KR100949598B1 - High-strength Polyester fiber for industry and its manufacturing method - Google Patents

High-strength Polyester fiber for industry and its manufacturing method Download PDF

Info

Publication number
KR100949598B1
KR100949598B1 KR1020070140594A KR20070140594A KR100949598B1 KR 100949598 B1 KR100949598 B1 KR 100949598B1 KR 1020070140594 A KR1020070140594 A KR 1020070140594A KR 20070140594 A KR20070140594 A KR 20070140594A KR 100949598 B1 KR100949598 B1 KR 100949598B1
Authority
KR
South Korea
Prior art keywords
shrinkage
polyester fiber
strength
thermal stress
polyester
Prior art date
Application number
KR1020070140594A
Other languages
Korean (ko)
Other versions
KR20090072470A (en
Inventor
강성일
심동석
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020070140594A priority Critical patent/KR100949598B1/en
Publication of KR20090072470A publication Critical patent/KR20090072470A/en
Application granted granted Critical
Publication of KR100949598B1 publication Critical patent/KR100949598B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins

Abstract

본 발명은 산업용 고강도 저수축 폴리에스테르 섬유 및 이의 제조 방법에 관한 것으로서, 강도 7.3g/d 이상, 절단신율 20~28%, 수축율 2.5% 이하인 것을 특징으로 한다. 또한 120~180℃ 및 220~280℃의 온도 영역에서 각각 6.0×10-2~10×10-2g/d,14.0×10-2~20.0×10-2g/d의 열응력 피크 수치를 나타내는 것을 특징으로 한다. 본 발명에 따른 저수축 폴리에스테르 섬유는 외부 하중에 대한 충분한 저항성을 가질 뿐만 아니라 타포린, 트럭 커버지, 간판지, 천막지 등의 산업용 제품 제조를 위한 후가공시 수축 불균일 현상이 없고 형태 안정성이 우수하여 산업용 섬유 소재로서 매우 유용하다.The present invention relates to a high-strength low-shrink polyester fiber and a method for producing the same, characterized in that the strength is 7.3g / d or more, cutting elongation 20 to 28%, shrinkage of 2.5% or less. In addition, thermal stress peak values of 6.0 × 10 -2 to 10 × 10 -2 g / d and 14.0 × 10 -2 to 20.0 × 10 -2 g / d in the temperature range of 120 to 180 ° C and 220 to 280 ° C, respectively, It is characterized by. The low shrinkage polyester fiber according to the present invention not only has sufficient resistance to external loads, but also has no shrinkage unevenness during post-processing for the manufacture of industrial products such as tarpaulins, truck covers, signboards, tent papers, etc. Very useful as an industrial textile material.

저수축, 폴리에스테르, 열응력, 산업용 Low shrinkage, polyester, thermal stress, industrial

Description

산업용 고강도 저수축 폴리에스테르 섬유 및 그 제조방법{High-strength Polyester fiber for industry and its manufacturing method}High-strength polyester fiber for industry and its manufacturing method

본 발명은 고강도 저수축 폴리에스테르 섬유 및 그 제조방법에 관한 것으로서, 상세하게는 외부 하중에 대한 충분한 저항성을 가질 뿐만 아니라, 후가공시 수축 불균일 현상이 없고 형태안정성이 우수하여 타포린, 트럭 커버지, 간판지, 천막 등의 산업용 섬유 소재로 유용하게 사용될 수 있는 고강도 저수축 폴리에스테르 섬유 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength low-shrink polyester fiber and a method of manufacturing the same, and in particular, not only has sufficient resistance to external loads, but also has no shrinkage unevenness during post-processing and is excellent in form stability. It relates to a high-strength low-shrink polyester fiber that can be usefully used as industrial textile materials such as paper, tents and the like and a method of manufacturing the same.

폴리에스테르 섬유는 물리, 화학적 특성이 우수하여 산업용 섬유로서 그 용도가 계속해서 확대되어 가고 있다. 특히 고강도 폴리에스테르 섬유는 타포린이나 트럭 커버지, 간판지, 천막 등과 같은 산업용 코팅직물의 베이스 직물로서 사용된다. 그러나, 타포린이나 트럭 커버지, 간판지, 천막 등은 베이스 직물에 150 ~ 230℃의 온도에서 PVC resin을 코팅 처리하는데, 이 공정에서 통상적인 고강도 폴리에스테르 섬유는 수축 특성이 좋지 못하여 수축 불균일 현상이 발생하여 형태 안정성에 영향을 미치게 되고, 이러한 직물 형태 변형에 의해 코팅 직물의 품질 저하를 초래하는 단점이 있다. 따라서, 고강도 특성을 가지면서도 동시에 저수축 특성을 갖는 폴리에스테르 섬유는 사용자 측면에서 요구가 크고 관련된 제조업계에서도 연구가 활발히 진행되고 있다.  Polyester fibers are excellent in physical and chemical properties, and their use continues to expand as industrial fibers. In particular, high strength polyester fibers are used as the base fabric of industrial coated fabrics such as tarpaulins, truck covers, signboards, tents and the like. However, tarpaulins, truck covers, signboards, tents, etc., are coated with PVC resin on the base fabric at a temperature of 150 to 230 ° C. In this process, high strength polyester fibers, which are typical of shrinkage characteristics, have poor shrinkage characteristics, resulting in uneven shrinkage. Occurs and affects the shape stability, there is a disadvantage that the quality of the coated fabric by the deformation of the fabric form. Therefore, polyester fibers having high strength properties and low shrinkage properties are demanded from the user's point of view and are actively being researched in related manufacturing industries.

저수축 폴리에스테르 섬유를 제조하는 방법으로, 방사 후에 귄취한 미연신사(UDY, Undrawn Yarn) 또는 부분연신사(POY, Partially Oriented Yarn)를 별도의 설비에서 연신, 열처리 및 이완공정을 실시하는 횡연신공정(Warp Drawing process)이 있다. 대한민국 특허공고 제1995-0000717에는 별도의 횡연신장치에 의해 미연신사 또는 부분연신사를 연신, 열처리하여 강도 8.0g/d이상, 건열수축율(190℃) 2% 미만, 절신 15∼25%의 폴리에스테르 섬유를 제조하는 이러한 횡연신공정이 개시되어 있다. 그러나, 이러한 횡연신 공정은 별도의 연신설비가 있어야 하므로 설비투자비 상승, 생산성 저하 및 제조 원가 상승 등의 경제성 측면의 문제점을 안고 있다.A method for producing low-shrink polyester fibers, transverse stretching in which undrawn yarn (UDY, Undrawn Yarn) or partially stretched yarn (POY) is stretched, heat treated and relaxed in a separate facility after spinning. There is a warp drawing process. In Korean Patent Publication No. 195-0000717, an undrawn or partially drawn yarn is drawn and heat treated by a separate transverse drawing device to obtain a strength of 8.0g / d or more, a dry heat shrinkage ratio of less than 2% (190 ° C), and a stretch of 15 to 25%. Such a transverse stretching process for producing ester fibers is disclosed. However, since the lateral stretching process requires a separate stretching facility, there are problems in economic aspects, such as an increase in facility investment cost, a decrease in productivity, and an increase in manufacturing cost.

저수축 폴리에스테르 섬유를 제조하는 다른 방법으로서, 일본국 특개소 46-6459호에는 방사, 연신 및 이완공정을 하나의 연속단계로 수행하는 직접방사연신법(Direct Spinning Drawing process)이 개시되어 있다. 이러한 직접방사연신법에 따라, 대한민국 등록특허 0193940호에는 총연신비 5.0∼6.5, 이완율 10∼15%로 단섬도 7∼15 데니어의 고신율 저수축 폴리에스테르 섬유를 제조하는 방법을 제시하고 있다. 그러나, 이 방법은 방사속도를 600m/min으로 낮추어 고뎃롤러 상의 체류시간을 증가시켰음에도 불구하고, 12.7%의 높은 이완율 수준에서도 건열수축율이 3.3% 정도로 높게 나타난다.As another method for producing low shrinkage polyester fibers, Japanese Patent Application Laid-Open No. 46-6459 discloses a direct spinning drawing process in which spinning, stretching and relaxation processes are performed in one continuous step. According to the direct radiation drawing method, Korean Patent No. 0193940 proposes a method for producing a high elongation low shrinkage polyester fiber having a single fineness of 7 to 15 deniers with a total draw ratio of 5.0 to 6.5 and a relaxation rate of 10 to 15%. However, this method showed a high dry heat shrinkage of 3.3% even at the high relaxation rate of 12.7%, although the spinning speed was reduced to 600m / min to increase the residence time on the high-pressure roller.

이와 같이, 직접방사연신법에 의하여 저수축 폴리에스테르 섬유를 제조하 는 경우, 고강도 섬유를 얻기 위하여 총연신비를 증가시키면 섬유 내 비정영역의 배향도가 증가하여 수축율 또한 증가하고, 수축율을 감소시키기 위하여 이완율을 높이면 고뎃롤러 상의 실 떨림이 증가하여 사절이 발생하는 등의 공정 작업성이 저하되는 문제점이 있다.  As described above, in the case of producing low shrinkage polyester fiber by direct radiation drawing method, increasing the total draw ratio to obtain high strength fiber increases the orientation of the amorphous region in the fiber, thereby increasing the shrinkage rate and relaxing to reduce the shrinkage rate. Increasing the rate increases the vibration of the yarn on the high-speed roller, which causes a problem in that process workability such as trimming occurs is lowered.

또한, 방사-연신의 연속 공정으로 강도 7.2g/d 이상, 177℃ 수축율 2.0% 미만, 200℃ 수축율 4.5% 미만인 저수축 폴리에스테르 섬유의 제조방법을 미국특허 제5277858에는 개시하고 있으나 가열 롤러 박스 내에 별도의 가열 플래트를 장치해야 한다. In addition, US Pat. A separate heating plate must be installed.

한편, 대한민국 공개특허 1998-028329호에는 고뎃롤러 사이에 가열 및 냉각장치와 스팀 공급장치를 추가적으로 설치하여 저수축사를 제조하는 방법을 개시하고 있다. 그러나, 이 방법을 실제 생산공정에 적용하기 위해서는 많은 설치공간이 필요하며, 가열장치, 냉각장치 및 스팀공급장치를 추가 등의 많은 설비투자로 인해 경제적이지 못하다.On the other hand, Korean Patent Laid-Open Publication No. 1998-028329 discloses a method for manufacturing a low shrinkage yarn by additionally installing a heating and cooling device and a steam supply device between the rollers. However, in order to apply this method to the actual production process, a lot of installation space is required, and it is not economical due to a lot of equipment investment such as adding a heating device, a cooling device, and a steam supply device.

본 발명이 이루고자 하는 기술적 과제는 상기한 문제점을 해결하기 위하여 외부 하중에 대한 충분한 저항성을 가질 뿐만 아니라, 후가공시 수축 불균일 현상이 없고 형태 안정성이 우수하여 타포린, 트럭 커버지, 간판지, 천막 등의 산업용 섬유로 매우 유용하게 사용될 수 있는 고강도 저수축 폴리에스테르 섬유 및 그 제조방법을 제공하는데 있다. The technical problem to be achieved by the present invention is not only to have sufficient resistance to external load in order to solve the above problems, there is no shrinkage non-uniformity during post-processing and excellent form stability, such as tarpaulin, truck cover, signboard, tent, etc. It is to provide a high-strength low-shrink polyester fiber and a method for producing the same that can be very useful as industrial fibers.

본 발명은 상기 기술적 과제를 달성하기 위하여 강도 7.3 ~ 8.5g/d 이상, 절단신율 18 ~ 28%, 수축율 2.5% 이하이고, 120 ~ 180℃ 및 220 ~ 280℃의 온도 영역에서 각각 6.0ㅧ10-2~10×10-2g/d및 14.0×10-2~20.0×10-2g/d의 열응력 피크 수치가 나타나는 것을 특징으로 하는 고강도 저수축 폴리에스테르 섬유를 제공한다.The invention The technical problem strength 7.3 ~ 8.5g / d or higher, elongation cut 18-28% in order to achieve, and shrinkage of 2.5% or less, respectively, 6.0 ㅧ in a temperature range of 120 ~ 180 ℃ and 220 ~ 280 ℃ 10 - It provides a high strength low shrinkage polyester fiber characterized in that the thermal stress peak value of 2 ~ 10 × 10 -2 g / d and 14.0 × 10 -2 ~ 20.0 × 10 -2 g / d appear.

본 발명에 따른 고강도 저수축 폴리에스테르 섬유에 있어서, [220 ~ 280℃의 온도 영역에서의 열응력 피크 수치]/[120 ~ 180℃의 온도 영역에서의 열응력 피크 수치]는 1.5 내지 3.5인 것이 바람직하다.  In the high strength low shrinkage polyester fiber according to the present invention, the [thermal stress peak value in the temperature range of 220 to 280 ° C.] / [Thermal stress peak value in the temperature range of 120 to 180 ° C.] is 1.5 to 3.5. desirable.

본 발명은 상기 기술적 과제를 달성하기 위하여 직접방사연신에 의한 폴리에스테르 섬유 제조방법에 있어서, (a) 용융 폴리에스테르 폴리머를 400 ~ 800m/min의 속도로 방사하는 단계; (b) 상기 방사한 폴리에스테르 섬유를 4.5 내지 7.5의 총연신비로 연신하는 단계; 및 (c) 상기 연신한 폴리에스테르 섬유를 7.0 내 지 15.0% 이완율로 고뎃롤러의 열처리에 의해 이완하는 단계;를 포함하는 것을 특징으로 하는 고강도 저수축 폴리에스테르 섬유 제조방법을 제공한다.  The present invention is a method for producing a polyester fiber by direct radiation stretching to achieve the above technical problem, (a) spinning a molten polyester polymer at a speed of 400 ~ 800m / min; (b) drawing the spun polyester fibers at a total draw ratio of 4.5 to 7.5; It provides a high-strength low-shrink polyester fiber manufacturing method comprising a; and (c) relaxing the stretched polyester fiber by heat treatment of a high roller at 7.0 to 15.0% relaxation rate.

본 발명에 따른 고강도 저수축 폴리에스테르 섬유 제조방법에 있어서, (c)단계의 이완공정은 1차 및 2차 이완공정으로 나누어 실시하되, 1차 이완공정:2차 이완공정에 의한 이완율은 9:1내지 1:9로 배분하는 것이 바람직하다.  In the high-strength low-shrink polyester fiber manufacturing method according to the present invention, the relaxation step of step (c) is carried out divided into primary and secondary relaxation process, the primary relaxation process: the relaxation rate by the secondary relaxation process is 9 It is preferable to distribute from 1: 1 to 1: 9.

이하, 본 발명에 따른 고강도 저수축 폴리에스테르 섬유 및 그 제조방법에 대하여 상세히 설명한다.Hereinafter, the high strength low shrinkage polyester fiber and the manufacturing method thereof according to the present invention will be described in detail.

본 발명에 따른 고강도 저수축 폴리에스테르 섬유는 다음과 같은 직접방사연신법으로 제조할 수 있다. 먼저, 폴리에스테르 폴리머를 용융시켜 400 ~ 800m/min의 속도로 방사노즐을 통해 토출시킨다. 사용되는 폴리에스테르 폴리머의 고유점도(I.V.)는 완성되는 섬유의 고강도 및 저수축 특성, 방사 작업성 등을 고려하여 0.75∼1.10인 것이 바람직하다. 폴리머의 고유점도는 페놀/1,1,2,2-테트라클로로에탄의 6:4혼합 용매로 0.4% 폴리에스테르/용매 용액을 만들어 캐논사의 Auto Visc II 자동 점도계로 표준모세관을 통과하는 순수 용매의 유동시간에 대한 폴리에스테르/용매 용액의 유동시간을 측정한 후 아래의 빌메이어 근사식으로 계산하였다. 식에서 C는 농도(g/100ml)이다.   The high strength low shrinkage polyester fiber according to the present invention can be produced by the following direct radiation drawing method. First, the polyester polymer is melted and discharged through a spinning nozzle at a speed of 400 to 800 m / min. The intrinsic viscosity (I.V.) of the polyester polymer to be used is preferably 0.75 to 1.10 in consideration of the high strength and low shrinkage characteristics, spinning workability and the like of the finished fiber. The intrinsic viscosity of the polymer is determined by the use of a 6: 4 mixture of phenol / 1,1,2,2-tetrachloroethane to produce a 0.4% polyester / solvent solution, which is a pure solvent that passes through standard capillaries with Canon's Auto Visc II automatic viscometer. The flow time of the polyester / solvent solution with respect to the flow time was measured and then calculated by the following Bilmeyer approximation. Where C is the concentration (g / 100ml).

Figure 112007094652142-pat00001
Figure 112007094652142-pat00001

이후에 방사한 폴리에스테르 미연신사를 4.5 내지 7.5의 총연신비로 연신한다. 연신비가 4.5 미만이면 섬유 배향도가 낮아 고강도의 섬유 수득이 어려우며, 7.5를 초과하면 과연신되어 사절 발생 등의 공정 작업성이 저하가 나타나고 핀사 및 모우가 발생하여 최종 제품의 외관 품질이 저하된다. 이어서, 연신된 폴리에스테르 섬유는 7% 내지 15%의 이완율로 이완한다. 이완공정에서 섬유의 열처리는 가열플레이트 또는 스팀공급장치 등 별도의 추가 설비를 필요로 하지 않고 고뎃롤러로 한다. 이완율이 7% 미만이면 저수축 특성을 달성하기 어려우며, 이완율이 15%를 초과하면 고뎃롤러 상에서 실떨림이 심하여 안정적인 공정 작업성이 확보되지 않는다. 이완공정은 단일공정으로 실시할 수도 있으나, 1차 및 2차 이완공정으로 나누어 실시하는 것이 바람직하며, 이 때 1차 이완공정:2차 이완공정에 의한 이완율은 9:1내지 1:9로 배분하는 것이 바람직하다. 상기한 내용과 같이 2단 이완공정을 이용하면 고뎃롤러 상에서의 실떨림이 감소될 뿐만 아니라, 섬유의 체류시간이 충분하여 열처리 효율이 증대되어 실질 이완율과 적용 이완율이 근접하게 되어 저수축 특성이 더욱 잘 발현된다. 이렇게 공정을 거친 섬유는 2000m/min 이상의 속도로 권취하여 고강도 및 저수축 특성이 우수한 폴리에스테르 섬유를 수득할 수 있다.Thereafter, the spun polyester undrawn yarn is drawn to a total draw ratio of 4.5 to 7.5. If the draw ratio is less than 4.5, it is difficult to obtain high strength fibers because the degree of fiber orientation is low. If the draw ratio exceeds 7.5, the process workability such as trimming occurs is deteriorated, and pin yarn and wool are generated, thereby deteriorating the appearance quality of the final product. The stretched polyester fiber is then relaxed at a relaxation rate of 7% to 15%. In the relaxation process, the heat treatment of the fiber does not require any additional equipment such as a heating plate or a steam supply device. If the relaxation rate is less than 7%, it is difficult to achieve low shrinkage characteristics, and if the relaxation rate is more than 15%, there is severe vibration on the high-pressure roller, and stable process workability is not secured. The relaxation process may be carried out in a single process, but it is preferable to divide the process into primary and secondary relaxation processes. At this time, the primary relaxation process: the relaxation rate by the secondary relaxation process is 9: 1 to 1: 9. It is preferable to distribute. As described above, when the two-stage relaxation process is used, not only the vibration of the yarn on the high-pressure roller is reduced, but also the retention time of the fiber is sufficient, so that the heat treatment efficiency is increased, so that the real relaxation rate and the application relaxation rate are close to each other. This is better expressed. Fibers thus processed may be wound at a speed of 2000 m / min or more to obtain polyester fibers having excellent high strength and low shrinkage properties.

전술한 본 발명에 따른 고강도 저수축 폴리에스테르 섬유의 제조방법은 롤러 자체에서 열을 가함으로서 별도의 냉각장치 및 가열장치가 필요치 않아 경제적인 측면에서 유리하며, 방사속도, 총연신비, 이완율 등의 공정 운전조건을 적절히 조절하여 강도 7.3g/d 이상, 절단신율 18 ~ 28%, 수축율 2.5% 이하의 우수한 특성을 갖는 산업용 폴리에스테르 섬유를 제조할 수 있다.The method for producing a high strength low shrinkage polyester fiber according to the present invention described above is advantageous in terms of economics by applying heat from the roller itself, and thus does not require a separate cooling device and a heating device, such as spinning speed, total draw ratio, and relaxation rate. By appropriately adjusting the process operating conditions, industrial polyester fibers having excellent properties of strength of 7.3 g / d or more, elongation at break of 18 to 28%, and shrinkage of 2.5% or less can be prepared.

본 발명에 따라 제조된 고강도 저수축 폴리에스테르 섬유는 다음과 같은 특징적인 열적 거동을 보인다. 즉, 120 ~ 180℃ 및 220 ~ 280℃의 온도 영역에서 각각 6.0×10-2~10×10-2g/d및 14.0×10-2~20.0×10-2g/d인 두 개의 열응력 피크 수치를 나타낸다. 종래의 직접방사연신법 및 횡연신 공정에 의한 고강도 저수축 폴리에스테르 섬유는 한 개의 피크만 나타나거나 두 개의 피크가 나타나더라도 저온영역의 피크 수치가 미약하여 본 발명에 따라 제조된 고강도 저수축 폴리에테르 섬유와는 다른 열적 거동을 보인다. 도 1은 본 발명의 실시예 1 및 종래 기술에 따른 고강도 저수축 폴리에스테르 섬유의 열응력 거동을 도시한 그래프이다. The high strength low shrink polyester fibers made in accordance with the present invention exhibit the following characteristic thermal behavior. Two thermal stresses, 6.0 × 10 -2 to 10 × 10 -2 g / d and 14.0 × 10 -2 to 20.0 × 10 -2 g / d, respectively, in the temperature range of 120 to 180 ° C and 220 to 280 ° C. The peak value is shown. The high-strength low-shrinkage polyester fiber produced by the conventional direct spinning and transverse stretching process has a low peak value in the low temperature region even if only one peak appears or two peaks. It has a different thermal behavior than fiber. 1 is a graph showing the thermal stress behavior of high-strength low-shrink polyester fibers according to Example 1 of the present invention and the prior art.

도 1에 나타나듯이 실시예 1에 비해 종래의 기술에 따라 수득된 비교예 1의 열응력 피크의 차이가 나타난다. 고온영역에서의 피크는 실시예 1 및 비교예 1에서 모두 뚜렷하게 나타나지만 저온영역에서의 피크는 실시예 1에 비해 비교예 1은 미약한 것을 알 수 있다. As shown in FIG. 1, a difference in thermal stress peaks of Comparative Example 1 obtained according to the related art compared to Example 1 appears. Although the peak in the high temperature region is clearly visible in both Example 1 and Comparative Example 1, it can be seen that the comparative example 1 is weaker than the peak in the low temperature region Example 1.

본 발명에 따른 고강도 저수축 폴리에스테르 섬유는 강도 7.3g/d 이상, 절단신율 18 ~ 28%, 수축율 2.5% 이하의 우수한 특성을 나타내므로, 외부 하중에 대한 충분한 저항성을 가질 뿐만 아니라, 후가공시 수축 불균일 현상이 없고 형태안정성이 우수하다. 따라서, 타포린, 트럭 커버지, 간판지, 천막 등의 산업용 섬유로 매우 유용하게 사용될 수 있다.The high strength low shrinkage polyester fiber according to the present invention exhibits excellent properties of strength of at least 7.3 g / d, elongation at break of 18 to 28%, and shrinkage of at most 2.5%, and thus not only has sufficient resistance to external load, but also shrinkage at post processing. There is no uneven phenomenon and excellent shape stability. Therefore, it can be very usefully used as an industrial fiber, such as tarpaulin, truck cover, signboard, tent.

이하에서 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 이하의 실시예 및 비교예는 단지 예시를 위한 것이므로 본 발명의 범위를 국한시키는 것으로 이해되어서는 안 될 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following examples and comparative examples are for illustrative purposes only and should not be understood as limiting the scope of the invention.

<실시예 1><Example 1>

고유점도 0.84인 폴리에스테르 고상중합 칩을 용융시켜 방사구금을 통하여 480m/min의 속도로 방사, 냉각한 미연신사를 통상적인 방사유제 부여장치를 통과시킨 후 제1 롤러(GR1)와 제4 롤러(GR4) 사이에서 연신하였는데, 이 때 제4 롤러(GR4)의 속도를 2800m/min으로 하여 총연신비가 5.7이 되도록 조절하였다. 제4 롤러(GR4)와 제5 롤러(GR5)의 온도는 240℃로 하여 1차, 2차 열고정을 하였으며, 제4 롤러(GR4)와 제5 롤러(GR5)에서 1차 이완율 7%, 제5 롤러(GR5)와 제6 롤러(GR6)사이에서 2차 이완율 3%로 조절하여 총 이완율이 10%가 되도록 하였다. 이렇게 2단 이완공정을 거친 섬유를 권취기로 권취하여 섬도 1000데니어의 폴리에스테르 섬유를 수득하였다. After melting a polyester solid-state polymerized chip having an intrinsic viscosity of 0.84 and spinning and cooling it at a speed of 480 m / min through a spinneret, the first roller GR1 and the fourth roller ( Stretching was carried out between GR4). At this time, the speed of the fourth roller GR4 was adjusted to 2800 m / min so that the total draw ratio was adjusted to 5.7. The temperature of the 4th roller GR4 and the 5th roller GR5 was 240 degreeC, and the 1st and 2nd heat setting were performed, and the 1st relaxation rate 7% in the 4th roller GR4 and 5th roller GR5. The secondary relaxation rate was adjusted to 3% between the fifth roller GR5 and the sixth roller GR6 so that the total relaxation rate was 10%. Thus, the fiber which passed two-stage relaxation process was wound up by the winding machine, and the polyester fiber of 1000 denier of fineness was obtained.

<실시예 2 ~3, 비교예 1~2><Examples 2-3, Comparative Examples 1-2>

총연신비 및 GR4, GR5의 온도, 이완율, 이완율 배분비를 표 1와 같이 변화시킨 것을 제외하고는 실시예 1과 동일한 공정을 적용하여 실시하였다. The same process as in Example 1 was conducted except that the total draw ratio and the temperature, relaxation rate, and relaxation rate distribution ratio of GR4 and GR5 were changed as shown in Table 1.

상기 실시예 및 비교예에 따라 제조한 폴리에스테르 섬유에 대하여 다음과 같은 물성을 측정하여 하기 표 1에 나타냈다.The physical properties of the polyester fibers prepared according to the Examples and Comparative Examples were measured and shown in Table 1 below.

원사의 강력과 절단신율은 ASTM D885를 기준으로 시료길이 250mm, 80TPM 가연, 300mm/min의 인장속도로 측정하여 결과를 얻었다. 이렇게 측정한 원사의 강력 을 원사 9,000m의 무게로 나눈 값을 원사의 강도로 결정하였다.Yarn strength and elongation at break were measured at a sample length of 250 mm, 80 TPM flammability, and 300 mm / min tensile rate, based on ASTM D885. The strength of the measured yarn divided by the weight of the yarn 9,000 m was determined as the strength of the yarn.

수축율(%)은 테스트라이트에서 시료에 0.01g/d의 하중을 가하면서 190℃에서 15분 방치한 후의 길이 차이를 측정하였다.   The shrinkage percentage (%) measured the difference in length after standing at 190 ° C. for 15 minutes while applying 0.01 g / d load to the sample in the test light.

열응력은 Kanebo Thermal Stress Tester(Type KE-3LS)로 0.05g/d의 초하중을 가하여 상하 갈고리에 매듭을 묶은 Loop 모양으로 고정시켜 150℃/min의 승온속도로 상온에서 300℃까지 가열하여 열응력 거동을 연속적으로 측정하였다.  Thermal stress is applied by Kanebo Thermal Stress Tester (Type KE-3LS) to apply a superload of 0.05g / d and fix it in a loop shape with knots attached to the upper and lower hooks, and then heat it from room temperature to 300 ℃ at a heating rate of 150 ℃ / min. The stress behavior was measured continuously.

[표 1]TABLE 1

구 분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2 총연신비Total draw ratio 5.75.7 6.06.0 6.26.2 5.75.7 6.06.0 GR 4/5 온도(℃)GR 4/5 temperature (℃) 240/240240/240 250/250250/250 250/250250/250 240/190240/190 250/190250/190 이완율(%)% Relaxation 1010 1212 1212 88 1111 배분비Allocation ratio 7:37: 3 9:19: 1 9:19: 1 10:010: 0 10:010: 0 강도(g/d)Strength (g / d) 7.537.53 7.827.82 8.038.03 7.877.87 8.078.07 절신(%)Body cut (%) 22.522.5 24.324.3 24.124.1 24.624.6 25.425.4 수축율(%)Shrinkage (%) 1.41.4 1.71.7 2.02.0 3.03.0 3.23.2 열응력 피크 온도(℃)Thermal Stress Peak Temperature (℃) 155/262155/262 158/260158/260 152/260152/260 163/260163/260 161/262161/262 열응력(×10-2g/d)Thermal Stress (× 10 -2 g / d) 8.1/16.88.1 / 16.8 8.3/16.58.3 / 16.5 8.9/17.28.9 / 17.2 5.2/18.45.2 / 18.4 5.3/18.75.3 / 18.7

표1에서 사용된 연신비, 이완율 및 배분비는 각각 다음과 같이 정의된다.The draw ratio, relaxation rate and distribution ratio used in Table 1 are defined as follows, respectively.

1)연신비 = GR4의 회전속도 / GR1의 회전속도1) elongation ratio = rotation speed of GR4 / rotation speed of GR1

2)이완율(%) = 1차 이완율(%) + 2차 이완율(%)2) Relaxation rate (%) = primary relaxation rate (%) + secondary relaxation rate (%)

3)1차 이완율(%) = (GR4 회전속도 - GR5 회전속도) / GR4 회전속도 × 1003) 1st relaxation rate (%) = (GR4 rotation speed-GR5 rotation speed) / GR4 rotation speed × 100

4)2차 이완율(%) = (GR5 회전속도 - GR6 회전속도) / GR5 회전속도 × 1004) 2nd Relaxation Rate (%) = (GR5 Speed-GR6 Speed) / GR5 Speed × 100

5)배분비 = 1차 이완율 : 2차 이완율5) Allocation Ratio = 1st Relaxation Rate: 2nd Relaxation Rate

표 1을 참조하면, 본 발명에 따라, 120 ~ 180℃ 및 220 ~ 280℃의 온도 영역 에서 각각 6.0×10-2~10.0×10-2g/d및 14.0×10-2~20.0×10-2g/d의 열응력 피크 수치를 나타내는 폴리에스테르 섬유(실시예 1~3)는 우수한 강도와 저수축 특성을 동시에 가지고 있는 것을 알 수 있다. 한편, 비교예 1~2의 섬유는 강도는 우수하지만 저수축 특성이 좋지 않아 타포린, 간판지, 천막 등의 산업용 제품 제조를 위한 후공정에서 수축에 의한 형태 안정성이 저하될 것을 예측할 수 있다. Referring to Table 1, in accordance with the present invention, 6.0 × 10 −2 to 10.0 × 10 −2 g / d and 14.0 × 10 −2 to 20.0 × 10 , respectively, in the temperature range of 120 to 180 ° C. and 220 to 280 ° C. It can be seen that the polyester fibers (Examples 1 to 3) exhibiting a thermal stress peak value of 2 g / d simultaneously have excellent strength and low shrinkage characteristics. On the other hand, the fibers of Comparative Examples 1 and 2 are excellent in strength but low in shrinkage characteristics, it can be expected that the morphological stability due to shrinkage in the post-process for the production of industrial products such as tarpaulin, signboards, tents, and the like.

이상에서 본 발명은 기재된 구체적인 실시예 및 비교예에 대해서만 상세히 기술되었지만, 본 발명의 범위 내에서 다양한 변형 및 수정이 가능함은 당 업계에서 통상의 기술을 가진 자에게는 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다. Although the present invention has been described in detail only with respect to the specific examples and comparative examples described, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope of the present invention, and such variations and modifications are attached thereto. Naturally, it belongs to the claim.

도 1은 본 발명의 실시예 1 및 비교예1에 따른 고강도 저수축 폴리에스테르 섬유의 열응력 거동을 도시한 그래프이다. 1 is a graph showing the thermal stress behavior of high-strength low-shrink polyester fibers according to Example 1 and Comparative Example 1 of the present invention.

Claims (4)

용융 폴리에스테르 폴리머를 480m/min의 속도로 방사하고, 상기 방사한 폴리에스테르 섬유를 제1롤러 내지 제4롤러를 통한 연신단계 중 제4롤러의 속도를 2800m/min으로 하여 5.7 내지 6.2의 총연신비로 연신하여 제조한 폴리에스테르 섬유로서,Spinning the molten polyester polymer at a speed of 480m / min, and the drawn polyester fiber at a total draw ratio of 5.7 to 6.2 with a speed of the fourth roller at 2800m / min during the stretching step through the first to fourth roller As a polyester fiber prepared by stretching, 상기 섬유는 강도 7.3 ~ 8.5 g/d, 절단신율 18 ~ 28%, 수축율 2.5% 이하이고, 120 ~ 180℃ 및 220 ~ 280℃의 온도 영역에서 각각 6.0×10-2~10.0×10-2g/d 및 14.0×10-2~20.0×10-2g/d의 열응력 피크 수치를 나타내며, 그리고 The fiber has a strength of 7.3 to 8.5 g / d, an elongation at break of 18 to 28%, a shrinkage of 2.5% or less, and 6.0 × 10 −2 to 10.0 × 10 −2 g in the temperature range of 120 to 180 ° C. and 220 to 280 ° C., respectively. thermal stress peak values of / d and 14.0 × 10 −2 to 20.0 × 10 −2 g / d, and (220 ~ 280℃의 온도 영역에서의 열응력 피크 수치)/(120 ~ 180℃의 온도 영역에서의 열응력 피크 수치) 가 1.5 내지 3.5인 것을 특징으로 하는 고강도 저수축 폴리에스테르 섬유.(High thermal stress peak value in the temperature range of 220-280 degreeC) / (The thermal stress peak value in the temperature range of 120-180 degreeC) is 1.5-3.5, The high strength low shrinkage polyester fiber characterized by the above-mentioned. 삭제delete 삭제delete 삭제delete
KR1020070140594A 2007-12-28 2007-12-28 High-strength Polyester fiber for industry and its manufacturing method KR100949598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070140594A KR100949598B1 (en) 2007-12-28 2007-12-28 High-strength Polyester fiber for industry and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070140594A KR100949598B1 (en) 2007-12-28 2007-12-28 High-strength Polyester fiber for industry and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20090072470A KR20090072470A (en) 2009-07-02
KR100949598B1 true KR100949598B1 (en) 2010-03-25

Family

ID=41329687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070140594A KR100949598B1 (en) 2007-12-28 2007-12-28 High-strength Polyester fiber for industry and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100949598B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076023A (en) * 2014-12-19 2016-06-30 주식회사 효성 A Technical polyester fiber with higher tenacity and lower shirinkage and its manufacturing process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225582B1 (en) * 2010-12-28 2013-01-25 주식회사 효성 Process for preparing high modulus polyester multifilament
KR102278143B1 (en) * 2016-01-29 2021-07-19 효성첨단소재 주식회사 Process for producing the high strength low shrinkage polyethyleneterephthalate fiber with improved thermal stability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008998A (en) * 2002-07-20 2004-01-31 주식회사 효성 A high-strength and low-shrinkage polyester yarn and process for its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008998A (en) * 2002-07-20 2004-01-31 주식회사 효성 A high-strength and low-shrinkage polyester yarn and process for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076023A (en) * 2014-12-19 2016-06-30 주식회사 효성 A Technical polyester fiber with higher tenacity and lower shirinkage and its manufacturing process
KR102204383B1 (en) 2014-12-19 2021-01-18 효성첨단소재 주식회사 A Technical polyester fiber with higher tenacity and lower shirinkage and its manufacturing process

Also Published As

Publication number Publication date
KR20090072470A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
KR102213562B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
CN106435794A (en) Preparation technology for whitening low-shrinking medium-fine nylon yarns
KR101440570B1 (en) Polyethylene fiber and manufacturing method thereof
KR100949598B1 (en) High-strength Polyester fiber for industry and its manufacturing method
KR100448008B1 (en) A high-strength and low-shrinkage polyester yarn and process for its preparation
US5106685A (en) Process for manufacturing a smooth polyester yarn and yarn so obtained
KR100474798B1 (en) A process for producing polyester multifilament yarns having excellent adhesion to rubbers or polyvinyl chloride
KR101940013B1 (en) The method of manufacturing hollow false twisted yarns
KR20090072062A (en) A technical polyester fiber with high tenacity and low shrinkage and its manufacturing process
KR101133896B1 (en) Polyester dividing yarn having an improved dividing property and a manufacturing method thereof
KR101047046B1 (en) A manufacturing method of polyester yarn
KR100415183B1 (en) A process for producing polyester fibers useful for reinforcing rubbers or polyvinyl chloride
KR100736888B1 (en) Polyester yarn, method for preparing the same, polyester fabric comprising the same
KR101772586B1 (en) A polypropylene fiber with high tenacity and low shrinkage and its manufacturing process
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
KR20080061157A (en) A technical polyester fiber with high tenacity and low shrinkage and its manufacturing process
KR100621142B1 (en) Method for preparing of polyester yarn having high smoothness
KR101564470B1 (en) Method for Preparing Polybuthylene terephthalate fiber and Polybuthylene terephthalate fiber prepared by the same
KR100726551B1 (en) Conjugated fiber of beam with high stretchable and warping properties, and knitted fabrics comprising same
JPS59116415A (en) Polyester fiber and its manufacture
KR100509863B1 (en) Manufacturing method of polyester interlaced yarn composed of high and low shrinkage filaments
KR100505503B1 (en) Manufacturing method of gastric nylon Taesodo company by Piowai method
JP2010520384A (en) Polyester yarn and woven fabric containing the same
KR100616809B1 (en) High tenacity polyethylene-2, 6-naphthalate fibers for the production thereof of fibers
KR102204383B1 (en) A Technical polyester fiber with higher tenacity and lower shirinkage and its manufacturing process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee