KR100940227B1 - Phase shift full bridge converter reduced current stress - Google Patents

Phase shift full bridge converter reduced current stress Download PDF

Info

Publication number
KR100940227B1
KR100940227B1 KR1020080064892A KR20080064892A KR100940227B1 KR 100940227 B1 KR100940227 B1 KR 100940227B1 KR 1020080064892 A KR1020080064892 A KR 1020080064892A KR 20080064892 A KR20080064892 A KR 20080064892A KR 100940227 B1 KR100940227 B1 KR 100940227B1
Authority
KR
South Korea
Prior art keywords
full bridge
bridge converter
phase shift
current stress
transformer
Prior art date
Application number
KR1020080064892A
Other languages
Korean (ko)
Other versions
KR20100004620A (en
Inventor
허태원
문건우
이우진
박기범
김돈식
김정은
김종필
봉상철
김학용
김동중
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020080064892A priority Critical patent/KR100940227B1/en
Priority to US12/234,245 priority patent/US8098500B2/en
Publication of KR20100004620A publication Critical patent/KR20100004620A/en
Application granted granted Critical
Publication of KR100940227B1 publication Critical patent/KR100940227B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53878Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터는, 입력 전압을 스위칭 시키는 스위칭부; 제 1 커패시터가 직렬 연결되고 1차측과 2차측을 갖는 트랜스포머; 상기 트랜스포머의 2차측과 병렬로 연결된 제 1 및 제 2 스위치와 제 2 커패시터를 갖는 보조 회로부; 상기 보조 회로부에 연결되고 출력 인덕터가 제거된 정류부;를 포함할 수 있다.

Figure R1020080064892

전류 스트레스, 출력 인덕터, 영전압 스위칭, 누설 인덕터, 위상 천이 풀 브릿지 컨버터

Phase shift full bridge converter to improve the current stress according to the present invention, the switching unit for switching the input voltage; A transformer having a first capacitor connected in series and having a primary side and a secondary side; An auxiliary circuit unit having first and second switches and a second capacitor connected in parallel with the secondary side of the transformer; And a rectifier connected to the auxiliary circuit and removed from the output inductor.

Figure R1020080064892

Current Stress, Output Inductor, Zero Voltage Switching, Leakage Inductor, Phase Shifted Full Bridge Converter

Description

전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터{Phase shift full bridge converter reduced current stress}Phase shift full bridge converter reduced current stress

본 발명은 위상 천이 풀 브릿지 컨버터에 관한 것으로, 출력 인덕터를 제거하고 트랜스포머의 2차측에 보조 회로부를 추가하여 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase shift full bridge converter, and to a phase shift full bridge converter in which current stress is improved by removing an output inductor and adding an auxiliary circuit to the secondary side of the transformer.

최근의 전원 공급 장치는 일반적으로 상용 입력 라인(85Vac~265Vac)으로부터 역률 개선 회로를 거쳐서 DC/DC 전원단으로 전력이 공급되며, DC/DC 전원단에서 부하에서 원하는 전력으로 변환하게 된다.Recent power supplies are typically powered from a commercial input line (85Vac to 265Vac) via a power factor correction circuit to a DC / DC power stage, where the DC / DC power stage converts the load to the desired power.

역률 개선 회로를 사용하는 이유는 최근 국제적으로 고조파 규제가 강화됨에 따라 그 규제를 만족시키기 위함이다. 역률 개선 회로는 주로 부스트 컨버터를 사용하게 되는데, 부스트 컨버터의 특성상 출력이 항상 입력보다 높아지게 된다. 따라서, 역률 개선 회로의 출력, 즉 DC/DC 전원단의 입력은 385Vdc~415Vdc 이 되며 DC/DC 전원단의 입장에서는 역률 개선 회로의 사용시 필수적으로 고 입력 전압 사양이 요구됨을 알 수 있다.The reason for using the power factor correction circuit is to satisfy the regulation with the recent tightening of harmonic regulation internationally. Power factor correction circuits mainly use boost converters, and the output of the boost converter is always higher than the input. Therefore, the output of the power factor correction circuit, that is, the input of the DC / DC power stage is 385Vdc ~ 415Vdc, and from the standpoint of the DC / DC power stage, the high input voltage specification is required when using the power factor correction circuit.

DC/DC 전원단의 출력으로는 저 전압, 대 전류의 출력 사양이 요구되고 있는 것이 최근의 추세이다. 통신기기 및 프로세서의 소비전력을 줄이기 위한 방법으로 저전압에서 구동하는 프로세서가 많아지고 있다. 또한, 사용자의 편의를 위하여 각 프로세서들의 기능들이 많아지게 되고, 그에 따라 각 프로세서에서 소비되는 전력이 커지게 되었다. 따라서, 대부분의 DC/DC 전원 장치의 경우 저전압, 대전류의 출력 사양을 갖게 되었다.In recent years, low-voltage, high-current output specifications are required as outputs of DC / DC power stages. As a method for reducing power consumption of communication devices and processors, processors that operate at low voltages are increasing. In addition, for the convenience of the user, the functions of each processor are increased, and accordingly, power consumed by each processor is increased. As a result, most DC / DC power supplies have low voltage and high current output specifications.

이와 같이, 최근의 DC/DC 전원단은 고 입력 전압, 저 출력 전압, 대 출력 전류의 사양으로 1차측에서는 전압 스트레스, 2차측에서는 전류 스트레스가 주된 고려사항이 되었다. 또한, 전원 장치의 고전력 밀도를 위해서는 단순한 구조 및 작은 부피를 가져야 한다. 이를 이루기 위해서는 일반적으로 스위칭 주파수를 높게 가져가서 출력 필터와 입력 필터를 작게 만든다. 하지만, 스위칭 주파수가 높아질수록 스위칭 시 발생하는 손실로 인해 전체적인 효율이 감소하게 되므로 스위칭 손실을 줄일 수 있는 영전압 스위칭이 필수사항이 된다. 또한 출력부의 정류단을 다이오드 대신 동기 정류기를 사용하여 도통 손실을 줄여야 한다. 이와 같은 고려사항을 만족하기 위해서 주로 사용되는 것이 위상 천이 풀 브릿지 컨버터이다.As such, recent DC / DC power stages have high input voltage, low output voltage, and large output current, so that the main stresses are voltage stress on the primary side and current stress on the secondary side. In addition, the high power density of the power supply must have a simple structure and small volume. This is typically achieved by taking the switching frequency higher and making the output and input filters smaller. However, as the switching frequency increases, the overall efficiency decreases due to the loss in switching, so zero voltage switching to reduce the switching loss becomes a necessity. The rectifier stage of the output should also use a synchronous rectifier instead of a diode to reduce the conduction losses. In order to satisfy these considerations, a phase shift full bridge converter is mainly used.

기존의 위상 천이 풀 브릿지 컨버터는 듀티가 작을 시 환류 전류가 존재하게 되고, 지상 레그 스위치의 영전압 스위칭 영역이 좁다. 또한, 대 전류인 부하 전류가 흐르는 곳에 출력 인덕터가 존재하게 되어서 큰 부피를 차지함과 동시에 자성 소자에서의 코어 손실 및 도통 손실에 의한 전력 손실이 존재한다. 따라서, 현재와 같은 고 입력 전압, 저 출력 전압, 대 출력 전류와 같은 전원 장치의 사양에서는 위상 천이 풀 브릿지 컨버터가 적합하지만 대 출력 전류 사양에 의한 큰 부피의 출력 인덕터를 사용해야 한다는 문제점이 있었다.Conventional phase-shift full-bridge converters have a reflux current when the duty is small, and the zero-voltage switching area of the ground leg switch is narrow. In addition, the output inductor is present where a large current load current flows, occupies a large volume, and at the same time, there is power loss due to core loss and conduction loss in the magnetic element. Therefore, in the current specification of power supply devices such as high input voltage, low output voltage, and large output current, a phase shift full bridge converter is suitable, but there is a problem in that a large volume output inductor according to the large output current specification must be used.

상기의 문제점을 해결하기 위하여 출력 인덕터가 존재하지 않는 위상 천이 풀 브릿지 컨버터가 제시 되었으나, 이와 같은 경우 출력 인덕터 역할을 트랜스포머의 누설 인덕터가 대신하게 됨으로써 2차측에 흐르는 전류는 불연속 전도 모드(discontinuous conduction mode)로 동작하게 되어 대 전류의 부하 전류를 공급하기 위해서는 2차측의 동기 정류기의 전류 스트레스가 커지는 문제점이 있었다.In order to solve the above problem, a phase shift full bridge converter without an output inductor has been proposed, but in this case, the leakage inductor of the transformer replaces the output inductor so that the current flowing in the secondary side is discontinuous conduction mode. In order to supply a large current load current, the current stress of the synchronous rectifier on the secondary side increases.

따라서, 상기의 문제점을 해결하기 위하여 본 발명은 출력 인덕터를 제거하고 트랜스포머의 2차측에 보조 회로부를 추가하여 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a phase shift full bridge converter in which the current stress is improved by removing the output inductor and adding an auxiliary circuit to the secondary side of the transformer.

본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터는, 입력 전압을 스위칭 시키는 스위칭부; 제 1 커패시터가 직렬 연결되고 1차측과 2차측 을 갖는 트랜스포머; 상기 트랜스포머의 2차측과 병렬로 연결된 제 1 및 제 2 스위치와 제 2 커패시터를 갖는 보조 회로부; 상기 보조 회로부에 연결되고 출력 인덕터가 제거된 정류부;를 포함할 수 있다. Phase shift full bridge converter to improve the current stress according to the present invention, the switching unit for switching the input voltage; A transformer having a first capacitor connected in series and having a primary side and a secondary side; An auxiliary circuit unit having first and second switches and a second capacitor connected in parallel with the secondary side of the transformer; And a rectifier connected to the auxiliary circuit and removed from the output inductor.

본 발명에 있어서, 상기 트랜스포머는 누설 인덕터를 갖고, 상기 누설 인덕터와 상기 제 1 커패시터의 공진을 이용하여 전류 스트레스를 저감시킬 수 있다.In the present invention, the transformer has a leakage inductor, it is possible to reduce the current stress by using the resonance of the leakage inductor and the first capacitor.

본 발명에 있어서, 상기 보조 회로부는, 제 1 스위치; 상기 제 1 스위치에 연결된 제 2 커패시터; 상기 제 2 커패시터에 연결된 제 2 스위치;를 포함할 수 있다. In the present invention, the auxiliary circuit unit, the first switch; A second capacitor connected to the first switch; And a second switch connected to the second capacitor.

본 발명에 있어서, 상기 보조 회로부는 동기 정류기의 환류 구간이 끝남과 동시에 동작을 하여 상기 트랜스포머의 2차측에 흐르는 전류를 증가시킬 수 있다.In the present invention, the auxiliary circuit unit may operate simultaneously with the end of the reflux period of the synchronous rectifier to increase the current flowing to the secondary side of the transformer.

본 발명에 있어서, 상기 정류부는 두 개의 동기 정류기와 하나의 출력 커패시터로 이루어지고, 출력 인덕터가 제거된 것을 특징으로 한다.In the present invention, the rectifier is composed of two synchronous rectifier and one output capacitor, characterized in that the output inductor is removed.

본 발명에 따르면, 출력 인덕터를 제거하고도 출력 인덕터가 존재할 때와 유사하게 2차측의 전류 스트레스를 저감시키는 위상 천이 풀 브릿지 컨버터를 제공함으로써, 대 출력 전류가 도통하는 경로가 보다 단순한 구조를 갖게 되며 부피를 차지하던 자성소자를 사용하지 않게 됨으로써 이로 인한 코어 손실 및 도통 손실을 제거할 수 있는 효과가 있다.According to the present invention, by providing a phase shifted full bridge converter that eliminates the output inductor and reduces the current stress on the secondary side similarly to the presence of the output inductor, the path through which the large output current conducts has a simpler structure. By not using the magnetic device that occupy the volume, there is an effect that can eliminate the core loss and the conduction loss.

이하, 첨부된 도면에 도시된 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 그러나 본 발명은 이 밖에도 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시예로 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다.Hereinafter, with reference to the embodiments of the present invention shown in the accompanying drawings will be described in detail the present invention. However, the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity, and the elements denoted by the same reference numerals in the drawings are the same elements.

도 1은 본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터의 회로도이다.1 is a circuit diagram of a phase shift full bridge converter with improved current stress according to the present invention.

도 1을 참고하면, 본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터는 스위칭부(11), 트랜스포머(12), 보조 회로부(13), 정류부(14)를 포함한다.Referring to FIG. 1, a phase shift full bridge converter having improved current stress according to the present invention includes a switching unit 11, a transformer 12, an auxiliary circuit unit 13, and a rectifying unit 14.

스위칭부(11)는 풀 브릿지 형태의 4개의 스위치를 통하여 입력 전압을 스위칭 시킨다.The switching unit 11 switches the input voltage through four switches of a full bridge type.

트랜스포머(12)는 제 1 커패시터(Cr)가 직렬 연결되고 1차측과 2차측을 갖는다. 또한, 트랜스포머(12)는 누설 인덕터(Llkg)를 갖고 상기 누설 인덕터(Llkg)와 제 1 커패시터(Cr)의 공진을 이용하여 전류 스트레스를 저감시킨다.The transformer 12 has a first capacitor Cr connected in series and has a primary side and a secondary side. In addition, the transformer 12 has a leakage inductor Llkg and reduces current stress by using resonance of the leakage inductor Llkg and the first capacitor Cr.

보조 회로부(13)는 트랜스포머(12)의 2차측과 병렬로 연결된 제 1 스위치(Ma1), 제 2 스위치(Ma2), 제 2 커패시터(Ca)를 포함할 수 있다.The auxiliary circuit unit 13 may include a first switch Ma1, a second switch Ma2, and a second capacitor Ca connected in parallel with the secondary side of the transformer 12.

또한, 상기 제 2 커패시터는(Ca)는 제 1 스위치(Ma1)와 제 2 스위치(Ma2) 사이에 연결되어 있다.In addition, the second capacitor Ca is connected between the first switch Ma1 and the second switch Ma2.

정류부(14)는 보조 회로부(13)에 연결되고 출력 인덕터가 제거된 것을 특징으로 한다.The rectifier 14 is connected to the auxiliary circuit 13, characterized in that the output inductor is removed.

정류부(14)는 두 개의 동기 정류기와 하나의 출력 커패시터로 이루어져 있으며, 기존의 위상 천이 풀 브리지 컨버터에서 큰 부피를 차지하는 출력 인덕터를 제거한 것을 특징으로 한다.The rectifier 14 includes two synchronous rectifiers and one output capacitor, and removes an output inductor occupying a large volume from a conventional phase shift full bridge converter.

본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터는 출력 인덕터가 존재하지 않을 때에도 2차측의 전류 스트레스를 출력 인덕터가 존재할 때와 유사하게 만들어 줄 수 있다. The phase shift full bridge converter with improved current stress according to the present invention can make the current stress on the secondary side similar to that with the output inductor even when no output inductor is present.

보조 회로부(13)는 동기 정류기의 환류 구간이 끝남과 동시에 동작을 하여 2차측에 흐르는 전류를 증가시킨다. 출력 인덕터가 존재 하지 않으므로 출력 전압은 출력 커패시터로 들어가는 전류에 의해 결정되고, 2차측의 전류가 사각의 형태를 가질 경우 전류 스트레스는 출력 인덕터가 존재하는 경우와 거의 유사하게 된다.The auxiliary circuit unit 13 operates simultaneously with the completion of the reflux section of the synchronous rectifier to increase the current flowing to the secondary side. Since there is no output inductor, the output voltage is determined by the current going into the output capacitor. If the secondary current has a square shape, the current stress is almost similar to that of the output inductor.

도 2는 출력 인덕터가 없는 위상 천이 풀 브릿지 컨버터의 1차측 전류 파형을 나타낸 도면이고, 도 3은 출력 인덕터가 제거되고 보조 회로부를 포함하는 본 발명에 따른 위상 천이 풀 브릿지 컨버터의 1차측 전류 파형을 나타낸 도면이다.2 is a diagram illustrating a primary side current waveform of a phase shifted full bridge converter without an output inductor, and FIG. 3 is a diagram of a primary side current waveform of a phase shifted full bridge converter according to the present invention, in which an output inductor is removed and an auxiliary circuit is included. The figure shown.

도 2를 참고하면, 출력 인덕터가 없는 경우 Sa가 부하 전류에 해당하는 값이 된다. 이 경우 전류가 급격하게 증가하여 전류 스트레스가 증가된 것임을 알 수 있다. 출력 인덕터가 제거되고 보조 회로부를 포함하는 본 발명에 따른 위상 천이 풀 브릿지 컨버터는 도 3과 같이 전류 스트레스가 급격히 증가하지 않고 일정하게 증가되어 전류 스트레스를 출력 인덕터가 존재할 경우와 유사하게 만들 수 있음을 보 여준다.Referring to FIG. 2, when there is no output inductor, Sa is a value corresponding to a load current. In this case, it can be seen that the current stress increases due to the rapid increase in the current. The phase shifted full bridge converter according to the present invention, in which the output inductor is removed and the auxiliary circuit unit is removed, can be increased constantly without increasing the current stress as shown in FIG. To show.

도 4는 출력 인덕터의 유, 무에 따른 기존의 위상 천이 풀 브릿지 컨버터, 본 발명에 따른 위상 천이 풀 브릿지 컨버터에 대한 2차측 전류 스트레스를 비교한 도면이다. 4 is a diagram comparing secondary current stresses of a conventional phase shift full bridge converter with and without an output inductor and a phase shift full bridge converter according to the present invention.

도 4를 참고하면, 본 발명에 따른 위상 천이 풀 브릿지 컨버터(42)는 보조 회로부의 동작에 의해 전류 스트레스가 출력 인덕터가 없는 기존의 위상 천이 풀 브릿지 컨버터(41)에 비하여 작음을 확인할 수 있다. 또한, 본 발명에 따른 위상 천이 풀 브릿지 컨버터(42)의 전류 스트레스는 출력 인덕터가 있는 기존의 위상 천이 풀 브릿지 컨버터(43)의 전류 스트레스와 거의 같음을 확인할 수 있다.Referring to FIG. 4, it can be seen that the phase shift full bridge converter 42 according to the present invention has a smaller current stress than the conventional phase shift full bridge converter 41 having no output inductor due to the operation of the auxiliary circuit unit. In addition, it can be confirmed that the current stress of the phase shift full bridge converter 42 according to the present invention is almost the same as the current stress of the conventional phase shift full bridge converter 43 with the output inductor.

본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.The present invention is not limited by the above-described embodiment and the accompanying drawings, but is intended to be limited by the appended claims, and various forms of substitution, modification, and within the scope not departing from the technical spirit of the present invention described in the claims. It will be apparent to those skilled in the art that changes are possible.

도 1은 본 발명에 따른 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터의 회로도이다.1 is a circuit diagram of a phase shift full bridge converter with improved current stress according to the present invention.

도 2는 출력 인덕터가 없는 기존의 위상 천이 풀 브릿지 컨버터의 1차측 전류 파형을 나타낸 도면이다.2 is a diagram illustrating a primary side current waveform of a conventional phase shift full bridge converter without an output inductor.

도 3은 출력 인덕터가 제거되고 보조 회로부를 포함하는 본 발명에 따른 위상 천이 풀 브릿지 컨버터의 1차측 전류 파형을 나타낸 도면이다.3 is a diagram illustrating a primary side current waveform of a phase shift full bridge converter according to the present invention in which an output inductor is removed and an auxiliary circuit unit is included.

도 4는 출력 인덕터의 유, 무에 따른 기존의 위상 천이 풀 브릿지 컨버터, 본 발명에 따른 위상 천이 풀 브릿지 컨버터에 대한 2차측 전류 스트레스를 비교한 도면이다. 4 is a diagram comparing secondary current stresses of a conventional phase shift full bridge converter with and without an output inductor and a phase shift full bridge converter according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

11: 스위칭부 12: 트랜스포머11: switching unit 12: transformer

13: 보조 회로부 14: 정류부13: auxiliary circuit 14: rectifier

Cr: 제 1 커패시터 Ca: 제 2 커패시터Cr: first capacitor Ca: second capacitor

Claims (5)

입력 전압을 스위칭 시키는 스위칭부;A switching unit for switching an input voltage; 제 1 커패시터가 직렬 연결되고 1차측과 2차측을 갖는 트랜스포머;A transformer having a first capacitor connected in series and having a primary side and a secondary side; 상기 트랜스포머의 2차측과 병렬로 연결된 제 1 및 제 2 스위치와 제 2 커패시터를 갖는 보조 회로부;An auxiliary circuit unit having first and second switches and a second capacitor connected in parallel with the secondary side of the transformer; 상기 보조 회로부에 연결되고 출력 인덕터가 제거된 정류부;를 포함하는 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터.And a rectifier coupled to the auxiliary circuit and removed from the output inductor. 제 1 항에 있어서,The method of claim 1, 상기 트랜스포머는 누설 인덕터를 갖고, 상기 누설 인덕터와 상기 제 1 커패시터의 공진을 이용하여 전류 스트레스를 저감시키는 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터.The transformer has a leakage inductor, and the phase shift full bridge converter to improve the current stress to reduce the current stress by using the resonance of the leakage inductor and the first capacitor. 제 1 항에 있어서,The method of claim 1, 상기 보조 회로부는,The auxiliary circuit unit, 제 1 스위치;A first switch; 상기 제 1 스위치에 연결된 제 2 커패시터;A second capacitor connected to the first switch; 상기 제 2 커패시터에 연결된 제 2 스위치;를 포함하는 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터.And a second switch connected to the second capacitor. 2. 제 1 항에 있어서,The method of claim 1, 상기 보조 회로부는 동기 정류기의 환류 구간이 끝남과 동시에 동작을 하여 상기 트랜스포머의 2차측에 흐르는 전류를 증가시키는 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터.And the auxiliary circuit part operates simultaneously with the completion of the reflux period of the synchronous rectifier, thereby improving current stress for increasing current flowing in the secondary side of the transformer. 제 1 항에 있어서,The method of claim 1, 상기 정류부는 두 개의 동기 정류기와 하나의 출력 커패시터로 이루어지고, 출력 인덕터가 제거된 것을 특징으로 하는 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터.The rectifier is composed of two synchronous rectifier and one output capacitor, the phase shift full bridge converter with improved current stress, characterized in that the output inductor is removed.
KR1020080064892A 2008-07-04 2008-07-04 Phase shift full bridge converter reduced current stress KR100940227B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080064892A KR100940227B1 (en) 2008-07-04 2008-07-04 Phase shift full bridge converter reduced current stress
US12/234,245 US8098500B2 (en) 2008-07-04 2008-09-19 Phase shift full bridge converter with reduced current stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080064892A KR100940227B1 (en) 2008-07-04 2008-07-04 Phase shift full bridge converter reduced current stress

Publications (2)

Publication Number Publication Date
KR20100004620A KR20100004620A (en) 2010-01-13
KR100940227B1 true KR100940227B1 (en) 2010-02-04

Family

ID=41464258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080064892A KR100940227B1 (en) 2008-07-04 2008-07-04 Phase shift full bridge converter reduced current stress

Country Status (2)

Country Link
US (1) US8098500B2 (en)
KR (1) KR100940227B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900513B1 (en) * 2006-04-26 2010-05-21 Thales Sa PERFECTED ISOLATED POWER TRANSFER DEVICE
US8295068B2 (en) * 2010-02-02 2012-10-23 National Taipei University Of Technology Shift full bridge power converting system and control method thereof
CN101936555B (en) * 2010-09-18 2011-12-07 美的集团有限公司 Detection device and detection method for phase-shifted full-bridge hard switch of high-power induction cooker
KR20130073611A (en) * 2011-12-23 2013-07-03 삼성전기주식회사 Power supplying apparatus
US9030844B2 (en) * 2012-12-14 2015-05-12 Analog Devices, Inc. High bandwidth, high efficiency DC-DC multilevel converter topology
KR101444553B1 (en) 2012-12-21 2014-09-24 삼성전기주식회사 Power supply
KR101397728B1 (en) * 2012-12-21 2014-05-20 한국과학기술원 Power supplying apparatus
US9837920B2 (en) 2013-09-27 2017-12-05 Bel Power Solutions, Inc. Commutation current steering method in a zero volt switching power converter using a synchronous rectifier
WO2015138880A1 (en) * 2014-03-14 2015-09-17 Avogy, Inc. Adaptive synchronous switching in a resonant converter
US20150263639A1 (en) 2014-03-14 2015-09-17 Avogy, Inc. Adaptive synchronous switching in a resonant converter
CN104333240A (en) * 2014-11-21 2015-02-04 小米科技有限责任公司 Resonant rectifying device, resonant rectifying control method and device
CN106033940A (en) * 2015-03-11 2016-10-19 天津圣纳科技有限公司 Full-bridge phase-shifted soft switching inverter power supply
CN106067738B (en) * 2015-04-23 2020-04-14 松下知识产权经营株式会社 Power conversion device
DE102016220354A1 (en) * 2016-10-18 2018-04-19 Robert Bosch Gmbh DC-DC converter and method for operating a DC-DC converter
CN109698627B (en) * 2018-12-24 2020-11-06 东北大学 Full-bridge DC/DC converter based on switched capacitor and modulation strategy thereof
US11894776B2 (en) * 2021-10-28 2024-02-06 Utah State University Constant current to constant voltage dual active bridge LCL-transformer resonant DC-DC converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189622A (en) 2001-12-19 2003-07-04 Shindengen Electric Mfg Co Ltd Switching power supply
KR20040085279A (en) * 2003-03-31 2004-10-08 키테크놀러지(주) High Efficiency Power Conversion Circuit without Output Inductor
JP2005295731A (en) 2004-04-02 2005-10-20 Oita Technology Licensing Organization Ltd Power supply unit
KR20080005687A (en) * 2006-07-10 2008-01-15 현대자동차주식회사 A dc/dc converter circuit for a vehicle's digital amplifier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095453A (en) 2000-03-30 2001-11-07 윤문수 ZVS-ZCS Full Bridge DC-DC Converter
US6392902B1 (en) 2000-08-31 2002-05-21 Delta Electronics, Inc. Soft-switched full-bridge converter
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
JP4591304B2 (en) * 2005-10-17 2010-12-01 株式会社豊田自動織機 Bidirectional DC / AC inverter
DE102006025975B4 (en) * 2006-06-02 2008-08-28 Siemens Ag Österreich Inverter circuit and method for operating the inverter circuit
TWI326963B (en) * 2006-12-14 2010-07-01 Tungnan Inst Of Technology Resonant converter and synchronous rectification driving circuit thereof
US7796406B2 (en) * 2007-07-31 2010-09-14 Lumenis Ltd. Apparatus and method for high efficiency isolated power converter
JP4378400B2 (en) * 2007-08-28 2009-12-02 日立コンピュータ機器株式会社 Bidirectional DC-DC converter and control method for bidirectional DC-DC converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189622A (en) 2001-12-19 2003-07-04 Shindengen Electric Mfg Co Ltd Switching power supply
KR20040085279A (en) * 2003-03-31 2004-10-08 키테크놀러지(주) High Efficiency Power Conversion Circuit without Output Inductor
JP2005295731A (en) 2004-04-02 2005-10-20 Oita Technology Licensing Organization Ltd Power supply unit
KR20080005687A (en) * 2006-07-10 2008-01-15 현대자동차주식회사 A dc/dc converter circuit for a vehicle's digital amplifier

Also Published As

Publication number Publication date
US20100002471A1 (en) 2010-01-07
KR20100004620A (en) 2010-01-13
US8098500B2 (en) 2012-01-17

Similar Documents

Publication Publication Date Title
KR100940227B1 (en) Phase shift full bridge converter reduced current stress
JP5065188B2 (en) Series resonant converter
JP5903427B2 (en) Resonant converter
CN101309049B (en) Dc-dc converter
JP5591666B2 (en) DC-DC converter
TWI501529B (en) Dc-dc power conversion apparatus and method
KR20070103578A (en) Active-clamp current-source push-pull dc-dc converter
EP2937979A1 (en) Single-pole switch power source
JP2009100631A (en) Dc transformer
KR102034149B1 (en) Single Stage AC/DC converter
Chiu et al. A high-efficiency soft-switched AC/DC converter with current-doubler synchronous rectification
KR100975926B1 (en) Transformer having resonance inductance
US10075055B2 (en) Zero-voltage-switching scheme for phase shift converters
KR101214381B1 (en) High frequency direct current converter for inhibition of electrical short
KR20110077955A (en) Non-isolated soft-switched multiphase dc-dc converter for high voltage-gain and high-power
Choi et al. A new APWM half-bridge converter with enhanced zero-voltage-switching range in wide input voltage range
CN115149809A (en) Non-isolated full-bridge cascaded converter circuit and control method thereof
WO2018148932A1 (en) Dc to dc converter
KR20100082084A (en) Boost converter using soft-swiching
KR20100078124A (en) Inductorless soft switched dc-dc converter
KR100985566B1 (en) Auxiliary circuit for satisfying hold-up time; and a phase transition full bridge converter and asymmetric half bridge converter having the same
Lin et al. Analysis and implementation of an interleaved ZVS converter with high input voltage
TW201330476A (en) High step-up interleaved converter and method thereof
TWI384735B (en) Voltage doubler circuit
CN201210649Y (en) Phase shifting full-bridge soft on-off circuit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee