PS vector <220> <221> variation 222 (790) .. (795) <223> EcoRV site <220> <221> variation (222) (1780) .. (1785) <223> Sal I site <220> <221> variation (1808) .. (1813) <223> PacI site <220> <221> gene (222) (778) .. (1494) <223> Open Reading Frame of Green Fluorescent Protein <400> 1 aggcgcgccg cgatgtacgg gccagattta cgcgttgaca ttgattattg actagttatt 60 aatagtaatc aattacgggg tcattagttc atagcccata tatggagttc cgcgttacat 120 aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca ttgacgtcaa 180 taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt caatgggtgg 240 agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg ccaagtacgc 300 cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag tacatgacct 360 tatgggactt tcctacttgg cagtacatct acgtattagt catcgctatt accatggtga 420 tgcggttttg gcagtacatc aatgggcgtg gatagcggtt tgactcacgg ggatttccaa 480 gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa cgggactttc 540 caaaatgtcg taacaactcc gccccattga agcaaatggg cggtaggcgt gtacggtggg 600 aggtctatat aagcagagct ctctggctaa ctagagaacc cactgcttac tggcttatcg 660 aaattaatac gactcactat agggagaccc aagcttctgg aggcccgggc tttcagggta 720 ccgaagaagg atccaaggag gaattctgca gatatccatc acactggcgg ccgcaccatg 780 gtgagcaagg atatcctgaa gaacaccggc ctgcaggaga tcatgagctt caaggtgaac 840 ctggagggcg tggtgaacaa ccacgtgttc accatggagg gctgcggcaa gggcaacatc 900 ctgttcggca accagctggt gcagatccgc gtgaccaagg gcgcccccct gcccttcgcc 960 ttcgacatcc tgagccccgc cttccagtac ggcaaccgca ccttcaccaa gtaccccgag 1020 gacatcagcg acttcttcat ccagagcttc cccgccggct tcgtgtacga gcgcaccctg 1080 cgctacgagg acggcggcct ggtggagatc cgcagcgaca tcaacctgat cgaggggatg 1140 ttcgtgtacc gcgtggagta caagggccgc aacttcccca acgacggccc cgtgatgaag 1200 aagaccatca ccggcctgca gcccagcttc gaggtggtgt acatgaacga cggcgtgctg 1260 gtgggccagg tgatcctggt gtaccgcctg aacagcggca agttctacag ctgccacatg 1320 cgcaccctga tgaagagcaa gggcgtggtg aaggacttcc ccgagtacca cttcatccag 1380 caccgcctgg agaagaccta cgtggaggac ggcggcttcg tagagcagca cgagaccgcc 1440 atcgcccagc tgaccagcct gggcaagccc ctgggcagcc tgcacgagtg ggtgtaagct 1500 cgagcatgca tctagagggc cctattccct ttagtgaggg ttaattgcta gagctcgctg 1560 atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc 1620 ttccttgacc ctggaaggtg ccactctcac tgtcctttcc taataaaatg aggaaattgc 1680 atcgcattgt ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa 1740 gggggaggat tgggaagaca atagcaggca tgctggggcg tcgacgcgcg taaattgtaa 1800 gcgttaatta attgttaaaa ttcgcgttaa atttttgtta aatcagctca ttttttaacc 1860 aataggccga aatcggcaaa atcccttata aatcaaaaga atagaccgag atagggttga 1920 gtgttgttcc agtttggaac aagagtccac tattaaagaa cgtggactcc aacgtcaaag 1980 ggcgaaaaac cgtctatcag ggcgatggcc cactacgtga accatcaccc taatcaagtt 2040 ttttggggtc gaggtgccgt aaagcactaa atcggaaccc taaagggagc ccccgattta 2100 gagcttgacg gggaaagccg gcgaacgtgg cgagaaagga agggaagaaa gcgaaaggag 2160 cgggcgctag ggcgctggca agtgtagcgg tcacgctgcg cgtaaccacc acacccgccg 2220 cgcttaatgc gccgctacag ggcgcgtcag gtggcacttt tcggggaaat gtgcgcggaa 2280 cccctatttg tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac 2340 cctgataaat gcttcaataa tattgaaaaa ggaagaatcc tgaggcggaa agaaccagct 2400 gtggaatgtg tgtcagttag ggtgtggaaa gtccccaggc tccccagcag gcagaagtat 2460 gcaaagcatg catctcaatt agtcagcaac caggtgtgga aagtccccag gctccccagc 2520 aggcagaagt atgcaaagca tgcatctcaa ttagtcagca accatagtcc cgcccctaac 2580 tccgcccagt tccgcccatt ctccgcccca tggctgacta atttttttta tttatgcaga 2640 ggccgaggcc gcctcggcct ctgagctatt ccagaagtag tgaggaggct tttttggagg 2700 cctaggcttt tgcaaagatc gatcaagaga caggatgagg atcgtttcgc atgattgaac 2760 aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc ggctatgact 2820 gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca gcgcaggggc 2880 gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg caagacgagg 2940 cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg 3000 tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag gatctcctgt 3060 catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg cggcggctgc 3120 atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc atcgagcgag 3180 cacgtactcg gatggaagcc ggtcttctcg atcaggatga tctggacgaa gaacatcagg 3240 ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgag catgcccgac ggcgaggatc 3300 tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt 3360 ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac atagcgttgg 3420 ctacccgtga tattgctgaa gaacttggcg gcgaatgggc tgaccgcttc ctcgtgcttt 3480 acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt gacgagttct 3540 tctgagcggg actctggggt tcgaaatgac cgaccaagcg acgcccaacc tgccatcacg 3600 agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg ttttccggga 3660 cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg cccaccctag 3720 ggggaggcta actgaaacac ggaaggagac aataccggaa ggaacccgcg ctatgacggc 3780 aataaaaaga cagaataaaa cgcacggtgt tgggtcgttt gttcataaac gcggggttcg 3840 gtcccagggc tggcactctg tcgatacccc accgagaccc cattggggcc aatacgcccg 3900 cgtttcttcc ttttccccac cccacccccc aagttcgggt gaaggcccag ggctcgcagc 3960 caacgtcggg gcggcaggcc ctgccatagc ctcaggttac tcatatatac tttagattga 4020 tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat 4080 gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 4140 caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 4200 accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 4260 ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt 4320 aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 4380 accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 4440 gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 4500 ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 4560 gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 4620 gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 4680 ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 4740 aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 4800 gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcc 4849 <210> 2 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> Open Reading Frame of Green Fluorescent Protein <400> 2 atggtgagca aggatatcct gaagaacacc ggcctgcagg agatcatgag cttcaaggtg 60 aacctggagg gcgtggtgaa caaccacgtg ttcaccatgg agggctgcgg caagggcaac 120 atcctgttcg gcaaccagct ggtgcagatc cgcgtgacca agggcgcccc cctgcccttc 180 gccttcgaca tcctgagccc cgccttccag tacggcaacc gcaccttcac caagtacccc 240 gaggacatca gcgacttctt catccagagc ttccccgccg gcttcgtgta cgagcgcacc 300 ctgcgctacg aggacggcgg cctggtggag atccgcagcg acatcaacct gatcgagggg 360 atgttcgtgt accgcgtgga gtacaagggc cgcaacttcc ccaacgacgg ccccgtgatg 420 aagaagacca tcaccggcct gcagcccagc ttcgaggtgg tgtacatgaa cgacggcgtg 480 ctggtgggcc aggtgatcct ggtgtaccgc ctgaacagcg gcaagttcta cagctgccac 540 atgcgcaccc tgatgaagag caagggcgtg gtgaaggact tccccgagta ccacttcatc 600 cagcaccgcc tggagaagac ctacgtggag gacggcggct tcgtagagca gcacgagacc 660 gccatcgccc agctgaccag cctgggcaag cccctgggca gcctgcacga gtgggtg 717 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-RV-5 ' <400> 3 gccgcaccat ggtgagcaag gatatcctga agaacaccgg 40 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-RV-3 ' <400> 4 ccggtgttct tcaggatatc cttgctcacc atggtgcggc 40 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-SI-5 ' <400> 5 gcatgctggg gcgtcgacgc gcgtaaattg taagc 35 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-SI-3 ' <400> 6 gcttacaatt tacgcgcgtc gacgccccag catgc 35 <210> 7 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PacI-5 ' <400> 7 cgcgcgtaaa ttgtaagcgt taattaattg ttaaaattcg c 41 <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PacI-3 ' <400> 8 gcgaatttta acaattaatt aacgcttaca atttacgcgc g 41 <210> 9 <211> 9 <212> DNA <213> Artificial Sequence <220> <223> 5'primer: designed by containing restriction site <400> 9 ccgaagctt 9 <210> 10 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> 3'primer: designed by containing polynucleotides deleted from ORF          of GFP <400> 10 ctgcttgctc accat 15 <210> 11 <211> 3963 <212> DNA <213> Mus sp. <220> <221> promoter (222) (1) .. (3963) <223> promoter of TIEG1 (Transforming Growth Factor beta-inducible early          gene 1) <400> 11 cttctcccac tatcctagaa gttccttcaa cacagggaat gtttttatga tggttctcca 60 gtgttcacta atgcctgaca tgtggtacag ccaaaaaggg atgaacaagg atgagacttg 120 gtgactgtac agagcaaaga gaagctcgct ggtaggtaca atgtgttcta agatcagtat 180 ctgaactggg gagtctctat cttcaatatt ctgactgaag ggaaaccaac accattagca 240 ataagggtca gcatctgagg tatcacttcc tacagccaaa ttaagtctcc tctcttattc 300 atgcccaaga tgactacatc tatgaagggc cttgtaacag cacaatctaa gagaagggtt 360 tggaaggact cgtacttcca ctcacatatt ggcccacatt gtctgcaatc ccatggggtc 420 ttcagaaaca atctagtatt ttatttaatt cattgggaaa aatgtatcaa gtacctatta 480 aaagaacaaa ttgttaataa gaaagatact atggaactgg gcacaacagc tcatgtcggg 540 tgatcacagc acttcaggag ctgaggcagg aggcttgctg agagttccag gccagcttga 600 gtgtatatat gaagggacat tatgaaatga ccactgtctt ataggagttt agatctgagt 660 ggggtgtggg caggattcaa tactataaaa ggttttgcaa taacatatat atatatatat 720 atatatatat atatatatat atatatctcc ttacttataa cattgctttg gaggagaggc 780 aggcaaataa ttcagcctgg agctatcaag gaaggcttca ccaacatggc aaggaaacac 840 tgaaaccaga gagaaaaggg gccttcagaa aaaaaaaaaa aagcatctct tccaagagag 900 tctagcctct ctttgcacca agtcttgtgt cattccatag cctgtaaatt cttcagtagt 960 cagtctccac ctgaaactat gtagcccagg ctggtctcat ttatgacaat cttgtcttag 1020 cctcccatgt ggcacaccct tgtgatccca gtagttggca gataaaggca gaagattcaa 1080 gagctcgaga ccagtctact ggccggccta gaatacgcag atgctcaata acattggttg 1140 aatgcatcag tgaacagagg cctgaaggac agtgcttatt gaatgggggt gtggcatgga 1200 gatgtatgca ctgtatgatg gctctgggca agggaagaac ttactaaaag gctgaaaagt 1260 tgaatgagta gctggagacc cctagctcat aaaggggtag ccttttatct cccgataaca 1320 atagacaaag gtaatttatt taagtaggga ttgttgtgat cttaagttta agcatggcat 1380 ctgggctctg gaaaacaagt tgtgatgtgg gtggatgtcc tgggattaca gacagaaata 1440 gcttcgtgca agctagaggt gaaacactga gccaagtgcc tgcctggtgc ccattagccc 1500 agtacttggg aggctgtggc aggagggttg tctaggtagc cagggctaca cagaatttgt 1560 cagccagcca gggctgcata gtgagaccct gttactgaag aacaatgggg ggaggggggt 1620 gaagacaggc agacagagta ccttgtaaaa caaacagtaa gtaggtgttt ctgaggcaaa 1680 gctgtctaga gctggggact aactagatct cacttaagtt tttgagggag ggaggcaact 1740 gtggctagac tggcaatgat caccccttaa gaccacaaag aaagaggagt tttagatttg 1800 gcgatattag gtctgaagtg cctggggaag gctttctctg aatctccagg tcaccactac 1860 ccagtttctc ctaccccttt ctctcctctt tcctgctgtg atcactccaa gtcccaaacg 1920 ctccttacaa ctcagcctgc agagtgggtg tgggggcacc acgccagaca cagggttcag 1980 gcttggtggg tctggctgtg acctctcccg gaggcggctc cctgacagga aggcaggcag 2040 gcaggcctgc cactgggcac acacaagagc ttcctgcgct gcagcaggtg cccaggccag 2100 ctgctccagc ccttcagact cagatcaaca ggatgggcca gcccaagcgg aaggaagcct 2160 gcagggaagg acactcctgc agacagaagc agggcaccgg gtggagagag gcaggaagag 2220 ctgcctgggt tgctgagttg gcgctcctcc agcggattca gagcaggcag tgacaggagg 2280 ccattcagtt atctttcccc cactttccac ccccacccca gggcttctct ggcccacgtt 2340 attatcatta catttgttgc tggctggctt taggtatacc agaaggaacc atcagataga 2400 tgttggtaga gctggaggcc tctaaaacaa attccctcct ttacctagtc tgtggtgact 2460 gagaaagggc acctgcttta gcccttttag cccagcaggc tgaaaaagcc cacaggaggg 2520 cagtgacttt tgtctcatga tctgcctgtc ccagggagaa aataaaaatc tctagtttgc 2580 tttaagcccc gttatcactc cctccggctc caacagctgc cgtgaacccg cacaaacggg 2640 cgagggggcg gggcaatagg gcgccaacga ggagccaaga gctctcagac taggaggcta 2700 cagcctcagc cgggctgctg cacccacaag ctggcttccc taagaagctc agcttgccct 2760 caatccctgg agcggtggag ggggcaggga caggaactcg atgtttgacc gggtcaggaa 2820 tcccacctgc aagcatgctt tcctcacccc atcccctcaa gcggtttctt ggtagggcgt 2880 cggcgaagac tgtggtcccg cgggtggggg aagtggagtc caccttggaa atagctcgaa 2940 cattgtattt taaacttcaa ctacatcaaa ctcaaactcg attctgccac cgagcgtcgg 3000 gtctggggct ccctgccacg ccactagctc tttggtaccg gcttccctta gtccccactc 3060 caaccgccca gaaggacggg agggacgcgc agaggcgggc cctgctgcta gtgcctgtgc 3120 tgcagatggg aggacgagcc agcgcctgcc gccttgggcg tgggcggtga gtgcgagcag 3180 gtgtctgttc cgtgacaggg ctcccgccgc caccatctcg ccctggttct ccccagtcct 3240 ccggcttaga gtgacaaaac ccggcaaatg ctcagaaatg ccgctcagtg gttcatccat 3300 cccttgcttc cacgcaagac ccacgagaac cacgctgcca aagaacgtct ggtggctcgg 3360 agccgcgctc gcagcctccg cctccgcctc ctgctcgggg tcccgcccac tccctggcgg 3420 gcccagacgc tgtgggcgcg aaggggactg ggcggagcgg gcttccctcc ccacccccca 3480 cgtggggccg gctctccgca aagcctagtc gccgccaccg cgcctcccag ctatgccccg 3540 ccgccggcgc cgcccccggg catgggcgga ggactgaagg ctagggttgg gcgaggggcg 3600 tcacggagtc aggtggtccc cggagttccc cggggctgga ccgagggaac acggtgcctc 3660 gggttgtgta cacgctccac tgacagagcc tcttgcagcc gggcagccgc tgatcacgcg 3720 tggctctgcc agctcattgg ctgaggcctc acacaccttt gccgctgatt ggtcgacact 3780 aggccccgcc ctctaccccg cccgcggcgc ggggcaggca gagcggctac ctgcacgggg 3840 aggggggcag acagcgcgga gcgcggtggc gtcgacgtct agtgtctcag tgctcccgtc 3900 tgtggctaac taagcagcca gcagccaggc agctcgcgac ctgcggccag gcagccaacc 3960 atg 3963 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 / EN / 5'-1 <400> 12 cccggatcct tctcccacta tcctagaagt tcc 33 <210> 13 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 / EN / 3'-1 <400> 13 ctgcttgctc accatggttg gctgcctggc cg 32 <210> 14 <211> 3983 <212> DNA <213> Mus sp. <220> <221> promoter (222) (1) .. (3983) <223> promoter region of TIEG1 containing PCR primer sequence <400> 14 cccggatcct tctcccacta tcctagaagt tccttcaaca cagggaatgt ttttatgatg 60 gttctccagt gttcactaat gcctgacatg tggtacagcc aaaaagggat gaacaaggat 120 gagacttggt gactgtacag agcaaagaga agctcgctgg taggtacaat gtgttctaag 180 atcagtatct gaactgggga gtctctatct tcaatattct gactgaaggg aaaccaacac 240 cattagcaat aagggtcagc atctgaggta tcacttccta cagccaaatt aagtctcctc 300 tcttattcat gcccaagatg actacatcta tgaagggcct tgtaacagca caatctaaga 360 gaagggtttg gaaggactcg tacttccact cacatattgg cccacattgt ctgcaatccc 420 atggggtctt cagaaacaat ctagtatttt atttaattca ttgggaaaaa tgtatcaagt 480 acctattaaa agaacaaatt gttaataaga aagatactat ggaactgggc acaacagctc 540 atgtcgggtg atcacagcac ttcaggagct gaggcaggag gcttgctgag agttccaggc 600 cagcttgagt gtatatatga agggacatta tgaaatgacc actgtcttat aggagtttag 660 atctgagtgg ggtgtgggca ggattcaata ctataaaagg ttttgcaata acatatatat 720 atatatatat atatatatat atatatatat atatctcctt acttataaca ttgctttgga 780 ggagaggcag gcaaataatt cagcctggag ctatcaagga aggcttcacc aacatggcaa 840 ggaaacactg aaaccagaga gaaaaggggc cttcagaaaa aaaaaaaaaa gcatctcttc 900 caagagagtc tagcctctct ttgcaccaag tcttgtgtca ttccatagcc tgtaaattct 960 tcagtagtca gtctccacct gaaactatgt agcccaggct ggtctcattt atgacaatct 1020 tgtcttagcc tcccatgtgg cacacccttg tgatcccagt agttggcaga taaaggcaga 1080 agattcaaga gctcgagacc agtctactgg ccggcctaga atacgcagat gctcaataac 1140 attggttgaa tgcatcagtg aacagaggcc tgaaggacag tgcttattga atgggggtgt 1200 ggcatggaga tgtatgcact gtatgatggc tctgggcaag ggaagaactt actaaaaggc 1260 tgaaaagttg aatgagtagc tggagacccc tagctcataa aggggtagcc ttttatctcc 1320 cgataacaat agacaaaggt aatttattta agtagggatt gttgtgatct taagtttaag 1380 catggcatct gggctctgga aaacaagttg tgatgtgggt ggatgtcctg ggattacaga 1440 cagaaatagc ttcgtgcaag ctagaggtga aacactgagc caagtgcctg cctggtgccc 1500 attagcccag tacttgggag gctgtggcag gagggttgtc taggtagcca gggctacaca 1560 gaatttgtca gccagccagg gctgcatagt gagaccctgt tactgaagaa caatgggggg 1620 aggggggtga agacaggcag acagagtacc ttgtaaaaca aacagtaagt aggtgtttct 1680 gaggcaaagc tgtctagagc tggggactaa ctagatctca cttaagtttt tgagggaggg 1740 aggcaactgt ggctagactg gcaatgatca ccccttaaga ccacaaagaa agaggagttt 1800 tagatttggc gatattaggt ctgaagtgcc tggggaaggc tttctctgaa tctccaggtc 1860 accactaccc agtttctcct acccctttct ctcctctttc ctgctgtgat cactccaagt 1920 cccaaacgct ccttacaact cagcctgcag agtgggtgtg ggggcaccac gccagacaca 1980 gggttcaggc ttggtgggtc tggctgtgac ctctcccgga ggcggctccc tgacaggaag 2040 gcaggcaggc aggcctgcca ctgggcacac acaagagctt cctgcgctgc agcaggtgcc 2100 caggccagct gctccagccc ttcagactca gatcaacagg atgggccagc ccaagcggaa 2160 ggaagcctgc agggaaggac actcctgcag acagaagcag ggcaccgggt ggagagaggc 2220 aggaagagct gcctgggttg ctgagttggc gctcctccag cggattcaga gcaggcagtg 2280 acaggaggcc attcagttat ctttccccca ctttccaccc ccaccccagg gcttctctgg 2340 cccacgttat tatcattaca tttgttgctg gctggcttta ggtataccag aaggaaccat 2400 cagatagatg ttggtagagc tggaggcctc taaaacaaat tccctccttt acctagtctg 2460 tggtgactga gaaagggcac ctgctttagc ccttttagcc cagcaggctg aaaaagccca 2520 caggagggca gtgacttttg tctcatgatc tgcctgtccc agggagaaaa taaaaatctc 2580 tagtttgctt taagccccgt tatcactccc tccggctcca acagctgccg tgaacccgca 2640 caaacgggcg agggggcggg gcaatagggc gccaacgagg agccaagagc tctcagacta 2700 ggaggctaca gcctcagccg ggctgctgca cccacaagct ggcttcccta agaagctcag 2760 cttgccctca atccctggag cggtggaggg ggcagggaca ggaactcgat gtttgaccgg 2820 gtcaggaatc ccacctgcaa gcatgctttc ctcaccccat cccctcaagc ggtttcttgg 2880 tagggcgtcg gcgaagactg tggtcccgcg ggtgggggaa gtggagtcca ccttggaaat 2940 agctcgaaca ttgtatttta aacttcaact acatcaaact caaactcgat tctgccaccg 3000 agcgtcgggt ctggggctcc ctgccacgcc actagctctt tggtaccggc ttcccttagt 3060 ccccactcca accgcccaga aggacgggag ggacgcgcag aggcgggccc tgctgctagt 3120 gcctgtgctg cagatgggag gacgagccag cgcctgccgc cttgggcgtg ggcggtgagt 3180 gcgagcaggt gtctgttccg tgacagggct cccgccgcca ccatctcgcc ctggttctcc 3240 ccagtcctcc ggcttagagt gacaaaaccc ggcaaatgct cagaaatgcc gctcagtggt 3300 tcatccatcc cttgcttcca cgcaagaccc acgagaacca cgctgccaaa gaacgtctgg 3360 tggctcggag ccgcgctcgc agcctccgcc tccgcctcct gctcggggtc ccgcccactc 3420 cctggcgggc ccagacgctg tgggcgcgaa ggggactggg cggagcgggc ttccctcccc 3480 accccccacg tggggccggc tctccgcaaa gcctagtcgc cgccaccgcg cctcccagct 3540 atgccccgcc gccggcgccg cccccgggca tgggcggagg actgaaggct agggttgggc 3600 gaggggcgtc acggagtcag gtggtccccg gagttccccg gggctggacc gagggaacac 3660 ggtgcctcgg gttgtgtaca cgctccactg acagagcctc ttgcagccgg gcagccgctg 3720 atcacgcgtg gctctgccag ctcattggct gaggcctcac acacctttgc cgctgattgg 3780 tcgacactag gccccgccct ctaccccgcc cgcggcgcgg ggcaggcaga gcggctacct 3840 gcacggggag gggggcagac agcgcggagc gcggtggcgt cgacgtctag tgtctcagtg 3900 ctcccgtctg tggctaacta agcagccagc agccaggcag ctcgcgacct gcggccaggc 3960 agccaaccat ggtgagcaag cag 3983 <210> 15 <211> 3425 <212> DNA <213> Mus sp. <220> <221> exon (222) (1) .. (3425) <223> Exon 3-4 of TIEG1 <400> 15 ggtaccccag cccgttgtgc agagcccaag gcctccagtg gtgagcccca gtggcaccag 60 actgtctccc attgcccctg ctcctggatt ctctccttca gcagcaaggg tcactcctca 120 gattgactcg tccagagtaa gaagtcacat ctgtagccac ccagggtgtg gcaagactta 180 ctttaaaagt tcccatctga aggcccacgt gaggacacac acaggtactg accgagtggg 240 ctctgtcttt gaagtgggtg tgtatgtgga gttagactgt ggacacaaat gcaagggagg 300 gtgaggtaga tgactcattg tctttaaaat tagtcagttt gtccctaggc ctggtgccac 360 acccttgtaa tcccagcact tgggaattgg aggcagagga agcagcacat ctggtaatat 420 atacatgata tatatgtatt tattacatta tttattcagg cggggtttct ttgtgcagcc 480 ctggctaccc tggaactcag tctgtagacc aggctgatct tgaactcaga tttctttctg 540 cctctatctc cagagtgctg ggattaaagg tgtgaaccat ggcgccaagc tttgataatt 600 tatgaactga ccagctttca attttaaact ctgtgcgtca atgtatagta accatctggc 660 tttctttgct tcaggggaaa aacctttcag ctgcagctgg aaaggctgtg aaaggaggtt 720 tgctcgctcc gatgaactgt ccagacaccg gcggacacac acaggtgaga agaagtttgc 780 ctgtcccatg tgtgaccgtc ggtttatgag gagcgaccat ttaaccaagc atgcccgacg 840 ccacctatca gccaagaagc tgccaaactg gcaaatggaa gttagcaagt taaatgacat 900 tgctctgcct ccgacccctg cttccgcaca gtgacggcca gaagatggag acgcagaata 960 aactttggtc agagtcagga gccagtgatg gtgtcaagtg cttctgcaag gctgtggccc 1020 tccaaaaggg cctaaagtag aagccctggc ctgggggagg ccccgcctgg gtgaaatgac 1080 aagaagtgct tcagccacag gcaggtcaca gaggacaggg ctcagttctt accacagaga 1140 gagaggagaa cccttttatt cctcccttat tttagtctgg aaagtttcgg ctgaggtgag 1200 cgcagcacag gttttgaatc acatacacat tggggacttt gtttttgcca tttatacttg 1260 agaccagctt tgcagtgtga ttctttcaaa ggattggttt caagaatata gaggctggaa 1320 attacggtac agaaatggag ctagaaaatg agtttgtgtt acacagagat gtcatcttct 1380 cctagagtta tcttgtttct tattcctagt ctttccagtc aaatccgtgg atgtagctaa 1440 gtatatctaa aactcatttt tccactattg ttggtatttg aagttgaaca gctgtacatt 1500 gctgtggggg agccaaagga ttggaaccct cattaattta attgcttgga aatgcagcta 1560 aaattcttct ttggcatttt gttttgaaag tttaggcatt ttactctact ttagatttta 1620 gtttgcttgc agttttttgt gtagatttga aaattgtata ccaatgtgtt ttctgtaggc 1680 ttaaaataca ctgcactttg tttagaaaaa aatctggaga tgaaaatatg tattataaag 1740 aagagatgtc aagaatttga gataactcct tgagaaagtt ggctttatgt catcagcaaa 1800 ggacacttaa cgtcaagcat acactgtggt ttttttgttt ttttgttttt ttttttcaaa 1860 ttagaaagtt taatgaccgt tacagatgga cagtgtcttt ttatttatag gagtttttca 1920 ggatgtcaga gtagataggt aggaaaattg ttattagaac attcgcttct accttgaaaa 1980 ggatgttaat gtggtcatgt tcttagcacc acagtgtctg ggcatctggg aaactccgag 2040 acttttttaa agtgtcatga tgtgatcaca cctgcagttt ggggcatcga atccagggcc 2100 ttgcatgtct tctgtaagag ctctcatcgc tgacctgtat cccccgcaag agcaatgact 2160 tttgctaaca gtatttcttt tctgttgtaa agtggacaga tgatacactt ggtcgcaaag 2220 gtaaattatt caaaatccac agtgaaaacc tcaccacact ttcccattta aactatttcc 2280 atatctcaga ggtttctgac atgcaaactt gaacccttga aagaagagtt ttcttaaaaa 2340 ttataaaaaa tcacgagtta caatttgcac aatatttttt gttgaacttt ataccttgtt 2400 tacaataaag acttttcttt ggtatacaca gtgagtctgt tgtatgtgtt aaaacccatt 2460 ctccatctca ccttcatact gacctcattc agatcagaac ctgaggccag attgctttaa 2520 gatgatgtaa ctgctatgac caacaagaga aggctgacct gtcatctgga gggacttgtt 2580 caagttgtac tcactcagac caggaagaga tactctagat ataacagata aactggtcct 2640 taagcagtgt gagaggccag gccacctctg cagagacact tgctagtcac ttaggagcgt 2700 tgtaagtagg gtatgacttt tttcttttaa taaggtcact attttagttg gcccaaaagt 2760 ctcactgctc ttgagaaaat ctgcaaaggc ccctgcttga acacctggct cactttttga 2820 gacaaagtct tattgtagcc caggctagcc tggaactcaa atagcccagg gggtcgcaat 2880 tcttctgtgc ctctggaatg ctaggattca ccacgattcc ttaccccaac ctcttgattt 2940 gttattttta ccatccttgt atgaatcttg tttgaggcaa attattgtgg tattctaatt 3000 cttttgttgt atatttttgg ggattctata ggaaagacta gtttagtctc cttagttatt 3060 cctgtcgata tggatttgtg gagacatata tcattctctt aagttataag ggttttgtta 3120 ctcagctgtc ccagtgtgat ccttggtttc ttgttttgtt ttgttttgtt ttgttggttt 3180 ttcaggacag ggtttctctc ttttttgttt gtttgtttgt ttgtttgtga gacagggttt 3240 ctctgtgtag ccctggctgt cctggaactc actctgtaga ccaggctggc ctcgaactca 3300 gaaatctgct tgcctctgcc tcccaagtgc tgggattaaa ggcgtgcgcc accaccaccc 3360 agctcagtgt ggtccttgtg aactcctgac tggttaacca ttttgattga caaagatggg 3420 aattc 3425 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 5'-1 <400> 16 tgtacacgct ccactgacag 20 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> TIEG1 3'-1 ( <400> 17 ccttgtctcc tggatacc 18 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GFPKI-PS 3'-1 <400> 18 cgaacaggat gttgcccttg c 21  

Claims (17)

서열목록 서열번호 1에 기재된 염기서열을 갖되, 상기 서열은 서열번호 2에 기재된 녹색형광단백질(GFP, Green Fluorescent Protein) 유전자의 ORF 서열을 포함하는 것을 특징으로 하는, 녹색형광단백질 레포터 넉인벡터(knock-in vector).SEQ ID NO: 1 having the base sequence described in SEQ ID NO: 1, wherein the sequence comprises the ORF sequence of the Green Fluorescent Protein (GFP) gene described in SEQ ID NO: 2, the green fluorescent protein reporter knock-in vector ( knock-in vector). 넉아웃 시키고자 하는 유전자의 프로모터 서열; 및The promoter sequence of the gene to be knocked out; And 서열번호 2에 기재된 염기서열을 갖는 녹색형광단백질 유전자의 ORF 서열을 포함하되,An ORF sequence of a green fluorescent protein gene having the nucleotide sequence set forth in SEQ ID NO: 2, 상기 프로모터 서열은 상기 ORF 서열의 5' 말단 쪽에 연결되고, 상기 연결에 의해 ORF 서열이 넉아웃 시키고자 하는 유전자의 개시코돈을 대체하는 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터(knock-out vector).The promoter sequence is linked to the 5 'end of the ORF sequence, and the knockout vector comprising a green fluorescent protein reporter gene, characterized in that by replacing the ORF sequence to replace the start codon of the gene to be knocked out (knock-out vector). 제2항에 있어서,The method of claim 2, 녹색형광단백질 유전자의 ORF 서열은 제1항의 녹색형광단백질 레포터 넉인벡터로부터 유래한 것인 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터.A knockout vector comprising a green fluorescent protein reporter gene, wherein the ORF sequence of the green fluorescent protein gene is derived from the green fluorescent protein reporter knockin vector of claim 1. 삭제delete 제2항에 있어서,The method of claim 2, 프로모터 서열은 서열번호 11에 기재된 것임을 특징으로 하는 넉아웃 벡터.A knockout vector, characterized in that the promoter sequence is set forth in SEQ ID NO: 11. 제2항에 있어서, The method of claim 2, 넉아웃 시키고자 하는 유전자가 TIEG1(Transforming Growth Factor β-inducible early gene 1) 인 것을 특징으로 하는 넉아웃 벡터.A knockout vector, wherein the gene to be knocked out is TIEG1 (Transforming Growth Factor β-inducible early gene 1). i) 녹색형광단백질(GFP) 유전자 서열을 변이시켜 제조된 서열번호 2에 기재된 GFP 유전자의 ORF 서열을 포함하는, 서열번호 1에 기재된 염기서열을 갖는 GFP 레포터 넉인벡터를 제조하는 단계;i) preparing a GFP reporter knock-in vector having the nucleotide sequence set forth in SEQ ID NO: 1 comprising the ORF sequence of the GFP gene set forth in SEQ ID NO: 2 prepared by mutating a green fluorescent protein (GFP) gene sequence; ii) 넉아웃 시키고자 하는 유전자의 프로모터 서열 및 이에 연결되는, 상기 i) 단계에서 GFP ORF 서열 제조 시 결실된 GFP의 5' 말단부의 염기로 이루어진 폴리뉴클레오티드를 제조하는 단계; 및ii) preparing a polynucleotide consisting of a promoter sequence of a gene to be knocked out and a base linked to the 5 'terminal of the GFP deleted in preparation of the GFP ORF sequence in step i); And iii) 상기 i) 단계에서 제조된 GFP 레포터 넉인벡터에 포함된 GFP의 ORF 서열의 5' 말단 쪽에 ii) 단계에서 제조한 프로모터 서열 및 폴리뉴클레오티드를 연결하는 단계를 포함하는, iii) included in the GFP reporter knock-in vector prepared in step i) Linking the promoter sequence and the polynucleotide prepared in step ii) to the 5 'end of the ORF sequence of GFP, 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.Method for producing a knockout vector comprising a green fluorescent protein reporter gene. 제7항에 있어서,The method of claim 7, wherein 프로모터 서열은 서열번호 11에 기재된 염기서열인 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.A promoter sequence is a method for producing a knockout vector comprising a green fluorescent protein reporter gene, characterized in that the nucleotide sequence of SEQ ID NO: 11. 제7항에 있어서,The method of claim 7, wherein 폴리뉴클레오티드 서열은 서열번호 10에 기재된 염기서열인 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.A method for producing a knockout vector comprising a green fluorescent protein reporter gene, wherein the polynucleotide sequence is a nucleotide sequence set forth in SEQ ID NO: 10. 제7항에 있어서, The method of claim 7, wherein 넉아웃 시키고자 하는 유전자가 TIEG1(Transforming Growth Factor β-inducible early gene 1) 인 것을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.A method for producing a knockout vector comprising a green fluorescent protein reporter gene, wherein the gene to be knocked out is TIEG1 (Transforming Growth Factor β-inducible early gene 1). 제7항에 있어서,The method of claim 7, wherein GFP의 ORF의 3' 말단 쪽에, GFP의 ORF의 삽입으로 인해 결실되는 엑손을 제외한 넉아웃 유전자의 3' 말단부의 나머지 엑손의 염기서열을 연결하는 단계를 추가로 포함하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.To the 3 'end of the ORF of GFP, further comprising linking the nucleotide sequence of the remaining exon of the 3' end of the knockout gene except for the exon deleted due to the insertion of the ORF of GFP. Method for producing a knockout vector comprising. 제11항에 있어서,The method of claim 11, 넉아웃 유전자의 3' 말단부의 염기서열은 서열번호 15에 기재된 것임을 특징으로 하는 녹색형광단백질 레포터 유전자를 포함하는 넉아웃 벡터의 제조방법.The base sequence of the 3 'terminal of the knockout gene is a method for producing a knockout vector comprising a green fluorescent protein reporter gene, characterized in that described in SEQ ID NO: 15. 제2항에 기재된 넉아웃 벡터로 형질전환, 형질감염 또는 감염된 분리된 숙주세포.An isolated host cell transformed, transfected or infected with the knockout vector according to claim 2. 제13항에 있어서,The method of claim 13, R1 생쥐 배아줄기세포인 숙주세포.Host cells that are R1 mouse embryonic stem cells. 제2항에 기재된 넉아웃 벡터를 이용하여 동종 재조합 방법에 의해 인간을 제외한 포유동물 게놈상의 유전자를 넉아웃 시키는 방법.A method of knocking out genes on a mammalian genome except for humans by homologous recombination using the knockout vector according to claim 2. 제15항에 있어서,The method of claim 15, 녹색형광단백질의 발현 여부에 따라 나타나는 형광도를 측정하여 넉아웃 여부를 확인하는 것을 특징으로 하는 인간을 제외한 포유동물 게놈 상의 유전자를 넉아웃 시키는 방법.A method for knocking out genes on mammalian genomes other than humans, characterized in that the knockout is determined by measuring the fluorescence level depending on whether the green fluorescent protein is expressed. 제15항의 방법에 따라 수득될 수 있는 TIEG1(Transforming Growth Factor β-inducible early gene 1)의 기능이 넉아웃된, 인간을 제외한 형질전환 동물.Transgenic animals other than humans knocked out the function of transforming growth factor β-inducible early gene 1 (TIEG1) that can be obtained according to the method of claim 15.
KR1020070108075A 2006-12-29 2007-10-26 A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell KR100963896B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070108075A KR100963896B1 (en) 2007-10-26 2007-10-26 A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell
PCT/KR2007/006787 WO2008082125A1 (en) 2006-12-29 2007-12-24 A knock-out vector constructed by using a reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070108075A KR100963896B1 (en) 2007-10-26 2007-10-26 A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell

Publications (2)

Publication Number Publication Date
KR20090042363A KR20090042363A (en) 2009-04-30
KR100963896B1 true KR100963896B1 (en) 2010-06-17

Family

ID=40765097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070108075A KR100963896B1 (en) 2006-12-29 2007-10-26 A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell

Country Status (1)

Country Link
KR (1) KR100963896B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Neuroscience. Vol. 142, pp. 343-354 (31 July 2006).

Also Published As

Publication number Publication date
KR20090042363A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
AU2016204127B2 (en) Restricted immunoglobulin heavy chain mice
KR20210149060A (en) RNA-induced DNA integration using TN7-like transposons
JP3817739B2 (en) Chimeric DNA binding protein
DK2951309T3 (en) INCREASED TRANSGEN EXPRESSION AND PROCESSING
AU756620B2 (en) Mutations in the myostation gene cause double-muscling in mammals
CN108431225A (en) The induction type of cellular genome is modified
PT770136E (en) Method for selecting high-expressing host cells
US20020132290A1 (en) Coordinate cytokine regulatory sequences
PT1984512T (en) Gene expression system using alternative splicing in insects
Mohler et al. The embryonically active gene, unkempt, of Drosophila encodes a Cys3His finger protein.
AU778719B2 (en) Trap vector and gene trapping method by using the same
WO1999009150A1 (en) Method of introducing modifications into a gene
KR100963896B1 (en) A knock-out vector constructed by using GFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell
KR100958161B1 (en) A knock-out vector constructed by using CFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell
KR102491621B1 (en) System for evaluation of pluripotency of porcine stem cell and methods of evaluation of pluripotency by using thereof
KR100958164B1 (en) A knock-out vector constructed by using YFP reporter knock-in vector and methods for preparing thereof and knocking out gene in animal cell
US20100107265A1 (en) Double-muscling in mammals
CN116323942A (en) Compositions for genome editing and methods of use thereof
CN101052646B (en) Cell cycle phase markers
WO2002053729A1 (en) Bhlh-pas proteins, genes thereof and utilization of the same
KR101899908B1 (en) Animal model for the study of attention deficit/hyperactivity disorder and for producing the same
CN114350706A (en) Lethal mouse animal model infected by new coronavirus and construction method thereof
CN117229385A (en) PD-1 variants and uses thereof
WO2002002782A1 (en) Activation of gene expression in cloned eukaryotic genomic dna and methods of use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180524

Year of fee payment: 9