KR100961914B1 - Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites - Google Patents

Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites Download PDF

Info

Publication number
KR100961914B1
KR100961914B1 KR1020080043122A KR20080043122A KR100961914B1 KR 100961914 B1 KR100961914 B1 KR 100961914B1 KR 1020080043122 A KR1020080043122 A KR 1020080043122A KR 20080043122 A KR20080043122 A KR 20080043122A KR 100961914 B1 KR100961914 B1 KR 100961914B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
silver
decorated
silver nanoparticles
ethylene glycol
Prior art date
Application number
KR1020080043122A
Other languages
Korean (ko)
Other versions
KR20090117195A (en
Inventor
홍순형
진성환
모찬빈
김장교
마펭창
탕벤종
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020080043122A priority Critical patent/KR100961914B1/en
Publication of KR20090117195A publication Critical patent/KR20090117195A/en
Application granted granted Critical
Publication of KR100961914B1 publication Critical patent/KR100961914B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 손쉽게 탄소나노튜브의 표면을 은나노입자로 장식하여 은-탄소나노튜브 나노복합체를 제조하는 방법에 관한 것이다. 본 발명의 가장 큰 특징은, 탄소나노튜브를 유기용매에 분산시키고 이것을 은 용액과 혼합하여 가열함으로써, 탄소나노튜브가 지지체 역할을 수행하게 하여, 균일한 은나노입자가 탄소나노튜브 표면에 높은 밀도로 장식되게 하고, 최종 결과물을 원심분리와 세척에 의해 얻어내는 것이다.The present invention relates to a method for preparing silver-carbon nanotube nanocomposites by easily decorating the surface of carbon nanotubes with silver nanoparticles. The biggest feature of the present invention is that by dispersing the carbon nanotubes in an organic solvent and mixing them with a silver solution, the carbon nanotubes serve as a support, so that the uniform silver nanoparticles have a high density on the surface of the carbon nanotubes. It is decorated and the final result is obtained by centrifugation and washing.

은나노입자, 탄소나노튜브, 나노복합체, 초음파처리, 에틸렌글리콜 Silver nanoparticles, carbon nanotubes, nanocomposites, sonication, ethylene glycol

Description

은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법 {Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites}Method for manufacturing carbon nanotube nanocomposites decorated with silver nanoparticles {Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites}

본 발명은 탄소나노튜브 나노복합체의 제조방법에 관한 것으로, 특히 손쉬운 공정에 의해 은나노입자를 탄소나노튜브 표면에 높은 밀도로 장식할 수 있는, 은-탄소나노튜브 나노복합체의 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon nanotube nanocomposite, and more particularly, to a method for producing a silver-carbon nanotube nanocomposite, which can decorate silver nanoparticles on a surface of a carbon nanotube by an easy process.

탄소나노튜브의 발견 이후로, 많은 연구자들에 의해 탄소나노튜브의 우수한 성질들에 대한 폭넓은 이해가 이루어졌으며, 탄소나노튜브의 응용에 관하여 심도 깊은 연구가 진행되어 왔다. 그라파이트(Graphite) 또는 다이아몬드(Diamond) 등의 다른 탄소계 물질과는 다르게, 탄소나노튜브는 1차원 구조를 갖는 물질이다. 탄소나노튜브는 그래핀(graphene) 층이 나노미터 크기의 두께를 가지고 원형으로 말린 구조를 가진다. 이러한 탄소나노튜브의 구조 및 형태는 금속나노입자를 탄소나노튜브의 표면 위에 나노미터 수준으로 위치시키는 일종의 지지체 역할을 수행할 수 있다. 탄소나노튜브와 금속나노입자의 조합은 두 물질의 우수한 성질들을 동시에 발현함으로써 촉매나 에너지 저장물질 및 각종 나노기술 분야에 유용하게 사용될 수 있다. 많은 연구자들에 의해 탄소나노튜브를 금속나노입자로 장식하는 방법에 관한 것뿐만 아니라, 이렇게 만들어진 나노복합체가 가지는 우수한 전기적 성질, 자기적 성질, 광학적 성질에 대한 연구가 진행되어 왔다. 특히, 많은 금속나노입자 중에서 은나노입자가 탄소나노튜브의 표면에 장식되었을 때 가지는 촉매, 광학리미터(optical limiter), 그 밖에 다른 응용분야에 사용되어 질 수 있는 가능성 때문에 은-탄소나노튜브 나노복합체가 많은 관심을 받아왔다. 또한, 은나노입자는 매우 높은 전기전도도를 가지고 있기 때문에 탄소나노튜브와 복합화할 경우 우수한 전기전도도를 가지는 나노복합체를 제조할 수 있게 된다.Since the discovery of carbon nanotubes, many researchers have gained a broad understanding of the superior properties of carbon nanotubes, and in-depth studies have been made on the application of carbon nanotubes. Unlike other carbon-based materials such as graphite or diamond, carbon nanotubes are materials having a one-dimensional structure. Carbon nanotubes have a structure in which a graphene layer has a nanometer thickness and is rolled into a circle. The structure and shape of the carbon nanotubes may serve as a kind of support for placing the metal nanoparticles at the nanometer level on the surface of the carbon nanotubes. The combination of carbon nanotubes and metal nanoparticles can be usefully used in catalysts, energy storage materials and various nanotechnology fields by simultaneously expressing excellent properties of both materials. Many researchers have been studying not only the decoration of carbon nanotubes with metal nanoparticles, but also the excellent electrical, magnetic and optical properties of these nanocomposites. In particular, among many metal nanoparticles, silver-carbon nanotube nanocomposites are used because of the possibility that they can be used in catalysts, optical limiters, and other applications when silver nanoparticles are decorated on the surface of carbon nanotubes. Has received a lot of attention. In addition, since the silver nanoparticles have a very high electrical conductivity, when composited with carbon nanotubes, it is possible to produce a nanocomposite having excellent electrical conductivity.

은-탄소나노튜브 나노복합체를 제조하기 위해서 열분해방법, 기상증착법, 표면 화학적 환원(surface chemical reduction), 감마선 조사(gamma-irradiation)와 같은 다양한 방법들이 제시되어 왔다. 그러나 이러한 방법들은 크게 두 가지의 단점들을 가지고 있다: 1) 첫째, 은나노입자와 탄소나노튜브 표면과의 결합력이 약하다는 것이다. 대부분의 경우, 은나노입자는 탄소나노튜브 표면과의 약한 결합력 때문에, 모세관 효과(capillary effect)에 의해 은나노입자가 탄소나노튜브 내부에 형성되게 된다; 2) 둘째, 은나노입자가 응집된다는 것이다. 은나노입자가 응집되게 되면, 탄소나노튜브의 표면을 은나노입자로 균일하게 장식하는 것이 어려워지게 된다.Various methods such as pyrolysis, vapor deposition, surface chemical reduction, and gamma-irradiation have been proposed to prepare silver-carbon nanotube nanocomposites. However, these methods have two major disadvantages: 1) First, the bonding strength between silver nanoparticles and the surface of carbon nanotubes is weak. In most cases, silver nanoparticles have a weak bonding force with the surface of carbon nanotubes, so that the silver nanoparticles are formed inside the carbon nanotubes by a capillary effect; 2) Second, silver nanoparticles are aggregated. When silver nanoparticles are aggregated, it becomes difficult to uniformly decorate the surface of the carbon nanotubes with silver nanoparticles.

따라서 효과적으로 은나노입자로 장식된 탄소나노튜브 나노복합체를 제조하기 위해서, 탄소나노튜브의 표면 개질 방법이 틴소나노튜브와 은나노입자간 결합력을 강화시키는 목적으로 사용될 수 있다. 특히, 강산에 의한 탄소나노튜브의 표면 개질은 탄소나노튜브의 표면에 유용한 기능기를 부여해주어 은나노입자와 탄소나노 튜브 표면과의 결합력을 강화시켜 줄 수 있다 (미국특허출원 공개 제20060142149호 참조). 그러나 강산에 의한 표면 개질 방법은 산화과정 중에 탄소나노튜브의 구조에 심각한 손상을 가져오게 되고 환경친화적이지도 못하기 때문에, 탄소나노튜브의 표면을 손상시키지 않으면서, 보다 쉽고, 가격 경쟁력이 있는 환경친화적인 제조방법의 개발이 필요하다.Therefore, in order to effectively produce carbon nanotube nanocomposites decorated with silver nanoparticles, a surface modification method of carbon nanotubes may be used for the purpose of enhancing the bonding force between the tin nanotubes and silver nanoparticles. In particular, the surface modification of the carbon nanotubes by the strong acid can impart a useful functional group to the surface of the carbon nanotubes to strengthen the binding force between the silver nanoparticles and the carbon nanotube surface (see US Patent Application Publication No. 20060142149). However, the method of surface modification by strong acid causes serious damage to the structure of carbon nanotubes during the oxidation process and is not environmentally friendly. There is a need for development of phosphorus production methods.

한편, 폴리올 공정은 매우 미세한 금속나노입자를 제조하는데 유용하게 사용될 수 있다. 매우 미세한 은나노입자 또한 폴리올 공정을 통해 제조될 수 있으며 공정조건을 조절함으로써 은나노입자의 크기분포, 응집의 정도, 결정성을 제어할 수 있다 (미국특허출원 공개 제20060090599호 참조).Meanwhile, the polyol process may be usefully used to prepare very fine metal nanoparticles. Very fine silver nanoparticles can also be prepared through the polyol process and by controlling the process conditions it is possible to control the size distribution, degree of aggregation, crystallinity of the silver nanoparticles (see US Patent Application Publication No. 20060090599).

미국 특허출원 공개 제20050220988호에는, 탄소나노튜브에 금속입자를 부착 시키는 방법을 설명하고 있는데, 이 방법에서는 금속염을 포함하고 있는 실란용액 (silane solution)을 사용하여, 탄소나노튜브에 금속을 부착시킨다. 즉, 탄소나노튜브로 만들어진 기판(substrate)을 백금(Pt) 혹은 염화루테늄(ruthenium chloride, RuCl3)을 포함하고 있는 실란용액(silane solution)에 담지시키고, 금속을 탄소나노튜브 기판(substrate) 위에 환원시켜, 우수한 전기 전도도를 가지는 촉매를 제조하였다. 그러나 이 공정은 탄소나노튜브를 실란용액 (silane solution)에 담지 시키는 공정과 수소를 사용하여, 금속을 환원시키는 공정의 2가지 공정으로 이루어져 있기 때문에, 실제 응용분야에 적용하는 데 있어 재료 및 공정비용이 상승하는 단점을 가지게 된다. 더구나 이 방법의 또 다른 단점은 최종복합체에 실 란(silane) 분자로부터 기인한 실리콘(silicone)이 포함되게 되어 백금(Pt) 혹은 루테늄(Ru)의 촉매로서의 효과를 감소시킨다는 점이다.U.S. Patent Application Publication No. 20050220988 describes a method for attaching metal particles to carbon nanotubes, wherein the metal is attached to carbon nanotubes using a silane solution containing a metal salt. . That is, a substrate made of carbon nanotubes is supported in a silane solution containing platinum (Pt) or ruthenium chloride (RuCl 3 ), and the metal is deposited on the carbon nanotube substrate. By reduction, a catalyst with good electrical conductivity was prepared. However, this process consists of two processes, one of supporting carbon nanotubes in a silane solution and the other of reducing metals using hydrogen. This has the disadvantage of rising. Moreover, another disadvantage of this method is that the final composite contains silicon derived from silane molecules, which reduces the effect of platinum (Pt) or ruthenium (Ru) as a catalyst.

본 발명이 해결하고자 하는 과제는, 은나노입자로 장식된 탄소나노튜브 나노복합체를 간단한 제조공정을 통해 만들어내는 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles through a simple manufacturing process.

본 발명의 다른 기술적 과제는, 폴리올 공정에 바탕을 두어, 손쉽게 인시튜(in-situ)로 은나노입자로 장식된 탄소나노튜브 나노복합체를 제조하는 방법을 제공하는 것이다.Another technical problem of the present invention is to provide a method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles easily in-situ based on a polyol process.

상기한 기술적 과제들을 해결하기 위한 본 발명의 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법은:Method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles of the present invention for solving the above technical problems:

탄소나노튜브를 분산 및 환원 역활을 동시에 수행하는 유기용매에 분산시킨 탄소나노튜브 분산액을 만드는 제1 단계와;A first step of producing a carbon nanotube dispersion in which carbon nanotubes are dispersed in an organic solvent which simultaneously performs a dispersion and reduction role;

상기 탄소나노튜브 분산액에 은이온을 포함한 용액을 주입하되 주입속도가 일정하게 되도록 조절하여 주입하여 은나노입자를 상기 탄소나노튜브의 표면에 부착시키는 제2 단계와;Injecting a solution containing silver ions into the carbon nanotube dispersion and controlling the injection rate to be constant to attach the silver nanoparticles to the surface of the carbon nanotube;

상기 제2 단계의 결과물에 원심분리 및 세척공정을 적용하는 제3 단계;A third step of applying a centrifugation and washing process to the resultant of the second step;

를 구비하는 것을 특징으로 한다.Characterized in having a.

상기 제1 단계에서 상기 탄소나노튜브를 유기용매에 분산시키는 공정이 초음파처리를 통해 이루어지는 것이 바람직하며, 이 경우, 상기 초음파 처리시간이 5분 ∼ 2시간인 것이 더욱 바람직하다.In the first step, the process of dispersing the carbon nanotubes in the organic solvent is preferably performed by ultrasonic treatment, and in this case, the ultrasonic treatment time is more preferably 5 minutes to 2 hours.

상기 유기용매로서 에틸렌글리콜을 사용할 수도 있다.Ethylene glycol can also be used as said organic solvent.

상기 탄소나노튜브 분산액에서 상기 탄소나노튜브의 농도는 0.01 ∼ 1.0 ㎎/㎖인 것이 바람직하다.In the carbon nanotube dispersion, the concentration of the carbon nanotubes is preferably 0.01 to 1.0 mg / ml.

또한, 상기 은나노입자는, 상기 에틸렌글리콜의 분해에 따라 생성되는 아세트 알데히드에 의해 상기 은이온으로부터 환원에 의해 만들어지는 것으로서, 상기 아세트 알데히드의 생성을 위해 상기 제2 단계에서 상기 탄소나노튜브 분산액을 은이온을 포함한 용액과 혼합한 결과물을 50 ∼ 197℃로 가열하는 것이 바람직하다.In addition, the silver nanoparticles are produced by the reduction from the silver ions by the acetaldehyde produced by the decomposition of the ethylene glycol, the carbon nanotube dispersion liquid in the second step for the production of the acetaldehyde It is preferable to heat the resultant mixed with the solution containing an ion to 50-197 degreeC.

상기 은이온은 은질화물에서 나온 것이며, 상기 은이온을 포함한 용액이, 은질화물을 에틸렌글리콜 용매에 용해시킨 용액인 것이 바람직하며, 이 경우, 상기 에틸렌글리콜 용매 내에 상기 은질화물의 농도가 5 ∼ 20 ㎎/㎖인 것이 더욱 바람직하다.The silver ions are derived from silver nitride, and the solution containing the silver ions is preferably a solution in which silver nitride is dissolved in an ethylene glycol solvent. In this case, the concentration of the silver nitride in the ethylene glycol solvent is 5-20. It is more preferable that it is mg / ml.

또한, 상기 탄소나노튜브를 에틸렌글리콜에 분산시킨 탄소나노튜브-에틸렌글리콜 분산액과 은질화물-에틸렌글리콜 용액과의 부피비는 2:1 ∼ 1:2인 것이 바람직하다.In addition, the volume ratio of the carbon nanotube-ethylene glycol dispersion in which the carbon nanotubes are dispersed in ethylene glycol and the silver nitride-ethylene glycol solution is preferably 2: 1 to 1: 2.

더욱이, 상기 제2 단계와 제3 단계 사이에 상기 제2 단계의 결과물을 에탄올로 희석하는 단계를 더 구비하여도 좋다.Furthermore, the method may further comprise diluting the resultant of the second step with ethanol between the second step and the third step.

한편, 상기 탄소나노튜브 분산액을 은이온을 포함한 용액과 혼합하는 것은 상기 은이온 포함 용액을 상기 탄소나노튜브 분산액에 0.1 ∼ 1 ㎖/min의 속도로 주입함으로써 달성할 수 있다.On the other hand, mixing the carbon nanotube dispersion with a solution containing silver ions can be achieved by injecting the silver ion-containing solution into the carbon nanotube dispersion at a rate of 0.1 ~ 1 ml / min.

또한, 상기 제2단계가:In addition, the second step is:

(a) 상기 탄소나노튜브 분산액을 상기 은이온 포함 용액과 혼합하기 전에 가열하는 단계와;(a) heating the carbon nanotube dispersion prior to mixing with the silver ion containing solution;

(b) 상기 탄소나노튜브 분산액과 상기 은이온 포함 용액과 혼합하고 가열하면서 교반하는 단계와;(b) mixing with the carbon nanotube dispersion and the silver ion-containing solution and stirring while heating;

(c) 상기 (b) 단계의 결과물을 12시간 ∼ 24시간 동안 추가적인 교반이나 가열없이 유지하는 숙성(aging) 공정을 거치는 단계;(c) undergoing an aging process of maintaining the resultant of step (b) without additional stirring or heating for 12 hours to 24 hours;

를 구비하는 것이 바람직하다.It is preferable to have a.

본 발명에 따르면, 은나노입자가 균일하고도 높은 밀도로 장식된 탄소나노튜브 복합체를 값싸게 제조할 수 있으므로, 관련 응용분야의 본격적인 상용화 및 연구확대에 큰 기여를 할 수 있다. 또한, 제조공정이 간편하고 대량생산을 위해 공정을 쉽게 확대시킬 수 있으므로, 산업발전에 이바지할 수 있다.According to the present invention, since silver nanoparticles can produce carbon nanotube composites which are decorated with uniform and high density at a low cost, they can contribute to full-scale commercialization and expansion of research in related applications. In addition, since the manufacturing process is simple and the process can be easily expanded for mass production, it can contribute to industrial development.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Therefore, the scope of the present invention should not be construed as limited to these examples.

본 발명은 용액방법으로서, 은나노입자를 탄소나노튜브 위에 부착시키는 공 정을 이용한다. 본 실시예에서는 탄소나노튜브로서 화학기상증착법(CVD)으로 제조된 다중벽 탄소나노튜브(일진나노텍사 제품; Iljin Nanotech Ltd., Korea)를 사용하였다. 도 1은 본 발명의 실시예에 사용된 탄소나노튜브의 투과전자현미경 사진이다. 도 1을 참조하면, 투과전자현미경을 통해 관찰한 탄소나노튜브의 두께는 10∼20㎚였으며, 그 길이는 10∼50㎛ 수준이었다. 이러한 탄소나노튜브의 관찰을 포함하여, 본 실시예의 전 과정에서 관찰을 위해 사용된 현미경은 Tecnai 20F 투과전자현미경이었다.The present invention uses a process for attaching silver nanoparticles on carbon nanotubes as a solution method. In this embodiment, multi-walled carbon nanotubes (Iljin Nanotech Co., Ltd., Korea) manufactured by chemical vapor deposition (CVD) were used as carbon nanotubes. 1 is a transmission electron micrograph of the carbon nanotubes used in the embodiment of the present invention. Referring to FIG. 1, the thickness of the carbon nanotubes observed through the transmission electron microscope was 10-20 nm, and the length was 10-50 μm. Including the observation of such carbon nanotubes, the microscope used for the observation in the entire process of this embodiment was a Tecnai 20F transmission electron microscope.

어떤 방법으로 탄소나노튜브를 제조하여도, 공정 자체적으로 항상 탄소나노튜브의 표면에 결함이 생성된다고 알려져 있으며, 이러한 결함의 존재들이 다양한 관찰을 통해 확인되었다. 이러한 결함들은 탄소나노튜브 표면에 금속입자를 부착시키는 데에 있어, 금속입자의 핵 생성을 일으키는 장소로서 중요한 역할을 수행하게 된다. Regardless of how carbon nanotubes are manufactured, defects are known on the surface of the carbon nanotubes at all times, and the existence of these defects has been confirmed through various observations. These defects play an important role as a place for nucleation of metal particles in attaching metal particles to the surface of carbon nanotubes.

미국특허출원 공개 제20060090599호에 따르면 폴리올 공정은 금속입자를 1∼10㎚의 크기로 조절하여 제조할 수 있다. 따라서 본 발명은 폴리올 공정과 탄소나노튜브가 본질적으로 가지고 있는 표면결함을 이용하여, 손쉽게 탄소나노튜브를 은나노입자로 장식할 수 있는 방법을 제안한 것이다. 도 2는 본 발명의 실시예에 적용하기 위해 폴리올 공정에 의해 제조된 은나노입자의 투과전자현미경 사진이다. 도 2를 참조하면, 은나노입자의 크기가 상당히 균일하고 대부분의 은나노입자의 크기가 10㎚ 미만임을 확인할 수 있다.According to US Patent Application Publication No. 20060090599 polyol process can be prepared by adjusting the metal particles to a size of 1 ~ 10nm. Therefore, the present invention proposes a method for easily decorating carbon nanotubes with silver nanoparticles using a polyol process and surface defects inherent in carbon nanotubes. Figure 2 is a transmission electron micrograph of the silver nanoparticles prepared by the polyol process for application to an embodiment of the present invention. Referring to FIG. 2, it can be seen that the size of the silver nanoparticles is fairly uniform and that the size of most of the silver nanoparticles is less than 10 nm.

본 실시예에서 사용된 물질 및 용매는 추가적인 정제 없이 그대로 사용되었 으며, 그 종류는 다음과 같다. 에틸렌글리콜(ethylene glycol, 99.0%, Junsei Chemical), 에탄올(ethanol, 99.0%, Merck), 아세톤 (acetone, 99.0%, Merck), 은질화물(silver nitrate , 99.5%, Junsei Chemical).The materials and solvents used in this example were used as they are without further purification, and the types thereof are as follows. Ethylene glycol (99.0%, Junsei Chemical), ethanol (99.0%, Merck), acetone (acetone, 99.0%, Merck), silver nitrate (99.5%, Junsei Chemical).

도 3은 본 발명의 실시예에 따른 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법을 설명하기 위한 공정 흐름도이다.Figure 3 is a process flow diagram illustrating a method of manufacturing a carbon nanotube nanocomposite decorated with silver nanoparticles according to an embodiment of the present invention.

이 제조방법은 4개의 목을 가지고 있는 250㎖ 용량의 둥근 바닥 플라스크 (4-necked round flask)에 냉각기를 장착하여 진행되었다. 용액의 교반은 회전속도를 조절할 수 있는 자력 교반기(magnetic stirrer)를 통해 실시되었다. 도 3을 참조하면, 우선 탄소나노튜브의 농도가 0.5㎎/㎖가 되도록 한 100㎖의 탄소나노튜브-에틸렌글리콜 용액(CNT-ethylene glycol solution)을 혼합하고(S10 단계), 잘 분산된 탄소나노튜브 분산액을 얻기 위해서, 초음파처리로 1시간 동안 사전처리를 실시한다(S20 단계). 그리고 나서 혼합물을 160℃까지 가열한 후(S30 단계), 은 질화물의 농도가 10㎎/㎖인 50㎖의 은질화물-에틸렌글리콜 용액(AgNO3-ethyleneglycol solution)을 한 방울씩 천천히 혼합체에 떨어뜨린다(S40 단계). 이 경우, 은질화물-에틸렌글리콜 용액을 탄소나노튜브-에틸렌글리콜 분산액에 0.1 ∼ 1 ㎖/min의 속도로 적하 주입하는 것이 바람직하다. 그 다음, 그 결과물을 160℃에서 2시간 동안 250rpm의 속도로 자력 교반기로 교반하여 준다. 이와 같이 가열하는 이유는 에틸렌글리콜의 분해에 의해 생성되는 아세트알데히드(acetaldehyde)가 은이온에서 은입자로의 환원에 관여하기 때문이다. 최종 혼합물은 숙성(aging)을 위해 최소 12시간 이상 추가적인 교반이나 가열없이 유지한다(S50 단계). 최종 생산물은 원심분리와 세척을 통해 유기용매로부터 분리되어 얻어지게 되는데, 원심분리를 위해 혼합물은 600㎖의 에탄올을 사용하여 먼저 희석한 후(S60 단계), 3000rpm의 속도로 10분 동안 원심분리를 실시한 후에 에탄올을 사용하여 3번 이상 세척을 실시한다. 본 발명의 실시예의 최종 생산물인 은나노입자로 장식된 탄소나노튜브 나노복합체는 건조상태나 용매 내에서 보관하면 되는데, 용매 내에서 보관할 경우 에탄올 또는 아세톤을 이용하면 된다.The process was carried out by mounting a cooler in a four necked 250 mL round neck flask. Stirring of the solution was carried out through a magnetic stirrer with adjustable rotation speed. Referring to FIG. 3, first, 100 ml of carbon nanotube-ethylene glycol solution having a concentration of 0.5 mg / ml of carbon nanotubes is mixed (step S10), and well dispersed carbon nanotubes. To obtain a tube dispersion, pretreatment is performed for 1 hour by sonication (step S20). Then, after heating the mixture to 160 ℃ (step S30), is of a concentration of the nitride 10㎎ / 50㎖ nitride-drop to the mixture slowly dropwise an ethylene glycol solution (AgNO 3 -ethyleneglycol solution) (Step S40). In this case, the silver nitride-ethylene glycol solution is preferably added dropwise to the carbon nanotube-ethylene glycol dispersion at a rate of 0.1 to 1 ml / min. Then, the resultant was stirred with a magnetic stirrer at a speed of 250 rpm for 2 hours at 160 ℃. The reason for this heating is that acetaldehyde produced by decomposition of ethylene glycol is involved in the reduction of silver ions to silver particles. The final mixture is maintained for at least 12 hours without further stirring or heating for aging (step S50). The final product is obtained from the organic solvent by centrifugation and washing. For centrifugation, the mixture is first diluted with 600 ml of ethanol (step S60), and then centrifuged at 3000 rpm for 10 minutes. After the rinse, rinse three times or more using ethanol. The carbon nanotube nanocomposite decorated with silver nanoparticles, which is the final product of the embodiment of the present invention, may be stored in a dry state or in a solvent. When storing in a solvent, ethanol or acetone may be used.

도 4와 5는 본 발명의 실시예에 따라 제조된 은나노입자로 장식된 탄소나노튜브 나노복합체의 투과전자현미경사진으로서, 도 4에 비해 도 5의 것이 더 고분해능 장치를 사용하여 관찰한 것이다. 도 4 및 5를 참조하면, 2∼5㎚ 크기의 균일한 은나노입자가 높은 밀도로 탄소나노튜브 표면을 장식하고 있는 것을 관찰할 수 있다. 이러한 실시예의 방법을 간단히 요약하자면, 다음과 같은 3단계로 이루어진다.4 and 5 are transmission electron micrographs of carbon nanotube nanocomposites decorated with silver nanoparticles prepared according to an embodiment of the present invention, and those of FIG. 5 are observed using a higher resolution device than FIG. 4. 4 and 5, it can be observed that uniform silver nanoparticles having a size of 2 to 5 nm decorate the surface of the carbon nanotubes with high density. To summarize briefly the method of this embodiment, it consists of the following three steps.

1: 초음파처리(ultrasonication)를 통해 탄소나노튜브를 유기용매에 분산시키는 단계1: Dispersion of Carbon Nanotubes in Organic Solvents by Ultrasonication

2: 탄소나노튜브의 존재 하에 은이온을 은 입자로 환원시켜 자발적으로 은나노입자를 탄소나노튜브 표면에 부착시키는 단계2: step of spontaneously attaching silver nanoparticles to the surface of carbon nanotubes by reducing silver ions to silver particles in the presence of carbon nanotubes

3: 원심분리(centrifugation) 와 세척을 통해 은나노입자로 장식된 탄소나노튜브 복합체를 건조상태 혹은 에탄올에 분산시킨 상태로 회수하는 단계.3: recovering the carbon nanotube composite decorated with silver nanoparticles in a dry state or dispersed in ethanol through centrifugation and washing.

상기한 본 발명의 방법을 이용할 경우, 복잡하지 않은 한가지 공정에 의해 은나노입자가 장식된 탄소나노튜브 복합체를 제조할 수 있다는 장점을 갖는다.When using the above-described method of the present invention, the silver nanoparticles are decorated with carbon nanotube composites can be produced by one uncomplicated process.

도 1은 본 발명의 실시예에 사용된 탄소나노튜브의 투과전자현미경 사진;1 is a transmission electron micrograph of the carbon nanotubes used in the embodiment of the present invention;

도 2는 본 발명의 실시예에 적용하기 위해 폴리올 공정에 의해 제조된 은나노입자의 투과전자현미경 사진;2 is a transmission electron micrograph of silver nanoparticles prepared by the polyol process for application to an embodiment of the present invention;

도 3은 본 발명의 실시예에 따른 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법을 설명하기 위한 공정 흐름도;3 is a process flow chart for explaining a method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles according to an embodiment of the present invention;

도 4는 본 발명의 실시예에 따라 제조된 은나노입자로 장식된 탄소나노튜브 나노복합체의 투과전자현미경 사진; 및Figure 4 is a transmission electron micrograph of a carbon nanotube nanocomposite decorated with silver nanoparticles prepared according to an embodiment of the present invention; And

도 5는 본 발명의 실시예에 따라 제조된 은나노입자로 장식된 탄소나노튜브 나노복합체의 고분해능 투과전자현미경 사진이다.5 is a high resolution transmission electron micrograph of a carbon nanotube nanocomposite decorated with silver nanoparticles prepared according to an embodiment of the present invention.

Claims (12)

탄소나노튜브를 분산 및 환원 역활을 동시에 수행하는 유기용매에 분산시킨 탄소나노튜브 분산액을 만드는 제1 단계와;A first step of producing a carbon nanotube dispersion in which carbon nanotubes are dispersed in an organic solvent which simultaneously performs a dispersion and reduction role; 상기 탄소나노튜브 분산액에 은이온을 포함한 용액을 주입하되 주입속도가 일정하게 되도록 조절하여 주입하여 은나노입자를 상기 탄소나노튜브의 표면에 부착시키는 제2 단계와;Injecting a solution containing silver ions into the carbon nanotube dispersion and controlling the injection rate to be constant to attach the silver nanoparticles to the surface of the carbon nanotube; 상기 제2 단계의 결과물에 원심분리 및 세척공정을 적용하는 제3 단계;A third step of applying a centrifugation and washing process to the resultant of the second step; 를 구비하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.A method of producing a carbon nanotube nanocomposite decorated with silver nanoparticles. 삭제delete 제1항에 있어서, 상기 유기용매가 에틸렌글리콜인 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.The method of manufacturing a carbon nanotube nanocomposite decorated with silver nanoparticles according to claim 1, wherein the organic solvent is ethylene glycol. 삭제delete 삭제delete 제3항에 있어서, 상기 은나노입자는, 상기 에틸렌글리콜의 분해에 따라 생성되는 아세트 알데히드에 의해 상기 은이온으로부터 환원에 의해 만들어지는 것으로서, 상기 아세트 알데히드의 생성을 위해 상기 제2 단계에서 상기 탄소나노튜브 분산액을 은이온을 포함한 용액과 혼합한 결과물을 50 ∼ 197℃로 가열하는 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.According to claim 3, The silver nanoparticles are made by reduction from the silver ions by the acetaldehyde produced by the decomposition of the ethylene glycol, the carbon nano in the second step for the production of the acetaldehyde A method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles, characterized in that a resultant mixture of a tube dispersion liquid and a solution containing silver ions is heated to 50 to 197 ° C. 제3항에 있어서, 상기 은이온이 은질화물에서 나온 것이며, 상기 은이온을 포함한 용액이, 은질화물을 에틸렌글리콜 용매에 용해시킨 용액인 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.The carbon nanotube nanocomposite decorated with silver nanoparticles according to claim 3, wherein the silver ions are derived from silver nitride, and the solution containing silver ions is a solution in which silver nitride is dissolved in an ethylene glycol solvent. Manufacturing method. 제7항에 있어서, 상기 에틸렌글리콜 용매 내에 상기 은질화물의 농도가 5 ∼ 20 ㎎/㎖인 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.The method of manufacturing a carbon nanotube nanocomposite decorated with silver nanoparticles according to claim 7, wherein the concentration of the silver nitride in the ethylene glycol solvent is 5 to 20 mg / ml. 제7항에 있어서, 상기 탄소나노튜브를 에틸렌글리콜에 분산시킨 탄소나노튜브-에틸렌글리콜 분산액과 은질화물-에틸렌글리콜 용액과의 부피비가 2:1 ∼ 1:2인 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.8. The silver nanoparticles according to claim 7, wherein a volume ratio of the carbon nanotube-ethylene glycol dispersion in which the carbon nanotubes are dispersed in ethylene glycol and the silver nitride-ethylene glycol solution is 2: 1 to 1: 2. Method for preparing a decorated carbon nanotube nanocomposite. 삭제delete 제1항에 있어서, 상기 탄소나노튜브 분산액을 은이온을 포함한 용액과 혼합하는 것이 상기 은이온 포함 용액을 상기 탄소나노튜브 분산액에 0.1 ∼ 1 ㎖/min의 속도로 주입하는 것임을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.The method of claim 1, wherein the carbon nanotube dispersion is mixed with a solution containing silver ions, the silver ion is characterized in that the carbon nanotube dispersion is injected into the carbon nanotube dispersion at a rate of 0.1 ~ 1 ml / min, Method for preparing carbon nanotube nanocomposites decorated with particles. 제1항에 있어서, 상기 제2단계가:The method of claim 1, wherein the second step is: (a) 상기 탄소나노튜브 분산액을 상기 은이온 포함 용액과 혼합하기 전에 가열하는 단계와;(a) heating the carbon nanotube dispersion prior to mixing with the silver ion containing solution; (b) 상기 탄소나노튜브 분산액과 상기 은이온 포함 용액과 혼합하고 가열하면서 교반하는 단계와;(b) mixing with the carbon nanotube dispersion and the silver ion-containing solution and stirring while heating; (c) 상기 (b) 단계의 결과물을 12시간 ∼ 24시간 동안 추가적인 교반이나 가열없이 유지하는 숙성(aging) 공정을 거치는 단계;(c) undergoing an aging process of maintaining the resultant of step (b) without additional stirring or heating for 12 hours to 24 hours; 를 구비하는 것을 특징으로 하는, 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법.Method for producing a carbon nanotube nanocomposite decorated with silver nanoparticles, characterized in that it comprises a.
KR1020080043122A 2008-05-09 2008-05-09 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites KR100961914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080043122A KR100961914B1 (en) 2008-05-09 2008-05-09 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080043122A KR100961914B1 (en) 2008-05-09 2008-05-09 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites

Publications (2)

Publication Number Publication Date
KR20090117195A KR20090117195A (en) 2009-11-12
KR100961914B1 true KR100961914B1 (en) 2010-06-10

Family

ID=41601708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080043122A KR100961914B1 (en) 2008-05-09 2008-05-09 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites

Country Status (1)

Country Link
KR (1) KR100961914B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400678B1 (en) 2012-09-12 2014-05-29 전자부품연구원 Method for forming nano-structure on carbon fiber
KR20160040090A (en) 2014-10-02 2016-04-12 한국전기연구원 Fabrication method of nanometal and nanocarbon hybrid materials
KR20210054690A (en) 2019-11-06 2021-05-14 한국전기연구원 Flexible electrode paste composition using carbon nanomaterial-nanometallic composite and metal flake, method for preparing same, and flexible electrode comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177223A1 (en) * 2011-06-24 2012-12-27 Nanyang Technological University A nanocomposite, a filtration membrane comprising the nanocomposite, and methods to form the nanocomposite and the filtration membrane
KR101412623B1 (en) * 2012-05-10 2014-07-01 한국표준과학연구원 Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof
KR101412625B1 (en) * 2012-05-10 2014-07-01 한국표준과학연구원 Crabon nabotube composites having micro-pillar of vertical shape and method for manufacturing the same, tactile sensor with thereof
KR101434639B1 (en) * 2012-09-26 2014-08-26 경상대학교산학협력단 Silver Nano-CNT Mixing Particle for Cleaning Material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
모찬빈 외 3인, 탄소나노튜브/금속 나노복합재료의 제조 공정 및 기계적/전기적 특성, Polymer Science and Technology V.17, N.6, 2007.12. pp.528-534*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400678B1 (en) 2012-09-12 2014-05-29 전자부품연구원 Method for forming nano-structure on carbon fiber
KR20160040090A (en) 2014-10-02 2016-04-12 한국전기연구원 Fabrication method of nanometal and nanocarbon hybrid materials
US10184059B2 (en) 2014-10-02 2019-01-22 Korea Electrotechnology Research Institute Nanometal-nanocarbon hybrid material and method of manufacturing the same
KR20210054690A (en) 2019-11-06 2021-05-14 한국전기연구원 Flexible electrode paste composition using carbon nanomaterial-nanometallic composite and metal flake, method for preparing same, and flexible electrode comprising same

Also Published As

Publication number Publication date
KR20090117195A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
KR100961914B1 (en) Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites
Duan et al. Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst
CN105271217B (en) A kind of preparation method of the three-dimensional grapheme of N doping
Fu et al. Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite
Meng et al. Polymer composites of boron nitride nanotubes and nanosheets
US7666915B2 (en) Highly dispersible carbon nanospheres in a polar solvent and methods for making same
CN101683978B (en) Method for preparing carbon nano tube modified by silver nano particles
JP5775603B2 (en) Graphene derivative-carbon nanotube composite material and manufacturing method thereof
Sahu et al. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst
US11643328B2 (en) Method of producing surface-treated carbon nanostructures
TW201240916A (en) Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
Yu et al. Coating MWNTs with Cu2O of different morphology by a polyol process
Ariga et al. Zero-to-one (or more) nanoarchitectonics: How to produce functional materials from zero-dimensional single-element unit, fullerene
Peng et al. Ultrasound-assisted fabrication of dispersed two-dimensional copper/reduced graphene oxide nanosheets nanocomposites
Liu et al. Gold nanoparticles/carbon nanotubes composite microspheres for catalytic reduction of 4-nitrophenol
JP2009220017A (en) Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
Kebede et al. Low-dimensional nanomaterials
Akbarzadeh et al. Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles
Gao et al. Exfoliated graphdiyne for the electroless deposition of Au nanoparticles with high catalytic activity
Kumar et al. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles
KR20210142601A (en) Fibrous carbon nanostructures, methods for producing fibrous carbon nanostructures, and methods for producing surface-modified fibrous carbon nanostructures
Li et al. Dispersion of carbon nanotubes in aqueous solutions containing poly (diallyldimethylammonium chloride).
Iqbal et al. Synthesis and characterization of DGEBA composites reinforced with Cu/Ag modified carbon nanotubes
Guo et al. A novel hybrid nanostructure based on SiO 2@ carbon nanotube coaxial nanocable
KR20200067059A (en) Carbon nano material-nano metal complex and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130709

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee