KR101412623B1 - Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof - Google Patents

Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof Download PDF

Info

Publication number
KR101412623B1
KR101412623B1 KR1020120049466A KR20120049466A KR101412623B1 KR 101412623 B1 KR101412623 B1 KR 101412623B1 KR 1020120049466 A KR1020120049466 A KR 1020120049466A KR 20120049466 A KR20120049466 A KR 20120049466A KR 101412623 B1 KR101412623 B1 KR 101412623B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
polymer matrix
carbon nanotube
nanoparticles
concentration
Prior art date
Application number
KR1020120049466A
Other languages
Korean (ko)
Other versions
KR20130125884A (en
Inventor
권수용
박연규
김민석
강대임
권일민
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020120049466A priority Critical patent/KR101412623B1/en
Priority to PCT/KR2013/003941 priority patent/WO2013168955A1/en
Publication of KR20130125884A publication Critical patent/KR20130125884A/en
Application granted granted Critical
Publication of KR101412623B1 publication Critical patent/KR101412623B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/002Devices comprising flexible or deformable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate

Abstract

본 발명은 압저항 센싱감도가 향상된 탄소나노튜브 복합체 및 그 제조방법, 이 탄소나노튜브 복합체를 갖는 압력감응센서에 관한 것으로, 폴리디메틸실록산의 고분자 매트릭스, 탄소나노튜브 및 은나노입자는 1 : 0.0018∼0.0022 : 0.032∼0.048 질량비로 배합되고, 탄소나노튜브 및 금속나노입자가 고분자 매트릭스에 고루 분포되어 이루어짐으로써, 탄소나노튜브의 표면에 은나노입자가 부착되는 것이 아니라, 탄소나노튜브와 은나노입자가 고분자 매트릭스에 고루 분포되도록 하여 탄소나노튜브의 선형성이 향상되고, 탄소나노튜브 복합체의 센서감도가 향상되며, 매우 간단히 탄소나노튜브 복합체를 제조할 수 있도록 한 것이다. The present invention relates to a carbon nanotube composite having improved piezoresistive sensing sensitivity, a production method thereof, and a pressure sensitive sensor having the carbon nanotube composite. The polymer matrix, carbon nanotube and silver nanoparticles of polydimethylsiloxane have a ratio of 1: 0.0022: 0.032 to 0.048 mass ratio, and the carbon nanotubes and the metal nanoparticles are uniformly distributed in the polymer matrix, so that not only the silver nanoparticles adhere to the surface of the carbon nanotubes but also the carbon nanotubes and the silver nanoparticles form the polymer matrix So that the linearity of the carbon nanotubes is improved, the sensor sensitivity of the carbon nanotube composite is improved, and the carbon nanotube composite can be manufactured very simply.

Description

압저항 센싱감도가 향상된 탄소나노튜브 복합체 및 그 제조방법, 이 탄소나노튜브 복합체를 갖는 압력감응센서{Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof}[0001] The present invention relates to a carbon nanotube composite having improved piezoresistive sensing sensitivity and a pressure sensitive sensor having the carbon nanotube composite,

본 발명은 탄소나노튜브 복합체에 관한 것으로, 보다 상세하게는 탄소나노튜브(CNT : carbon nanotube)와 전기적 물성이 뛰어난 금속나노입자가 고분자 매트릭스(Polymer matrix)에 함유되어 압저항특성에서 센서감도가 월등히 향상하도록 된 압저항 센싱감도가 향상된 탄소나노튜브 복합체 및 그 제조방법, 이 탄소나노튜브 복합체를 갖는 압력감응센서에 관한 것이다.
The present invention relates to a carbon nanotube composite, and more particularly, to a carbon nanotube composite material comprising carbon nanotubes (CNTs) and metal nanoparticles having excellent electrical properties in a polymer matrix, A pressure sensitive sensor having the carbon nanotube composite, and a pressure sensitive sensor having the carbon nanotube composite.

최근에 발견된 탄소나노튜브는 우수한 기계적 강도, 열전도도, 전기전도도 및 화학적 안정성으로 인하여 에너지, 환경 및 전자소재 등 다양한 분야에 응용되고 있다. 현재에 이르러 전계방출형 평면 디스플레이, 연료전지 및 태양전지의 전극물질, 연료전지의 수소저장장치, 전자파차단장치, 전자잉크 원료물질 등의 전자산업용 소재 또는, 경량고강도 공구강, 경량고강도 자동차 부품, 방위산업 소재 등의 고강도의 소재로서, 금속이 함유된 탄소나노튜브 복합체가 각광받고 있다. 최근에는 탄소나노튜브에 금속나노입자를 결합한 탄소나노튜브 복합체에 대한 연구가 활발하게 이루어지고 있다. 이를 통해 탄소나노튜브의 자체 특성뿐만 아니라 나노입자의 특성까지도 응용하여 다양한 분야에 적용할 수 있다. 이러한 적용을 위해 탄소나노튜브 및 나노입자의 고유한 특성을 유지시키면서 탄소나노튜브에 나노입자를 고정하기 위한 다양한 기술들이 개발되고 있다. 이들 중 나노입자를 금속의 은나노입자로 하는 탄소나노튜브 복합체의 개발을 위해 은나노입자를 탄소나노튜브의 표면에 부착하기 위한 연구가 활발히 진행되고 있지만, 은나노입자와 탄소나노튜브의 표면과의 결합이 약하다는 점과, 은나노입자의 응집력에 의해 탄소나노튜브의 표면에 균일하게 장식하기 어렵다는 점에 의해 제조에 많은 어려움이 있었다. Recently, carbon nanotubes have been applied to various fields such as energy, environment, and electronic materials due to their excellent mechanical strength, thermal conductivity, electrical conductivity and chemical stability. At present, materials for electronic industries such as field emission flat panel displays, electrode materials for fuel cells and solar cells, hydrogen storage devices for fuel cells, electromagnetic wave shielding devices, and electronic ink raw materials, lightweight high-strength tool steel, lightweight high- Carbon nanotube complexes containing metals are attracting attention as high-strength materials for industrial materials and the like. Recently, studies on carbon nanotube complexes in which metal nanoparticles are bonded to carbon nanotubes have been actively studied. Through this, not only the self-characteristics of carbon nanotubes but also the characteristics of nanoparticles can be applied to various fields. For this application, various techniques for fixing nanoparticles on carbon nanotubes are being developed while maintaining the inherent characteristics of carbon nanotubes and nanoparticles. In order to develop a carbon nanotube composite having nanoparticles of metal as silver nanoparticles, studies have been actively carried out to attach silver nanoparticles to the surface of carbon nanotubes. However, bonding between silver nanoparticles and surfaces of carbon nanotubes And it is difficult to uniformly decorate the surface of the carbon nanotubes due to the cohesive force of the silver nanoparticles.

이를 감안하여 개시된 종래의 탄소나노튜브 복합체(도 1 참조)는 국내 등록특허 제0961914호에서 보듯이, 탄소나노튜브를 유기용매에 분산시킨 탄소나노튜브 분산액을 만들고, 이 탄소나노튜브 분산액에 은이온을 포함한 용액을 주입하여 은나노입자를 탄소나노튜브의 표면에 부착한 후, 원심분리 및 세척공정을 하는 제조방법을 제안하였다. As disclosed in Korean Patent No. 0961914, a conventional carbon nanotube composite (see FIG. 1) disclosed in the prior art has a carbon nanotube dispersion in which carbon nanotubes are dispersed in an organic solvent, and a silver ion To attach the silver nanoparticles to the surface of the carbon nanotubes, followed by centrifugation and washing.

이러한 제조방법을 포함하여 탄소나노튜브에 은나노입자를 부착하여 탄소나노튜브 복합체를 제조하기 위한 다양한 방법이 활발히 연구되고 있다. 본 발명의 출원인 역시 종래의 다양한 제조방법을 기초로 하여 도 2에서와 같이 탄소나노튜브(11)에 은나노입자(12)를 부착하고, 이 결과물의 측정 결과를 기초로 하여 보다 더 나은 제조방법을 창안하기 위한 탄소나노튜브 복합체(10)의 제조실험을 반복 시행하였다. 이를 간략히 설명하자면, 탄소나노튜브(11)의 센서감도가 최대로 발휘할 수 있는 최적의 농도를 갖도록 탄소나노튜브(11)와 고분자 매트릭스(13)를 배합한 후, 종래의 제조방법 중 하나를 선택하여 탄소나노튜브(11)에 은나노입자(13)를 부착하였다. 이후, 외력(도 2의 화살표)에 의해 탄소나노튜브(11)가 구부러져 저항값이 가변되도록 하였다.Various methods for manufacturing carbon nanotube complexes by attaching silver nanoparticles to carbon nanotubes including such a manufacturing method have been actively studied. The applicant of the present invention has also proposed a method of attaching the silver nanoparticles 12 to the carbon nanotubes 11 as shown in FIG. 2 on the basis of various conventional manufacturing methods, and based on the result of the measurement, The experiment for preparing the carbon nanotube composite (10) was repeated. Briefly, after combining the carbon nanotubes 11 and the polymer matrix 13 so as to have the optimum concentration at which the sensor sensitivity of the carbon nanotubes 11 can be maximized, one of the conventional manufacturing methods is selected Thereby attaching the silver nanoparticles 13 to the carbon nanotubes 11. Thereafter, the carbon nanotubes 11 are bent by an external force (arrow in Fig. 2) so that the resistance value is variable.

하지만, 탄소나노튜브(11)에 은나노입자(12)가 부착된 탄소나노튜브 복합체(10)의 물성에 대한 성능을 측정한 결과, 예상과는 다르게 최대의 센싱특성을 보여주는 농도의 탄소나노튜브(11) 함량에서 향상된 성능을 얻기 어려웠고, 좀 더 높은 농도의 탄소나노튜브(11)를 함유하여야만 하는 특징을 나타냈다. 특히, 탄소나노튜브 복합체의 저항이 높게 나타나면서 센서감도의 민감도가 훨씬 못 미친 결과를 얻었으며, 이를 보완하기 위한 개발이 요구되었다.
However, when the performance of the carbon nanotube composite 10 with the silver nanoparticles 12 attached to the carbon nanotubes 11 was measured, it was found that the concentration of the carbon nanotubes having the maximum sensing characteristics 11) content, and had to contain a higher concentration of carbon nanotubes (11). In particular, the resistance of the carbon nanotube composite is high and the sensitivity of the sensor sensitivity is far less than that of the carbon nanotube composite.

KR0961914 10KR0961914 10

본 발명은 상기된 개발요구를 감안하여 안출된 것으로, 탄소나노튜브에 은나노입자를 부착하지 않고, 탄소나노튜브를 함유한 고분자 매트릭스에 은나노입자를 고루 분포함으로써, 압저항특성에 대해 센서감도가 수십 배 이상 증가하도록 된 압저항 센싱감도가 향상된 탄소나노튜브 복합체 및 그 제조방법, 이 탄소나노튜브 복합체를 갖는 압력감응센서를 제공함에 그 목적이 있다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described development needs, and it is an object of the present invention to provide a carbon nanotube having uniformly dispersed silver nanoparticles in a polymer matrix containing carbon nanotubes without attaching silver nanoparticles to carbon nanotubes, A carbon nanotube composite having improved piezoresistive sensing sensitivity, and a pressure sensitive sensor having the carbon nanotube composite.

상기 목적을 달성하기 위한 본 발명에 따른 압저항 센싱감도가 향상된 탄소나노튜브 복합체는 고분자 매트릭스; 고분자 매트릭스에 일정 농도로 함유된 탄소나노튜브; 및 탄소나노튜브 대비 일정 농도이면서 고분자 매트릭스에 함유된 금속나노입자;를 포함하고, 그리고 탄소나노튜브 및 금속나노입자는 상호 간의 부착을 고려하지 않으면서 고분자 매트릭스에 분포된다.In order to accomplish the above object, the present invention provides a carbon nanotube composite having improved piezoresistive sensing sensitivity, comprising: a polymer matrix; Carbon nanotubes contained in a polymer matrix at a constant concentration; And metal nanoparticles contained in the polymer matrix at a constant concentration with respect to the carbon nanotubes, and the carbon nanotubes and the metal nanoparticles are distributed in the polymer matrix without considering mutual adhesion.

여기서, 고분자 매트릭스는 실리콘고무, 폴리우레탄, 폴리카보네이트, 폴리아세테이트, 폴리메타크릴산 메틸, 폴리비닐알코올, ABS, 에폭시, 폴리이미드 및 폴리디메틸실록산 중 적어도 어느 하나이다.Here, the polymer matrix is at least one of silicone rubber, polyurethane, polycarbonate, polyacetate, polymethyl methacrylate, polyvinyl alcohol, ABS, epoxy, polyimide and polydimethylsiloxane.

또한, 탄소나노튜브는 일정 센서감도를 갖도록 고분자 매트릭스에 대해 일정 농도를 가지고, 농도는 폴리디메틸실록산 대비 0.18∼0.22% 질량비이다.In addition, the carbon nanotubes have a constant concentration with respect to the polymer matrix so as to have a certain sensor sensitivity, and the concentration is 0.18-0.22% by mass relative to the polydimethylsiloxane.

또한, 금속나노입자는 팔리듐(Pd), 로듐(Rh), 이리듐(Ir), 백금(Pt), 금(Au) 및 은(Ag) 중 적어도 어느 하나의 나노입자이다.The metal nanoparticles are nanoparticles of at least one of palladium (Pd), rhodium (Rh), iridium (Ir), platinum (Pt), gold (Au) and silver (Ag).

이때, 은나노입자는 일정 전기전도도와 기계적 물성을 갖기 위해 상기 탄소나노튜브(120)에 대해 일정 농도를 가지고, 그리고 상기 농도는 상기 탄소나노튜브(120) 대비 2∼50배의 질량비이고, 더욱 바람직하게는 18∼22배의 질량비이다. At this time, the silver nanoparticles have a certain concentration with respect to the carbon nanotubes 120 in order to have constant electrical conductivity and mechanical properties, and the concentration is a mass ratio of 2 to 50 times the carbon nanotubes 120, The mass ratio is 18 to 22 times.

한편, 본 발명에 따른 센서감도가 향상된 탄소나노튜브 복합체는 고분자 매트릭스, 탄소나노튜브 및 금속나노입자를 포함하고, 그리고 고분자 매트릭스, 탄소나노튜브 및 금속나노입자의 농도는 1 : 0.0018∼0.0022 : 0.032∼0.048 질량비이고, 탄소나노튜브 및 금속나노입자가 고분자 매트릭스에 분포되며, 고분자 매트릭스는 폴리디메틸실록산이고, 금속나노입자는 은나노입자이다. Meanwhile, the carbon nanotube composite having improved sensor sensitivity according to the present invention includes a polymer matrix, carbon nanotubes, and metal nanoparticles, and the concentration of the polymer matrix, carbon nanotubes, and metal nanoparticles is 1: 0.0018 to 0.0022: 0.032 To 0.048 mass ratio, carbon nanotubes and metal nanoparticles are distributed in the polymer matrix, the polymer matrix is polydimethylsiloxane, and the metal nanoparticles are silver nanoparticles.

한편, 본 발명에 따른 센서감도가 향상된 탄소나노튜브 복합체를 제조하기 위한 방법에 있어서, 고분자 메트릭스 대비 일정 농도를 갖는 탄소나노튜브를 준비하는 제1단계(S10); 탄소나노튜브 대비 일정 농도를 갖는 금속나노입자를 준비하는 제2단계(S20); 및 탄소나노튜브 및 금속나노입자를 고분자 매트릭스에 혼합하는 제3단계(S30);가 포함되고, 그리고 제3단계(S30)에서 탄소나노튜브 및 금속나노입자는 상호 간의 부착을 고려하지 않으면서 고분자 매트릭스에 분포된다. In the meantime, a method for manufacturing a carbon nanotube composite having improved sensor sensitivity according to the present invention includes: a first step (S10) of preparing carbon nanotubes having a certain concentration with respect to a polymer matrix; A second step (S20) of preparing metal nanoparticles having a certain concentration with respect to the carbon nanotubes; And a third step (S30) of mixing the carbon nanotubes and the metal nanoparticles into the polymer matrix. In the third step (S30), the carbon nanotubes and the metal nanoparticles are mixed with the polymer Distributed in the matrix.

이때, 고분자 매트릭스는 폴리디메틸실록산이고, 금속나노입자는 은나노입자이며, 그리고 폴리디메틸실록산, 탄소나노튜브 및 은나노입자는 1 : 0.0018∼0.0022 : 0.032∼0.048 질량비의 농도로 배합된다. In this case, the polymer matrix is polydimethylsiloxane, the metal nanoparticles are silver nanoparticles, and the polydimethylsiloxane, carbon nanotube and silver nanoparticles are blended in a weight ratio of 1: 0.0018 to 0.0022: 0.032 to 0.048 mass ratio.

한편, 본 발명은 상기된 탄소나노튜브 복합체를 포함하여 제조된 압력감응센서를 포함한다.
Meanwhile, the present invention includes a pressure sensitive sensor including the carbon nanotube composite.

상술된 바와 같이 본 발명에 따르면, 탄소나노튜브의 표면에 은나노입자가 부착되는 것이 아니라, 탄소나노튜브와 은나노입자가 고분자 매트릭스에 분포되도록 하여 고분자 매트릭스에 대해 탄소나노튜브와 은나노입자가 최적의 농도로 배합됨으로써, 탄소나노튜브 복합체의 센서감도가 적어도 10∼30배 정도 향상되는 효과가 있다. 따라서, 이 탄소나노튜브 복합체를 포함하여 제조된 압력감응센서 역시 센서감도가 극대화되는 효과가 있다. As described above, according to the present invention, carbon nanotubes and silver nanoparticles are distributed not only on the surface of the carbon nanotubes but also on the polymer matrix, so that the carbon nanotubes and the silver nanoparticles have an optimal concentration , The sensor sensitivity of the carbon nanotube composite is improved by at least 10 to 30 times. Therefore, the pressure sensitive sensor including the carbon nanotube composite also has the effect of maximizing the sensor sensitivity.

또한, 종래와 같이 탄소나노튜브의 표면에 은나노입자를 도포하기 위한 복잡한 공정이 배제되고, 상호 간의 부착성이 낮은 탄소나노튜브와 은나노입자를 단순히 고분자 매트릭스에 혼합함으로써, 매우 간단히 탄소나노튜브 복합체를 제조할 수 있는 효과가 있다.
In addition, complicated processes for coating silver nanoparticles on the surface of carbon nanotubes are eliminated, and carbon nanotubes and silver nanoparticles with low adhesion to each other are simply mixed with the polymer matrix, There is an effect that can be manufactured.

본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은 종래의 은나노입자가 포함된 탄소나노튜브 복합체를 찍은 투과전자현미경 사진이다.
도 2는 도 1의 탄소나노튜브 복합체의 일부위를 확대하여 개략적으로 도시한 도면이다.
도 3은 본 발명의 바람직한 실시 예에 따른 압저항 센싱감도가 향상된 탄소나노튜브 복합체의 일부위를 확대하여 개략적으로 도시한 도면이다.
도 4는 도 3에 도시된 고분자 매트릭스 중 폴리디메틸실록산과 탄소나노튜브의 저항-압력 민감도가 도시된 그래프이다.
도 5는 도 3에서의 은나노입자의 분포량에 따른 압저항 특성이 도시된 그래프이다.
도 6은 도 3의 탄소나노튜브 복합체를 제조하기 위한 공정도이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description, serve to further the understanding of the technical idea of the invention, Should not be interpreted.
1 is a transmission electron micrograph showing a conventional carbon nanotube composite containing silver nanoparticles.
FIG. 2 is an enlarged view of a part of the carbon nanotube composite of FIG. 1; FIG.
3 is an enlarged view schematically showing a part of a carbon nanotube composite having improved piezoresistive sensing sensitivity according to a preferred embodiment of the present invention.
4 is a graph showing resistance-pressure sensitivity of polydimethylsiloxane and carbon nanotube in the polymer matrix shown in FIG.
5 is a graph showing the piezoresistance characteristic according to the distribution amount of the silver nanoparticles in FIG.
FIG. 6 is a process diagram for manufacturing the carbon nanotube composite of FIG. 3; FIG.

이하에서는 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있도록 바람직한 실시예를 상세하게 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the detailed description of known functions and configurations incorporated herein will be omitted when it may unnecessarily obscure the subject matter of the present invention.

<구성><Configuration>

도 3은 본 발명의 바람직한 실시 예에 따른 압저항 센싱감도가 향상된 탄소나노튜브 복합체의 일부위를 확대하여 개략적으로 도시한 도면이다.3 is an enlarged view schematically showing a part of a carbon nanotube composite having improved piezoresistive sensing sensitivity according to a preferred embodiment of the present invention.

먼저, 본 발명에 따른 탄소나노튜브 복합체(100)는 도 3에 도시된 바와 같이, 고분자 매트릭스(110)에 탄소나노튜브(120) 및 금속나노입자(130)가 함유되어 이루어지고, 특히 탄소나노튜브(120) 및 금속나노입자(130)는 상호 간의 부착을 고려하지 않은 상태에서 단순히 고분자 매트릭스(110)에 분포되어 이루어진다.3, the carbon nanotube composite 100 according to the present invention includes carbon nanotubes 120 and metal nanoparticles 130 in a polymer matrix 110, The tube 120 and the metal nanoparticles 130 are simply distributed in the polymer matrix 110 without considering mutual adhesion.

고분자 매트릭스(110)는 전도성 충전재인 탄소나노튜브(120)와 금속나노입자(130)를 복합화할 수 있는 고분자이면 그 분자량, 밀도, 분자구조 및 관능기의 유무와 관계없이 어느 것이든 적용 가능하다. 예를 들면, 고분자 매트릭스(110)는 실리콘고무, 폴리우레탄, 폴리카보네이트, 폴리아세테이트, 폴리메타크릴산 메틸, 폴리비닐알코올, ABS(Acrylonitrile-Butadiene-Styrene terpolymer) 등과 같은 범용 고분자뿐만 아니라 에폭시, 폴리이미드 등과 같은 기능성 열경화성 수지도 여기에 해당되며, 상기 열거한 고분자들이 혼합된 형태도 가능하다. 단, 열 및 기계적 충격 강도를 필요로 하는 응용에 있어서는 실리콘고무나 폴리우레탄과 같이 연신 특성과 충격흡수 효과가 뛰어나 고분자가 더욱 효과적이다. 본 발명의 실시 예에서는 특히, 고분자 매트릭스(120)가 폴리디메틸실록산(PDMS:polydimethylsiloxane)인 것이 바람직하다. The polymer matrix 110 may be any polymer that can complex the carbon nanotubes 120 and the metal nanoparticles 130, regardless of their molecular weight, density, molecular structure, and functional groups. For example, the polymer matrix 110 may include not only general-purpose polymers such as silicone rubber, polyurethane, polycarbonate, polyacetate, polymethyl methacrylate, polyvinyl alcohol, ABS (Acrylonitrile-Butadiene-Styrene terpolymer) Functional thermosetting resins such as polyvinyl chloride, polyacrylonitrile, polyacrylonitrile, and the like, and mixtures of the above-listed polymers are also possible. However, in applications requiring heat and mechanical impact strength, the polymer is more effective than silicone rubber or polyurethane because of its excellent stretching properties and shock absorption effects. In particular, in embodiments of the present invention, the polymer matrix 120 is preferably polydimethylsiloxane (PDMS).

탄소나노튜브(120)는 직경이 1∼100나노미터(㎚)이고, 길이가 수 나노미터에서 수십 마이크로미터(㎛)인 실린더 모양의 흑연(graphite)면이 둥글게 말려있는 속이 빈 튜브 구조이다. 이 탄소나노튜브(120)는 단일벽 탄소나노튜브(SWCNT : Single-Walled Carbon NanoTube), 이중벽 탄소나노튜브(DWCNT : Double-Walled Carbon NanoTube) 및 다중벽 탄소나노튜브(MWCNT : Multi-Walled Carbon NanoTube)로 구분할 수 있다. 또한, 탄소나노튜브(120)는 흑연면이 말려있는 각도와 구조에 따라 도체에서부터 반도체에 이르기까지 다양한 전기적 특성을 나타낼 뿐만 아니라, 나노크기의 직경과 높은 종횡비(aspect ratio)에 의해, 표면적이 매우 커서 우수한 첨단 소재로서의 장점을 가진다. 이러한 탄소나노튜브(120)는 선형의 형태일 때는 통전이 원활히 이루어지고, 외력(도 3의 화살표)에 의해 구부러질 때는 자체 저항이 증가하면서 통전이 원활치 못하게 된다. 또한, 탄소나노튜브(120)의 농도가 낮을 경우 외부 압력에 의해 눌러졌을 때 인접한 탄소나노튜브(120)들 간의 재접촉률이 낮아져 저항이 증가하면서 통전에 어려움이 발생하게 되고, 농도가 높을 경우 재접촉률이 높아지면서 통전이 원활하게 진행된다. 따라서, 고분자 매트릭스(110)에 분포된 탄소나노튜브(120)는 최대의 센서감도를 발휘할 수 있는 최적의 농도를 갖도록 한다. 이때 최적의 농도는 폴리디메틸실록산 대비 대략 0.15∼0.25% 질량비이고, 바람직하게는 0.18∼0.22% 질량비이며, 더욱 바람직하게는 0.2%의 질량비이다.The carbon nanotubes 120 are hollow tube structures having a diameter of 1 to 100 nanometers (nm) and a length of several nanometers to several tens of micrometers (占 퐉), in which a cylindrical graphite surface is rounded. The carbon nanotubes 120 may be a single walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), or a multi-walled carbon nanotube (MWCNT) ). In addition, the carbon nanotubes 120 exhibit various electrical characteristics ranging from conductors to semiconductors depending on the angle at which the graphite surface is dried and the structure thereof. In addition, due to the nano-sized diameter and the high aspect ratio, It has merits as an excellent high-tech material. When the carbon nanotubes 120 have a linear shape, the energization is smoothly performed. When the carbon nanotubes 120 are bent by the external force (arrows in Fig. 3), the self-resistance increases and the energization is not smooth. Also, when the concentration of the carbon nanotubes 120 is low, the contact ratio between the adjacent carbon nanotubes 120 is lowered when the carbon nanotubes 120 are pressed by the external pressure. As a result, the resistance increases, As the contact rate increases, the energization proceeds smoothly. Therefore, the carbon nanotubes 120 distributed in the polymer matrix 110 have an optimal concentration capable of exhibiting the maximum sensor sensitivity. In this case, the optimum concentration is about 0.15 to 0.25% by mass, preferably 0.18 to 0.22% by mass, more preferably 0.2% by mass, based on the polydimethylsiloxane.

금속나노입자(130)는 탄소나노튜브(110)와 반응하여 우수한 전기전도도와 기계적 물성을 갖기 위해 투입되는 재료이다. 이 금속나노입자는 팔리듐(Pd), 로듐(Rh), 이리듐(Ir), 백금(Pt), 금(Au) 및 은(Ag) 등의 금속 중 선택된 적어도 어느 하나의 금속이 이용될 수 있다. 이 본 발명에서는 특히, 금속나노입자(130)가 은나노입자인 것이 바람직하다. 종래에는 은나노입자를 탄소나노튜브(110)의 표면에 부착하기 위해 별도의 설비 또는 장치가 요구되었지만, 본 발명에서는 이러한 설비 또는 장치가 배제된 상태에서 은나노입자와 탄소나노튜브(110)가 고분자 매트릭스(110)에 분포되어 배치된다. 여기서, 은나노입자와 탄소나노튜브(110)는 상호 간의 부착력이 현저히 떨어지기 때문에 종래와 같이 별도의 설비 또는 장치를 이용하지 않고, 일정한 질량비로 배합 및 교반만으로도 은나노입자와 탄소나노튜브(110)의 분포 상태를 유도할 수 있다. 즉, 은나노입자와 탄소나노튜브(110)의 부착을 위해 종래와 같은 별도의 설비 또는 장치가 배제되므로 제조비용 및 시간이 단축된다. 또한, 은나노입자는 전기전도도와 기계적 물성을 최대한 발휘하기 위해 탄소나노튜브(110)에 대해 최적의 농도를 갖도록 한다. 이때 최적의 농도는 탄소나노튜브(120) 대비 대략 2∼50배의 질량비이고, 바람직하게는 18∼22배의 질량비이며, 더욱 바람직하게는 20배의 질량비이다.
The metal nanoparticles 130 are a material to be reacted with the carbon nanotubes 110 to have excellent electrical conductivity and mechanical properties. The metal nanoparticles may be at least one metal selected from the group consisting of palladium (Pd), rhodium (Rh), iridium (Ir), platinum (Pt), gold (Au) . In the present invention, it is particularly preferable that the metal nanoparticles 130 are silver nanoparticles. However, in the present invention, the silver nanoparticles and the carbon nanotubes 110 are formed on the surface of the carbon nanotubes 110 while the silver nanoparticles are attached to the surface of the carbon nanotubes 110. In the present invention, (110). Since the adhesion between the silver nanoparticles and the carbon nanotubes 110 is significantly lowered, the silver nanoparticles 110 and the carbon nanotubes 110 can be mixed and stirred only at a predetermined mass ratio, The distribution state can be derived. That is, since the conventional apparatus or apparatus for attaching the silver nanoparticles and the carbon nanotubes 110 is excluded, manufacturing cost and time are shortened. In addition, the silver nanoparticles have an optimal concentration for the carbon nanotubes 110 in order to maximize electrical conductivity and mechanical properties. At this time, the optimum concentration is a mass ratio of about 2 to 50 times, preferably 18 to 22 times, and more preferably 20 times the mass ratio of the carbon nanotubes (120).

<제조방법><Manufacturing Method>

도 4는 도 3에 도시된 고분자 매트릭스 중 폴리디메틸실록산과 탄소나노튜브의 저항-압력 민감도가 도시된 그래프이고, 도 5는 도 3에서의 은나노입자의 분포량에 따른 압저항 특성이 도시된 그래프이며, 도 6은 도 3의 탄소나노튜브 복합체를 제조하기 위한 공정도이다.FIG. 4 is a graph showing resistance-pressure sensitivity of polydimethylsiloxane and carbon nanotube in the polymer matrix shown in FIG. 3, and FIG. 5 is a graph showing resistivity characteristics according to the distribution of silver nanoparticles in FIG. 3 And FIG. 6 is a process diagram for producing the carbon nanotube composite of FIG. 3.

먼저, 고분자 매트릭스(110) 대비 일정 농도의 탄소나노튜브(120)를 준비(S10)한다. 이때, 탄소나노튜브(120)의 일정 농도는 고분자 매트릭스(110)에 대해 최고의 감도를 얻을 수 있는 탄소나노튜브(120)의 최적의 농도임이 바람직하다.여기서, 고분자 매트릭스(110)는 폴리디메틸실록산으로 특정하여 설명한다. 탄소나노튜브(120)의 최적의 농도를 산출하기 위해, 탄소나노튜브(120)와 압력 간의 상대저항(R/RO) 의존도를 보면, 도 4에서와 같이 압력에 의해 저항이 증가됨을 보여주고 있다. 여기서, R은 인가된 압력 하에서의 저항이고, RO는 압력이 가해지지 않은 상태에서의 기본 저항이다. 도 4를 자세히 살펴보면, 낮은 중량비(wt.%)의 다중벽 탄소나노튜브가 함유된 합성물은 동일한 압력에서 상당한 저항-압력 감도를 나타내고 있고, 특히 0.2% 중량비의 다중벽 탄소나노튜브가 함유된 합성물은 최고의 저항-압력 감도를 나타내고 있다. 이러한 탄소나노튜브(120)의 고분자 매트릭스(110)에 대한 최적의 농도를 구하기 위해 탄소나노튜브(120)의 형태 변형, 탄소나노튜브(120)들 상호 간의 접촉, 이격 및 재접촉 등의 특성을 감안하여야 하고, 이를 통해 탄소나노튜브(120)가 최대의 센서감도를 발휘할 수 있는 최적의 농도를 산출하게 된다. 본 출원인은 반복적인 실험을 통해 탄소나노튜브(120)의 최적 농도를 산출하였고, 그 농도는 고분자 매트릭스(110)가 폴리디메틸실록산인 경우, 폴리디메틸실록산 대비 대략 0.15∼0.25% 질량비이고, 바람직하게는 0.18∼0.22% 질량비이며, 더욱 바람직하게는 0.2%의 질량비이다. First, the carbon nanotubes 120 having a predetermined concentration with respect to the polymer matrix 110 are prepared (S10). The predetermined concentration of the carbon nanotubes 120 may be an optimum concentration of the carbon nanotubes 120 that can obtain the highest sensitivity to the polymer matrix 110. Here, the polymer matrix 110 may include polydimethylsiloxane . In order to calculate the optimum concentration of the carbon nanotubes 120, the dependency of the relative resistance (R / R O ) between the carbon nanotubes 120 and the pressure is shown in FIG. 4, have. Here, R is the resistance under the applied pressure, and R O is the basic resistance in the unpressurized state. 4, a composite containing multi-walled carbon nanotubes with a low weight ratio (wt.%) Exhibits a considerable resistance-pressure sensitivity at the same pressure, and in particular, a composition containing multi-walled carbon nanotubes with a weight ratio of 0.2% Shows the highest resistance-pressure sensitivity. In order to obtain the optimal concentration of the carbon nanotubes 120 for the polymer matrix 110, the shape of the carbon nanotubes 120 and the contact, separation, and re-contact characteristics of the carbon nanotubes 120 So that the carbon nanotubes 120 can obtain the optimum concentration at which the maximum sensor sensitivity can be exhibited. The inventors of the present invention calculated the optimum concentration of the carbon nanotubes 120 through repeated experiments and found that the concentration of the polymer matrix 110 is about 0.15 to 0.25% by mass relative to the polydimethylsiloxane when the polymer matrix 110 is polydimethylsiloxane, Is a mass ratio of 0.18 to 0.22%, and more preferably a mass ratio of 0.2%.

다음으로, 탄소나노튜브(120) 대비 일정 농도의 금속나노입자(130)를 준비(S20)한다. 이때, 금속나노입자(130)의 일정 농도는 최고의 전기전도도 및 기계적 물성을 얻을 수 있는 탄소나노튜브(110) 대비 금속나노입자(130)의 최적의 농도임이 바람직하다. 여기서, 금속나노입자(130)는 은나노입자로 특정하여 설명한다. 은나노입자의 최적의 농도를 산출하기 위해 탄소나노튜브(120)와 은나노입자의 상대저항(R/R0) 의존도를 보면, 도 5에서와 같이 압력에 의해 저항이 증가됨을 보여주고 있다. 이를 자세히 살펴보면, 도 5에서는 탄소나노튜브(120)와 은나노입자의 질량비를 각각 1:0, 1:2, 1:20 및 1:100으로 혼합한 후 압력에 대한 저항치를 측정한 결과, 은나노입자가 탄소나노튜브(120)에 대해 높은 질량비로 혼합할수록 상대저항(R/RO) 역시 더 높게 상승하는 것을 알 수 있다. 이와 같이 상대저항(R/RO)을 통해 탄소나노튜브(120)와 은나노입자의 최적 혼합비를 산출하였고, 은나노입자의 농도비는 탄소나노튜브(120) 대비 대략 2∼50배의 질량비이고, 바람직하게는 18∼22배의 질량비이며, 더욱 바람직하게는 20배의 질량비이다. 이때, 은나노입자의 농도비가 2배 미만일 경우 압저항 특성의 상승효과가 저조하고, 충분한 전도효과를 발휘하기에 미흡하다. 또한, 은나노입자의 농도비가 50배를 초과할 경우 은나노입자의 과포화 상태가 되고, 이 과포화 상태에서는 탄소나노튜브(120)들이 서로 이격되어 은나노입자와 접촉할 확률이 상승하면서 저항이 증가하게 되고, 압저항 특성 역시 감소하게 된다. Next, the metal nanoparticles 130 having a predetermined concentration with respect to the carbon nanotubes 120 are prepared (S20). At this time, it is preferable that a certain concentration of the metal nanoparticles 130 is an optimal concentration of the metal nanoparticles 130 relative to the carbon nanotubes 110 that can obtain the highest electrical conductivity and mechanical properties. Here, the metal nanoparticles 130 are specifically described as silver nanoparticles. As shown in FIG. 5, the dependency of the carbon nanotubes 120 and the silver nanoparticles on the relative resistance (R / R 0 ) in order to calculate the optimal concentration of silver nanoparticles shows that the resistance increases due to the pressure. 5, the silver nanoparticles 120 and silver nanoparticles were mixed at a mass ratio of 1: 0, 1: 2, 1:20, and 1: 100, respectively, The relative resistance (R / R O ) also increases as the carbon nanotubes 120 are mixed at a high mass ratio. The optimal mixing ratio of the carbon nanotubes 120 and the silver nanoparticles was calculated through the relative resistance (R / R 2 O ). The concentration ratio of the silver nanoparticles was about 2 to 50 times the mass ratio of the carbon nanotubes 120 Preferably 18 to 22 times the mass ratio, and more preferably 20 times the mass ratio. At this time, when the concentration ratio of the silver nanoparticles is less than 2 times, the synergistic effect of the piezoresistive characteristic is poor and the sufficient conduction effect is not sufficiently exhibited. When the concentration ratio of the silver nanoparticles exceeds 50 times, the silver nanoparticles become supersaturated. In this supersaturated state, the resistance of the carbon nanotubes 120 increases as the probability of contact with the silver nanoparticles increases, The piezoresistance characteristic is also decreased.

끝으로, 탄소나노튜브(120) 및 금속나노입자(130)를 고분자 매트릭스(110)에 혼합(S30)한다. 은나노입자는 탄소나노튜브(120)의 표면에 부착하는 것이 아니라 폴리디메틸실록산에 고루 분포되도록 혼합한다. 따라서, 폴리디메틸실록산에 은나노입자를 혼합한 후 탄소나노튜브(120)를 투입할 수도 있고, 폴리디메틸실록산에 은나노입자와 탄소나노튜브(120)를 동시에 투입할 수도 있으며, 폴리디메틸실록산에 탄소나노튜브(120)를 투입한 후 은나노입자를 혼합할 수도 있다. 물론, 탄소나노튜브(120)의 표면에 은나노입자가 부착되는 현상을 최대한 방지하면서 탄소나노튜브(120)와 은나노입자가 고루 분포되도록 한다. 즉, 이전의 실험결과에서 탄소나노튜브(120)에 은나노입자가 부착되었을 때 저항이 상승하면서 센서감도가 현저히 낮아짐을 확인하였듯이 탄소나노튜브(120)와 은나노입자 간의 부착이 최대한 억제되어야 한다. 여기서, 탄소나노튜브(120)와 은나노입자들 상호 간의 부착성이 매우 약하므로 부착 억제를 위한 별도의 설비 또는 공정이 필요치 않고, 다만 교반 또는 종래의 기술을 도입하여 고루 퍼지도록 할 수는 있다. Finally, the carbon nanotubes 120 and the metal nanoparticles 130 are mixed with the polymer matrix 110 (S30). The silver nanoparticles are not adhered to the surface of the carbon nanotubes 120 but are uniformly distributed on the polydimethylsiloxane. Accordingly, it is possible to mix the silver nanoparticles into the polydimethylsiloxane and then introduce the carbon nanotubes 120, or to add the silver nanoparticles and the carbon nanotubes 120 to the polydimethylsiloxane, After the tube 120 is inserted, the silver nanoparticles may be mixed. Of course, it is possible to distribute the carbon nanotubes 120 and the silver nanoparticles evenly while preventing the attachment of the silver nanoparticles to the surface of the carbon nanotubes 120 as much as possible. That is, as a result of the previous experiment, when the silver nanoparticles 120 are attached to the carbon nanotubes 120, the resistance of the carbon nanotubes 120 is increased and the sensor sensitivity is remarkably lowered. Therefore, adhesion between the carbon nanotubes 120 and the silver nanoparticles should be minimized. Here, since adhesion between the carbon nanotubes 120 and the silver nanoparticles is very weak, no separate equipment or process is required for adhesion inhibition, and stirring or conventional techniques can be used to spread the carbon nanotubes 120 evenly.

상술된 바를 종합하여 보면, 탄소나노튜브 복합체(100)가 압저항특성에 따라 센서감도를 종래보다 적어도 10∼30배 정도 증가시키기 위한 고분자 매트릭스(110), 탄소나노튜브(120) 및 금속나노입자(130)의 조성비는 1 : 0.0018∼0.0022 : 0.032∼0.048 질량비이고, 더욱 정확하게는 폴리디메틸실록산, 탄소나노튜브(120) 및 은나노입자의 조성비를 1 : 0.002 : 0.04 질량비로 한다. 특히, 탄소나노튜브(120)의 표면에 은나노입자가 부착시키기 위한 공정은 고려하지 않기 때문에 별도의 부착공정은 배제되고, 단순히 고루 퍼지도록 교반 또는 종래의 기술이 이용될 수는 있다.
The carbon nanotube composite 100 may include a polymer matrix 110, a carbon nanotube 120, and metal nanoparticles 120 for increasing the sensitivity of the carbon nanotube composite 100 by at least about 10 to 30 times that of the related art, The composition ratio of the polydimethylsiloxane, the carbon nanotubes 120 and the silver nanoparticles is 1: 0.002: 0.04 mass ratio. Particularly, since a process for attaching the silver nanoparticles to the surface of the carbon nanotubes 120 is not considered, a separate attachment step is omitted, and stirring or conventional techniques may be used so as to spread evenly.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 상술한 실시예들은 모든 면에 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에서 명확히 개시되며, 특허청구범위의 의미 및 범위 그리고 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
As described above, those skilled in the art will appreciate that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative and non-restrictive in all aspects. The scope of the present invention is clearly defined in the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and equivalents should be construed as being included in the scope of the present invention.

100...탄소나노튜브 복합체, 110...고분자 매트릭스,
120...탄소나노튜브, 130...금속나노입자.
100 ... carbon nanotube composite, 110 ... polymer matrix,
120 ... carbon nanotubes, 130 ... metal nanoparticles.

Claims (10)

탄소나노튜브 복합체에 있어서,
고분자 매트릭스(110);
상기 고분자 매트릭스(110)에 일정 농도로 함유된 탄소나노튜브(120); 및
상기 탄소나노튜브(120) 대비 일정 농도이면서 상기 고분자 매트릭스(110)에 함유된 금속나노입자(130);를 포함하되,
상기 탄소나노튜브(120) 및 금속나노입자(130)는 상호 간의 부착을 고려하지 않으면서 상기 고분자 매트릭스(110)에 분포되고,
상기 고분자 매트릭스(110)는 실리콘고무, 폴리우레탄, 폴리카보네이트, 폴리아세테이트, 폴리메타크릴산 메틸, 폴리비닐알코올, ABS, 에폭시, 폴리이미드 및 폴리디메틸실록산 중 적어도 어느 하나이며,
상기 탄소나노튜브(120)는 일정 센서감도를 갖도록 상기 고분자 매트릭스(110)에 대해 일정 농도를 가지고,
상기 금속나노입자(130)는 팔리듐(Pd), 로듐(Rh), 이리듐(Ir), 백금(Pt), 금(Au) 및 은(Ag) 중 적어도 어느 하나의 나노입자이며,
상기 농도는 상기 폴리디메틸실록산 대비 0.18∼0.22% 질량비이고,
상기 은(Ag)나노입자는 일정 전기전도도와 기계적 물성을 갖기 위해 상기 탄소나노튜브(120)에 대해 일정 농도를 가지며,
상기 농도는 상기 탄소나노튜브(120) 대비 2∼50배의 질량비인 것을 특징으로 하는 압저항 센싱감도가 향상된 탄소나노튜브 복합체.
In the carbon nanotube composite,
Polymer matrix (110);
Carbon nanotubes (120) contained in the polymer matrix (110) at a constant concentration; And
And metal nanoparticles (130) contained in the polymer matrix (110) at a constant concentration with respect to the carbon nanotubes (120)
The carbon nanotubes 120 and the metal nanoparticles 130 are distributed in the polymer matrix 110 without considering mutual adhesion,
The polymer matrix 110 is at least one of silicone rubber, polyurethane, polycarbonate, polyacetate, polymethyl methacrylate, polyvinyl alcohol, ABS, epoxy, polyimide and polydimethylsiloxane,
The carbon nanotubes 120 have a constant concentration with respect to the polymer matrix 110 so as to have a constant sensor sensitivity,
The metal nanoparticles 130 are nanoparticles of at least one of palladium (Pd), rhodium (Rh), iridium (Ir), platinum (Pt), gold (Au)
The concentration is 0.18-0.22% by mass relative to the polydimethylsiloxane,
The silver (Ag) nanoparticles have a certain concentration with respect to the carbon nanotubes 120 to have constant electrical conductivity and mechanical properties,
Wherein the concentration of the carbon nanotubes is in a mass ratio of 2 to 50 times that of the carbon nanotubes (120).
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항의 탄소나노튜브 복합체를 제조하기 위한 방법에 있어서,
고분자 메트릭스(110) 대비 일정 농도를 갖는 탄소나노튜브(120)를 준비하는 제1단계(S10);
상기 탄소나노튜브(120) 대비 일정 농도를 갖는 금속나노입자(130)를 준비하는 제2단계(S20); 및
상기 탄소나노튜브(120) 및 상기 금속나노입자(130)를 상기 고분자 매트릭스(110)에 혼합하는 제3단계(S30);가 포함되고, 그리고
상기 제3단계(S30)에서 상기 탄소나노튜브(120) 및 상기 금속나노입자(130)는 상호 간의 부착을 고려하지 않으면서 상기 고분자 매트릭스(110)에 분포되는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
A method for producing the carbon nanotube composite according to claim 1,
A first step (S10) of preparing carbon nanotubes (120) having a certain concentration with respect to the polymer matrix (110);
A second step S20 of preparing metal nanoparticles 130 having a certain concentration with respect to the carbon nanotubes 120; And
A third step (S30) of mixing the carbon nanotubes 120 and the metal nanoparticles 130 into the polymer matrix 110, and
In the third step S30, the carbon nanotubes 120 and the metal nanoparticles 130 are distributed in the polymer matrix 110 without considering mutual adhesion. Gt;
제8항에 있어서,
상기 고분자 매트릭스(110)는 폴리디메틸실록산이고, 상기 금속나노입자(130)는 은나노입자이며, 그리고
상기 폴리디메틸실록산, 탄소나노튜브(120) 및 상기 은나노입자는 1 : 0.0018∼0.0022 : 0.032∼0.048 질량비의 농도로 배합되는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
9. The method of claim 8,
The polymer matrix 110 is polydimethylsiloxane, the metal nanoparticles 130 are silver nanoparticles, and
Wherein the polydimethylsiloxane, the carbon nanotubes (120), and the silver nanoparticles are blended in a weight ratio of 1: 0.0018 to 0.0022: 0.032 to 0.048 mass ratio.
제1항의 탄소나노튜브 복합체를 포함하여 제조된 압력감응센서. A pressure sensitive sensor comprising the carbon nanotube composite according to claim 1.
KR1020120049466A 2012-05-10 2012-05-10 Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof KR101412623B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120049466A KR101412623B1 (en) 2012-05-10 2012-05-10 Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof
PCT/KR2013/003941 WO2013168955A1 (en) 2012-05-10 2013-05-07 Carbon nanotube composite having improved pressure-resistance sensitivity, method for manufacturing the carbon nanotube composite, and pressure sensor including carbon nanotube composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120049466A KR101412623B1 (en) 2012-05-10 2012-05-10 Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof

Publications (2)

Publication Number Publication Date
KR20130125884A KR20130125884A (en) 2013-11-20
KR101412623B1 true KR101412623B1 (en) 2014-07-01

Family

ID=49550932

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120049466A KR101412623B1 (en) 2012-05-10 2012-05-10 Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof

Country Status (2)

Country Link
KR (1) KR101412623B1 (en)
WO (1) WO2013168955A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135793A1 (en) * 2017-01-23 2018-07-26 주식회사 엘지화학 Silicone rubber composite and preparation method therefor
KR20190125711A (en) 2018-04-30 2019-11-07 한국과학기술원 Highly Stretchable and Flexible Piezoresistive CNT-Silicone Wire Sensors and Method For Manufacturing the same
KR20200020427A (en) 2018-08-17 2020-02-26 재단법인대구경북과학기술원 Variable resistance film and sensor device comprising the same
KR20200131390A (en) 2019-05-13 2020-11-24 울산과학기술원 Composite sensor
US10995216B2 (en) 2017-01-23 2021-05-04 Lg Chem, Ltd. Silicone rubber composite and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960581B (en) * 2014-02-06 2022-04-08 国立研究开发法人科学技术振兴机构 Pressure sensor sheet, pressure sensor, and method for manufacturing pressure sensor sheet
KR101707859B1 (en) * 2014-04-15 2017-02-22 서울대학교산학협력단 Process for Preparing Porous Pressure-Sensitive Rubber and Wearable Device Comprising the Same
KR101720014B1 (en) * 2014-04-30 2017-04-04 서울대학교산학협력단 Porous Pressure-Sensitive Rubber and Products Comprising the Same
US10428196B2 (en) * 2014-12-11 2019-10-01 Schmutz Ip, Llc Curable nano-composites for additive manufacturing
KR20190126974A (en) * 2018-05-03 2019-11-13 한국과학기술원 Variable Shape Smart Sensor Using MWCNT-Silicone Piezoresistive Wire And Its Application
CN108958546B (en) * 2018-06-30 2021-10-12 广州国显科技有限公司 Touch structure and preparation method thereof
KR102168518B1 (en) * 2018-10-05 2020-10-21 한국과학기술연구원 Conducting polymer composite with high strechability
KR102282512B1 (en) * 2020-01-02 2021-07-26 서울시립대학교 산학협력단 Smart glove with flexible pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103140A (en) * 2008-03-27 2009-10-01 한국세라믹기술원 Pressure Sensitive Device And Tactile Sensors Using The Same
KR20090117195A (en) * 2008-05-09 2009-11-12 한국과학기술원 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites
US20110163636A1 (en) * 2009-10-22 2011-07-07 Lawrence Livermore National Security, Llc Matrix-assisted energy conversion in nanostructured piezoelectric arrays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638668B1 (en) * 2005-01-07 2006-10-30 삼성전기주식회사 Field Emitter Array and Method For Manufacturing the Same
KR20110110388A (en) * 2010-04-01 2011-10-07 한국표준과학연구원 Method of manufacturing pressure sensitive device, pressure sensitive device manufactured by the same method and pressure measurement method using the same device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103140A (en) * 2008-03-27 2009-10-01 한국세라믹기술원 Pressure Sensitive Device And Tactile Sensors Using The Same
KR20090117195A (en) * 2008-05-09 2009-11-12 한국과학기술원 Method of fabricating silver nanoparticle decorated carbon nanotube nanocomposites
US20110163636A1 (en) * 2009-10-22 2011-07-07 Lawrence Livermore National Security, Llc Matrix-assisted energy conversion in nanostructured piezoelectric arrays

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135793A1 (en) * 2017-01-23 2018-07-26 주식회사 엘지화학 Silicone rubber composite and preparation method therefor
US10995216B2 (en) 2017-01-23 2021-05-04 Lg Chem, Ltd. Silicone rubber composite and method for producing same
KR20190125711A (en) 2018-04-30 2019-11-07 한국과학기술원 Highly Stretchable and Flexible Piezoresistive CNT-Silicone Wire Sensors and Method For Manufacturing the same
WO2019212085A1 (en) * 2018-04-30 2019-11-07 한국과학기술원 Highly stretchable piezoresistive wire sensor and manufacturing method therefor
KR20200020427A (en) 2018-08-17 2020-02-26 재단법인대구경북과학기술원 Variable resistance film and sensor device comprising the same
KR20200131390A (en) 2019-05-13 2020-11-24 울산과학기술원 Composite sensor

Also Published As

Publication number Publication date
WO2013168955A1 (en) 2013-11-14
KR20130125884A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
KR101412623B1 (en) Carbon nanotube composites improved of piezo-resistor sensing sensibility and method for manufacturing the same, and pressure responding sensor with thereof
Hwang et al. Highly stretchable and transparent electrode film based on SWCNT/Silver nanowire hybrid nanocomposite
Geng et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films
Fu et al. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance
Wang et al. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling
Lekawa-Raus et al. Piezoresistive effect in carbon nanotube fibers
Nag et al. Graphene-based wearable temperature sensors: A review
Hu et al. High performance flexible sensor based on inorganic nanomaterials
Lahiff et al. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors
Fan et al. Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks
Gul et al. Retracted Article: 3D printed highly flexible strain sensor based on TPU–graphene composite for feedback from high speed robotic applications
Ma et al. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer
Lin et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics
KR101527863B1 (en) A bipolar strain sensor having carbon nanotube network film
Maity et al. Development of the PANI/MWCNT nanocomposite-based fluorescent sensor for selective detection of aqueous ammonia
US9618403B2 (en) Strain sensors and methods of manufacture and use
Xu et al. Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor
Yang et al. Sensitivity-Tunable strain sensors based on carbon nanotube@ carbon nanocoil hybrid networks
Ansari et al. Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
Sharma et al. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications
Ma et al. Transparent Stretchable Single‐Walled Carbon Nanotube‐Polymer Composite Films with Near‐Infrared Fluorescence
Janudin et al. Effect of functionalized carbon nanotubes in the detection of benzene at room temperature
Karimov et al. Strain sensors based on carbon nanotubes–cuprous oxide composite
Bhandari Polymer/carbon composites for sensor application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170517

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 5