KR100958631B1 - Method for manufacturing ?????? - Google Patents

Method for manufacturing ?????? Download PDF

Info

Publication number
KR100958631B1
KR100958631B1 KR1020070141483A KR20070141483A KR100958631B1 KR 100958631 B1 KR100958631 B1 KR 100958631B1 KR 1020070141483 A KR1020070141483 A KR 1020070141483A KR 20070141483 A KR20070141483 A KR 20070141483A KR 100958631 B1 KR100958631 B1 KR 100958631B1
Authority
KR
South Korea
Prior art keywords
forming
oxide layer
isolation
gate
layer
Prior art date
Application number
KR1020070141483A
Other languages
Korean (ko)
Other versions
KR20090073517A (en
Inventor
조용수
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070141483A priority Critical patent/KR100958631B1/en
Publication of KR20090073517A publication Critical patent/KR20090073517A/en
Application granted granted Critical
Publication of KR100958631B1 publication Critical patent/KR100958631B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명에 따른 MOSFET 제조 방법의 일 예는, 웰이 형성된 반도체 기판의 소정 영역에 소정 크기로 슬릿 트렌치 아이솔레이션을 형성한 후, 상기 형성된 슬릿 트렌치 산화막과 반도체 기판상에 습식 산화공정을 수행하여 아이솔레이션 산화막을 형성하고, 상기 슬릿 트렌치 아이솔레이션과 아이솔레이션 산화막은 T-형 구조로 형성하는 단계와, 상기 형성된 아이솔레이션 산화막 하부에 이온을 주입하여 소스-드레인을 형성하고, 상기 주입한 이온을 활성화한 후 식각하여 상기 형성된 아이솔레이션 산화막 일부를 제거하는 단계와, 상기 일부 제거된 아이솔레이션 산화막 상부에 채널 형성을 위한 에피층을 형성하고, 게이트 산화막을 형성하는 단계와, 상기 게이트 산화막 형성 후, 폴리 게이트를 형성하고 이온을 주입하여 쉘로우 정션을 형성하는 단계 및 상기 쉘로우 정션 형성 후 상기 형성된 폴리 게이트에 스페이서 구조를 형성하고, 상기 소스-드레인이 형성된 상기 반도체 기판에 실리사이드 층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다. 따라서, 본 발명에 따르면, 65 nm 이하 MOSFET의 집적도를 향상시키고, 고 집적회로에서도 성능을 개선할 수 있으며, 폴리 게이트의 높이를 감소시켜 MOSFET의 채널 및 익스텐션 수행을 용이하게 할 수 있다.An example of the MOSFET fabrication method according to the present invention is to form a slit trench isolation in a predetermined region of a semiconductor substrate in which a well is formed, and then perform a wet oxidation process on the formed slit trench oxide film and the semiconductor substrate to form an isolation oxide film. And forming the slit trench isolation and isolation oxide layer in a T-type structure, implanting ions into the formed isolation oxide layer to form a source-drain, activating the implanted ions, and etching the ions. Removing a portion of the formed isolation oxide, forming an epitaxial layer for forming a channel on the partially removed isolation oxide layer, forming a gate oxide layer, and forming a poly gate after implanting the gate oxide layer, and implanting ions Forming a shallow junction It characterized in that comprises a step of forming a silicide layer on the semiconductor substrate, a drain formed - after the shallow junction to form the source, to form the spacer structure formed on the gate poly. Therefore, according to the present invention, it is possible to improve the integration of the MOSFET of 65 nm or less, improve the performance even in a high integrated circuit, and reduce the height of the poly gate to facilitate the channel and extension of the MOSFET.

반도체, MOSFET, 슬릿 트렌치 아이솔레이션, 아이솔레이션 산화막, 스페이서  Semiconductors, MOSFETs, Slit Trench Isolation, Isolation Oxides, Spacers

Description

MOSFET 제조 방법{Method for manufacturing MOSFET}Method for manufacturing MOSFS ETH

본 발명은 MOSFET에 관한 것으로, 특히 T-형 아이솔레이션 산화막 구조를 이용하여 소스-드레인 구조를 형성하는 MOSFET 제조 방법에 관한 것이다.The present invention relates to a MOSFET, and more particularly, to a MOSFET manufacturing method for forming a source-drain structure using a T-type isolation oxide structure.

종래 실리콘(Si) MOSFET을 사용하는 제품의 집적도가 증가함에 따라 디자인 규칙(design rule)의 감소가 급격히 진행됐다.As the degree of integration of products using silicon (Si) MOSFETs increases, the design rule decreases rapidly.

이에 따라 MOSFET 구조의 개선으로 집적도 및 성능 개선이 요구되어 진다.As a result, the improvement of the structure of the MOSFET is required to improve the integration and performance.

그러나 종래 기술에 따른 65nm 이하 MOSFET의 디자인 규칙에서는 스페이서(spacer) 구조로 인해 집적도에 문제가 있었다.However, in the design rules of the MOSFET of 65 nm or less according to the prior art, there is a problem in integration due to the spacer structure.

또한, 종래에는 MOSFET의 성능(performance)을 개선하기 위해 SOI 구조와 유사한 채널(channel) 구조가 요구되었으나, 상기 SOI 구조는 기판 열 방출 문제가 있었다.In addition, although a channel structure similar to the SOI structure is required in order to improve the performance of the MOSFET, the SOI structure has a problem of substrate heat dissipation.

이와 함께 종래에는 MOSFET의 폴리 게이트(poly gate) 높이에 대한 공정 마진(margin)이 작아 디바이스(device) 공정 적용에 문제가 있었다.In addition, in the related art, a process margin with respect to a poly gate height of a MOSFET is small, and thus there is a problem in applying a device process.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명에서는 T-형 아이솔레이션 산화막(isolation oxide)를 이용하여 소스-드레인(source-drain) 구조를 형성시키는 것을 목적으로 한다.The present invention is to solve the above problems, it is an object of the present invention to form a source-drain structure using a T-type isolation oxide (isolation oxide).

상기와 같은 목적을 달성하기 위한 본 발명에 따른 MOSFET 제조 방법의 일 예는, 웰이 형성된 반도체 기판의 소정 영역에 소정 크기로 슬릿 트렌치 아이솔레이션을 형성한 후, 상기 형성된 슬릿 트렌치 산화막과 반도체 기판상에 습식 산화공정을 수행하여 아이솔레이션 산화막을 형성하고, 상기 슬릿 트렌치 아이솔레이션과 아이솔레이션 산화막은 T-형 구조로 형성하는 단계와, 상기 형성된 아이솔레이션 산화막 하부에 이온을 주입하여 소스-드레인을 형성하고, 상기 주입한 이온을 활성화한 후 식각하여 상기 형성된 아이솔레이션 산화막 일부를 제거하는 단계와, 상기 일부 제거된 아이솔레이션 산화막 상부에 채널 형성을 위한 에피층을 형성하고, 게이트 산화막을 형성하는 단계와, 상기 게이트 산화막 형성 후, 폴리 게이트를 형성하고 이온을 주입하여 쉘로우 정션을 형성하는 단계 및 상기 쉘로우 정션 형성 후 상기 형성된 폴리 게이트에 스페이서 구조를 형성하고, 상기 소스-드레인이 형성된 상기 반도체 기판에 실리사이드 층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.An example of a method for fabricating a MOSFET according to the present invention for achieving the above object is to form a slit trench isolation in a predetermined size in a predetermined region of a semiconductor substrate on which a well is formed, and then, on the formed slit trench oxide film and the semiconductor substrate. Performing a wet oxidation process to form an isolation oxide layer, and forming the slit trench isolation and isolation oxide layer in a T-type structure, implanting ions into the formed isolation oxide layer to form a source-drain, and implanting the implanted oxide layer. Activating and then etching ions to remove a portion of the formed isolation oxide layer, forming an epitaxial layer for channel formation on the partially removed isolation oxide layer, forming a gate oxide layer, and forming the gate oxide layer, Form poly gates and implant ions W to form a shallow junction and after the shallow junction formation to form a spacer structure formed on the poly gate and the source - is characterized in that comprises a step of forming a silicide layer on the semiconductor substrate, a drain formed.

삭제delete

삭제delete

삭제delete

상술한 본 발명에 따른 MOSFET 제조 방법에 의하면, According to the MOSFET manufacturing method according to the present invention described above,

첫째, 65 nm 이하 MOSFET의 집적도를 향상시킬 수 있는 효과가 있다.First, there is an effect to improve the integration of the MOSFET below 65 nm.

둘째, 고 집적회로에서도 성능(performance)을 개선할 수 있는 효과가 있다.Second, there is an effect that can improve the performance (high) even in a high integrated circuit.

셋째, 폴리 게이트의 높이를 감소시켜 MOSFET의 채널 및 익스텐션 수행을 용이하게 할 수 있는 효과가 있다.Third, there is an effect that can reduce the height of the poly gate to facilitate the channel and extension of the MOSFET.

이하 상기와 같은 목적을 달성하기 위한 본 발명의 구체적인 실시 예를 첨부된 도면을 참조하여 상세하게 설명하면, 다음과 같다.Hereinafter, specific embodiments of the present invention for achieving the above object will be described in detail with reference to the accompanying drawings.

본 발명은 MOSFET에 관한 것으로, 특히 T-형 아이솔레이션 산화막(isolation oxide)를 이용하여 소스-드레인(source-drain) 구조를 형성시키는 것을 특징으로 한다.The present invention relates to a MOSFET, and in particular, to form a source-drain structure using a T-type isolation oxide.

도 1a 내지 1i는 본 발명에 따른 MOSFET 제조 공정의 일 예를 순차적 도시한 것이다.1A to 1I sequentially illustrate an example of a MOSFET manufacturing process according to the present invention.

이하 본 발명에 따른 MOSFET 제조 공정을 설명함에 있어, 첨부된 도면과 함 께 순차적으로 그 제조 공정을 설명하면, 다음과 같다.Hereinafter, in describing the MOSFET manufacturing process according to the present invention, the manufacturing process will be described sequentially with the accompanying drawings.

먼저 도 1a에서, 반도체 기판(1) 상에 웰 이식(well implant) 공정을 수행하여, 웰(well)을 형성한다.First, in FIG. 1A, a well implant process is performed on the semiconductor substrate 1 to form a well.

상기 웰을 형성한 후, 상기 반도체 기판(1)의 소정 영역에 소정 크기로 슬릿 트렌치 아이솔레이션(slit trench isolation)(2)을 형성한다.After the well is formed, a slit trench isolation 2 is formed in a predetermined region of the semiconductor substrate 1 with a predetermined size.

도 1b에서, 상기 슬릿 트렌치 아이솔레이션(2)을 형성한 후, 상기 형성된 슬릿 트렌치 산화막(2)과 반도체 기판(1) 상에 습식 산화 공정을 수행하여 아이솔레이션 산화막(isolation oxide)(3)를 형성한다.In FIG. 1B, after forming the slit trench isolation 2, a wet oxidation process is performed on the formed slit trench oxide layer 2 and the semiconductor substrate 1 to form an isolation oxide layer 3. .

또한, 상기 형성되는 슬릿 트렌치 아이솔레이션(2)과 아이솔레이션 산화막(3)은 T-형 구조를 가진다.In addition, the slit trench isolation 2 and the isolation oxide film 3 formed have a T-type structure.

도 1c에서, 상기 T-형 구조 하부에 이온을 주입하여 소스-드레인(4)을 형성한다. 그리고 상기 이온 주입 후 RTP를 사용하여 상기 주입한 이온을 활성화시킨다.In FIG. 1C, ions are implanted under the T-type structure to form the source-drain 4. After the ion implantation, the implanted ions are activated using RTP.

도 1d에서, 상기 이온 주입 후 포토 리쏘그래피(photo lithography) 및 식각. 공정으로 상기 형성한 아이솔레이션 산화막(3)의 일부를 제거한다.1D, photo lithography and etching after the ion implantation. A part of the formed isolation oxide film 3 is removed by the step.

도 1e에서, 상기 일부 제거된 아이솔레이션 산화막(3a) 상부에 채널 형성을 위ㅎ하여 에피-실리콘(epi-Si)층(5)을 형성한다.In FIG. 1E, an epi-silicon layer 5 is formed on the partially removed isolation oxide layer 3a to form a channel.

도 1f에서, 게이트 산화(gate oxidation) 공정을 적용하여 게이트 산화막(gate oxide)(6)을 형성한다.In FIG. 1F, a gate oxidation process is applied to form a gate oxide 6.

상기 게이트 산화막(6) 형성 후, 폴리 게이트(7)를 형성시키기 위하여 CVD 폴리 실리콘(poly silicon) 막을 도포한다.After the gate oxide film 6 is formed, a CVD poly silicon film is applied to form the poly gate 7.

그리고 상기 도포된 폴리 실리콘 막을 이용하여 폴리 게이트(7)을 형성한다.Then, the poly gate 7 is formed using the coated polysilicon film.

도 1g에서, 상기 폴리 게이트(7) 형성 후, LDD 영역에 이온을 주입하여 쉘로우 정션(shallow junction)(8)을 형성한다.In FIG. 1G, after the poly gate 7 is formed, ions are implanted into the LDD region to form a shallow junction 8.

도 1h에서 실리사이드(silicide) 공정을 위하여 TEOS 및 실리콘 질화(SiN) 막을 사용하여 상기 폴리 게이트(7)에 스페이서(spacer)(9) 구조를 형성한다.In FIG. 1H, a spacer 9 structure is formed on the poly gate 7 using TEOS and a silicon nitride (SiN) film for the silicide process.

도 1i에서, 상기 스페이서(9) 구조를 형성한 후, 실리사이드 층(10)을 형성한다. 이때, 상기 형성되는 실리사이드층(10)은 상기 형성한 소스-드레인(4a)까지 도달 되도록 충분한 두께의 금속층을 사용할 수 있다. 이때, 상기 금속층은 코발트(Co)나 또는 니켈(Ni)이 사용될 수 있다.In FIG. 1I, after forming the spacer 9 structure, a silicide layer 10 is formed. In this case, the formed silicide layer 10 may use a metal layer having a sufficient thickness to reach the formed source-drain 4a. In this case, cobalt (Co) or nickel (Ni) may be used as the metal layer.

따라서, 상술한 본 발명에 따르면, 65 nm 이하 MOSFET의 집적도를 향상시킬 수 있으며, 고 집적회로에서도 성능(performance)을 개선할 수 있게 된다.Therefore, according to the present invention described above, the integration degree of the MOSFET of 65 nm or less can be improved, and the performance can be improved even in a high integrated circuit.

또한, 상술한 바와 같이, 폴리 게이트(7)의 높이를 종래 기술에 따른 공정보다 감소시킴으로써, MOSFET의 채널(channel) 및 익스텐션(extension) 수행이 용이해진다.In addition, as described above, by reducing the height of the poly gate 7 compared to the process according to the prior art, it is easy to perform the channel (channel) and extension of the MOSFET.

이상 상술한 본 발명에 따른 기술 사상은, 상술한 실시 예에 한정되는 것은 아니며, 슬릿 트렌치 아이솔레이션과 아이솔레이션 산화막 층을 이용하여 구성한 T-형 구조가 반도체 내부에 삽입되는 경우에 모두 적용 가능하다.The technical idea according to the present invention described above is not limited to the above-described embodiment, and is applicable to both the case where the T-type structure formed by using the slit trench isolation and the isolation oxide layer is inserted into the semiconductor.

또한, 익스텐션 하부에 소스-드레인을 형성시켜 제작되는 모든 MOSFET에 응용 가능하며, 반도체 기판에 형성된 아이솔레이션 산화막 하부에 소스-드레인을 형 성시키는 모든 MOSFET에 적용 가능하다.In addition, it is applicable to all MOSFETs fabricated by forming source-drain under the extension, and applicable to all MOSFETs forming source-drain under the isolation oxide formed on the semiconductor substrate.

이상에서는 본 발명의 기술 사상을 설명함에 있어서, 특정 실시 예를 첨부된 도면과 함께 도시하고 설명하였다. 다만, 본 발명은 상술한 실시 예에 한정되는 것은 아니며, 본 발명의 기술 사상을 벗어나지 않는 범위 즉, 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 수정 및 변경을 가능하다.In the above description of the technical idea of the present invention, specific embodiments have been shown and described with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and various modifications and changes may be made by those skilled in the art without departing from the spirit of the present invention, that is, the technical field to which the present invention belongs.

도 1a 내지 1i는 본 발명에 따른 MOSFET 제조 공정의 일 예를 순차적 도시한 것1A to 1I sequentially illustrate an example of a MOSFET manufacturing process according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1; 반도체 기판 2; 슬릿 트렌치 아이솔레이션One; Semiconductor substrate 2; Slit Trench Isolation

3,3a; 아이솔레이션 산화막 4,4a; 소스-드레인3,3a; Isolation oxide film 4,4a; Source-Drain

5; 에피-실리콘층 6; 게이트 산화막5; Epi-silicon layer 6; Gate oxide

7; 폴리 게이트 8; 쉘로우 정션7; Poly gate 8; Shallow Junction

9; 스페이서 10; 실리사이드 층9; Spacer 10; Silicide layer

Claims (4)

웰이 형성된 반도체 기판의 소정 영역에 소정 크기로 슬릿 트렌치 아이솔레이션을 형성한 후, 상기 형성된 슬릿 트렌치 산화막과 반도체 기판상에 습식 산화공정을 수행하여 아이솔레이션 산화막을 형성하고, 상기 슬릿 트렌치 아이솔레이션과 아이솔레이션 산화막은 T-형 구조로 형성하는 단계;After the slit trench isolation is formed in a predetermined region of the semiconductor substrate on which the well is formed, a slit trench isolation layer is formed on the formed slit trench oxide layer and the semiconductor substrate by performing a wet oxidation process to form an isolation oxide layer. Forming into a T-shaped structure; 상기 형성된 아이솔레이션 산화막 하부에 이온을 주입하여 소스-드레인을 형성하고, 상기 주입한 이온을 활성화한 후 식각하여 상기 형성된 아이솔레이션 산화막 일부를 제거하는 단계;Implanting ions into the formed isolation oxide layer to form a source-drain, activating the implanted ions and etching to remove a portion of the formed isolation oxide layer; 상기 일부 제거된 아이솔레이션 산화막 상부에 채널 형성을 위한 에피층을 형성하고, 게이트 산화막을 형성하는 단계;Forming an epitaxial layer for channel formation on the partially removed isolation oxide layer, and forming a gate oxide layer; 상기 게이트 산화막 형성 후, 폴리 게이트를 형성하고 이온을 주입하여 쉘로우 정션을 형성하는 단계; 및After forming the gate oxide layer, forming a poly gate and implanting ions to form a shallow junction; And 상기 쉘로우 정션 형성 후 상기 형성된 폴리 게이트에 스페이서 구조를 형성하고, 상기 소스-드레인이 형성된 상기 반도체 기판에 실리사이드 층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 MOSFET 제조 방법.Forming a spacer structure on the formed poly gate after forming the shallow junction, and forming a silicide layer on the semiconductor substrate on which the source-drain is formed. 삭제delete 제 1항에 있어서,The method of claim 1, 상기 실리사이드층은 코발트(Co) 또는 니켈(Ni) 중 적어도 어느 하나의 금속으로 형성하는 것을 특징으로 하는 MOSFET 제조 방법.The silicide layer is a MOSFET manufacturing method, characterized in that formed of at least one metal of cobalt (Co) or nickel (Ni). 제 1항에 있어서,The method of claim 1, 상기 실리사이드층은 상기 형성된 소스-드레인까지 도달하는 두께로 형성하는 것을 특징으로 하는 MOSFET 제조 방법.And the silicide layer is formed to a thickness reaching the formed source-drain.
KR1020070141483A 2007-12-31 2007-12-31 Method for manufacturing ?????? KR100958631B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070141483A KR100958631B1 (en) 2007-12-31 2007-12-31 Method for manufacturing ??????

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070141483A KR100958631B1 (en) 2007-12-31 2007-12-31 Method for manufacturing ??????

Publications (2)

Publication Number Publication Date
KR20090073517A KR20090073517A (en) 2009-07-03
KR100958631B1 true KR100958631B1 (en) 2010-05-19

Family

ID=41330661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070141483A KR100958631B1 (en) 2007-12-31 2007-12-31 Method for manufacturing ??????

Country Status (1)

Country Link
KR (1) KR100958631B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075417A (en) * 1998-03-20 1999-10-15 김영환 Manufacturing Method of Semiconductor Device
KR100620642B1 (en) * 2005-06-30 2006-09-06 주식회사 하이닉스반도체 Method for manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075417A (en) * 1998-03-20 1999-10-15 김영환 Manufacturing Method of Semiconductor Device
KR100620642B1 (en) * 2005-06-30 2006-09-06 주식회사 하이닉스반도체 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR20090073517A (en) 2009-07-03

Similar Documents

Publication Publication Date Title
US8329566B2 (en) Method of manufacturing a high-performance semiconductor device
US8193586B2 (en) Sealing structure for high-K metal gate
US20060151808A1 (en) MOSFET device with localized stressor
KR970054397A (en) MOS field effect transistor manufacturing method
JP2006278974A (en) Semiconductor device and manufacturing method thereof
CN107452627B (en) Method for manufacturing semiconductor device
US20090294807A1 (en) Methods of Fabricating Transistors and Structures Thereof
US20090011561A1 (en) Method of fabricating high-voltage mos having doubled-diffused drain
KR20020003028A (en) Method for making an soi metal oxide fet
US20140167110A1 (en) Partial poly amorphization for channeling prevention
KR100588035B1 (en) Method of enhanced oxidation of mos transistor gate corners
US8202782B2 (en) Method of manufacturing transistor
KR100707590B1 (en) Multiple LDD-Type MOS Transistor and Manufacturing Method Thereof
KR20090037055A (en) Method for manufacturing of semiconductor device
KR100799111B1 (en) Transistor in semiconductor device and method for manufacturing the same
US7217625B2 (en) Method of fabricating a semiconductor device having a shallow source/drain region
CN102915971B (en) Manufacturing method of semiconductor device
KR100958631B1 (en) Method for manufacturing ??????
US7915128B2 (en) High voltage semiconductor devices
US7400013B1 (en) High-voltage transistor having a U-shaped gate and method for forming same
CN107437533B (en) Semiconductor structure and manufacturing method thereof
KR100562309B1 (en) Transistor having reverse spacer and fabrication method thereof
US8557668B2 (en) Method for forming N-shaped bottom stress liner
KR101004807B1 (en) High voltage transistor provided with bended channel for increasing channel punch immunity and method for manufacturing the same
KR20060005556A (en) Method for manufacturing an integrated semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee